
UNIVERSITY OF ZIELONA GÓRA

FACULTY OF ELECTRICAL ENGINEERING,
COMPUTER SCIENCE AND TELECOMMUNICATIONS

Synthesis of Finite State Machines
for Programmable Devices Based

on Multi-Level Implementation

Ph.D. Thesis

Arkadiusz BUKOWIEC, M.Sc.

Supervisor:
Prof. Alexander BARKALOV, Ph.D. D.Sc.

Zielona Góra, June 2008

http://www.uz.zgora.pl/
http://www.weit.uz.zgora.pl/
http://www.weit.uz.zgora.pl/
mailto:A.Bukoiwec@iie.uz.zgora.pl
mailto:A.Barkalov@iie.uz.zgora.pl

Acknowledgements

The research has been partially financially supported by (Polish) Committee of Scientific

Research in 2004-2006 (grant No. 3 T11C 046 26).

The work was partially supported by the Integrated Regional Operational Programme (Mea-

sure 2.6: Regional innovation strategies and the transfer of knowledge) co-financed from the

European Social Fund in 2005-2007.

Abstract

New architectures of FPGA devices combine different type of logic elements like look-up

tables, flip-flops and memory blocks. But standard synthesis methods utilize only look-up

tables and flip-flops and it makes that device utilization is not optimal one.

Methods of synthesis and implementation of Mealy finite state machines into Field Pro-

grammable Devices there are presented in this work. Proposed methods of synthesis are

dedicated into developed multi-level structures of digital circuits of finite state machines. Ar-

chitectures of designed structures are based on existence of decoders as second-level circuits.

Methods of synthesis are based on the multiple encoding. There is also proposed hardware

implementation into an FPGA device of developed multi-level structures. The hardware im-

plementation is based on an implementation with use of look-up tables and memory blocks

together. It leads to better utilization of a device that standard methods gives.

Proposed methods have been implemented by academic software for logic synthesis of au-

tomata. Conducted experiments shown that these methods are effective for FPGA devices.

Key words: control unit, decomposition, FSM, FPGA, synthesis.

Table of Contents

Table of Contents . 1

List of Figures . 3

List of Tables . 5

1 Introduction . 7

1.1 Thesis of the Work . 8

1.2 Goals of the Work . 9

1.3 The Structure of the Work . 9

2 Architecture and Applications of Field-Programmable Devices 11

2.1 Programmable Logic Devices . 12

2.2 Field Programmable Gate Arrays . 13

2.3 Designing with FPDs . 15

2.3.1 The design flow for FPDs . 16

2.3.2 Functional decomposition for FPDs 17

3 Finite State Machines . 20

3.1 Methods of Specification of FSMs . 21

3.2 Realization of FSMs . 25

3.3 Decomposition of Circuit of FSM . 29

3.3.1 Functional Decomposition for FPGAs 29

3.3.2 Realization of FSMs with ROM Memories 31

3.3.3 Architectural Decomposition of FSMs 32

4 Multi-Level Structures of Mealy FSMs . 40

4.1 Multiple Encoding of Microinstructions 40

4.2 Multiple Encoding of Internal States . 44

TABLE OF CONTENTS

4.2.1 Multiple Encoding of Internal States with Current States as a Parti-

tioning Set . 45

4.2.2 Multiple Encoding of Internal States with µIs as a Partitioning Set . 49

4.3 Multiple Encoding of Microinstructions and Internal States 53

4.4 Shared Multiple Encoding of Microinstructions and Internal States 56

4.5 Shared Multiple Encoding of µIs and Internal States with Common Decoder 62

5 Implementation into FPGAs . 66

5.1 Automata Synthesis System . 68

5.2 Behavioral Verification . 72

5.3 Logic Synthesis . 74

5.4 Implementation . 83

6 Summary . 96

6.1 The confirmation of the thesis . 96

6.2 Improvements and other applications . 97

A CD-ROM . 99

Bibliography . 101

-2-

List of Figures

1.1 The decomposition of a digital system . 7

2.1 The classification of Field-Programmable Devices 11

2.2 The structure of a PAL device . 12

2.3 the structure of a CPLD . 13

2.4 The structure of an FPGA . 14

2.5 The structure of a CLB . 14

2.6 The design flow for PLDs . 16

2.7 The design flow for FPGAs . 16

2.8 The implementation of the function F on a PAL device 18

2.9 The implementation of the function F on a FPGA device 19

3.1 The Mealy FSM S1 and its state diagram 22

3.2 The marked flow-chart Γ1 of the Mealy FSM S1 23

3.3 The KISS2 description of the FSM S1 . 25

3.4 The structural diagram of P Mealy FSM 26

3.5 The scheme of the Curtis’ functional decomposition 30

3.6 The scheme of the general functional decomposition 30

3.7 ROM-based realization of FSM . 32

3.8 Structural diagrams of double-level Mealy FSMs 33

4.1 The structural diagram of PY0 Mealy FSMs 41

4.2 The structural diagram of PA and PAY Mealy FSMs 45

4.3 The structural diagram of PYY Mealy FSMs 50

4.4 The structural diagram of PAY0 Mealy FSM 54

4.5 The structural diagram of PAYS Mealy FSM 56

4.6 The encoding of identifiers . 60

4.7 The structural diagram of PAYSC Mealy FSM 63

LIST OF FIGURES

5.1 The design flow for FPGAs with use of multi-level structures 69

5.2 The top-level module of the Mealy FSM dk14 with the structure PAY0 . . . 69

5.3 The P module of the Mealy FSM dk14 with the structure PAY0 70

5.4 The RG module of Mealy FSM dk14 with the PAY0 structure 70

5.5 The module Y of the Mealy FSM dk14 with the structure PAY0 71

-4-

List of Tables

2.1 Classification of PLDs . 13

2.2 Size of memory blocks in FPGAs . 15

2.3 Typical modes of embedded memory blocks 15

3.1 The state transition and output table of the FSM S1 24

3.2 The DST of the Mealy FSM S1 . 29

3.3 The transformed DST of the PY Mealy FSM S1 35

3.4 The decoder table of the PY Mealy FSM S1 35

3.5 The transformed DST of the PD Mealy FSM S1 38

3.6 Decoders table of the PD Mealy FSM S1 38

4.1 The transformed DST of the PY0 Mealy FSM S1 43

4.2 The decoder table of the PY0 Mealy FSM S1 44

4.3 The transformed DST of the PA Mealy FSM S1 48

4.4 The internal state code converter table of the PA Mealy FSM S1 49

4.5 The transformed DST of the PYY Mealy FSM S1 52

4.6 The internal state code converter table of the PYY Mealy FSM S1 53

4.7 The transformed DST of the PAY0 Mealy FSM S1 55

4.8 The part of the DST of the Mealy FSM S2 59

4.9 The part of the transformed DST of the Mealy FSM S2 61

4.10 The Part of the microoperations decoder table of the Mealy FSM S2 61

4.11 Part of code converter table of Mealy FSM S2 62

4.12 The part of the common decoder table of the Mealy FSM S2 64

5.1 Schematic diagrams of multi-level Mealy FSMs 66

5.2 The simulation of the Mealy FSM dk14 73

5.3 Results of the logic synthesis of benchmarks from the library LGSynth91 . 75

5.4 Results of the logic synthesis of random benchmarks 78

LIST OF TABLES

5.5 Average results of the logic synthesis of standard benchmarks 81

5.6 Average results of the logic synthesis of random benchmarks 81

5.7 Results of the implementation of benchmarks from the library LGSynth91 . 83

5.8 Results of the implementation of random benchmarks 90

5.9 Average results of the implementation of standard benchmarks 93

5.10 Average results of the implementation of random benchmarks 93

-6-

Chapter 1

Introduction

The silicon product development grows very fast. This rapid evolution has resulted in ap-

pearance of very large scale integration (VLSI) chips and circuits. It makes possibility to

implement a complex digital system in a single chip as a System-on-Programmable-Chip

(SoPC) [Salcic: 1998; Jantsch: 2003].

Any digital system can be decomposed (Fig. 1.1) into a data path (DP) and a control unit

(CU) [Barkalov: 1994b, 2003; Łuba: 2001]. Such decomposition gives opportunity for reuse

CU

DP

YI

XI

XE

YE

D

R

XE – external control inputs
XI – internal control signals
D – data
YE – external microinstruction
YI – internal microinstruction
R – results

Figure 1.1. The decomposition of a digital system

of early designed components or for use of intellectual property cores (IP Cores), that are

available on the silicon market, for data processing. It means, that a data path can be built

from already designed library of components and only a control unit have to be designed

from the beginning.

There are many modern methods of designing control units like statecharts [Drusinsky

& Harel: 1989; Łabiak: 2005] or Petri Nets [Adamski: 2002; Wȩgrzyn: 2003]. But finite

state machines (FSMs) [Curtis: 1962; Hopcroft & Ullman: 1979] are still one of the most

popular way of specification of a algorithm of a control unit. Because a control unit is a part

1.1. Thesis of the Work

of almost any digital system, optimization of a designing and synthesis process of its digital

circuit was a subject of many works from many years. In 80s there were many works oriented

on implementation of FSMs with PLA structures [Papachristou: 1979; Dagless: 1983b]. In

those days there was also started works on designing of state machines at former High School

of Engineering in Zielona Góra (now University of Zielona Góra) by Prof. Marian Adamski

[1980]. Together with development of silicon devices, methods of designing, synthesis and

implementation of finite state machines have evolved also. Nowadays, FPGA devices are one

of the most popular for realization of whole digital devices as SoPC. It creates new needs

of fit a control unit into available hardware resources after implementation of a data patch.

Because new FPGAs have different kind of logic elements it makes that not only reduction

of hardware resources required for implementation of a finite state machine is a goal but also

possibility to balanced use different types of resources.

1.1. Thesis of the Work
Based on the description from previous sentences the Author undertook the research. The

thesis of this research could be formed as:

Multi-level architectural decomposition of a digital cir-

cuit of a finite state machine leads to rational usage of

hardware elements of a programmable device which is

used for implementation of a digital system.

Architectural decomposition follows the physical parts of a system. It refers to the pro-

cess by which a complex circuit is broken down into parts that are easier to implement.

In case of finite state machine it split the combinational circuit into several circuits those

together have the same function but each of them has different nature. The system after

decomposition has a multi-level nature because data are processed serially and passed from

one circuit to next one.

By rational usage the Author understands:

• a reduction of number of logic elements required for implementation of a finite state

machine in comparison with standard methods of synthesis;

• a balanced usage of different types of logic elements (such as logic blocks and memory

blocks) available in programmable device;

• a usage of available, not used, logic elements of a programmable device after imple-

mentation of other components of whole digital system.

-8-

1.2. Goals of the Work

The first point means that designed method of synthesis should use less logic elements of

one kind than standard methods of synthesis. Instead there could be also used logic elements

of different kind. Balanced usage means that designed method of synthesis should use logic

elements of different types in order to effective utilize whole programable device. The last

point means that there should be developed a set of synthesis methods because different

programable devices have different ratio of different types of logic elements and ratio of

available logic elements could be also different for different data pathes.

1.2. Goals of the Work
From this thesis the following theoretical goals appear:

• a development of multi-level structures of a logic circuit of a finite state machine;

• a development of synthesis methods of a finite state machine into designed multi-level

structures;

• a development of rules of hardware implementation of designed multi-level structures.

The realization of these theoretical goals is a base for creation of Author’s system for logic

synthesis of FSMs – the Automata Synthesis System (called in shortcut as the A♠S System

or just the A♠S) [Bukowiec: 2008]. This system implements developed synthesis methods.

There was assumed that the thesis will be proved by:

• a comparison of simulation results of benchmarks synthesized with use of designed

methods with results of behavioral simulations of these same benchmarks;

• a comparison of results of implementations into an FPGA of benchmarks synthesized

with use of developed methods with results of implementation of these same bench-

marks with use of standard methods of synthesis.

It is accepted if the results of simulation are the same and the results of implementation are

better (in fact of the thesis) the thesis is proved.

1.3. The Structure of the Work
The work was divided into six chapters. The first chapter is the introduction into area of

the research. Chapters two and three are a theoretical overview. Fourth and fifth chapters

describe Author’s research and obtained results. The last chapter is a summary of conducted

research.

-9-

1.3. The Structure of the Work

The first chapter shows the motivation for taken of the subject of the work. There is also

defined the main thesis of the work and goals that follow the thesis.

In the second chapter, there are described modern field-programmable devices (FPDs).

There is made classification of FPD devices and their architecture and main features are

characterized. The design flow for FPDs is also described. Features required for the research

are bringed out.

The third chapter define the finite state machine. There is described a single-level struc-

ture of a digital circuit of a FSM and there is also placed overview of known methods of

hardware reduction of a logic circuit of a FSM, like: functional decomposition, ROM-base

realization and architectural decomposition.

The main part of the work is represented by the fourth chapter. There are described

designed multi-level structures of digital circuits of FSMs and designed methods of synthesis

into these structures. Architectures of designed structures are based on existence of decoders

as second-level circuits. The methods of synthesis are mainly based on a multiple encoding.

There are also shown examples of application of proposed methods of synthesis.

In the fifth chapter, there are shown obtained results. At the beginning, there is described

hardware implementation of designed structures. Then the A♠S System is described in brief.

The description of behavioral verification and implementation results is the main part of this

chapter.

The sixth chapter makes a summary of the thesis and there is a proof of it here. There

are also described possibilities of further improvements and applications in different areas.

-10-

Chapter 2

Architecture and Applications of

Field-Programmable Devices

Field-Programmable Devices are very often used for implementation of a control unit of

digital systems or industrial objects. Because these devices can be programmed by user

during designing process they are good platform for dedicated control units. There are many

different types of such devices (Fig. 2.1) - from simple programmable logic devices (SPLDs,

also called as PLDs) through complex PLDs (CPLDs) to advanced field programmable gate

arrays (FPGAs) [Jenkins: 1994; Grushnitsky et al.: 2002].

FPD

PLD FPGA

SPLD CPLD

PLA PALPROM

Figure 2.1. The classification of Field-Programmable Devices

This research are oriented into FPGA technology but there are characterized all types

of FPDs in following sections. It has purpose to bring out differences between these archi-

tectures and shown that developed structures can be also adopted into CPLD technology in

another works.

2.1. Programmable Logic Devices

2.1. Programmable Logic Devices
A programmable logic device is defined as a device with configurable logic and registers

connected with programmable interconnections. Memory cells control and define the func-

tion of the logic and define how the various logic functions are interconnected. Though

various types of devices use different architectures but all are based on this idea [Jacobson:

1999]. The most popular simple PLDs are Programmable Array Logic (PAL). The PAL are

build of programmable AND gates, which are linked to a fixed OR gates (Fig. 2.2). This

layout allows to implement logic functions of large number of variables represented as a

sum of products. The size of device limits the number of terms which can be implemented in

PAL device [Kania: 2004]. More advanced PALs are available with output logic macrocells

(OLMCs). An alternative for PALs are Generic Array Logic (GAL) devices. This device has

I1 I2 I3

O1

Q

Q
SET

CLR

D

OLMC

Figure 2.2. The structure of a PAL device

the same logical properties as the PAL but they are made in different technology and they

can be reprogrammed. Programmable Logic Arrays (PLAs) are very similar in comparison

to PALs. They have also AND-OR structure but OR gates are also programmable (Tab. 2.1).

Programmable Read-Only Memories (PROMs) can be also used for implementation of com-

binational circuits. There are fixed AND gates and programmable OR gates in this type of

devices.

The architecture of Complex Programmable Logic Devices (CPLDs) is based on PLD

architecture [Skahill: 1996; Łuba et al.: 2003]. Simply it can by said that one CPLD is build

from several PLDs. The main feature of CPLDs is existence of programmable intercon-

nections (PIs) (Fig. 2.3). These connections combine logic blocks (LBs) and input/output

-12-

2.2. Field Programmable Gate Arrays

Table 2.1. Classification of PLDs

PROM PLA PAL

AND gates fixed programmable programmable

OR gates programmable programmable fixed

OLMCs no yes yes

blocks (IOBs). Each logic block contains several macrocells and each macrocell is build

PI

LB

LB

LB

LB

LB

LB

IOB IOB

Figure 2.3. the structure of a CPLD

from a logic array and a programmable register [Altera: 2006; Xilinx: 2006b]. Typically

logic arrays have a PAL based structure but there are also devices with a PLA structure of

logic arrays [Xilinx: 2006a].

2.2. Field Programmable Gate Arrays
FPGAs are built with matrix of small configurable logic blocks (CLBs), these blocks are con-

nected by internal programmable interconnections and they are surrounded by programmable

input/output blocks (IOBs) for communication with environment (Fig. 2.4) [Xilinx: 2004b;

Altera: 2005a]. An FPGA contains from several to tens of thousands of CLBs. Each

logic block is build of look-up tables (LUTs), flip-flops and some additional control logic

(Fig. 2.5). There are two primary classes of FPGA architectures, coarse-grained and fine-

grained [Jacobson: 1999]. Fine-grained architectures consist of a large number of relatively

simple logic blocks containing either a two-input LUT or a multiplexer and a flip-flop. The

other architecture type is called coarse-grained. In these devices, there are fairly large CLBs,

often containing two or more look-up tables and two or more flip-flops [Xilinx: 2002]. One

-13-

2.2. Field Programmable Gate Arrays

CLB

CLB

CLBCLB

CLB

CLB

CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

IOB IOB IOB IOB

IOB IOB IOB IOB

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

Figure 2.4. The structure of an FPGA

Carry &

Control

Logic Q

Q
SET

CLR

D

LUT

F[1:4]

X

CIN

CLK

CLR

SET
COUT

Y

Figure 2.5. The structure of a CLB

LUT typically has 4 inputs and can implement any Boolean function of this number of vari-

ables. It works as 16×1 ROM.

The new FPGAs have also embedded memory blocks [Bursky: 1999; Altera: 2007b].

These memories are from 512 b [Altera: 2007a] up to 36 Kb [Xilinx: 2007] (Tab. 2.2). The

most popular size of memory block of cheaper FPGAs is 4 Kb [Xilinx: 2002; Altera: 2005b]

and these blocks can be set to one of several modes of data width (Tab. 2.3). They can also

work in one of modes, like single-port RAM, dual-port RAM or ROM. When embedded

memory block works in ROM mode it is initiated with content during programming pro-

cess of an FPGA device. In this mode, it can be used for implementation of combinational

functions.

-14-

2.3. Designing with FPDs

Table 2.2. Size of memory blocks in FPGAs

Vendor Family
Size

[bits]

Xilinx

Spartan n/a

Spartan-II 4K

Spartan-3 18K

Virtex & Virtex-E 4K

Virtex-II & Virtex-II Pro 18K

Virtex-4 18K

Virtex-5 36K

Altera

Cyclone & Cyclone II 4K

Cyclone III 9K

Stratix & Stratix II 512 & 4K

Stratix III 640 & 9K

Table 2.3. Typical modes of embedded memory blocks

Mode
Number Width

of words of the word

[bits]

4K×1 4096 1

2K×2 2048 2

1K×4 1024 4

512×8 512 8

256×16 256 16

2.3. Designing with FPDs
The design process for FPDs is rather complicated. To simplify this process, there was

created electronic design automation (EDA) software. This is special group of computer-

aided design (CAD) software that is dedicated to designing electronic systems ranging from

printed boards to integrated circuits [Mc Cluskey: 1986]. These tools allow to create high

level description of a behavior of a circuit and then automatically "fit" it into selected device.

One of the most important steps, performed by these tools, is logic synthesis.

-15-

2.3. Designing with FPDs

2.3.1. The design flow for FPDs

The design flow for PLDs (Fig. 2.6) is different (and simpler) that the design flow for CPLDs

and FGPAs. In this case, the behavior of a device is described in low-level PLD design

Description

(ABEL.

CUPL)

JEDEC
Compilation Programming

Figure 2.6. The design flow for PLDs

languages like CUPL, ABEL or PALASM [Smith: 1997]. During compilation there is per-

formed logic synthesis of design and Boolean equations in disjunction normal form describ-

ing behavior of device are obtained. These equations are minimized (and decomposed, if

required [Devadas et al.: 1988; Kania: 2000]) also during compilation process. As a result

the binary file (for example in JEDEC format) for programming the device is produced.

CPLD and FPGA devices give much more possibilities than simple PLDs. It also makes

that low-level languages are useless during design process for these devices. The most pop-

ular are hardware description languages (HDLs), like VHDL or Verilog, as design entry in

a CPLD or FPGA design flow (Fig. 2.7) [Jenkins: 1994; Eles et al.: 1998]. HDLs allow to

create a behavioral description of a digital system. It is very important that this description

is device independent. The target device is chosen during a synthesis process. As a result

HDL

Description

Netlist

(EDIF,

NGC)

Synthesis Implementation

Device Library

BitStream
Programming

Figure 2.7. The design flow for FPGAs

of synthesis the netlist is obtained. This netlist consist description of design with use of

blocks available in the target device. During this process functions describing behavior of a

device can be decomposed in purpose of realization with available blocks [Devadas et al.:

1989; Rawski et al.: 2001]. This netlist is an input for an implementation process. During

this process the design is mapped (in the CPLD flow this step is called "fit") into available

-16-

2.3. Designing with FPDs

resources of a target device. Then the place & route step (only in the FPGA flow), which

places and routes the design, is performed. As a result of implementation the programming

file (bitstream) is generated. This file can be downloaded into a device.

2.3.2. Functional decomposition for FPDs

The functional decomposition is an inseparable part of a synthesis process into FPDs. The ar-

chitectural decomposition is made on higher level of designing process and after this process

there is also required to preform the functional decomposition for obtained components. The

goal of a decomposition depends on a type of a target device. Let analyze implementation of

the function F

F = x1 x2 x3 x4x5x6 + x1 x2x3x4x5x6 + x1x2x3 x4x5x6 + x1x2x3x4 x5x6

+ x1x2 x3x4x5x6 + x1x2x3x4x5 x6 + x1x2x3x4x5x6 + x1x2x3x4 x5 x6

+ x1 x2 x3 x4 x5 x6 + x1x2x3x4x5x6

on a PLD and an FPGA. This function depends on 6 variables and it has 10 terms. This

function can not be minimized.

Typical PLDs (PAL16H8, GAL16V8, GAL20V8) have 7 or 8 product terms per output.

It means that the function F cannot be implemented on such device with use of 1 output.

It leads to necessity of decomposition [Ciesielski & Yang: 1992; Łuba: 2001; Kania et al.:

2005a]. To implement the function F in device with 7 terms per output there have to be

created the sub-function G

G = x1 x2 x3 x4x5x6 + x1 x2x3x4x5x6 + x1x2x3 x4x5x6 + x1x2x3x4 x5x6

+ x1x2 x3x4x5x6 + x1x2x3x4x5 x6 + x1x2x3x4x5x6

with 7 terms and then the function F can be written as function of the function G and the

other 3 terms (Fig. 2.8)

F = G+ x1 x2 x3 x4 x5 x6 + x1x2x3x4 x5 x6 + x1x2x3x4x5x6.

This is small example only for illustration of this problem. It is more discussed in litera-

ture by Prof. Dariusz Kania [2000] and it can also be extended into multi-output case [Kania

et al.: 2005b]. The process of decomposition for CPLDs can be also improved by applying

XOR gates [Kania & Grabiec: 2007] that are in new CPLD devices.

-17-

2.3. Designing with FPDs

G

x1

x2

x3

x4

x5

x6

F

Figure 2.8. The implementation of the function F on a PAL de-

vice

The bigger PLDs and CPLDs have more product terms per output (for example,

GAL22V10 up to 16, Virtex XC9500 up to 90) but the problem of such decompositions

appears also for functions with more terms that available terms per output.

The most popular FPGAs have LUTs with 4 inputs. Such tables can implement any

function up to 4 arguments. The example function F depends on 10 variables. It means

that it also have to be decomposed [Łuba: 2001; Rawski et al.: 2006]. It this case it have

to be decomposed into several sub-functions where each sub-function depends only on 4

variables or other sub-functions. In some FPGAs the 2-inputs multiplexers also can be used

for implementation of logic functions and it leads to reduce a number of required LUTs. The

example function F has to be implemented with 4 LUTs and 3 multiplexers on an FPGA

device (Fig. 2.9).

How it was shown the decomposition is very important during synthesis process, but the

goal of decomposition depends on target architecture. It can be simply said that in case of

PLDs and CPLDs the goal of decomposition is to extract sub-function with required number

of terms and in case of FPGAs the goal of decomposition is to extract sub-function with

-18-

2.3. Designing with FPDs

LUT1

LUT2

LUT3

LUT4

F

x1

x2

x3

x4

x5

x6

()
()
()
() 43214321

43214321

432143214321

432143214321

4LUT

3LUT

2LUT

1LUT

xxxxxxxxG

xxxxxxxxG

xxxxxxxxxxxxG

xxxxxxxxxxxxG

+=

+=

++=

++=

Figure 2.9. The implementation of the function F on a FPGA

device

required numbers of arguments. Of course for implementation of system of functions there

can be extracted common sub-function for several functions in order to diminish required

hardware resources [Selvaraj et al.: 2006].

-19-

Chapter 3

Finite State Machines

A finite state machine is a mathematical model of behavior composed of a finite set of input

symbols, a finite set of states, a finite set of output symbols, transitions and actions [Baranov:

1994; Gajski: 1997; Łuba: 2001; Adamski & Barkalov: 2006]. This model can be represented

as six tuple:

S = 〈X, Y,A, a1, δ, ω〉, (3.1)

where:

X is a finite set of input symbols, X = {x1, . . . , xL};

Y is a finite set of output symbols, Y = {y1, . . . , yN};

A is a finite non empty set of states, A = {a1, . . . , aM};

a1 is the initial state, a1 ∈ A;

δ is a transition function, defined as a function of a state and input symbols:

δ : A×X → A; (3.2)

ω is an output function, in case of Moore model [Moore: 1956] defined as a function of a

state:

ω : A→ Y, (3.3)

and in case of Mealy model [Mealy: 1955] defined as a function of a state and input

symbols:

ω : A×X → Y. (3.4)

The Mealy model can be treated as a general model of FSM and Moore model is its particular

case. This is the main reason why this thesis refers to the Mealy model.

3.1. Methods of Specification of FSMs

3.1. Methods of Specification of FSMs
The most popular graphical representation of FSMs are state diagrams [Gajski: 1997; Łuba:

2001; Adamski & Barkalov: 2006]. State diagram is a direct graph [De Micheli: 1994]

where:

• States are represented by a finite set of vertices, normally drown as a circle labeled

inside with a state name;

• Transitions are represented by direct edges, normally drown as an arrow from a current

state to a next state, it is labeled with mapping of input symbols describing the logic

condition of this transition;

• Output symbols are represented by labels. For a Moore model this labels are assigned

to states. For a Mealy model output symbols are represented by labels assigned to

transitions, usually separated with a slash symbol "/" from input symbols;

• The initial state typically is represented by an arrow pointing at it from nowhere

[Hopcroft & Ullman: 1979].

The example of the Mealy FSM S1 and its state diagram is shown in the figure 3.1. There is

already used structural alphabet.

Others graphical representations of FSMs are graph-schemes of algorithms (GSA) [Bara-

nov & Keevallik: 1980], algorithmic state machine (ASM) [Dagless: 1983a; Baranov: 1998a;

Łuba: 2001] or flow-chart (FC) [Baranov: 1994; Barkalov & Wȩgrzyn: 2006]. All these four

representations are very similar. In this work as graphical representation of algorithm a flow-

chart will be used. It consist of four types of vertices:

• an initial vertex,

• a finish vertex,

• an operational node,

• a conditional node.

The states of Moore FSM are assigned to operational nodes and the states of Mealy FSM

are placed on edges leaving an operational node. The flow-chart of the FSM S1 is shown in

the figure 3.2. This type of representation is intuitive only for Moore FSMs and in case of

Mealy FSMs it is more difficult for analysis than a state diagram. The GSA consist of these

same types of nodes and the ASM has additionally the conditional output node and there

is not initial and finish vertexes. The conditional output node defines Mealy type outputs

-21-

3.1. Methods of Specification of FSMs

a) b)

x2/y2

a1

a2

a3a4

a5

x1x2/y1

x1x2/y1y2

x2/y1y2 x2/y2

x2/y2

x2x3/y2

x2x3/y2y3

x3/y3y4
x3/-

x1/y1y5

x1x3/y3y4 x1x3/y2y3

S1 = 〈X, Y,A, a1, δ, ω〉 where

X = {x1, x2, x3};

Y = {y1, y2, y3, y4, y5};

A = {a1, a2, a3, a4, a5};

δ(a1, x1, x2) = a2,

δ(a1, x1, x2) = a3,

δ(a1, x2) = a3, δ(a2, x2) = a3,

δ(a2, x2) = a4, δ(a3, x2) = a3,

δ(a3, x2, x3) = a4,

δ(a3, x2, x3) = a5,

δ(a4, x3) = a5, δ(a4, x3) = a3,

δ(a5, x1)=a1, δ(a5, x1, x3)=a5,

δ(a1, x1, x3) = a4;

ω(a1, x1, x2) = y1, ω(a1, x1, x2) = (y1, y2), ω(a1, x2) = y2, ω(a2, x2) = (y1, y2),

ω(a2, x2) = y2, ω(a3, x2) = y2, ω(a3, x2, x3) = y2, ω(a3, x2, x3) = (y2, y3),

ω(a4, x3) = (y3, y4), ω(a5, x1) = (y1, y5), ω(a5, x1, x3) = (y3, y4), ω(a1, x1, x3) = (y2, y3).

Figure 3.1. Mealy FSM S1 (a) and its state diagram (b)

and Moore type outputs are assigned to operational nodes. The ASM diagram is like a state

diagram but less formal.

The other way to represent FSMs is use of tables. The most popular tables format

is a state transition and output table. It can be presented as a classical two-dimensional

table [Łuba: 2001; Adamski & Barkalov: 2006] or as a one-dimensional table. The one-

dimensional table looks like a truth table and typically it consists of four columns:

• a current state,

• a logic condition,

• a next state,

• outputs.

It can be also extended by other columns that represent codes of states or excitation functions.

Such table is also named as a direct structural table (DST) [Baranov: 1994; Barkalov &

Wȩgrzyn: 2006]. The transition table for the FSM S1 is shown in the table 3.1. The biggest

advantage of a table representation is that it can be easy represented by text formats. Such

formats are very often used as an input description of FSMs by CAD tools for synthesis of

-22-

3.1. Methods of Specification of FSMs

y2

Start

x2

x1

1 0

1

y1 y1y2

0

x2

a1

a2

x2

a3

1

1

y2x3

0

0

0 1

y2y3

x1

a5

1

End

a1

x3

0

1

y3y4

x3 1

-

0

a4

y3y4

y1y5

y2y3

0

Figure 3.2. The marked flow-chart Γ1 of the Mealy FSM S1

FSMs [Łuba et al.: 2003]. One of the most popular text format of a state transition and output

table is the KISS2 format [Yang: 1991]. A file in this format consists of two parts:

• a header,

• a table.

The header includes information about:

.i - the number of inputs,

.o - the number of outputs,

-23-

3.1. Methods of Specification of FSMs

Table 3.1. The state transition and output table of the FSM S1

Current Logic Next
Outputs

state condition state

x1 x2 x3 y1 y2 y3 y4 y5

a1 1 1 − a2 1 0 0 0 0

0 1 − a3 1 1 0 0 0

− 0 − a4 0 1 0 0 0

a2 − 1 − a3 1 1 0 0 0

− 0 − a4 0 1 0 0 0

a3 − 1 − a3 0 1 0 0 0

− 0 0 a4 0 1 0 0 0

− 0 1 a5 0 1 1 0 0

a4 − − 1 a5 0 0 1 1 0

− − 0 a3 0 0 0 0 0

a5 1 − − a1 1 0 0 0 1

0 − 1 a5 0 0 1 1 0

0 − 0 a4 0 1 1 0 0

.p - the number of table lines - products,

.s - the number of states,

.r - the initial state (optional).

The table describes the behavior (transitions) of a FSM. This table is a one-to-one equivalent

to the one-dimensional state transition and output table. The table consist of four columns:

• a logic condition,

• a current state,

• a next state,

• output variables.

The ’-’ sign in logic condition means that this input variable does not affect this transition.

The ’0’ value means that negation of this variable should be placed in a logic condition and

the ’1’ value that its affirmation should be placed in a logic condition. The KISS2 description

of FSM S1 is shown in the figure 3.3.

-24-

3.2. Realization of FSMs

.i 3

.o 5

.s 5

.p 13

.r a1
11- a1 a2 10000
01- a1 a3 11000
-0- a1 a4 01000
-1- a2 a3 11000
-0- a2 a4 01000
-1- a3 a3 01000
-00 a3 a4 01000
-01 a3 a5 01100
--1 a4 a5 00110
--0 a4 a3 00000
1-- a5 a1 10001
0-1 a5 a5 00110
0-0 a5 a4 01100

Figure 3.3. The KISS2 description of the FSM S1

3.2. Realization of FSMs
Such defined a finite state machine (3.1) can be realized with use of programmable logic

deices [Barkalov: 2002; Łuba et al.: 2003]. Synthesis process for PLDs consists of following

steps [Barkalov: 2003; Łuba: 2005]:

• an encoding of states,

• a selection of flip-flop type,

• a formation of the direct structural table,

• a formation of the system of Boolean functions,

• an implementation of the logic circuit of the FSM.

The encoding of states (state assignment) is one of most important steps of synthesis

process [Lee & Hwang: 1993; Kubátová: 2005; Borowik: 2005]. There is required to use R

bits to encode states am ∈ A = {a1, . . . , aM}, where

dlog2Me 6 R 6 M. (3.5)

The value ofR depends on the method of encoding and for binary, Gray or Johnson encoding

(called minimum-length or compact methods)

R = dlog2Me, (3.6)

-25-

3.2. Realization of FSMs

but for one-hot encoding there is required to use maximal number of bits and

R = M. (3.7)

There are also others methods, like two-hot, where the number of required bits is between

dlog2Me and M . The selection of one method depends on target architecture and system

requirements. Typically, in case of FPGAs, one-hot methods gives the highest frequency of

device but also required the most number of logic elements [Kubátová: 2005]. The alterna-

tive to save logic elements are minimum-length methods.

The selection of flip-flop type very often depends on target architecture. The most pop-

ular, embedded in PLD, CPLD or FPGA devices, are D type flip-flops [Jenkins: 1994]. In

case of other target architecture selection of JK or T type flip-flops, or a mix of flip-flops can

reduce number of required logic elements for implementation of a combinational part of a

FSM [Ahmad et al.: 2000].

The formation (construction) of the direct structural table is base for formation of a sys-

tem of microoperations (µOs):

Y = Y (X,Q), (3.8)

that is based on interpretation of definition of the Mealy type outputs function (3.4) and a

system of excitation functions:

Φ = Φ(X,Q), (3.9)

that is interpretation of definition of the state transition function (3.2) [Barkalov: 1994b].

These systems are implemented by the circuit P (Fig. 3.4) of the single-level circuit of a

Mealy FSM (called P Mealy FSM) [Barkalov: 1994a].

P

RG

Y

Q

Φ

X

Figure 3.4. The structural diagram of P Mealy FSM

The direct structural table of a Mealy FSM has following columns [Baranov: 1994]:

am is current state of a FSM, am ∈ A where A = {a1, . . . , aM} is the set of states;

K(am) is a binary code of the state am, the code is represented by variables Qr ∈ Q =

{Q1, . . . , QR};

-26-

3.2. Realization of FSMs

as is a state of the transition, as ∈ A;

K(as) is a binary code of the state as;

Xh is a logic condition, it causes the transition from the state am to the state as (〈am, as〉)
and it is equal to the conjunction of affirmation or negation of some elements of the

set X = {x1, . . . , xL};

Yh is a microinstruction (µI) formed during the transition 〈am, as〉, Yh ⊆ Y where Y =

{y1, . . . , yN} is the set of microoperations;

Φh is a subset of the set of excitation functions Φ that are equal to 1 to switch the memory

of a FSM from K(am) to K(as), Φ = {D1, . . . , DR} in case of D type flip-flops;

h is a number of the transition, h = 1, . . . , H .

Each row of a direct structural table represents one transition.

The formation (construction) of the system of Boolean functions is base for obtaining

systems (3.8) and (3.9). From each line of a DST can be formed term

Fh = Ah
m ∧Xh, (3.10)

where Ah
m is a conjunction of internal variables Qr ∈ Q corresponding to the code K(am)

of the state am ∈ A from the h-th line of the DST

Ah
m =

R∧
r=1

Qlmr
r , (3.11)

where lmr ∈ {0, 1} is a value of the r-th bit of the code K(am):Q0
r = Qr and Q1

r = Qr.

Now, systems (3.8) and (3.9) are defined as:

yn =
H∨

h=1

(
Cnh ∧ Fh

)
, (3.12)

Dr =
H∨

h=1

(
Crh ∧ Fh

)
, (3.13)

where n = 1, . . . , N , r = 1, . . . , R; Cnh(Crh) is a Boolean variable equal to 1 iff the h-

th line of a DST contains the function yn(Dr) in the column Yh(Φh) [Barkalov & Palagin:

1997]. These systems are represented in a disjunctive normal form (DNF). This is the most

common form of representation of Boolean equations for direct implementation in PLD de-

vices but sometimes, for different technologies, they have to be transformed into other form.

-27-

3.2. Realization of FSMs

For example, for implementation with NAND gates, De-Morgan laws have to be applied to

transform systems (3.12) and (3.13) [Sasao: 1999]. These equations can be also minimized

before implementation [Zieliński: 2003]. Very often minimization with include of don’t care

values gives better results. This type of minimization can be performed with use of Karnaugh

maps.

The implementation of the logic circuit of the FSM. The combinational circuit P, repre-

sented by systems (3.12) and (3.13), implements p-functions of a FSM and the number of

such functions is:

nP(P) = R +N. (3.14)

It is implemented using combinational logic of a FPD device. The register RG is imple-

mented with use of R flip-flops of a FPD device (typically D-type). The method of im-

plementation depends on a type of a FPD device [Solovjev: 2001a]. For FPGA devices,

the combinational circuit P is implemented with use of LUTs and the register RG is imple-

mented with use of flip-flops of logic blocks. Because typical LUT has only 4 inputs very

often Boolean functions have to be decomposed [Łuba et al.: 2002] because typically they

have more than 4 arguments.

The direct structural table for the FSM S1 with binary encoding of states and with D-type

flip-flops is presented in the table 3.2. There can be obtained Boolean equations of systems

(3.12) and (3.13) based on this table, for example1:

y1 = Q1Q2Q3x1x2 +Q1Q2Q3x1x2 +Q1Q2Q3x2 +Q1Q2Q3x1,

D1 = Q1Q2Q3x2x3 +Q1Q2Q3x3 +Q1Q2Q3x1x3.

Of course these equations can be written in minimized form:

y1 = Q1Q2x2 +Q1Q2Q3x1,

D1 = Q1Q2Q3x2x3 +Q1Q2x3 +Q1Q2Q3x1x3.

How it can be saw, the number of terms is smaller after minimization and it is important in

case of implementation with PLDs, but the number of variables is the same before and after

minimization and in case of implementation with FPGAs this minimization do not give any

benefits.
1There is used mathematical notation ("∧" - logical and, "∨" - logical or) in definitions but in regular

equations there is used engineering notation (""(no symbol) - logic and, "+" - logical or) to make them more

readable.

-28-

3.3. Decomposition of Circuit of FSM

Table 3.2. The DST of the Mealy FSM S1

am K(am) as K(as) Xh Yh Φh h

a1 000 a2 001 x1 x2 y1 D3 1

a3 010 x1 x2 y1 y2 D2 2

a4 011 x2 y2 D2 D3 3

a2 001 a3 010 x2 y1 y2 D2 4

a4 011 x2 y2 D2 D3 5

a3 010 a3 010 x2 y2 D2 6

a4 011 x2 x3 y2 D2 D3 7

a5 100 x2 x3 y2 y3 D1 8

a4 011 a5 100 x3 y3 y4 D1 9

a3 010 x3 − D2 10

a5 100 a1 000 x1 y1 y5 − 11

a5 100 x1 x3 y3 y4 D1 12

a4 011 x1 x3 y2 y3 D2 D3 13

3.3. Decomposition of Circuit of FSM
The most important problem of implementation into FPGAs of sing-level P Mealy FSM is

that there have to be implemented large number (up to 200) of Boolean functions dependable

on large number (up to 100) of arguments [Baranov: 1994]. If the number of arguments of

a Boolean function exceeds a number of LUT inputs there is required to apply functional

decomposition of this function [Łuba et al.: 2003] but this process does not reduce the total

number of Boolean functions. There are also methods of synthesis combinational part of a

FSM as ROM [Łuba et al.: 2003]. To diminish the numer of Boolean functions there can

be applied architectural decomposition of a structure of a logic circuit implementing a FSM

[Adamski & Barkalov: 2006]. This manipulation leads to multi-level circuit of a Mealy FSM

and the combinational part implements less Boolean functions that equivalent single-level

circuit.

3.3.1. Functional Decomposition for FPGAs

Curtis’ theorem [1962]: a function f(x0, x1, . . . , xn−1) is decomposable under the bound

set B = {x0, . . . , xi−1} and the free set A = {xi, . . . , xn−1}, 0 < i < n − 1, A ∩ B = ∅,

-29-

3.3. Decomposition of Circuit of FSM

the f can be represented as the composite function h(g1(B), . . . , gj(B), A), 0 < j < i− 1:

f(x0, x1, . . . , xn−1) = h(g1(B), . . . , gj(B), A). (3.15)

The scheme of this decomposition is shown in the figure 3.5.

G

H

f

g1 gj

x0 xi-1

B

xi xn-1

A

Figure 3.5. The scheme of the Curtis’ functional decomposition

The decomposition can be also performed for case whereA∩B 6= ∅ [Łuba: 2001]. In this

case the bound set B = {x0, . . . , xi−1} and the free set A = {xi−l, . . . , xn−1}, 0 < i < n−1,

1 < l < i− 1, A∩B = {xi−l, . . . , xi−1}. The scheme of this case is shown in the figure 3.6.

G

H

f

g1 gj

x0 xi-1

B
xn-1

A

xi-l

Figure 3.6. The scheme of the general functional decomposition

This theorem can be extended for a set of Boolean functions [Łuba et al.: 2003]:

F (A,B) = H(G1(B), . . . , Gj(B), A). (3.16)

-30-

3.3. Decomposition of Circuit of FSM

There are many analytical methods of a functional decomposition [Scholl: 2001; Łuba

et al.: 2002]. The binary decision diagrams (BDDs) can be also applied for improvement

of a functional decomposition [Opara & Kania: 2007]. Most popular computer systems for

functional decomposition are SIS (Sequential Interactive System) from Berkeley [Sentovich

et al.: 1992] and DEMAIN from Warsaw University of Technology [Nowicka: 1999].

The SIS system is multitasking system and it transforms a logical description into a multi-

level gates array [Sentovich et al.: 1992]. The minimization of Boolean functions is based

on ESPRESSO system [Brayton et al.: 1984]. There is also proceeded a classical algorithm

of a functional decomposition and it allows decomposition of single Boolean function.

The DEMAIN system decomposes Boolean functions base on original algorithm [Now-

icka: 1999] combining serial and parallel decomposition. There also algorithms of special

encoding for parallel decomposition [Borowik: 2005].

The separate algorithms are designed for a decomposition of functions dependable on

large number of arguments [Rawski et al.: 2006]. Also decomposition of Boolean functions

of a FSM can be applied on symbolic level [Rawski et al.: 2005b; Szotkowski & Rawski:

2007]. All these manipulations can reduce a number of required LUTs [Rawski et al.: 2005]

for implementation of a FSM but these algorithms do not affect the total number of functions

realized by a combinational part of a FSM.

3.3.2. Realization of FSMs with ROM Memories

The new FPGA devices are embedded with memory blocks (Chap. 2.2). It gives opportu-

nity to come back to old methods of designing of a combinational circuit as ROM [Dagless:

1983b] and implement a combinational part of a FSM in memory blocks (Fig. 3.7 a) op-

erating in ROM mode [Łach et al.: 2003]. But, typically, this required a lot of memory

resources and many words are not used because truth tables describing such circuits are not

strongly specified. To reduce memory size the address converter (AC) (Fig. 3.7 b) can be

applied [Łach et al.: 2003; Senhadji-Navarro et al.: 2004] and it can be implemented with

LUTs because it is described by a set of Boolean functions. It leads to the structure similar

to the microprogram control unit (MCU) [Barkalov & Palagin: 1997; Barkalov & Titarenko:

2007a,b]. This process of synthesis can be improved also by applying functional decom-

position [Rawski et al.: 2005a] or by partitioning a memory into several blocks [Borowik:

2004, 2007]. The disadvantage of this method of designing is that there is not optimal, very

big, memory on the beginning and results of reduction are not predictable. The alternative

solution for this realization is architectural decomposition [Solovjev: 2001b; Adamski &

-31-

3.3. Decomposition of Circuit of FSM

a)

RG

X

ROM

QY

L+R

b)

AC

X

ROM

QY

RG

<L+R

Figure 3.7. ROM-based realization of FSM without (a) and

with (b) address converter

Barkalov: 2006].

3.3.3. Architectural Decomposition of FSMs

The other method of hardware reduction of a FSM circuit is application of architectural

decomposition [Barkalov: 1994b; Barkalov & Wȩgrzyn: 2006]. These methods had been

applied for PLDs [Barkalov: 1994a, 2002; Solovjev: 1999] but it can be also adapted into

FPGA technology. Generally, the FSM circuit is represented as double- or multi-level struc-

ture after architectural decomposition. The first-level circuit is a combinational circuit that

implements Boolean functions of a decomposed FSM. The gain on this circuit in compari-

son with single-level circuit is that it implements less Boolean functions and it leads that it

typically required less hardware resources (LUTs in FPGAs). The second-level circuit typi-

cally works as decoder and functions describing its behavior has a regular structure. It means

that in new FPGA devices it can be implemented with use of embedded memory blocks. In

overall, such circuit required less logic elements but required additional memory resources,

but very often memories in FPGAs are not used for any other purpose.

One of the possible solutions of achieving of double-level circuit (Fig. 3.8) is application

of either a maximal encoding of microinstructions [Barkalov & Palagin: 1997; Barkalov:

2005] (Fig. 3.8 a) or an encoding of fields of compatible microoperations [Barkalov: 2003]

(Fig. 3.8 b) but other methods of encoding can be also considered [Barkalov & Barkalov Jr.:

2005]. Here the circuit P implements the system (3.9) and the system

Z = Z(X,Q), (3.17)

-32-

3.3. Decomposition of Circuit of FSM

a)

P

RG

Y

Q

Φ

X Z
Y

b)

P

RG

Y

Q

Φ

X Z

D1

DI

D

Figure 3.8. Structural diagrams of double-level PY (a) and

PD (b) Mealy FSMs

where Z = {z1, . . . , zN1} is the set of variables to encode microinstructions Yt ⊆ Y ,

Υ = {Y1, . . . , YT} is the set of microinstructions, where T is a number of different microin-

structions in the DST. The value of the parameter N1 depends on the method of encoding

of microoperations. The circuit Y (PY Mealy FSM) or D (PD Mealy FSM) implements a

decoding system

Y = Y (Z). (3.18)

The entering point for architectural decomposition is a formatted DST and for both meth-

ods of encoding it consists from following steps:

• an encoding of microoperations or microinstructions,

• a formation of the transformed direct structural table,

• a formation of the system of Boolean functions,

• a formation of the decoder table(s),

• an implementation of the logic circuit of the FSM.

3.3.3.1. Method of Synthesis with the Maximal Encoding of Microinstructions

The encoding of microinstructions is based on a trivial way of a binary encoding. Let us

encode each set Yt ⊆ Y by a binary code K(Yt) with dlog2 T e bits and form a set Z =

{z1, . . . , zN1}, where

N1 = dlog2 T e. (3.19)

The formation of transformed direct structural table is base for formation of systems (3.9)

and (3.17). It is created from the original DST by replacing the column Yh by the column

-33-

3.3. Decomposition of Circuit of FSM

Zh. The column Zh contains variables zn ∈ Z, n = 1, . . . , N1, that are equal to 1 in the code

K(Yt) of the microinstruction Yt from the h-th line of the original DST.

The formation of the system of Boolean functions is base for obtaining systems (3.9) and

(3.17). The system (3.9) is defined as (3.13), exactly the same as for P Mealy FSM. Based

on the same way system (3.17) is defined as:

zn =
H∨

h=1

(
Cnh ∧ Fh

)
, (3.20)

where n = 1, . . . , N1; Cnh is a Boolean variable equal to 1 iff the h-th line of the transformed

DST contains the function zn in the column Zh.

The formation of the decoder table. This step forms the table that describe behavior of

the Y circuit (3.18). This table has three columns:

K(Yt) is a binary code of the microinstruction Yt;

y1, . . . , yN is a binary representation of the microinstruction Yt, yn = 1 iff yn ∈ Yt and

yn = 0 iff yn 6∈ Yt, n = 1, . . . , N ;

t is a number of the line, t = 1, . . . , T .

The implementation of the logic circuit of the FSM. The combinational circuit P, repre-

sented by systems (3.12) and (3.20), and the register RG are implemented using CLBs of an

FPGA device – the circuit P by LUTs and the register RG by D flip-flops. In this case the

circuit P implements

nP(PY) = R +N1. (3.21)

p-functions. The decoder Y is implemented using an embedded memory block with T words

of N bits and the content of the memory is described by the decoder table where the binary

code of microinstruction is an address and the binary representation of the microinstruction

is a value of the word.

There is T = 7 differen microinstructions in the FSM S1: Y1 = {y1}, Y2 = {y1, y2}, Y3 =

{y2}, Y4 = {y2, y3}, Y5 = {y3, y4}, Y6 = ∅, Y7 = {y1, y5}. In this case N1 = 3 and microin-

structions can be encoded like this: K(Y1) = 000, . . . , K(Y7) = 110. The transformed direct

structural table for the FSM S1 is presented in the table 3.3. Base on this table there can be

obtained Boolean equations of systems (3.12) and (3.20), for example:

z1 = Q1Q2Q3x3 +Q1Q2Q3x3 +Q1Q2Q3x1 +Q1Q2Q3x1x3.

The table of the decoder Y for the FSM S1 is shown in the table 3.4. Because this table can

-34-

3.3. Decomposition of Circuit of FSM

Table 3.3. The transformed DST of the PY Mealy FSM S1

am K(am) as K(as) Xh Zh Φh h

a1 000 a2 001 x1 x2 − D3 1

a3 010 x1 x2 z3 D2 2

a4 011 x2 z2 D2 D3 3

a2 001 a3 010 x2 z3 D2 4

a4 011 x2 z2 D2 D3 5

a3 010 a3 010 x2 z2 D2 6

a4 011 x2 x3 z2 D2 D3 7

a5 100 x2 x3 z2 z3 D1 8

a4 011 a5 100 x3 z1 D1 9

a3 010 x3 z1 z3 D2 10

a5 100 a1 000 x1 z1 z2 − 11

a5 100 x1 x3 z1 D1 12

a4 011 x1 x3 z2 z3 D2 D3 13

Table 3.4. The decoder table of the PY Mealy FSM S1

K(Yt) Yt
t

z1z2z3 y1 y2 y3 y4 y5

000 1 0 0 0 0 1

001 1 1 0 0 0 2

010 0 1 0 0 0 3

011 0 1 1 0 0 4

100 0 0 1 1 0 5

101 0 0 0 0 0 6

110 1 0 0 0 1 7

be directly implemented as a memory block there is no need to form Boolean equations for

the system (3.18).

There are nP(PY) = 6 Boolean functions implemented by the combinational circuit P

of PY Mealy FSM where, for comparison, there are nP(P) = 8 such functions in P Mealy

FSM.

-35-

3.3. Decomposition of Circuit of FSM

The disadvantage of this method is still relatively large number of Boolean functions

implemented by the combinational circuit P. Additionally, even for complex FSMs, memory

size is compact and, in comparison with size of memory blocks of FPGAs it does not use

whole capability of a embedded memory block. It makes that this method is used very rear

in an FPGA synthesis process.

3.3.3.2. Method of Synthesis with the Encoding of Fields of Compatible Microopera-

tions

The encoding of microoperations. First, the set of microoperations have to be partitioned

into compatibility classes. Microoperations yk, yl ∈ Y are compatible ones if they never

belong to the same microinstruction Yt ⊆ Y :

T

∀
t=1

(yk ∈ Yt → yl 6∈ Yt), (k, l = 1, . . . , N). (3.22)

So, let us find a partition ΠY = {Y 1, . . . , Y I} of the set Y on the class of compatible

microoperations with minimal number of bits required for encoding

N1 =
I∑

i=1

ni, (3.23)

where

ni = dlog2(|Y i|+ 1)e (3.24)

is a number of bits required for encoding of microoperations yn ∈ Y i (i = 1, . . . , I) from

the i-th compatibility class. There are many algorithms to obtain such partition. The most

effective are with use of graphs [Łuba: 2005] or hypergraphs [Wiśniewska et al.: 2005].

Then, microoperations can be encoded. Each microoperation yn ∈ Y i receives a binary code

K(yn) with ri bits. These codes for each class Y i are represented by a subset Zi ⊂ Z,

Zi = {zk, . . . , zl}, where k = 1 +
i−1∑
i′=1

ni′ for i > 1 and k = 1 for i = 1, l = k + ni − 1.

The formation of the transformed direct structural table is similar to the previous synthe-

sis method with the maximal encoding of microinstructions. The only difference is a rule of

putting variable in the column Zh. This column consist variables zn ∈ Z, n = 1, . . . , N1,

that are equal to 1 in codes K(yn), n = 1, . . . , N , of microoperations yn belonging to the

microinstruction Yt from the h-th line of the original DST.

The step of the formation of the system of Boolean functions is exactly the same as for

the previous synthesis method with maximal encoding of microinstructions.

-36-

3.3. Decomposition of Circuit of FSM

The formation of the decoder tables. This step forms the tables that describe behavior of

the circuit D (3.18). Because this circuit is build from a set of I decoders there is required to

create I tables, one for each decoder Di. Such table has three columns:

K(yn) is a binary code of the microoperation yn;

Y i is a binary representation of the i-th class of compatible microoperations for the code

K(yn);

h is a number of the line, h = 1, . . . , (|Y i|+ 1).

The implementation of the logic circuit of the FSM. The implementation of circuits P

and RG is exactly the same as for the previous synthesis method with the maximal encoding

of microinstructions. Of course the number of realized p-functions by the circuit P can be

different because of different value of parameter N1 (3.23) and it is equal to:

nP(PD) = R +N1. (3.25)

Decoders Di can be implemented using embedded memory blocks or with LUTs.

There can be obtained the partition ΠY = {Y 1, Y 2}, Y 1 = {y1, y3}, Y 2 = {y2, y4, y5}
for the FSM S1. In this case N1 = 4 and microoperations can be encoded like this: K(y1) =

01, K(y3) = 10, K(y2) = 01, K(y4) = 10, K(y5) = 11. The code 00 is reserved for

situation when no microoperation is executed from particular class. The transformed direct

structural table for the FSM S1 is presented in the table 3.5. Base on this table there can be

obtained Boolean equations of systems (3.12) and (3.20), for example:

z1 = Q1Q2Q3x1x2 +Q1Q2Q3x1x2 +Q1Q2Q3x2 +Q1Q2Q3x1.

In case of such encoding nP(PD) = 7. The table of the decoder D (joined tables of decoders

D1 and D2) for the FSM S1 is shown in the table 3.6.

The disadvantage of this method is also relatively large number of Boolean functions

implemented by the combinational circuit P. Implementation of the decoder D is also not

effective. If it is implemented with use of memory blocks it required I such blocks and if it

is implemented with LUTs very often the total number of required LUTs for implementation

of circuits P and D is bigger than a number of LUTs required for implementation of the

same algorithm with use of the single-level structure P. It makes that this method is used

even rearer in an FPGA synthesis process and the improvements of this method gives also

benefits only for PLDs [Barkalov & Bukowiec: 2005a].

-37-

3.3. Decomposition of Circuit of FSM

Table 3.5. The transformed DST of the PD Mealy FSM S1

am K(am) as K(as) Xh Zh Φh h

a1 000 a2 001 x1 x2 z1 D3 1

a3 010 x1 x2 z1 z3 D2 2

a4 011 x2 z3 D2 D3 3

a2 001 a3 010 x2 z1 z3 D2 4

a4 011 x2 z3 D2 D3 5

a3 010 a3 010 x2 z3 D2 6

a4 011 x2 x3 z3 D2 D3 7

a5 100 x2 x3 z3 z2 D1 8

a4 011 a5 100 x3 z2 z4 D1 9

a3 010 x3 − D2 10

a5 100 a1 000 x1 z1 z3 z4 − 11

a5 100 x1 x3 z2 z4 D1 12

a4 011 x1 x3 z3 z2 D2 D3 13

Table 3.6. Decoders table of the PD Mealy FSM S1

K(yn) Y 1

h
K(yn) Y 2

h
z1z2 y1 y3 z3z4 y2 y4 y5

00 0 0 1 00 0 0 0 1

01 0 1 2 01 0 1 0 2

10 1 0 3 10 1 0 0 3

11 0 0 1 4

Both presented methods are effective for PLDs but they do not give benefits in an FPGA

synthesis process. The reason is that they still have large number of Boolean functions and

usage of embedded memory blocks of FPGA devices is not effective. But it shows that

application of architectural decomposition could be also considered as a good trend in an

FPGA synthesis process. Of course there are required modifications of these methods for

purpose of further reduction of number of Boolean functions and more effective usage of

FPGA memory blocks. Such modifications are proposed in next chapter.

It should be mentioned here that functional and architectural decompositions have differ-

-38-

3.3. Decomposition of Circuit of FSM

ent nature. How it was described above, the functional decomposition operates on Boolean

functions obtained during the synthesis process and it is preformed in its final phase. The

architectural decomposition operates on a system level and it is applied during the synthesis

process. It means that these both decomposition methods should not be treated as competi-

tive ones and what more they can be applied together in the synthesis process.

-39-

Chapter 4

Multi-Level Structures of Mealy FSMs

Previously presented methods can be adopted into an FPGA technology. It required appli-

cation of special methods of encoding [Barkalov et al.: 2005; Bukowiec & Barkalov: 2007]

and modification of a logic circuit structure and sometimes also transformation of a control

algorithm [Bukowiec: 2006b; Bukowiec & Barkalov: 2006]. Proposed methods base on a

multiple encoding [Bukowiec: 2005a] of some parameters of a state machine. The structure

of logic circuits depends which parameter is multiple encoded and which parameter is used

as a partial code.

A multiple encoding can be applied for some parameters of a state machine, like microin-

structions or internal states [Bukowiec: 2004a]. The set of these parameters is partitioned into

several subsets. Then parameters are encoded separately in each subset. The same codes are

used for different subsets. The partition into subsets is made base on other parameter, like

a current state or a currently executed microinstruction. The logic circuit of such designed

state machine required special structure and type of blocks and their connections and it de-

pends on which parameter is multiple encoded and which parameter is used as a partitioning

set. Generally, such circuit is realized in a double-level structure with a combinational circuit

on a first level and a decoder on a second level.

4.1. Multiple Encoding of Microinstructions
The first of proposed methods applies multiple encoding for a set of microinstructions and

it is a further modification of the method with a maximal encoding of microinstructions

[Bukowiec: 2004a]. Let partition a set of all microinstructions Υ = {Y1, . . . , YT} into sub-

sets based on a current state am. It leads to existence of M subsets Υ(am) ⊆ Υ and a

microinstruction Yt ∈ Υ(am) iff it is executed during any transition from the state am. Let

Tm = |Υ(am)| (4.1)

4.1. Multiple Encoding of Microinstructions

and

T0 = max(T1, . . . , TM). (4.2)

Let encode each microinstruction Yt ∈ Υ(am) by a binary code Km(Yt) with

N2 = dlog2 T0e (4.3)

bits. Because Υ(am) ⊆ Υ (T0 6 T) then N2 6 N1. But for typical control algorithm

Υ(am) ⊂ Υ and T0 < T and in this case also N2 < N1 and this condition have to be

satisfied for benefits from application of this method [Barkalov & Bukowiec: 2004b]. Let

use variables ψn ∈ Ψ = {ψ1, . . . , ψN2} for representation of codes Km(Yt). In this case the

code of a microinstruction K(Yt) is represented by concatenation of the multiple code of the

microinstruction Km(Yt) and the code of the current state K(am):

K(Yt) = Km(Yt) ∗K(am). (4.4)

A digital circuit of a FSM with such encoding can be implemented as a double-level structure

PY0 (Fig. 4.1). This structure permits to decrease the number of outputs of the circuit P in

comparison with the structure PY. Here the circuit P implements the system (3.9) and the

P

RG

Y

Q

Φ

X Ψ

Y

Figure 4.1. The structural diagram of PY0 Mealy FSMs

system

Ψ = Ψ(X,Q). (4.5)

It has to implement

nP(PY0) = R +N2 (4.6)

p-functions. The circuit Y implements a decoding system

Y = Y (Ψ, Q), (4.7)

where the variables from the set Ψ are used to detect a adequate microinstruction for current

state that is identified be variables from the set Q.

-41-

4.1. Multiple Encoding of Microinstructions

The entering point for architectural decomposition is a formatted DST and it consists

from following steps:

• a multiple encoding of microinstructions,

• a formation of the transformed direct structural table,

• a formation of the system of Boolean functions,

• a formation of the decoder table,

• an implementation of the logic circuit of the FSM.

The multiple encoding of microinstructions is based on binary encoding of microinstruc-

tions Yt in each subset Υ(am). It means that if one microinstruction Yt belongs to several

subsets Υ(am) it also receives several codes Km(Yt).

The formation of the transformed direct structural table is base for formation of systems

(3.9) and (4.5). It is created from the original DST by replacing the column Yh by the column

Ψh. The column Ψh contains variables ψn ∈ Ψ, n = 1, . . . , N2, that are equal to 1 in the

code Km(Yt) of the microinstruction Yt from the h-th line of the original DST.

The formation of the system of Boolean functions is base for obtaining systems (3.9) and

(4.5). The system (3.9) is defined as (3.13), exactly the same as for P or PY Mealy FSMs.

Based on the similar way system (4.5) is defined as:

ψn =
H∨

h=1

(
Cnh ∧ Fh

)
, (4.8)

where n = 1, . . . , N2; Cnh is a Boolean variable equal to 1 iff the h-th line of the transformed

DST contains the function ψn in the column Ψh.

The formation of the decoder table. This step forms the table that describes behavior of

the circuit Y (4.7). This table has four columns:

K(am) is a binary code of the current state am;

Km(Yt) is a binary code of the microinstruction Yt from the subset Υ(am);

y1, . . . , yN is a binary representation of the microinstruction Yt, yn = 1 iff yn ∈ Yt and

yn = 0 iff yn 6∈ Yt, n = 1, . . . , N ;

t0 is a number of the line, t0 = 1, . . . ,
M∑

m=1

Tm.

The implementation of the logic circuit of the FSM. The combinational circuit P, repre-

sented by systems (3.12) and (4.8) is implemented by LUTs, and the register RG is imple-

mented by D flip-flops. The decoder Y is implemented using an embedded memory block

-42-

4.1. Multiple Encoding of Microinstructions

with 2(R+N2) words ofN bits and the content of the memory is described by the decoder table

where the concatenation of a binary code of a current state and a binary code of a microin-

struction (4.4) is an address and the binary representation of a microinstruction is a value of

word. There can be assigned any (don’t care) values for addresses omitted in decoder tables

because such concatenations of both codes are never used. It should be mentioned here that

memory blocks in popular FPGAs are synchronous ones [Altera: 2007a; Xilinx: 2002] and it

means that they additionally work also as an output register but such registers are needed in

each digital system with Mealy’s outputs to stabilize its operation [Barkalov: 2003; Jantsch:

2003].

There is T = 7 differen microinstructions in the FSM S1 and they can be partitioned

into M = 5 subsets: Υ(a1) = {Y1, Y2, Y3}, Υ(a2) = {Y2, Y3}, Υ(a3) = {Y3, Y4}, Υ(a4) =

{Y5, Y6} and Υ(a5) = {Y4, Y5, Y7}. In this case N2 = 2 and microinstructions can be

encoded like this: K1(Y1) = 00, K1(Y2) = 01, K1(Y3) = 10, K2(Y2) = 00, K2(Y3) =

01, . . . , K5(Y5) = 01, K5(Y7) = 10. The transformed direct structural table for the FSM S1

is presented in the table 4.1. Base on this table there can be obtained Boolean equations of

Table 4.1. The transformed DST of the PY0 Mealy FSM S1

am K(am) as K(as) Xh Ψh Φh h

a1 000 a2 001 x1 x2 − D3 1

a3 010 x1 x2 ψ2 D2 2

a4 011 x2 ψ1 D2 D3 3

a2 001 a3 010 x2 − D2 4

a4 011 x2 ψ2 D2 D3 5

a3 010 a3 010 x2 − D2 6

a4 011 x2 x3 − D2 D3 7

a5 100 x2 x3 ψ2 D1 8

a4 011 a5 100 x3 − D1 9

a3 010 x3 ψ2 D2 10

a5 100 a1 000 x1 ψ1 − 11

a5 100 x1 x3 ψ2 D1 12

a4 011 x1 x3 − D2 D3 13

systems (3.12) and (4.8), for example:

ψ1 = Q1Q2Q3x2 +Q1Q2Q3x1.

-43-

4.2. Multiple Encoding of Internal States

The table of the decoder Y for the FSM S1 is shown in the table 4.2. Because this table can

Table 4.2. The decoder table of the PY0 Mealy FSM S1

K(am) Km(Yt) Yt
t0

Q1Q2Q3 ψ1ψ2 y1 y2 y3 y4 y5

000 00 1 0 0 0 0 1

01 1 1 0 0 0 2

10 0 1 0 0 0 3

001 00 1 1 0 0 0 4

01 0 1 0 0 0 5

010 00 0 1 0 0 0 6

01 0 1 1 0 0 7

011 00 0 0 1 1 0 8

01 0 0 0 0 0 9

100 00 0 1 1 0 0 10

01 0 0 1 1 0 11

10 1 0 0 0 1 12

be directly implemented as a memory block there is no need to form Boolean equations for

the system (4.7).

There are nP(PY0) = 5 Boolean functions implemented by the combinational circuit

P of PY0 Mealy FSM where, for comparison, there are nP(P) = 8 or nP(PY) = 6 such

functions, respectively, in P or PY Mealy FSMs.

It is shown that even for such small example the number of Boolean functions can be

decreased in comparison with well known structures and methods of synthesis. The gain

is bigger for state machines that execute more microinstructions [Barkalov & Bukowiec:

2005b] and it is scrupulously discussed in chapter 5.

4.2. Multiple Encoding of Internal States
The synthesis method with multiple encoding of internal states [Bukowiec: 2004a; Barkalov

& Bukowiec: 2004c, 2007] is similar to the previous one but in this case the set of internal

states is partitioned into several subsets. Additionally, current states [Bukowiec: 2005a] or

microinstructions [Barkalov & Bukowiec: 2004a] can be treated as a partitioning set.

-44-

4.2. Multiple Encoding of Internal States

4.2.1. Multiple Encoding of Internal States with Current States

as a Partitioning Set

Let partition the set of internal states as ∈ A = {a1, . . . , am} into subsets based on a current

state am ∈ A. It leads to existence of M subsets A(am) ⊆ A and a internal state as ∈ A(am)

iff it is the state of transition from the state am. Let

MA
m = |A(am)| (4.9)

and

MA
0 = max(MA

1 , . . . ,M
A
M). (4.10)

Let encode each internal state as ∈ A(am) by a binary code Km(as) with

R1 = dlog2M
A
0 e (4.11)

bits. In a theoretical case A(am) ⊆ A (MA
0 6 M) ⇒ R1 6 R. But in a typical state machine

A(am) ⊂ A and MA
0 < M and of course R1 < R and this condition have to be satisfied

for benefits from application of this method. Let use variables τr ∈ T = {τ1, . . . , τR1} for

representation of Km(as) codes. In this case the code of internal state K(as) is represented

by concatenation of the multiple code of the internal stateKm(as) and the code of the current

state K(am):

K(as) = Km(as) ∗K(am). (4.12)

A digital circuit of a FSM with such encoding can be implemented as the single-level struc-

ture PA (Fig. 4.2 a). There can be also applied the maximal encoding of microinstructions

and in this case the double-level structure PAY (Fig. 4.2 b) is received during synthesis pro-

cess. Theses structures permit to decrease the number of outputs of the circuit P in compari-

son with, respectively, P and PY structures [Bukowiec & Barkalov: 2007]. Here the circuit P

a)

P

RG

Y

Q

Τ

X

CC
Φ

b)

P

RG

Y

Q

Τ

X Z
Y

CC
Φ

Figure 4.2. The structural diagram of PA (a) and PAY (b) Mealy

FSMs

-45-

4.2. Multiple Encoding of Internal States

implements the system (3.8) – the structure PA or (3.17) – the structure PAY and the system

T = T(X,Q), (4.13)

and it implements, respectively,

nP(PA) = R1 +N. (4.14)

or

nP(PAY) = R1 +N1. (4.15)

p-functions. The optional circuit Y implements a decoding of microinstructions system

(3.18). There is additional circuit CC that decode internal states and generate a excitation

function system:

Φ = Φ(T, Q), (4.16)

where the variables from the set T are used to detect a next state for current state that is

identified be variables from the set Q.

The starting point for architectural decomposition is the formatted DST and it consist

from following steps:

• an encoding of microinstructions (only for the structure PAY),

• a multiple encoding of internal stares,

• a formation of the transformed direct structural table,

• a formation of the system of Boolean functions,

• a formation of the microoperation decoder table (only for the structure PAY),

• a formation of the internal state code converter table,

• a implementation of the logic circuit of the FSM.

The encoding of microinstructions. This step is exactly the same as for the structure PY

and it is described in the chapter 3.3.3.1.

The multiple encoding of internal states is based on assigning a binary code Km(as) to

internal states as in each subset A(am).

The formation of the transformed direct structural table is base for formation of systems

(3.8) or (3.17) and (4.13). It is created from the original DST by replacing the column Yh

by the column Zh (only for the structure PAY) and columns K(as) and Φh with columns

Km(as) and Th. The column Km(as) contains the multiple code of the internal state. The

column Th contains variables τr ∈ T, r = 1, . . . , R1, that are equal to 1 in the code Km(as)

from the same line of the DST.

-46-

4.2. Multiple Encoding of Internal States

The formation of the system of Boolean functions is base for obtaining systems (3.8) or

(3.17) and (4.13). Systems (3.8) and (3.18) are defined as, respectively, (3.12) and (3.20),

exactly the same as for P and PY Mealy FSMs. Based on the similar way system (4.13) is

defined as:

τr =
H∨

h=1

(
Crh ∧ Fh

)
, (4.17)

where r = 1, . . . , Rr; Crh is a Boolean variable equal to 1 iff the h-th line of the transformed

DST contains the function τr in the column Th.

The formation of the microoperation decoder table. This step is exactly the same as for

the structure PY and it is described in the chapter 3.3.3.1.

The formation of the internal state code converter table. This step forms the table that

describe behavior of the circuit CC (the system 4.16). This table has four columns:

K(am) is a binary code of the current state am;

Km(as) is a binary code of the internal state as from the subset A(am);

D1, . . . , DR is a binary representation of excitation functions that switches the memory of

the FSM from K(am) to K(as), in case of D type flip-flops Dr = Q∗
r , r = 1, . . . , R;

m0 is a number of the line, m0 = 1, . . . ,
M∑

m=1

MA
m.

The implementation of the logic circuit of the FSM. The combinational circuit P is im-

plemented by LUTs. The decoder Y is implemented using an embedded memory block as

for the structure PY. The internal state converter CC is also implemented into an embedded

memory block with 2(R+R1) words of R bits and the content of the memory is described

by the internal state code converter table where the concatenation of the binary code of the

current state and the binary code of the internal state (4.12) is an address and the binary rep-

resentation of excitation functions is a value of the word. There can be assigned any (don’t

care) values for addresses omitted in the table because such concatenations of both codes

are never used. Because memory blocks in popular FPGAs are synchronous ones [Altera:

2007a; Xilinx: 2002] there is no need to implement the register RG because the circuit CC

also fulfills this function. In this case value of the word is representing the code of the next

state and because Dr = Q∗
r there is no need to modification of internal state code converter

table.

By application of this encoding all internal states of the FSM S1 can be partitioned into

M = 5 subsets: A(a1) = {a2, a3, a4}, A(a2) = {a3, a4}, A(a3) = {a3, a4, a5}, A(a4) =

-47-

4.2. Multiple Encoding of Internal States

{a3, a5} and A(a5) = {a1, a4, a5}. In this case MA
1 = 3, MA

2 = 2, MA
3 = 3, MA

4 = 2 and

MA
5 = 3 ⇒ MA

0 = 3 ⇒ R1 = 2 and internal states can be encoded this way: K1(a2) =

00, K1(a3) = 01, K1(a4) = 10, K2(a3) = 00, K2(a4) = 01, . . . , K5(a4) = 01, K5(a5) =

10. The transformed direct structural table for the FSM S1 is presented in the table 4.3.

Base on this table there can be obtained Boolean equations of systems (3.12) and (4.17), for

Table 4.3. The transformed DST of the PA Mealy FSM S1

am K(am) as Km(as) Xh Yh Th h

a1 000 a2 00 x1 x2 y1 − 1

a3 01 x1 x2 y1 y2 τ2 2

a4 10 x2 y2 τ1 3

a2 001 a3 00 x2 y1 y2 − 4

a4 01 x2 y2 τ2 5

a3 010 a3 00 x2 y2 − 6

a4 01 x2 x3 y2 τ2 7

a5 10 x2 x3 y2 y3 τ3 8

a4 011 a5 00 x3 y3 y4 − 9

a3 01 x3 − τ2 10

a5 100 a1 00 x1 y1 y5 − 11

a5 10 x1 x3 y3 y4 τ1 12

a4 01 x1 x3 y2 y3 τ2 13

example:

τ1 = Q1Q2Q3x2 +Q1Q2Q3x1x3.

The table of the decoder CC for the FSM S1 is shown in the table 4.4. Because this table can

be directly implemented as a memory block there is no need to form Boolean equations for

the system (4.16). Additionally there can be applied the maximal encoding of microinstruc-

tions and it leads to realization of FSM in the structure PAY.

There are nP(PA) = 7 for the structure PA or nP(PAY) = 5 for the structure PAY

Boolean functions implemented by the combinational circuit P where, for comparison, there

are nP(P) = 8 or nP(PY) = 6 such functions in well known methods of synthesis. The gain

is bigger for state machines with large number of states and small number of different states

of transitions from one state and it is scrupulously discussed in next chapters.

-48-

4.2. Multiple Encoding of Internal States

Table 4.4. The internal state code converter table of the PA Mealy

FSM S1

K(am) Km(as)
D1 D2 D3 m0

Q1Q2Q3 τ1τ2

000 00 0 0 1 1

01 0 1 0 2

10 0 1 1 3

001 00 0 1 0 4

01 0 1 1 5

010 00 0 1 0 6

01 0 1 1 7

10 1 0 0 8

011 00 0 1 0 9

01 1 0 0 10

100 00 0 0 0 11

01 0 1 1 12

10 1 0 0 13

4.2.2. Multiple Encoding of Internal States with Microinstructions

as a Partitioning Set

In this approach, let partition the set of internal states as ∈ A = {a1, . . . , am} into subsets

based on currently executed microinstruction Yt ⊆ Y . It means that there is also required ap-

plication of the maximal encoding of microinstructions because a usage of microinstructions

codes only makes sense – all microoperations create too long vector. It leads to existence of

T subsets A(Yt) ⊆ A and the internal state as ∈ A(Yt) iff it is the state of transition when

the microinstruction Yt is executed. Let

MY
t = |A(Yt)| (4.18)

and

MY
0 = max(MY

1 , . . . ,M
Y
T). (4.19)

Let encode each internal state as ∈ A(Yt) by a binary code Kt(as) with

R2 = dlog2M
Y
0 e (4.20)

-49-

4.2. Multiple Encoding of Internal States

bits. In theory A(Yt) ⊆ A and (MY
0 6 M) ⇒ R2 6 R, but for implementation of typical

algorithms A(Yt) ⊂ A and MY
0 < M and it leads to R1 < R and this condition have

to be satisfied for benefits from application of this method. Let use variables τr ∈ T =

{τ1, . . . , τR2} for representation of codes Kt(as). In this case the code of the internal state

K(as) is represented by concatenation of the multiple code of the internal state Kt(as) and

the code of the currently executed microinstruction Yt:

K(as) = Kt(as) ∗K(Yt). (4.21)

A digital circuit of a FSM with this encoding can be implemented as a double-level structure

PYY (Fig. 4.3) [Bukowiec: 2004b]. This structure permits to decrease the number of outputs

P

RG

Y

Q

Τ

X Z
Y

CC
Φ

Figure 4.3. The structural diagram of PYY Mealy FSMs

of the circuit P in comparison with the structures PY. Here the circuit P implements systems

(3.17) and (4.13) and it realizes

nP(PYY) = R2 +N1 (4.22)

p-functions. The circuit Y implements a decoding of microinstruction system (3.18). There

is also the circuit CC that decodes internal states and generates an excitation function system:

Φ = Φ(T, Z), (4.23)

where the variables from the set T are used to detect a next state for currently execute mi-

croinstruction that is identified be its code with variables from the set Z.

The starting point for architectural decomposition is the formatted DST and it consists

from following steps:

• a encoding of microinstructions,

• a multiple encoding of internal stares,

• a formation of the transformed direct structural table,

-50-

4.2. Multiple Encoding of Internal States

• a formation of the system of Boolean functions,

• a formation of the microoperation decoder table,

• a formation of the internal state code converter table,

• an implementation of the logic circuit of the FSM.

The encoding of microinstructions. This step is exactly the same as for the method of

synthesis with the maximal encoding of microinstructions and it is described in the chapter

3.3.3.1.

The multiple encoding of internal states is based on assigning a binary code Kt(as) to

internal states as in each subset A(Yt).

The formation of the transformed direct structural table is base for formation of systems

(3.17) and (4.13). It is created from the original DST by replacing the column Yh by the

column Zh and columns K(as) and Φh with columns Kt(as) and Th. The column Kt(as)

contains the multiple code of the internal state for the microinstruction Yt. The column Th

contains variables τr ∈ T, r = 1, . . . , R2, that are equal to 1 in the code Kt(as).

The formation of the system of Boolean functions is base for obtaining systems (3.17)

and (4.13). These systems are defined as (3.20) and (4.17).

The formation of the microoperation decoder table. This step is exactly the same as for

the synthesis method with the maximal encoding of microinstructions and it is described in

the chapter 3.3.3.1.

The formation of the internal state code converter table. This step forms the table that

describes behavior of the circuit CC (the system 4.23). This table has four columns:

K(Yt) is a binary code of the microinstruction Yt;

Kt(as) is a binary code of the internal state as from the subset A(Yt);

D1, . . . , DR is a binary representation of excitation functions that switches the memory of a

FSM from K(am) to K(as), in case of D type flip-flops Dr = Q∗
r , r = 1, . . . , R;

t0 is a number of the line, t0 = 1, . . . ,
T∑

t=1

MY
t .

The implementation of the logic circuit of the FSM. The idea of implementation is similar

to implementation of a logic circuit where current states are used as the partitioning set

(the structure PAY). The only difference is a size and an addressing method of a memory

block implementing the circuit CC. There are 2(R+R2) words of R bits and the content of the

memory is described by the internal state code converter table where the concatenation of

-51-

4.2. Multiple Encoding of Internal States

the binary code of the microinstruction and the binary code of the internal state (4.21) is an

address.

By application of this method all internal states of the FSM S1 can be partitioned into

T = 7 subsets: A(Y1) = {a2, }, A(Y2) = {a3}, A(Y3) = {a3, a4}, A(Y4) = {a5, a5},

A(Y5) = {a5}, A(Y6) = {a3} and A(Y7) = {a1}. In this case MT
0 = 2 ⇒ R2 = 1

and internal states can be encoded on 1 bit this way: K1(a2) = 0, K2(a3) = 0, K3(a3) =

0, K3(a4) = 1, . . . , K6(a3) = 0, K7(a1) = 0. The transformed direct structural table for

the FSM S1 is presented in the table 4.5. Base on this table there can be obtained Boolean

Table 4.5. The transformed DST of the PYY Mealy FSM S1

am K(am) as Kt(as) Xh Zh Th h

a1 000 a2 0 x1 x2 − − 1

a3 0 x1 x2 z3 − 2

a4 0 x2 z2 − 3

a2 001 a3 0 x2 z3 − 4

a4 0 x2 z2 − 5

a3 010 a3 0 x2 z2 − 6

a4 1 x2 x3 z2 τ1 7

a5 1 x2 x3 z2 z3 τ1 8

a4 011 a5 0 x3 z1 − 9

a3 0 x3 z1 z3 − 10

a5 100 a1 0 x1 z1 z2 − 11

a5 0 x1 x3 z1 − 12

a4 0 x1 x3 z2 z3 − 13

equations of systems (3.20) and (4.17), for example:

τ1 = Q1Q2Q3x2 x3 +Q1Q2Q3x2x3.

The table of the code converter for the FSM S1 is shown in the table 4.6. Because this table

can be directly implemented as a memory block there is no need to form Boolean equations

for the system (4.23).

There are nP(PYY) = 4 Boolean functions implemented by the combinational circuit P

where, for comparison, there are nP(PY) = 6 such functions in the structure PY.

-52-

4.3. Multiple Encoding of Microinstructions and Internal States

Table 4.6. The internal state code converter table of the PYY

Mealy FSM S1

K(Yt) Kt(as)
D1 D2 D3 t0

z1z2z3 τ1

000 0 0 0 1 1

001 0 0 1 0 2

010 0 0 1 0 3

1 0 1 1 4

011 0 0 1 1 5

1 1 0 0 6

100 0 1 0 0 7

101 0 0 1 0 8

110 0 0 0 0 9

The gain is bigger for state machines with large number of states and small number of

different states of transition for one microinstruction [Barkalov et al.: 2004]. The application

of structures PYY or PAY strongly depends on characteristic of considered control algorithm.

The gain analysis of all structures is discussed in next chapters.

4.3. Multiple Encoding of Microinstructions

and Internal States
Because internal states are used as a partitioning set also for the multiple encoding of mi-

croinstructions and the multiple encoding of internal states this two encodings can be applied

together in one method of synthesis [Bukowiec: 2005a]. It leads to existence of the structure

PAY0 (Fig. 4.4). The partition and the encoding of microinstructions are exactly the same

as for the method with the multiple encoding of microinstructions (Chap. 4.1) and the parti-

tion and the encoding of internal states are also exactly the same as for the method with the

multiple encoding of internal states (Chap. 4.2.1). It means that the code of the microinstruc-

tion K(Yt) is represented as (4.4) and the code of the internal state K(as) is represented as

(4.12). In this structure the combinational circuit P implements systems (4.5) and (4.13) and

-53-

4.3. Multiple Encoding of Microinstructions and Internal States

P

RG

Y

Q

Τ

X

Y

CC
Φ

Ψ

Figure 4.4. The structural diagram of PAY0 Mealy FSM

it implements

nP(PAY0) = R1 +N2. (4.24)

p-functions in total [Barkalov et al.: 2005]. The circuit Y implements a decoding of microin-

struction system (4.7) and the circuit CC, that decodes internal states and generates excitation

function, implements the system (4.16).

The starting point for architectural decomposition is the formatted DST and it consist

from following steps:

• a multiple encoding of microinstructions,

• a multiple encoding of internal stares,

• a formation of the transformed direct structural table,

• a formation of the system of Boolean functions,

• a formation of the decoder table,

• a formation of the internal state code converter table,

• an implementation of the logic circuit of the FSM.

The multiple encoding of microinstructions. This step is exactly the same as for the

structure PY0 and it is described in the chapter 4.1.

The multiple encoding of internal states. This step is exactly the same as for the structure

PA and it is described in the chapter 4.2.1.

The formation of the transformed direct structural table is base for formation of systems

(4.5) and (4.13). It is created from the original DST by replacing the column Yh by the

column Ψh and columns K(as) and Φh with columns Km(as) and Th.

The formation of the system of Boolean functions is base for obtaining systems (4.5) and

(4.13). These systems are defined as, respectively, (4.8) and (4.17).

The formation of the decoder table. This step is exactly the same as for the structure PY0

and it is described in the chapter 4.1.

-54-

4.3. Multiple Encoding of Microinstructions and Internal States

The formation of the internal state code converter table. This step is exactly the same as

for the structure PA and it is described in the chapter 4.2.1.

The implementation of the logic circuit of the FSM. The idea of implementation is the

same as for previous methods with the multiple encoding.

By application of this method to the example FSM S1 there is received the transformed

DST that is shown in the table 4.7. Base on this table there can be obtained Boolean equations

Table 4.7. The transformed DST of the PAY0 Mealy FSM S1

am K(am) as Km(as) Xh Ψh Th h

a1 000 a2 00 x1 x2 − − 1

a3 01 x1 x2 ψ2 τ2 2

a4 10 x2 ψ1 τ1 3

a2 001 a3 00 x2 − − 4

a4 01 x2 ψ2 τ2 5

a3 010 a3 00 x2 − − 6

a4 01 x2 x3 − τ2 7

a5 10 x2 x3 ψ2 τ3 8

a4 011 a5 00 x3 − − 9

a3 01 x3 ψ2 τ2 10

a5 100 a1 00 x1 ψ1 − 11

a5 10 x1 x3 ψ2 τ1 12

a4 01 x1 x3 − τ2 13

of systems (4.8) and (4.17). The table of the circuit Y for the FSM S1 is presented in the

table 4.2 and the table of the decoder CC is shown in the table 4.4. Because these tables can

be directly implemented as memory blocks there is no need to form Boolean equations for

these system.

There are nP(PAY0) = 4 Boolean functions implemented by the combinational circuit P.

The implementation of this method gives benefits only if implementation of both encoding

is profitable and an analysis of gain from the implementation of this method is discussed in

the chapters 5.

-55-

4.4. Shared Multiple Encoding of Microinstructions and Internal States

4.4. Shared Multiple Encoding of Microinstructions

and Internal States
Shared multiple encoding of microinstruction and internal states is a further improvement of

the multiple encoding of theses parameters [Bukowiec: 2005b]. In some case systems (4.5)

and (4.13) can be replaced by one system

Ψ = Ψ(X,Q), (4.25)

which is used for encoding of microinstructions and internal states and it is implemented by

the combinational circuit P. It leads to a new structure PAYS (Fig. 4.5). Let create the iden-

P

RG

Y

Q

Ψτ

X

Y

CC
Φ

Ψ ΨZ

Figure 4.5. The structural diagram of PAYS Mealy FSM

tifier I t
s that represents the pair 〈as, Yt〉, where as is a next state of FSM (state of transition)

and Yt is a microinstruction executed during the transition to this state. All identifiers create

a set of identifiers I . The set of identifiers should be partitioned into subsets base on a current

state am ∈ A in order to make suitable shared encoding of identifiers. It leads to existence

of M subsets I(am) ⊆ I and identifier I t
s ∈ I(am) iff there is transition from the state am to

the state as and the microinstruction Yt is executed during this transition. Let

Um = |I(am)| (4.26)

and

U0 = max(U1, . . . , UM). (4.27)

Let encode each identifier I t
s ∈ I(am) by a binary code Km(I t

s) with

R3 = dlog2 U0e (4.28)

bits. The R3-dimensional Karnaugh map is used for encoding identifiers from each subset

I(am) [Bukowiec: 2006a]. Let us start encoding from the subset I(am) with maximal number

of identifiers – Um = U0. Identifiers with equal upper indexes and with equal lower indexes

-56-

4.4. Shared Multiple Encoding of Microinstructions and Internal States

should be placed in one generalized interval of the Boolean space. Identifiers from next

subsets should be placed in adequate Boolean spaces using the same generalized intervals.

Codes Km(I t
s) of identifiers can be extracted from Karnaugh maps. Subcodes Km(I∗s) for

encoding internal states and subcodesKm(I t
∗) for encoding microinstructions are represented

by used generalized interval of Karnaugh maps. Let use variables ψr ∈ Ψ = {ψ1, . . . , ψR3}
for representation of these codes. Two subsystems ΨZ ⊆ Ψ and Ψτ ⊆ Ψ can be extracted

from the system Ψ. These systems are used for encoding of microinstructions and internal

states respectively and they represent subcodes Km(I t
∗) and Km(I∗s). Iff variable ψr = ∗

for all Km(I t
∗), then variable ψr 6∈ ΨZ . By analogy iff variable ψr = ∗ for all Km(I∗s),

then variable ψr 6∈ Ψτ . In this case the code of microinstruction K(Yt) is represented by

concatenation of the multiple subcode of the microinstruction Km(I t
∗) and the code of the

current state K(am):

K(Yt) = Km(I t
∗) ∗K(am) (4.29)

and the code of internal state K(as) is represented by by concatenation the multiple subcode

of the internal state Km(I∗s) and the code of the current state K(am):

K(as) = Km(I∗s) ∗K(am). (4.30)

In this case the combinational circuit P implements only

nP(PAYS) = R3 (4.31)

p-functions. Here the circuit Y is used for decoding of microoperations and implements

system:

Y = Y (Q,ΨZ). (4.32)

There is also the circuit CC in this structure. It is used for decoding internal states and it

implements system:

Φ = Φ(Q,Ψτ). (4.33)

To make application of this structure gainful there should be permitted to use the subset

ΨZ ⊂ Ψ for partial representation of microinstructions and the subset Ψτ ⊂ Ψ for partial

representation of internal states. Additionally these subsets should have common variables

Ψz ∩Ψτ 6= ∅. A suitable method of synthesis should be applied to satisfy these conditions.

If Ψz ∩Ψτ = ∅ it leads to application of PAY0 structure and if ΨZ = Ψτ = Ψ it means that

subcodes are represented by full codes of identifiers, simple binary encoding can be used,

and method still can give benefits.

-57-

4.4. Shared Multiple Encoding of Microinstructions and Internal States

The starting point for this synthesis method is the formatted DST and it consists from

following steps:

• a multiple encoding of identifiers,

• a formation of the transformed direct structural table,

• a formation of the system of Boolean functions,

• a formation of the decoder table,

• a formation of the internal state code converter table,

• an implementation of the logic circuit of the FSM.

The multiple encoding of identifiers. If there are identifiers with equal indexes in one

subset there can be applied method of encoding with use of Karnaugh map described above.

If all identifiers in all subsets have different indexes the binary encoding can be used. In this

case ΨZ = Ψτ = Ψ.

The formation of the transformed direct structural table is base for formation of the sys-

tem (4.25). It is created from the original DST by replacing columns as, K(as), Yh and Φh

by columns I t
s, Km(I t

s) and Ψh. The column Ψh contains variables ψr ∈ Ψ that are equal to

1 in the code Km(I t
s) from the h-th line of the transformed DST.

The formation of the system of Boolean functions is base for obtaining the system (4.25).

This system is defined as (4.8).

The formation of the decoder table. This table describes the behavior of the circuit Y

(4.32). It includes columns:

K(am) is a binary code of the current state am;

Km(I t
∗) is a binary subcode of the microinstruction Yt corresponding to identifiers I t

∗ from

the subset I(am), it is represented using only variables from the subset ΨZ ;

y1, . . . , yN is a binary representation of the microinstruction Yt, yn = 1 iff yn ∈ Yt and

yn = 0 iff yn 6∈ Yt, n = 1, . . . , N ;

m0 is a number of the line.

The formation of the internal state code converter table. This table describes the behavior

of the circuit CC (4.33). It includes columns:

K(am) is a binary code of the current state am;

Km(I∗s) is a binary subcode of the internal state as corresponding to identifiers I∗s from

subset I(am), it is represented using only variables from the subset Ψτ ;

-58-

4.4. Shared Multiple Encoding of Microinstructions and Internal States

D1, . . . , DR is a binary representation of excitation functions that switches the memory of

the FSM from K(am) to K(as), in case of D type flip-flops Dr = Q∗
r , r = 1, . . . , R;

m0 is a number of the line.

The implementation of the logic circuit of the FSM. The idea of implementation is the

same as for previous methods with the multiple encoding.

Because for the FSM S1 all identifiers in all subsets have different upper and lower in-

dexes it leads to the case where a binary encoding of identifiers is applied. It means that

ΨZ = Ψτ = Ψ. R3 = 2 for the FSM S1 and nP(PAYS) = 2. To illustrate the method

of encoding the part of the FSM S2 (Tab. 4.8) is used. There are T = 6 different mi-

Table 4.8. The part of the DST of the Mealy FSM S2

am K(am) as K(as) Xh Yh Φh h

a5 0101 a6 0110 x3 y2 y3 D2 D3 1

a7 0111 x3 x4 y4 D2 D3 D4 2

a7 0111 x3 x4 y3 y4 D2 D3 D4 3

a6 0110 a7 0111 x4 x5 x6 y4 D2 D3 D4 4

a7 0111 x4 x5 x6 y3 y4 D2 D3 D4 5

a8 1000 x4 x5 x6 y4 D1 6

a9 1001 x4 x5 x6 y4 y5 D1 D4 7

a9 1001 x4 x6 y5 D1 D4 8

a10 1010 x4 x6 y5 D1 D3 9

a7 0111 a8 1000 x5 x7 x8 y4 D1 10

a8 1000 x5 x7 x8 y3 y4 y5 D1 11

a9 1001 x5 x7 x8 y4 D1 D4 12

a9 1001 x5 x7 x8 y3 y4 y5 D1 D4 13

a10 1010 x8 y3 y4 y5 D1 D3 14

croinstructions: Y1 = {y2, y3}, Y2 = {y4}, Y3 = {y3, y4}, Y4 = {y4, y5}, Y5 = {y5},

Y6 = {y3, y4, y5} in presented part of the DST. These microinstructions create the set of

microinstructions Υ = {Y1, . . . , Y6}. In this case there are U = 11 different identifiers and

these identifiers create the set of identifiers I = {I1
6 , I

2
7 , I

3
7 , I

2
8 , I

6
8 , I

2
9 , I

4
9 , I

5
9 , I

6
9 , I

5
10, I

6
10}.

The set of identifiers can be partitioned into subsets I(am). In case of presented partial DST

only three subsets can be formed: I(a5) = {I1
6 , I

2
7 , I

3
7}, I(a6) = {I2

7 , I
3
7 , I

2
8 , I

4
9 , I

5
9 , I

5
10},

-59-

4.4. Shared Multiple Encoding of Microinstructions and Internal States

I(a7) = {I2
8 , I

6
8 , I

2
9 , I

6
9 , I

6
10}. For these subsets U5 = 3, U6 = 6 and U7 = 5. Let assume

that the subset I(a6) is the biggest one and U0 = U6 = 6. It means that each identifier

I t
s can be encoded by a binary code Km(I t

s) on 3 bits. In this case encoding of identi-

fiers should be started from the the subset I(a6) because U6 = U0. So, let us create 3-

dimensional Karnaugh map for the code K6(I
t
s) (Fig. 4.6 a). Generalized intervals of the

Boolean space for identifiers with equal upper indexes are represented by solid lines and

generalized intervals of the Boolean spaces for identifiers with equal lower indexes are rep-

resented by broken lines. Now the same generalized intervals of the Boolean space should

be used for placement of identifiers from the subset I(a7) (Fig. 4.6 b) and the subset I(a5)

(Fig. 4.6 c). All codes of identifers can be read from adequate Boolean space, for exam-

a)

 ψ2ψ3
 00 01 11 10
ψ1 0 2

7I 2
8I 5

10I 5
9I

 1 3
7I ∗ ∗ 4

9I

()t
sIK6

b)

 ψ2ψ3
 00 01 11 10
ψ1 0 2

8I ∗ 2
9I ∗

 1 6
8I ∗ 6

9I 6
10I

()t
sIK7

c)

 ψ2ψ3
 00 01 11 10
ψ1 0 1

6I ∗ 2
7I ∗

 1 ∗ ∗ 3
7I ∗

()t
sIK5

Figure 4.6. The encoding of identifiers from subsets I(a6) (a)

I(a7) (b) I(a5) (c)

ple: K5(I
1
6) = 000 or K6(I

5
9) = 010. Also subcodes for encoding internal states can be

read: K5(I
∗
6) = ∗0∗, K5(I

∗
7) = ∗1∗, K6(I

∗
7) = ∗00, K6(I

∗
8) = ∗01, K6(I

∗
9) = ∗10,

K6(I
∗
10) = ∗11, K7(I

∗
8) = ∗0∗, K7(I

∗
9) = ∗11, K7(I

∗
10) = ∗10 and subcodes for encoding

microinstructions can be read: K5(I
1
∗) = ∗0∗, K5(I

2
∗) = 01∗, K5(I

3
∗) = 11∗, K6(I

2
∗) = 00∗,

K6(I
3
∗) = 10∗, K6(I

4
∗) = 11∗, K6(I

5
∗) = 01∗, K7(I

2
∗) = 0 ∗ ∗, K7(I

6
∗) = 1 ∗ ∗. The variable

ψ1 = ∗ in all codes Km(I∗s). It means that Ψτ = {ψ2, ψ3}. By analogy ΨZ = {ψ1, ψ2}
because the variable ψ3 = ∗ in all codes Km(I t

∗). The part of the transformed DST for this

example is shown in the table 4.9. Base on this table there can be obtained Boolean equations

of the system (4.8), for example:

ψ1 = Q1Q2Q3Q4x3 x4 +Q1Q2Q3Q4x4x5x6 +Q1Q2Q3Q4x4x5 x6

+ Q1Q2Q3Q4x5 x7x8 +Q1Q2Q3Q4x8.

Microoperations decoder and the internal state code converter tables for the FSM S2 are

shown respectively in tables 4.10 and 4.11. Because these tables can be directly imple-

-60-

4.4. Shared Multiple Encoding of Microinstructions and Internal States

Table 4.9. The part of the transformed DST of the Mealy FSM S2

am K(am) I t
s Km(I t

s) Xh Ψh h

a5 0101 x3 I1
6 000 − 1

x3 x4 I2
7 011 ψ2 ψ3 2

x3 x4 I3
7 111 ψ1 ψ2 ψ3 3

a6 0110 x4 x5 x6 I2
7 000 − 4

x4 x5 x6 I3
7 100 ψ1 5

x4 x5 x6 I2
8 001 ψ3 6

x4 x5 x6 I4
9 110 ψ1 ψ2 7

x4 x6 I5
9 010 ψ2 8

x4 x6 I5
10 011 ψ2 ψ3 9

a7 0111 x5 x7 x8 I2
8 000 − 10

x5 x7 x8 I6
8 001 ψ3 11

x5 x7 x8 I2
9 011 ψ2 ψ3 12

x5 x7 x8 I6
9 111 ψ1 ψ2 ψ3 13

x8 I6
10 110 ψ1 ψ2 14

Table 4.10. The Part of the microoperations decoder table of the

Mealy FSM S2

K(am) Km(I t
∗)

y1 y2 y3 y4 y5 m0
Q1Q2Q3Q4 ψ1ψ2

0101 ∗0 0 1 1 0 0 1

01 0 0 0 1 0 2

11 0 0 1 1 0 3

0110 00 0 0 0 1 0 4

10 0 0 1 1 0 5

11 0 0 0 1 1 6

01 0 0 0 0 1 7

0111 0∗ 0 0 0 1 0 8

1∗ 0 0 1 1 1 9

-61-

4.5. Shared Multiple Encoding of µIs and Internal States with Common Decoder

Table 4.11. Part of code converter table of Mealy FSM S2

K(am) Km(I∗s)
D1 D2 D3 D4 m0

Q1Q2Q3Q4 ψ2ψ3

0101 0∗ 0 1 1 0 1

1∗ 0 1 1 1 2

0110 00 0 1 1 1 3

01 1 0 0 0 4

10 1 0 0 1 5

11 1 0 1 0 6

0111 0∗ 1 0 0 0 7

11 1 0 0 1 8

10 1 0 1 0 9

mented as memory blocks there is no need to form Boolean equations for systems (4.32) and

(4.33).

The application of this method of synthesis gives benefits if encoding of identifiers is

possible on relative small number of bits and it happened when number of transitions from

all states is small. The gain is increased if subcodes are represented by partial codes of

identifiers. The analysis of gain from implementation of this method is discussed in next

chapters.

4.5. Shared Multiple Encoding of Microinstructions

and Internal States with Common Decoder
The method with the shared multiple encoding of microinstructions and internal states can

be improved by replacing decoders Y and CC by one decoder YCC. It leads to existence

of a new structure PAYSC (Fig. 4.7). Here the circuit YCC is used for decoding of both

microoperations and internal states and it implements systems:

Y = Y (Q,Ψ), (4.34)

Φ = Φ(Q,Ψ). (4.35)

The function of the circuit P is not changed and it realizes the system (4.25).

-62-

4.5. Shared Multiple Encoding of µIs and Internal States with Common Decoder

P

RG

Y

Q

X

Y

CC
Φ

Ψ

Figure 4.7. The structural diagram of PAYSC Mealy FSM

In case of application of the common decoder there is no required to split the set Ψ into

two subsets ΨZ and Ψτ . It means that there is also no requirement to apply the special

encoding of identifiers. In this case, both codes of microinstructions and internal states are

represented by concatenation of the multiple code of the identifier K(I t
s) and the code of the

current state K(am):

K(Yt) = Km(I t
s) ∗K(am), (4.36)

K(as) = Km(I t
s) ∗K(am). (4.37)

Of course the number of p-functions implemented by the circuit P is exactly the same as for

the structure PAYS (4.31).

The starting point for the synthesis method into the structure PAYSC is the formatted DST

and it consists from following steps:

• a multiple encoding of identifiers,

• a formation of the transformed direct structural table,

• a formation of the system of Boolean functions,

• a formation of the common decoder table,

• an implementation of the logic circuit of the FSM.

The multiple encoding of identifiers. In application of this method of synthesis the binary

encoding can be used.

The formation of the transformed direct structural table and the formation of the system

of Boolean functions. These steps are exactly the same as for the synthesis method into the

structure PAYS .

-63-

4.5. Shared Multiple Encoding of µIs and Internal States with Common Decoder

The formation of the common decoder table. This table describes the behavior of the

circuit YCC (4.34) and (4.35) and it is created by joining the decoder table and the code

converter table of the synthesis method into the structure PAYS. It includes columns:

K(am) is a binary code of the current state am;

Km(I t
s) is a binary code of identifiers I t

s from the subset I(am);

y1, . . . , yN is a binary representation of the microinstruction Yt, yn = 1 iff yn ∈ Yt and

yn = 0 iff yn 6∈ Yt, n = 1, . . . , N ;

D1, . . . , DR is a binary representation of excitation functions that switches the memory of

the FSM from K(am) to K(as), in case of D type flip-flops Dr = Q∗
r , r = 1, . . . , R;

m0 is a number of the line.

The implementation of the logic circuit of the FSM. The idea of the implementation is

the same as for previous methods with the multiple encoding.

Because the method of synthesis is very similar to the previous one there is shown only

the example of the common decoder table for the Mealy FSM S2 (Tab. 4.12).

Table 4.12. The part of the common decoder table of the Mealy FSM S2

K(am) Km(I t
s)

y1 y2 y3 y4 y5 D1 D2 D3 D4 m0
Q1Q2Q3Q4 ψ1ψ2ψ3

0101 000 0 1 1 0 0 0 1 1 0 1

011 0 0 0 1 0 0 1 1 1 2

111 0 0 1 1 0 0 1 1 1 3

0110 000 0 0 0 1 0 0 1 1 1 4

001 0 0 0 1 0 1 0 0 0 5

010 0 0 0 0 1 1 0 0 1 6

011 0 0 0 0 1 1 0 1 0 7

100 0 0 1 1 0 0 1 1 1 8

110 0 0 0 1 1 1 0 0 1 9

0111 000 0 0 0 1 0 1 0 0 0 10

011 0 0 0 1 0 1 0 0 1 11

100 0 0 1 1 1 1 0 0 0 12

110 0 0 1 1 1 1 0 1 0 13

111 0 0 1 1 1 1 0 0 1 14

-64-

4.5. Shared Multiple Encoding of µIs and Internal States with Common Decoder

The other steps could be the same or the encoding of identifiers can be simplified by

applying the binary encoding.

The application of this method of synthesis gives benefits if the number of memory

blocks required for the implementation of the common decoder is less or equal to the number

of memory blocks required for implementation of both the microoperations decoder and the

internal states code converter in the method of synthesis into the structure PAYS.

Proposed methods with the multiple encoding permit decreasing the number of p-functions

implemented be the combinational circuit P. The method of synthesis and the circuit struc-

ture should be selected individually for a considered control algorithm. The number of p-

functions obtained by application of one of proposed methods strongly depends on a charac-

teristic of a control algorithm. The gain of application of proposed methods with the multiple

encoding in particular cases is discussed in the chapter 5.

-65-

Chapter 5

Implementation into FPGAs

Structures and methods of synthesis presented in the chapter 4 can be adopted into an FPGA

technology. How it was mentioned, combinational circuits are implemented by LUTs and

registers are implemented by D flip-flops, like it is in the classical single-level structure.

But decoders are implemented by embedded memory blocks of an FPGA device working

in ROM mode. Schematic diagrams for an FPGA technology of multi-level structures are

presented in the table 5.1. These diagrams are based on Xilinx Spartan and Virtex FPGAs but

they can be easy adopted to other FPGAs vendors, like Altera Cyclone and Stratix, because

all logic elements, especially memory blocks, and their connections are very similar.

Table 5.1. Schematic diagrams of multi-level Mealy FSMs

Structure Schematic diagram

PY0

Q

Q
SET

CLR

D

OI

LUTs

P

RG

X

CLK

RST

Y

Φ

CLK
EN
RST
WE

DO
DI
ADDR

BRAMs

Y

Ψ

Q

VCC

GND

Continued on Next Page. . .

5. IMPLEMENTATION INTO FPGAS

PA
OI

LUTs

P

RG

X

RST

Y

Φ

Q

τ

CLK
EN
RST
WE

DO
DI
ADDR

BRAMs

CC

VCC

GND

Q

Q
SET

CLR

D

CLK

PAY
OI

LUTs

P

RG

X

RST

Y

Φ

CLK
EN
RST
WE

DO
DI
ADDR

BRAMs

Y

Z

Q

VCC

GND

τ

CLK
EN
RST
WE

DO
DI
ADDR

BRAMs

CC

VCC

GND

Q

Q
SET

CLR

D

CLK

PYY
OI

LUTs

P

RG

X

RST

Y

Φ

CLK
EN
RST
WE

DO
DI
ADDR

BRAMs

Y

Z

Q

VCC

GND

CLK
EN
RST
WE

DO
DI
ADDR

BRAMs

CCVCC

GND

Q

Q
SET

CLR

D

CLK

{τ,Z}

PAY0
OI

LUTs

P

RG

X

RST

Y

Φ

CLK
EN
RST
WE

DO
DI
ADDR

BRAMs

Y

Q

VCC

GND

τ

CLK
EN
RST
WE

DO
DI
ADDR

BRAMs

CC

VCC

GND

Q

Q
SET

CLR

D

CLK

Ψ

Continued on Next Page. . .

-67-

5.1. Automata Synthesis System

PAYSC
OI

LUTs

P

RG

X

RST

Y

Φ

CLK
EN
RST
WE

DO
DI
ADDR

BRAMs

Y

Q

VCC

GND

CLK
EN
RST
WE

DO
DI
ADDR

BRAMs

CC

VCC

GND

Q

Q
SET

CLR

D

CLK

Ψ

Ψτ

ΨZ

It should be mentioned here that memory blocks in popular FPGAs are synchronous ones

[Altera: 2007a; Xilinx: 2002]. The clock signal for memory blocks is the same as for the

register but memory blocks are trigged by opposite edge (in this case falling edge). It cause

that data are ready to read after one cycle and there is no need to wait one clock cycle until

data are stable. It is especially important when a internal state is encoded. It also means that

memory blocks also works as an output register in case when microoperations are encoded.

Of course such registers are needed in each digital system with Mealy’s outputs to stabilize

its operation [Barkalov: 2003; Jantsch: 2003]. Other input signals of memory blocks are

connected to logic 1 or logic 0, according to specification of Xilinx BlockRAM [Xilinx:

2004a], to satisfy read-only mode.

5.1. Automata Synthesis System
In order to apply these synthesis methods the design flow for FPGAs have to be modified

(Fig. 5.1). This modification is required in purpose of designing of prototype of system

for logic synthesis of FSMs. This system is called the Automata Synthesis (A♠S) System

[Bukowiec: 2008]. In case of future implementation of discussed methods in commercial

synthesis systems the design flow do not have to be modified and proposed method of archi-

tectural synthesis can be included in the synthesis step. In the proposed design flow the entry

point is the description of a behavior of a FSM in the KISS2 format [Yang: 1991]. There

was chosen this format because the library LGSynth91 [Yang: 1991] of FSMs benchmarks

is described in this format. The output of the logic synthesis step is the structural description

of a FSM represented be the set of files in Verilog HDL. Then these files can be the entry

point for further synthesis and implementation into selected FPGA device. The set of these

-68-

5.1. Automata Synthesis System

Structural

and Logic

Description

(Verilog)

Netlist

(EDIF,

NGC)

Synthesis Implementation

Device Library

BitStream
ProgrammingSpecification

(KISS2)

Logic

Synthesis

(AS System)

Figure 5.1. The design flow for FPGAs with use of multi-level

structures

files consists from one top-level module (Fig. 5.2) that describes connections between blocks

of the logic circuit and group of files that describe particular blocks. The combinational cir-

module dk14 (clk, res, x, y);
 input clk, res;
 input [1:3] x;
 output [1:5] y;
 wire [1:3] d;
 wire [1:3] q;
 wire [1:2] psi;
 wire [1:3] tau;

 dk14_RG UD (.clk(clk), .res(res), .D(d), .Q(q));
 dk14_P UP (.x(x), .Q(q), .psi(psi), .tau(tau));
 dk14_Y UY (.clk(clk), .psi(psi), .Q(q), .y(y));
 dk14_CC UC (.clk(clk), .tau(tau), .Q(q), .D(d));
endmodule

Figure 5.2. The top-level module of the Mealy FSM dk14 with

the structure PAY0

cuit is described as a set of Boolean equations using continues assignments (Fig. 5.3). The

register is described asR-bit D type flip-flop with asynchronous reset (Fig. 5.4) using typical

synthesis template [Lee: 1999; Xilinx: 2005]. Decoders (circuits Y, CC and YCC) are de-

scribed using case statement (Fig. 5.5). Because it should by synthesized as synchronous

ROM memory this statement is placed in always block. The address is placed as a selector

of the case statement and the content of the memory is described by choices of the case

statement [Thomas & Moorby: 2002]. To ensure that such described module is synthesized

as a memory block there is required to set a value of special synthesis attribute bram_map

to "YES" [Xilinx: 2005]. This is synthesis attribute of Xilinx devices and it is ignored in case

of synthesis into other vendors FPGA devices. But each vendor supplies similar attributes

or directives, for example, the attribute romstyle specify the type of memory block to be

-69-

5.1. Automata Synthesis System

module dk14_P (x, Q, psi, tau);
 input [1:3] x;
 input [1:3] Q;
 output [1:2] psi;
 output [1:3] tau;

 assign psi[1] = x[1] & x[2] & ~x[3] & Q[1] & ~Q[2] & ~Q[3]
 | x[1] & x[2] & ~x[3] & Q[1] & ~Q[2] & Q[3]
 (...);
 assign psi[2] = x[1] & x[2] & x[3] & Q[1] & ~Q[2] & ~Q[3]
 | x[1] & x[2] & x[3] & Q[1] & ~Q[2] & Q[3]
 (...);
 assign tau[1] = x[1] & ~x[2] & x[3] & Q[1] & Q[2] & ~Q[3]
 | ~x[1] & x[2] & ~x[3] & Q[1] & Q[2] & ~Q[3];
 assign tau[2] = x[1] & x[2] & x[3] & Q[1] & Q[2] & ~Q[3]
 | x[1] & x[2] & x[3] & ~Q[1] & ~Q[2] & Q[3]
 (...);
 assign tau[3] = x[1] & ~x[2] & ~x[3] & ~Q[1] & ~Q[2] & Q[3]
 | x[1] & ~x[2] & ~x[3] & Q[1] & ~Q[2] & ~Q[3]
 (...);

endmodule

Figure 5.3. The part of the combinational circuit module of the

Mealy FSM dk14 with the structure PAY0

module dk14_RG (clk, res, D, Q);
 input clk, res;
 input [1:3] D;
 output [1:3] Q;
 reg [1:3] Q;

 always @(posedge clk or posedge res)
 begin
 if (res)
 Q <= 3'b0;
 else
 Q <= D;
 end

endmodule

Figure 5.4. The register module of Mealy FSM dk14 with the

PAY0 structure

used in Altera devices [Altera: 2008]. The example set of files is shown in figures 5.2, 5.3,

5.4 and 5.5. These files are generated for the Mealy FSM dk14 from the library LGSynth91

-70-

5.1. Automata Synthesis System

module dk14_Y (clk, psi, Q, y);
 input clk;
 input [1:2] psi;
 input [1:3] Q;
 output [1:5] y;
 reg [1:5] y;

// synthesis attribute bram_map of dk14_Y is yes
 always @(negedge clk)
 case ({Q,psi})
 5'b00000: y = 5'b00010;
 5'b00001: y = 5'b01010;
 5'b00010: y = 5'b01000;
 5'b00100: y = 5'b01001;
 (...);
 default: y = 5'b00000;
 endcase

endmodule

Figure 5.5. The part of the microoperations decoder module of

the Mealy FSM dk14 with the structure PAY0

synthesized into the structure PAY0 by the A♠S System.

The Automata Synthesis (A♠S) System in version 1.6.2. is able to perform the logic

synthesis into following structures:

• P,

• PY,

• PY0,

• PAY,

• PAY0,

• PA,

• PYY,

• PAYSC.

The A♠S System works in command line of the Windows XP operating system. It is exe-

cuted as follow:

synth[.exe] file.kiss2 -Method [-ImplementationSystem device]

where:

synth.exe is the name of the executable file of the A♠S System. The extension of course is

not required.

-71-

5.2. Behavioral Verification

file.kiss2 is a name of a file to be synthesized. The extension is required.

-Method is the name of a method of synthesis.

-ImplementationSystem device is a optional argument that allows to generate synthesis

macro for third party commercial synthesis system. At this stage only XST from

Xilnix is supported. Instead of device word there have to be placed a correctly

symbol of device.

For example:

synth dk14.kiss2 -PAY0 -xst xcv50-bg256-6.

Output files are saved in newly created directory. The name of this directory is the name of

synthesized file with the suffix _Method, where instead of the word Method is placed the

name of the method of synthesis, for example, dk14_PAY0.

Besides, structural description in Verilog HDL of synthesized FSM there is also created

a raport file with the .rep extension. This file consist codes of encoded parameters, number

of inputs, outputs, states and variables required for encoding, the number of p-functions

realized be the combinational circuit and an estimated size of ROM memory. The structure

of this file depend on selected synthesis method.

Additionally, there can be generated files to run synthesis with XST if -xst device

option is included. There is created the XST project file (extension .prj), the XST com-

mand file (extension .xst) and the batch file to invoke the synthesis process with XST

(extension .bat).

5.2. Behavioral Verification
To verify behavior of FSMs designed with use of proposed methods the simulation of bench-

marks was performed. Example waveforms of simulation of the Mealy FSM dk14 are shown

in the table 5.2. All simulations have been executed in Active-HDL FPGA Design and Ver-

ification Suite [Aldec: 2007]. Waveforms obtained from simulations of particular structures

were compared with waveforms obtained from the behavioral simulations. Because there

is no possibility to simulate the behavioral description of a FSM in the KISS2 format all

benchmarks have been converted into the behavioral description in VHDL [Zwoliński: 2003;

Brown & Vernesic: 2005] using the KISS2VHDL converter [Figler: 2006] and into the be-

havioral description in Verilog using Kiss2vl [Pruteanu: 2004].

-72-

5.2. Behavioral Verification

Table 5.2. The simulation of the Mealy FSM dk14

Structure Waveform

VHDL Name
ns

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

clk

res

x

state

y

0 4 7 5 2 4 7 2 0

state_1 state_3 state_4 state_3 state_5 state_2 state_3 state_6

02 12 04 0A 15 09 04 08 09

Verilog Name
ns

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

clk

res

x

stan

y

0 4 7 5 2 4 7 2 0

00 02 12 04 0A 15 09 04 08 09

state_1 state_2 state_4 state_2 state_5 state_3 state_2 state_6

P Name
ns

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

clk

res

x

Q

y

0 4 7 5 2 4 7 2 0

state_1 state_3 state_4 state_3 state_5 state_2 state_3 state_6

02 12 04 0A 15 09 04 08 09

PY Name
ns

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

clk

res

x

Q

y

0 4 7 5 2 4 7 2 0

state_1 state_3 state_4 state_3 state_5 state_2 state_3 state_6

00 02 12 04 0A 15 09 04 08 09

PY0
Name

ns

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

clk

res

x

Q

y

0 4 7 5 2 4 7 2 0

state_1 state_3 state_4 state_3 state_5 state_2 state_3 state_6

00 02 12 04 0A 15 09 04 08 09

PA Name
ns

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

clk

res

x

Q

y

0 4 7 5 2 4 7 2 0

state_1 state_3 state_4 state_3 state_5 state_2 state_3 state_6

02 12 04 0A 15 09 04 08 09

Continued on Next Page. . .

-73-

5.3. Logic Synthesis

PAY
Name

ns

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

clk

res

x

Q

y

0 4 7 5 2 4 7 2 0

state_1 state_3 state_4 state_3 state_5 state_2 state_3 state_6

00 02 12 04 0A 15 09 04 08 09

PYY
Name

ns

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

clk

res

x

Q

y

0 4 7 5 2 4 7 2 0

state_1 state_3 state_4 state_3 state_5 state_2 state_3 state_6

00 02 12 04 0A 15 09 04 08 09

PAY0
Name

ns

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

clk

res

x

Q

y

0 4 7 5 2 4 7 2 0

state_1 state_3 state_4 state_3 state_5 state_2 state_3 state_6

00 02 12 04 0A 15 09 04 08 09

PAYSC
Name

ns

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

clk

res

x

Q

y

0 4 7 5 2 4 7 2 0

state_1 state_3 state_4 state_3 state_5 state_2 state_3 state_6

00 02 12 04 0A 15 09 04 08 09

There can be saw small differences on the output signal Y obtained during simulation.

These differences are caused by not existence of the output register in a behavioral descrip-

tion of FSM and in structures P and PA. There are visible glitches on waveforms obtained

from simulations of these three models. Because there is used a synchronous memory block

to decode microoperations in other structures there is no such glitches on waveforms ob-

tained from simulations of these other models because a memory block works also as the

output register.

5.3. Logic Synthesis
To analyze a gain of application of proposed synthesis methods there was performed the logic

synthesis of benchmarks form the library LGSynth91 (Tab. 5.3) and the library RandFSM

(Tab. 5.4).

-74-

5.3. Logic Synthesis

Table 5.3. Results of the logic synthesis of benchmarks from the

library LGSynth91

Benchmark
Type of Structure

parameter P PY PY0 PA PAY PYY PAY0 PAYSC

bbara
function 6 6 5 4 4 6 3 2

memory 0 8 64 256 264 264 320 384

bbsse
function 11 8 7 10 7 7 6 3

memory 0 112 896 512 624 624 1408 1408

bbtas
function 5 5 5 3 3 5 3 2

memory 0 8 64 48 56 104 112 160

beecount
function 7 5 5 6 4 5 4 2

memory 0 16 128 96 112 112 224 224

cse
function 11 8 7 10 7 8 6 3

memory 0 112 896 512 624 1136 1408 1408

dk14
function 8 7 5 8 7 6 5 3

memory 0 80 160 192 272 272 352 512

dk15
function 7 6 5 7 6 6 5 3

memory 0 80 160 32 112 208 192 224

dk16
function 8 8 7 5 5 8 4 2

memory 0 24 384 640 664 1304 1024 1024

dk17
function 6 6 5 5 5 6 4 2

memory 0 24 96 96 120 216 192 192

dk27
function 5 5 4 3 3 5 2 1

memory 0 8 32 48 56 104 80 80

dk512
function 7 6 5 4 3 6 2 1

memory 0 12 96 128 140 268 224 224

ex1
function 24 11 9 22 9 8 7 4

memory 0 1216 9728 1280 2496 2496 11008 12288

ex2
function 7 6 6 4 3 6 3 2

memory 0 4 128 640 644 324 768 896

ex3
function 6 6 6 4 4 6 4 2

memory 0 8 128 256 264 264 384 384

Continued on Next Page. . .

-75-

5.3. Logic Synthesis

P PY PY0 PA PAY PYY PAY0 PAYSC

ex4
function 13 8 5 10 5 6 2 1

memory 0 144 288 128 272 400 416 416

ex5
function 6 5 5 4 3 5 3 2

memory 0 4 64 256 260 132 320 384

ex6
function 11 7 5 11 7 5 5 3

memory 0 128 256 192 320 224 448 704

ex7
function 6 5 5 4 3 4 3 2

memory 0 4 64 256 260 68 320 384

keyb
function 7 7 6 4 4 6 3 2

memory 0 8 128 640 648 328 768 896

kirkman
function 10 9 8 7 6 9 5 4

memory 0 192 1536 128 320 2240 1664 2560

lion
function 3 3 3 3 3 3 3 2

memory 0 2 8 32 34 18 40 48

lion9
function 5 5 5 3 3 4 3 2

memory 0 2 32 256 258 66 288 320

mark1
function 20 8 5 19 7 8 4 3

memory 0 256 512 512 768 1280 1024 2560

mc
function 7 5 3 6 4 4 2 1

memory 0 40 40 16 56 72 56 56

opus
function 10 7 7 9 6 4 6 3

memory 0 48 768 512 560 112 1280 1280

planet
function 25 12 10 21 8 11 6 4

memory 0 1216 19456 1536 2752 13504 20992 25600

planet1
function 25 12 10 21 8 11 6 4

memory 0 1216 19456 1536 2752 13504 20992 25600

pma
function 13 10 6 10 7 7 3 2

memory 0 256 512 640 896 896 1152 1664

s1488
function 25 12 10 22 9 11 7 5

memory 0 1216 19456 3072 4288 13504 22528 51200

s1494
function 25 12 10 22 9 11 7 5

memory 0 1216 19456 3072 4288 13504 22528 51200

Continued on Next Page. . .

-76-

5.3. Logic Synthesis

P PY PY0 PA PAY PYY PAY0 PAYSC

s208
function 7 7 6 3 3 7 2 2

memory 0 8 128 320 328 648 448 896

s27
function 4 4 4 4 4 3 4 3

memory 0 2 16 192 194 26 208 256

s298
function 14 11 9 9 6 10 4 3

memory 0 48 3072 16384 16432 8240 19456 28672

s386
function 11 8 7 10 7 7 6 3

memory 0 112 896 512 624 624 1408 1408

s420
function 7 7 6 3 3 7 2 2

memory 0 8 128 320 328 648 448 896

s510
function 13 10 7 9 6 9 3 2

memory 0 112 896 1536 1648 3184 2432 3328

s820
function 24 10 7 22 8 10 5 4

memory 0 608 2432 1280 1888 5728 3712 12288

s832
function 24 10 7 22 8 10 5 4

memory 0 608 2432 1280 1888 5728 3712 12288

sand
function 14 10 8 13 9 9 7 4

memory 0 288 2304 2560 2848 2848 4864 7168

scf
function 63 13 8 59 9 13 4 3

memory 0 3584 14336 7168 10752 60928 21504 64512

sse
function 11 8 7 10 7 7 6 3

memory 0 112 896 512 624 624 1408 1408

styr
function 15 10 8 13 8 9 6 3

memory 0 320 2560 1280 1600 2880 3840 3840

tav
function 6 6 6 5 5 6 5 4

memory 0 64 256 16 80 192 272 384

tbk
function 8 8 7 8 8 8 7 5

memory 0 24 384 5120 5144 1304 5504 8192

tma
function 11 10 6 8 7 7 3 2

memory 0 192 384 640 832 832 1024 1408

train11
function 5 5 5 3 3 5 3 2

memory 0 2 32 256 258 130 288 320

Continued on Next Page. . .

-77-

5.3. Logic Synthesis

P PY PY0 PA PAY PYY PAY0 PAYSC

train4
function 3 3 3 2 2 3 2 1

memory 0 2 8 16 18 18 24 24

The library RandFSM was created by the Autor and it consists from eleven randomly gen-

erated FSMs by the GenFSM generator [Pruteanu: 2005] and four FSMs designed by the

Author. First two, S1 (Tab. 3.1) and S2 (Tab. 4.8), of these four FSMs are used as examples

in the chapter 4. The name of randomly generated FSMs consist of:

• a example number (with prefix ex),

• a number of inputs,

• a number of states,

• a number of outputs,

• a randomly generated ten digits descriptor (omitted in tables).

The randomly generated FSMs are completely specified FSMs with 2L transitions from each

state, where L is a number of inputs, and each transition executes random microinstruction.

It means that they are characterized by big number of different states of transition from one

state and big number of different microinstructions executed during transitions from one

state. It makes that these benchmarks should not be susceptible for hardware reduction.

Table 5.4. Results of the logic synthesis of random benchmarks

Benchmark
Type of Structure

parameter P PY PY0 PA PAY PYY PAY0 PAYSC

ex1_3_5_4
function 7 7 6 7 7 6 6 3

memory 0 64 256 192 256 256 448 448

ex2_3_5_4
function 7 7 6 7 7 7 6 3

memory 0 64 256 192 256 448 448 448

ex3_6_8_7
function 10 10 9 10 10 10 9 6

memory 0 896 3584 192 1088 3968 3776 5120

ex4_6_8_7
function 10 10 9 10 10 10 9 6

memory 0 896 3584 192 1088 3968 3776 5120

Continued on Next Page. . .

-78-

5.3. Logic Synthesis

P PY PY0 PA PAY PYY PAY0 PAYSC

ex2_6_22_8
function 13 13 11 13 13 12 11 6

memory 0 2048 16384 5120 7168 22528 21504 26624

ex3_6_22_8
function 13 13 11 13 13 12 11 6

memory 0 2048 16384 5120 7168 22528 21504 26624

ex1_7_8_11
function 14 13 10 14 13 12 10 7

memory 0 11264 11264 192 11456 23552 11456 14336

ex2_7_10_11
function 15 14 11 15 14 12 11 7

memory 0 11264 22528 1024 12288 27648 23552 30720

ex4_7_10_11
function 15 14 11 15 14 12 11 7

memory 0 11264 22528 1024 12288 27648 23552 30720

ex1_8_14_12
function 16 16 12 16 16 15 12 8

memory 0 49152 49152 1024 50176 180224 50176 65536

ex3_8_14_12
function 16 16 12 16 16 15 12 8

memory 0 49152 49152 1024 50176 180224 50176 65536

S1
function 8 6 5 7 5 4 4 2

memory 0 40 160 96 136 88 256 256

S2
function 10 8 6 8 6 6 4 3

memory 0 96 384 256 352 352 640 1280

S3
function 7 5 4 7 5 4 4 2

memory 0 40 80 32 72 72 112 112

S4
function 9 6 5 8 5 4 4 2

memory 0 48 192 96 144 96 288 288

The value of the field function in tables 5.3 and 5.4 describes the number of p-functions

realized by the combinational circuit of a suitable logic structure. This value corresponds to

value of adequate np(structure) parameter: (3.14), (3.21), (4.6), (4.14), (4.15), (4.22), (4.24)

or (4.31). The value of the field memory describes the number of memory bits required for

implementation of decoders. This is estimated value and it is calculated as follow:

m(structure) =
∑

circuit

mcircuit(structure), (5.1)

where

mcircuit(structure) = 2address_width · data_width, (5.2)

-79-

5.3. Logic Synthesis

where

structure is a name of a considered structure,

circuit is a name of a decoder: circuit = {Y,CC,YCC},

address_width is a width of an address bus of considered circuit and it is equal to a sum of

bits of systems required to encode microinstructions or internal stares or identifiers,

data_width is a width of a data bus of considered circuit and it is equal to N in case of the

circuit Y or R in case of the circuit CC or N +R in case of the circuit YCC.

For example:

m(PAY0) =mY(PAY0) +mCC(PAY0), (5.3)

where

mY(PAY0) = 2N2+R ·N, (5.4)

mY(PAY0) = 2R1+R ·R. (5.5)

Average numbers of p-functions and memory bits were calculated for both libraries sep-

arately. There was calculated a proportional gain (in percents) based on this values. In case

of p-functions the proportional gain refers to the standard single-level P Mealy FSM struc-

ture. Because there is no memory blocks in this structure the proportional gain of memory

bits refers to double-level PAYSC Mealy FSM structure. There was chosen this structure as a

referred structure because it should, in theory, consume the higher number of memory bits.

The summary of logic synthesis results for the library LGSynth91 is shown in the table 5.5

and for the library RandFSM is shown in the table 5.6.

The multiple encoding of microinstructions (PY0) reduce the number of p-functions

when the number of microinstruction realized during transition from one state T0 < 2N−1.

The gain can be calculated as follow:

∆Y = N − dlog2(T0)e (5.6)

and it is growing up when number of different microinstructions realized during transition

from one state T0 is falling down. This encoding gives very good benefits, for example,

for benchmarks scf and planet but it does not give any benefits for for example for bench-

marks ex3 and bbtas. In overall, this method of synthesis diminish the number of realized

p-functions almost by half in case of the library LGSynth91 and by quarter in case of the

library RandFSM.

-80-

5.3. Logic Synthesis

Ta
bl

e
5.

5.
A

ve
ra

ge
re

su
lts

of
th

e
lo

gi
c

sy
nt

he
si

s
of

be
nc

hm
ar

ks
fr

om
th

e
lib

ra
ry

L
G

Sy
nt

h9
1

Ty
pe

St
ru

ct
ur

e

of
pa

ra
m

et
er

P
PY

PY
0

PA
PA

Y
PY

Y
PA

Y
0

PA
Y

S
C

A
ve

ra
ge

fu
nc

tio
n

12
.1

1
7.

66
6.

28
10

.0
9

5.
64

6.
96

4.
26

2.
7

m
em

or
y

0.
0

29
2.

64
26

84
.0

9
12

10
.8

9
15

03
.5

3
34

49
.5

7
38

94
.9

8
70

54
.6

4

Pe
rc

en
ta

ge
fu

nc
tio

n
10

0%
63

%
52

%
83

%
47

%
57

%
35

%
22

%

m
em

or
y

0%
4%

38
%

17
%

21
%

49
%

55
%

10
0%

Ta
bl

e
5.

6.
A

ve
ra

ge
re

su
lts

of
th

e
lo

gi
c

sy
nt

he
si

s
of

ra
nd

om
be

nc
hm

ar
ks

Ty
pe

St
ru

ct
ur

e

of
pa

ra
m

et
er

P
PY

PY
0

PA
PA

Y
PY

Y
PA

Y
0

PA
Y

S
C

A
ve

ra
ge

fu
nc

tio
n

11
.3

3
10

.5
3

8.
53

11
.0

7
10

.2
7

9.
4

8.
27

5.
07

m
em

or
y

0.
0

92
22

.4
13

05
9.

2
10

51
.7

3
10

27
4.

13
32

90
6.

67
14

11
0.

93
18

21
1.

2

Pe
rc

en
ta

ge
fu

nc
tio

n
10

0%
93

%
75

%
98

%
91

%
83

%
73

%
45

%

m
em

or
y

0%
51

%
72

%
6%

56
%

18
1%

77
%

10
0%

-81-

5.3. Logic Synthesis

The multiple encoding of internal states based on a current state (PA and PAY) or a

microinstruction (PYY) reduce the number of p-functions [Bukowiec & Barkalov: 2007,

2008] when the number of states of transitions from one state MA
0 < 2R−1 or MY

0 < 2R−1

and the gain can be calculated as follow:

∆A
A = R− dlog2(M

A
0)e (5.7)

or

∆Y
A = R− dlog2(M

Y
0)e. (5.8)

This gain is growing up when the number of different states of transitions from one stateMA
0

orMY
0 is falling down. In case of encoding based on a current state it gives good benefits, for

example, for benchmarks bbtas and s208 but it does not give any benefits, for example, for

benchmarks ex6 and tbk. The structure PA gives only a little less p-functions than the stan-

dard single-level structure P but it required the least memory bits in comparison with others.

The application of the multiple encoding of internal states based on a current state together

with encoding of microinstructions (the structure PAY) gives rewarding results only for the

library LGSynth91. The encoding based on microinstructions gives worst results in aver-

age than the encoding based on current states for the library LGSynth91 but in some cases

(for example, for benchmarks opus and dk14) the results are better. In case of the library

RandFSM this synthesis method required much more memory bits that other methods.

The multiple encoding of microinstructions and internal states (PAY0) gives benefits if

both the multiple encoding of microinstructions and the multiple encoding of internal state

based on a current state give benefits – it means ∆Y > 0 and ∆A
A > 0. The gain in this case

is equal to:

∆AY = ∆A
A + ∆Y . (5.9)

In case of the library LGSynth91 the number of realized p-functions is smaller for this

method that for methods PY0 or PA separately. In case of the library RandFSM this syn-

thesis method gives results very similar to the method PY0. It is caused by no effects of

application of the method PA.

The shared multiple encoding of microinstructions and internal states (PAYSC) could give

benefits even if neither the multiple encoding of internal states nor the multiple encoding of

microinstructions give benefits. It is caused that there are encoded identifiers in place of

internal states and microinstructions and it is visible in case of benchmarks from the library

RandFSM. The gain of application of this method is strongly dependable on a characteristic

of a considered control algorithm.

-82-

5.4. Implementation

5.4. Implementation
However there are analytical methods to estimate required hardware resources for implemen-

tation of a control algorithm into simple PLDs based on the number of realized p-functions

and the number of input variables [Baranov: 1994; Barkalov: 2002; Kania: 2004], in case

of FPGAs there is no such methods [Łuba et al.: 2003]. It means that discussed methods

of synthesis should be also tested by implementation into an FPGA device. Files obtained

during the logic synthesis process performed by the A♠S System were passed into a syn-

thesis process into Xilinx Virtex v50 (xcv50-bg256-6) device [Xilinx: 2002]. The synthesis

process was performed by XST 8.1i [Xilinx: 2005] from ISE 8.1i by Xilinx. The obtained

results of synthesis with use of standard methods (P and PY) and proposed methods have

been compared between themselves and with results of synthesis of behavioral description

in VHDL and Verilog because, like for a behavioral simulation, there is no possibility to

implement the behavioral description of an FSM in the KISS2 format.

The obtained results for the library LGSynth91 are shown in the table 5.7 and for the

library RandFSM are shown in the table 5.8.

Table 5.7. Results of the implementation of benchmarks from the

library LGSynth91

Benchmark
Type of Structure

resources VHDL Verilog P PY PY0 PA PAY PYY PAY0 PAYSC

bbara

Slices 13 15 15 15 14 11 11 17 7 10

LUTs 23 27 27 27 25 19 19 30 12 18

FFs 4 4 4 4 4 4 4 4 4 4

BRAMs 0 0 0 1 1 1 2 2 2 1

bbsse

Slices 26 31 31 31 35 26 34 28 27 18

LUTs 46 56 55 57 60 46 60 49 46 31

FFs 4 4 4 4 4 4 4 4 4 4

BRAMs 0 0 0 1 1 1 2 2 2 1

bbtas

Slices 3 5 5 5 5 2 3 5 2 4

LUTs 6 8 8 8 8 3 3 8 3 5

FFs 3 3 3 3 3 3 3 3 3 3

BRAMs 0 0 0 0 1 1 1 1 2 1

Continued on Next Page. . .

-83-

5.4. Implementation

VHDL Verilog P PY PY0 PA PAY PYY PAY0 PAYSC

beecount

Slices 9 9 11 7 7 10 7 6 8 6

LUTs 17 16 20 12 12 16 10 11 13 5

FFs 3 3 3 3 3 3 3 3 3 3

BRAMs 0 0 0 1 1 1 2 2 2 1

cse

Slices 48 47 44 48 41 37 43 43 39 23

LUTs 84 82 78 85 73 65 76 75 68 41

FFs 4 4 4 4 4 4 4 4 4 4

BRAMs 0 0 0 1 1 1 2 2 2 1

dk14

Slices 14 14 14 14 9 13 13 11 9 3

LUTs 25 24 25 25 16 24 24 20 15 6

FFs 3 3 3 3 3 3 3 3 3 3

BRAMs 0 0 0 1 1 1 2 2 2 1

dk15

Slices 7 7 7 6 4 7 6 6 4 2

LUTs 14 14 14 11 8 14 11 11 8 3

FFs 2 2 2 2 2 2 2 2 2 2

BRAMs 0 0 0 1 1 1 2 2 2 1

dk16

Slices 50 39 39 40 38 12 20 52 8 3

LUTs 88 69 68 70 67 22 35 93 14 4

FFs 5 5 5 5 5 5 5 5 5 5

BRAMs 0 0 0 1 1 1 2 2 2 1

dk17

Slices 6 6 6 6 5 5 5 6 4 2

LUTs 11 11 11 11 10 9 9 11 8 2

FFs 3 3 3 3 3 3 3 3 3 3

BRAMs 0 0 0 1 1 1 2 2 2 1

dk27

Slices 3 3 3 3 2 2 2 3 2 2

LUTs 5 5 5 5 4 3 3 5 2 1

FFs 3 3 3 3 3 3 3 3 3 3

BRAMs 0 0 0 1 1 1 2 2 2 1

dk512

Slices 8 7 7 6 5 4 3 6 2 4

LUTs 14 13 13 12 10 7 6 12 4 6

FFs 4 4 4 4 4 4 4 4 4 4

BRAMs 0 0 0 1 1 1 2 2 2 1

Continued on Next Page. . .

-84-

5.4. Implementation

VHDL Verilog P PY PY0 PA PAY PYY PAY0 PAYSC

ex1

Slices 105 58 60 90 61 59 69 73 62 50

LUTs 187 102 105 159 110 105 121 129 111 87

FFs 5 5 5 5 5 5 5 5 5 5

BRAMs 0 0 0 2 3 1 3 3 4 3

ex2

Slices 13 24 27 27 33 14 13 27 13 16

LUTs 23 42 49 49 58 24 23 48 23 29

FFs 5 5 5 5 5 5 5 5 5 5

BRAMs 0 0 0 0 1 1 1 1 2 1

ex3

Slices 11 11 10 10 10 6 6 9 6 8

LUTs 20 19 17 17 17 10 10 16 10 14

FFs 4 4 4 4 4 4 4 4 4 4

BRAMs 0 0 0 0 1 1 1 1 2 1

ex4

Slices 20 20 20 16 13 15 9 10 6 3

LUTs 35 35 36 29 23 26 16 18 10 6

FFs 4 4 4 4 4 4 4 4 4 4

BRAMs 0 0 0 1 1 1 2 2 2 1

ex5

Slices 9 9 8 8 8 4 4 8 4 6

LUTs 16 14 15 14 15 7 6 14 7 12

FFs 4 4 4 4 4 4 4 4 4 4

BRAMs 0 0 0 0 1 1 1 1 2 1

ex6

Slices 30 28 29 19 19 32 24 15 12 10

LUTs 52 49 52 34 34 56 43 27 21 17

FFs 3 3 3 3 3 3 3 3 3 3

BRAMs 0 0 0 1 1 1 2 2 2 1

ex7

Slices 4 4 10 11 11 5 7 8 6 9

LUTs 8 8 18 18 19 9 9 13 10 15

FFs 3 3 4 4 4 4 4 4 4 4

BRAMs 0 0 0 1 1 1 2 2 2 1

keyb

Slices 55 51 51 56 55 35 37 49 34 45

LUTs 94 90 90 99 96 64 65 86 61 80

FFs 5 5 5 5 5 5 5 5 5 5

BRAMs 0 0 0 1 1 1 2 2 2 1

Continued on Next Page. . .

-85-

5.4. Implementation

VHDL Verilog P PY PY0 PA PAY PYY PAY0 PAYSC

kirkman

Slices 35

B
ad

co
nv

er
si

on

32 76 53 31 57 111 59 30

LUTs 63 58 138 95 55 100 197 108 56

FFs 4 4 4 4 4 4 4 4 4

BRAMs 0 0 1 1 1 2 2 2 1

lion

Slices 2 2 2 2 2 2 3 3 2 2

LUTs 3 3 3 3 3 3 3 3 3 2

FFs 2 2 2 2 2 2 2 2 2 2

BRAMs 0 0 0 0 1 1 1 1 2 1

lion9

Slices 8 8 9 9 6 5 5 8 3 6

LUTs 13 15 17 17 11 9 9 13 6 9

FFs 4 4 4 4 4 4 4 4 4 4

BRAMs 0 0 0 0 1 1 1 1 2 1

mark1

Slices 20

B
ad

co
nv

er
si

on

22 12 10 19 9 11 7 6

LUTs 34 39 21 17 33 16 20 12 10

FFs 4 4 4 4 4 4 4 4 4

BRAMs 0 0 1 1 1 2 2 2 2

mc

Slices 4 4 4 3 3 2 2 2 2 2

LUTs 7 7 7 5 5 4 2 2 2 2

FFs 2 2 2 2 2 2 2 2 2 2

BRAMs 0 0 0 1 1 1 2 2 2 1

opus

Slices 24

B
ad

co
nv

er
si

on

22 16 18 18 14 9 18 7

LUTs 42 39 29 32 31 24 16 31 13

FFs 4 4 4 4 4 4 4 4 4

BRAMs 0 0 1 1 1 2 2 2 1

planet

Slices 140 129 141 90 68 96 64 75 38 37

LUTs 250 232 248 155 121 167 113 131 67 65

FFs 9 9 6 6 6 6 6 6 6 6

BRAMs 0 0 0 2 5 1 3 5 6 7

planet1

Slices 140 129 141 90 68 96 64 75 38 37

LUTs 250 232 248 155 121 167 113 131 67 65

FFs 9 9 6 6 6 6 6 6 6 6

BRAMs 0 0 0 2 5 1 3 5 6 7

Continued on Next Page. . .

-86-

5.4. Implementation

VHDL Verilog P PY PY0 PA PAY PYY PAY0 PAYSC

pma

Slices 94 71 75 68 41 67 49 49 16 16

LUTs 168 125 131 122 75 118 86 86 29 29

FFs 5 5 5 5 5 5 5 5 5 5

BRAMs 0 0 0 1 1 1 2 2 2 1

s1488

Slices 169 109 133 92 66 107 83 87 59 62

LUTs 303 194 236 163 118 188 147 156 102 109

FFs 6 6 7 6 6 6 6 6 6 6

BRAMs 0 0 0 2 5 1 3 5 6 13

s1494

Slices 146 143 117 90 70 101 78 82 50 63

LUTs 261 254 205 159 126 174 139 145 87 111

FFs 6 6 7 6 6 6 6 6 6 6

BRAMs 0 0 0 2 5 1 3 5 6 13

s208

Slices 17 12 12 12 14 9 9 10 10 25

LUTs 30 21 22 22 24 16 16 18 18 46

FFs 5 5 5 5 5 5 5 5 5 5

BRAMs 0 0 0 1 1 1 2 2 2 1

s27

Slices 8 6 6 4 5 7 7 6 7 6

LUTs 14 10 10 8 9 13 12 10 12 11

FFs 3 3 3 3 3 3 3 3 3 3

BRAMs 0 0 0 1 1 1 2 2 2 1

s298

Slices 1413

B
ad

co
nv

er
si

on

529 628 751 258 238 398 162 137

LUTs 2538 951 1143 1356 466 433 719 291 252

FFs 8 19 26 29 15 13 19 11 11

BRAMs 0 0 1 1 4 5 3 5 7

s386

Slices 30 30 31 35 31 31 33 27 26 15

LUTs 53 53 56 61 56 55 58 48 46 27

FFs 4 4 4 4 4 4 4 4 4 4

BRAMs 0 0 0 1 1 1 2 2 2 1

s420

Slices 9 12 12 11 13 11 8 11 13 23

LUTs 16 21 22 19 21 19 15 19 22 40

FFs 5 5 5 5 5 5 5 5 5 5

BRAMs 0 0 0 1 1 1 2 2 2 1

Continued on Next Page. . .

-87-

5.4. Implementation

VHDL Verilog P PY PY0 PA PAY PYY PAY0 PAYSC

s510

Slices 39 38 41 44 29 22 23 32 16 15

LUTs 68 67 73 78 53 41 41 58 29 27

FFs 6 6 6 6 6 6 6 6 6 6

BRAMs 0 0 0 1 1 1 2 2 2 1

s820

Slices 87 74 79 72 59 74 68 75 54 71

LUTs 151 131 139 129 107 131 122 135 97 123

FFs 5 5 5 5 5 5 5 5 5 5

BRAMs 0 0 0 2 2 1 3 4 3 3

s832

Slices 83 77 79 94 63 67 78 71 49 63

LUTs 147 135 138 169 112 119 139 126 85 109

FFs 5 5 5 5 5 5 5 5 5 5

BRAMs 0 0 0 2 2 1 3 4 3 3

sand

Slices 117 98 113 115 80 86 89 84 66 44

LUTs 208 173 199 205 141 152 156 148 116 77

FFs 5 5 5 5 5 5 5 5 5 5

BRAMs 0 0 0 1 1 1 2 2 2 2

scf

Slices 168

B
ad

co
nv

er
si

on

183 139 113 147 95 109 48 51

LUTs 298 319 250 202 262 168 196 86 91

FFs 7 7 10 7 8 7 8 7 7

BRAMs 0 0 4 4 2 6 17 6 16

sse

Slices 29 31 31 31 35 26 34 28 27 18

LUTs 52 56 55 57 60 46 60 49 46 31

FFs 4 4 4 4 4 4 4 4 4 4

BRAMs 0 0 0 1 1 1 2 2 2 1

styr

Slices 119 128 112 109 80 66 87 90 53 39

LUTs 211 225 199 192 143 116 155 160 94 70

FFs 5 5 5 5 5 5 5 5 5 5

BRAMs 0 0 0 1 1 1 2 2 2 1

tav

Slices 5 5 5 7 7 4 6 7 6 6

LUTs 8 8 8 12 12 7 11 13 11 11

FFs 2 2 2 2 2 2 2 2 2 2

BRAMs 0 0 0 1 1 1 2 2 2 1

Continued on Next Page. . .

-88-

5.4. Implementation

VHDL Verilog P PY PY0 PA PAY PYY PAY0 PAYSC

tbk

Slices 837 108 45 44 43 76 76 97 83 89

LUTs 1460 191 79 76 76 131 134 173 146 157

FFs 5 5 4 4 5 5 5 5 5 5

BRAMs 0 0 0 1 1 2 3 2 3 2

tma

Slices 66 53 55 46 28 38 26 26 9 8

LUTs 117 94 97 80 49 67 45 45 16 15

FFs 5 5 5 5 5 5 5 5 5 5

BRAMs 0 0 0 1 1 1 2 2 2 1

train11

Slices 9 9 9 9 8 6 6 9 4 6

LUTs 17 15 16 16 14 9 9 16 7 7

FFs 4 4 4 4 4 4 4 4 4 4

BRAMs 0 0 0 0 1 1 1 1 2 1

train4

Slices 2 2 2 2 2 1 2 2 1 1

LUTs 3 3 3 3 3 2 2 3 2 1

FFs 2 2 2 2 2 2 2 2 2 2

BRAMs 0 0 0 0 1 1 1 1 2 1

Both tables show utilization of device resources (in numbers) like slices, slice flip-flops,

LUTs and BRAMs. Of course each slice has two flip-flops and two LUTs in Virtex device

but not all of them have to be used and this is the reason to shown all this three numbers.

Flip-flops are used only for storage the code of the current state and there should be used

exactly the same number of flip-flops as the number of variables required to encoding of

states and it should be equal for all structures. But in some cases this number is greater. It is

caused by a register duplication strategy in XST that is enabled by default.

It should be mentioned that XST performs synthesis of behavioral description of FSMs

with use of standard single-level structure (P). The synthesis of behavioral description was

performed with compact encoding of states and default settings of other parameters. Dif-

ferences in hardware utilization between behavioral description and the structure P, that can

be saw in the table 5.7, can be caused by different state assignment. The XST also has

implemented the algorithm of minimization of unreached states which improve results in

some cases. The results also depend on the scheme of description of FSM in HDLs [Lee:

1999; Brown & Vernesic: 2005]. The description in VHDL obtained from the KISS2VHDL

-89-

5.4. Implementation

converter [Figler: 2006] is recognized as FSM by XST and the minimization of unreached

states the state re-assignment can be performed (for example, for benchmarks ex2 and ex7).

The description in Verilog obtained from the Kiss2vl converter [Pruteanu: 2004] has wrong

interpretation of transitions from any state and XST remove whole state machine during

synthesis process (for example, for benchmarks kirkman and mark1).

Table 5.8. Results of the implementation of random benchmarks

Benchmark
Type of Structure

resources P PY PY0 PA PAY PYY PAY0 PAYSC

ex1_3_5_4

Slices 15 15 12 14 15 12 11 9

LUTs 26 27 22 24 26 22 20 16

FFs 3 3 3 3 3 3 3 6

BRAMs 0 1 1 1 2 2 2 1

ex1_7_8_11

Slices 853 653 349 863 727 578 336 18

LUTs 1532 1175 617 1544 1314 1035 598 28

FFs 18 6 6 23 16 11 8 3

BRAMs 0 3 3 1 4 6 4 4

ex1_8_14_12

Slices 3227 5784 1608 3123 2859 5043 1600 159

LUTs 5837 10251 2905 5537 5159 8826 2883 281

FFs 63 22 50 58 45 25 38 4

BRAMs 0 12 12 1 13 33 13 16

ex2_3_5_4

Slices 14 14 18 17 13 15 11 3

LUTs 27 27 31 32 25 28 21 5

FFs 3 3 3 3 3 3 3 3

BRAMs 0 1 1 1 2 2 2 1

ex2_6_22_8

Slices 1172 1188 891 1164 1153 977 791 81

LUTs 2217 2265 1665 2179 2162 1840 1485 144

FFs 45 51 33 56 41 31 35 5

BRAMs 0 1 4 2 3 6 6 7

ex2_7_10_11

Slices 1173 1058 592 1223 864 787 609 86

LUTs 2193 1963 1090 2277 1545 1444 1111 150

FFs 34 31 19 32 26 14 18 4

BRAMs 0 3 6 1 4 7 7 8

Continued on Next Page. . .

-90-

5.4. Implementation

P PY PY0 PA PAY PYY PAY0 PAYSC

ex3_6_22_8

Slices 1038 1068 887 970 1149 932 827 123

LUTs 1940 2001 1659 1825 2152 1764 1541 220

FFs 34 31 30 25 42 35 29 5

BRAMs 0 1 4 2 3 6 6 7

ex3_6_8_7

Slices 314 312 251 313 308 295 245 70

LUTs 568 565 451 566 556 537 441 125

FFs 6 5 7 5 6 7 4 3

BRAMs 0 1 1 1 2 2 2 2

ex3_8_14_12

Slices 3287 5327 1636 3125 2855 4879 1627 158

LUTs 5791 9398 2964 5546 5154 8575 2926 281

FFs 91 12 38 51 41 24 51 6

BRAMs 0 12 12 1 13 33 13 16

ex4_6_8_7

Slices 325 317 240 314 305 299 239 50

LUTs 584 571 432 569 552 540 429 88

FFs 6 6 6 3 3 4 5 3

BRAMs 0 1 1 1 2 2 2 2

ex4_7_10_11

Slices 1086 1128 648 1224 1023 898 657 64

LUTs 1984 2087 1186 2279 1931 1643 1202 112

FFs 27 25 25 36 35 29 22 4

BRAMs 0 3 6 1 4 7 7 8

S1

Slices 10 9 8 8 8 6 5 3

LUTs 18 16 14 15 14 9 10 6

FFs 3 3 3 3 3 3 3 3

BRAMs 0 1 1 1 2 2 2 1

S2

Slices 30 33 23 28 26 22 18 12

LUTs 54 60 41 49 44 40 31 21

FFs 4 4 4 4 4 4 4 4

BRAMs 0 1 1 1 2 2 2 1

S3

Slices 4 4 2 4 4 4 1 1

LUTs 7 7 4 7 7 7 2 2

FFs 2 2 2 2 2 2 2 2

BRAMs 0 0 1 1 1 1 2 1

Continued on Next Page. . .

-91-

5.4. Implementation

P PY PY0 PA PAY PYY PAY0 PAYSC

S4

Slices 10 7 6 9 7 6 5 6

LUTs 18 12 11 17 11 8 9 11

FFs 3 3 3 3 3 3 3 6

BRAMs 0 1 1 1 2 2 2 1

Average values of these parameters have been calculated in a similar way like for logic

synthesis results and they are shown in the table 5.9 for the library LGSynth91 and in the

table 5.10 for the library RandFSM.

The most important parameter is the number of LUTs because LUTs are used to im-

plement p-functions. But it can be seen that the number of p-functions and the number of

LUTs are not correlated. It is caused by different complexity of functions and functional

decomposition performed during synthesis process by XST in these cases.

How it can be seen the standard method with the maximal encoding of microinstructions

(PY) reduces the number of p-functions by 37% for the library LGSynth91 and the number of

slices is decreased only by 3% for the same method. For the library LGSynth91 the number

of slices is even increased by 33%. The other important parameter is the number of BRAMs.

In case of this parameter values for different structures are more similar than the number of

required bits. It is caused by need of usage whole memory block even for implementation

very small memory (in bits). It shown that application of the standard method with the

maximal encoding of microinstructions does not give benefits in case of implementation

of control unit into an FPGA device - the number of LUTs is weakly reduced or even not

reduced and additionally it assumes usage of memory blocks.

The multiple encoding of microinstructions (PY0) in most cases diminishes the number

of LUTs. Unfortunately this method dose not give the best results in any case. But it is used

as a base of further methods and it can be also used as an alternative balanced method of

synthesis when outcomes of other methods exceeded number of available BRAMs because

this method required relatively small number of memory blocks.

-92-

5.4. Implementation

Ta
bl

e
5.

9.
A

ve
ra

ge
re

su
lts

of
th

e
im

pl
em

en
ta

tio
n

of
be

nc
hm

ar
ks

fr
om

th
e

lib
ra

ry
L

G
Sy

nt
h9

1

Ty
pe

St
ru

ct
ur

e
of

re
so

ur
ce

s
P

PY
PY

0
PA

PA
Y

PY
Y

PA
Y

0
PA

Y
S
C

A
ve

ra
ge

Sl
ic

es
51

.8
9

50
.3

8
45

.5
5

37
.7

34
.6

6
42

.0
4

25
.1

3
23

.6
L

U
T

s
91

.9
8

89
.9

8
81

.4
3

66
.6

61
.2

1
74

.7
2

44
.3

4
41

.4
5

FF
s

4.
53

4.
7

4.
72

4.
45

4.
38

4.
53

4.
34

4.
34

B
R

A
M

s
0.

0
1.

04
1.

49
1.

11
2.

15
2.

53
2.

6
2.

4

Pe
rc

en
ta

ge

Sl
ic

es
10

0%
97

%
88

%
73

%
67

%
81

%
48

%
45

%
L

U
T

s
10

0%
98

%
89

%
72

%
67

%
81

%
48

%
45

%
FF

s
10

0%
10

4%
10

4%
98

%
97

%
10

0%
96

%
96

%
B

R
A

M
s

0%
43

%
62

%
46

%
89

%
10

5%
10

8%
10

0%

Ta
bl

e
5.

10
.

A
ve

ra
ge

re
su

lts
of

th
e

im
pl

em
en

ta
tio

n
of

ra
nd

om
be

nc
hm

ar
ks

Ty
pe

St
ru

ct
ur

e
of

re
so

ur
ce

s
P

PY
PY

0
PA

PA
Y

PY
Y

PA
Y

0
PA

Y
S
C

A
ve

ra
ge

Sl
ic

es
83

7.
2

11
27

.8
47

8.
07

82
6.

6
75

4.
4

98
3.

53
46

5.
47

56
.2

L
U

T
s

15
19

.7
3

20
28

.3
3

87
2.

8
14

97
.7

3
13

76
.8

17
54

.5
3

84
7.

27
99

.3
3

FF
s

22
.8

13
.8

15
.4

7
20

.4
7

18
.2

13
.2

15
.2

4.
07

B
R

A
M

s
0.

0
2.

8
3.

67
1.

13
3.

93
7.

53
4.

8
5.

07

Pe
rc

en
ta

ge

Sl
ic

es
10

0%
13

5%
57

%
99

%
90

%
11

7%
56

%
7%

L
U

T
s

10
0%

13
3%

57
%

99
%

91
%

11
5%

56
%

7%
FF

s
10

0%
61

%
68

%
90

%
80

%
58

%
67

%
18

%
B

R
A

M
s

0%
55

%
72

%
22

%
78

%
14

9%
95

%
10

0%

-93-

5.4. Implementation

Average results obtained for the multiple encoding of internal states based on a current

state (PA) are better than the results obtained for the multiple encoding of microinstructions.

This method gives the best results in some cases (for example, for benchmarks ex3 and

s208). It also required the smallest number of memory blocks and it makes that it also can

be treated as alternative method when other methods exceeded number of available BRAMs

(for example, for benchmarks s820 and s832). In some cases the number of required LUTs

can be reduced by additional application of encoding of microinstructions – PAY structure

(for example, for benchmarks ex2 and s420). Of course it increase the number of required

BRAMs because this method required implementation of two decoders. But this method

required the smallest number of memory blocks from methods that requires two decoders

(for example, for benchmarks s1488 and s1494).

The multiple encoding of internal states based on a microinstruction (PYY) gives better

results than the multiple encoding of internal states based on a current state (for example, for

benchmarks ex6 and opus) but it never gives the best results. It also required implementation

of two decoders what makes that it required the biggest number of BRAMs in average among

all of proposed methods.

The multiple encoding of microinstructions and internal states (PAY0) is an further im-

provement of the method PAY. It gives the best results of synthesis in many cases (for exam-

ple, for benchmarks bbara, keyb and s1494).

The shared multiple encoding of microinstructions and internal states (PAYSC) gives the

best results of synthesis in the most number of cases (for example, for benchmarks bbsee,

ex1 and kirkman). Additionally the application of the common memory for both decoders

reduce the number of required BRAMs for small FSMs, like bbsee, dk17 or styr. This

method also gives the best results for all random benchmarks (the library RandFSM). It is

caused by the maximal number of transitions from each state. In such a case only encoding

of identifiers gives any benefits. The gain is much bigger than excepted and it is equal to 93%

in average. In 5 (ex2_6_22_8, ex3_6_22_8 ,ex1_7_8_11, ex2_7_10_11 and ex4_7_10_11)

from 11 benchmarks only this method does not exceed the size of the Virtex v50 device. In

these 5 cases the number of required LUTs exceed the number of LUTs in Virtex v50 device

– 768 [Xilinx: 2002] for other methods. For PAYSC method the critical parameter is the

number of BRAMs and it is not exceeded for these 5 benchmarks because Virtex v50 device

has 8 BRAMs [Xilinx: 2002]. Two benchmarks (ex1_8_14_12 and ex3_8_14_12) exceeded

the number of available BRAMs. There is required to use Virtex v300 for implementation of

these examples but it is still better result that the single level structure gives. It required 3227

slices and this number can be reached in Virtex v400 or bigger. As an alternative balanced

-94-

5.4. Implementation

method of synthesis should be used the PY0 that required 12 BRAMs and 1608 or 1636

slices for these benchmarks respectively. It means that they can by fit into Virtex v150 that

has 12 BRAMs and 1728 slices [Xilinx: 2002]. Of course it consume all the device.

The selection of a device size and method of synthesis should depend on complexity of

other components of whole digital system.

-95-

Chapter 6

Summary

Designs based on System-on-Programmable-Chip can be found practically everywhere now

[Jantsch: 2003]. They are used to implement complex systems for signal processing, micro-

controllers and so on. The control unit is a part of all such systems [Barkalov et al.: 2006a].

Because of high complexity of these systems properly method of synthesis is required [Łuba:

2005; Adamski & Barkalov: 2006] and rational utilization of hardware resources could fit

control unit into available, after implementation other components, part of device. It can

reduce the cost of whole system and size of a chip what is also very important sometimes.

6.1. The confirmation of the thesis
The aim of this thesis was to develop new synthesis methods of finite state machines based on

architectural decomposition. Conducted research had theoretical, practical and experimental

nature. The confirmation of the thesis mainly was made by use of the A♠S System that

allows to synthesize a finite state machine with any of proposed methods as well as classical

methods. The System produces a structural description of a FSM (in Verilog HDL on RTL

level) from a behavioral specification (KISS2 format).

There are proposed seven new methods of synthesis and seven mulit-level structures of

a digital device implementing a FSM. Each structure is dedicated to one adequate synthesis

method. The synthesis methods are based on the multiple encoding of some parameters

of a state machine. All methods are adapted for synthesis into FPGA devices. They take

advantage of features of new FPGAs like embedded memory blocks. The utilization of

such resources leads to reduce the number of required standard logic blocks, like LUTs, for

implementation of a control unit.

The propriety of worked out methods have been verified by many simulations and imple-

mentations of benchmarks from the library LGSynth91 and randomly generated FSMs.

6.2. Improvements and other applications

Additionally, the choice from variety of synthesis methods gives opportunity to fit a con-

trol unit exactly into unused hardware resources by other components of the whole system.

It makes that all blocks of device are used equable – it makes that synthesis process is more

effective. And achievement of this stage is the goal of this work.

�

6.2. Improvements and other applications
It is well known that commercial synthesis systems, like XST, do not implement effective al-

gorithms of Boolean functions decomposition [Baranov: 1998b; Łuba et al.: 2003]. It makes

that in further works, proposed methods can be improved by applying methods of functional

decomposition [Rawski et al.: 2001; Łuba et al.: 2002] or symbolic minimization [Perkowski

et al.: 2001] for obtained p-functions during the logic synthesis process. Undefined states

can be included into synthesis process by application of Gentzen system [Tkacz: 2006] into

process of obtaining of p-functions. Also symbolic encoding [Cabodi et al.: 1995] of FSM

parameters can improve the synthesis results.

Because the architectural decomposition operates on a system level and what it cause it

mainly do not depend on target architecture there could be undertaken research that will try

to adopt these structures and method of synthesis into CPLD technology. It was also the

reason of dividing the main part of this thesis into two chapters: four and five. The first

of them describes theory: the structures of the logic circuits on system level, mathematical

background and steps of synthesis methods. The second one describes application of this

theoretical elaborations in FPGA synthesis process and shown detailed structures of digital

circuits for this technology. It means that similar research, that is described in the fifth

chapter, could be conducted for CPLD technology.

The existence of decoders for decoding of microinstructions as a second-level circuits

in designed structures could allow to use features of partial reconfiguration [Eto: 2007] of

FPGA devices. In this case current microinstructions can be replaced by new ones to correct

or change a little behavior of control unit without need of synthesis, implementation and

programming of whole device again [Wiśniewski: 2005; Barkalov et al.: 2006b].

Benefits of different architecture of proposed structures can be tapped into designing

of logic controller for safety critical application [Adamski: 1999; Bukowiec & Wȩgrzyn:

2005a]. Such systems are based on two pairs of the Master-Slave processor and it requires

different realization of each pair [Halang et al.: 1994]. The Master processor controls a

data flow and initializes the Slave to calculation. While, the Slave processor operates on

-97-

6.2. Improvements and other applications

data in function blocks. It makes that both processors can be designed as FSM [Bukowiec

& Wȩgrzyn: 2005b]. Now, to diverse realization of both pairs, the same design can be

implemented twice using different methods of synthesis. As a results both pairs will have

different architecture (connections between blocks) and configurations of blocks (content of

the memory and p-functions describing combinational block).

Proposed methods could be also used for implementation of control unit designed with

use of statecharts [Drusinsky & Harel: 1989; Łabiak: 2005] or Petri Nets [Adamski: 2002;

Wȩgrzyn: 2003]. These models are very often used for modeling of concurrency in control

algorithms. Because direct implementation of such models are very difficult they are know

algorithms of decomposition of statecharts [Gomes & Costa: 2003; Łabiak: 2006] and Petri

Nets [Adamski & Wiśniewska: 2006; Wȩgrzyn: 2006] into linked state machines (LSMs).

In this case the each FSM from a set of parallel state machines could be synthesized with

use of different method. Such a situation allows to choose the best structure and method of

synthesis for each FSM separately.

-98-

Appendix A

CD-ROM

The structure of attached CD-ROM is shown in this appendix.

\ root\
x PhD-ABukowiec.pdf – This Ph.D. Thesis in the PDF format

x AS\
x synth.exe – the executable file of the Automata Synthesis (A♠S)

System

x LGSynth91\
x SynthRes\ – the results of synthesis of benchmarks from the library

LGSynth91

x VHDL\ – benchmarks from the library LGSynth91 converted into

VHDL

x VLOG\ – benchmarks from the library LGSynth91 converted into

Verilog

x RandFSMs\
x SynthRes\ – the results of synthesis of benchmarks from the library

RandFSMs

x KISS2\ – source files of the library RandFSMs

x VHDL\ – benchmarks from the library RandFSMs converted into

VHDL

x VLOG\ – benchmarks from the library RandFSMs converted into

Verilog

Each folder SynthRes consists from subfolders named by the synthesis method. There

are separate subfolders for each benchmark in these folders. Results of synthesis of ech

benchmark are illustrated by RTL description on Verilog (the set of files with extension

.v), the report file generated after the logic synthesis (extension .rep), the XST file to

A. CD-ROM

run synthesis into Virtex device (extension .xst), the batch file to invoke XST (extension

.bat), the report file generated by XST (extension .log) and the netlist generated by XST

(extensions .ndf and .ngc), for example:

\ PAY\
x dk14_PAY\

x dk14.v – the description of the top-level

x dk14_P.v – the description of the circuit P

x dk14_RG.v – the description of the register RG

x dk14_CC.v – the description of the decoder CC

x dk14_Y.v – the description of the decoder Y

x dk14.rep – the report from the logic synthesis

x dk14.xst – the command to run XST

x dk14.bat – the batch file to invoke XST

x dk14.log – the report from XST

x dk14.ndf – the netlist in EDIF format generated by XST

x dk14.ngc – the netlist in binary format generated by XST

-100-

Bibliography

Adamski, M. (1980). Programmable asynchronous control units with selfsynchronization.

In: 7th National Conference on Automation KKA’80 pp. 203–208, Szczecin, Poland.

Adamski, M. (1980). Programowane asynchroniczne układy sterujące z samosynchronizacją. W: Prace VIII

Krajowej Konferencji Automatyki KKA’80 ss. 203–208, Szczecin, Polska.

Adamski, M. (1999). Application specific logic controllers for safety critical systems. In:

14th World Congress of IFAC International Federation of Automatic Control volume Q:

Transportation Systems: Computer Control pp. 519–524, Beijing, China: Oxford, Inter-

national Federation of Automatic Control.

Adamski, M. (2002). Specification and synthesis of Petri net based reprogrammable logic

controller. In: Programmable Devices and Systems 2001. A Proceedings Volume from the

5th IFAC Workshop PDS’01, (Ciazynski, W., Hrynkiewicz, E., & Klosowski, P., eds) pp.

95–100. London: Pergamon.

Adamski, M. & Barkalov, A. (2006). Architectural and Sequential Synthesis of Digital De-

vices. Zielona Góra: University of Zielona Góra Press.

Adamski, M. & Wiśniewska, M. (2006). Usage of hypergraphs in decomposition of concur-

rent automata. Mensurations Automation Control, No. 6 bis, 8–10.

Adamski, M. & Wiśniewska, M. (2006). Dekompozycja równoległa automatów współbieżnych z wyko-

rzystaniem hipergrafów. Pomiary Automatyka Kontrola, Nr 6 bis, 8–10.

Ahmad, I., Ali, F. M., & Ul-Mustafa, R. (2000). An integrated state assignment and flip-

flop selection technique for FSM synthesis. Microprocessors and Microsystems, Vol. 24,

141–152.

Aldec (2007). Active-HDL Overview. http://www.aldec.com/products/

active-hdl/.

Altera (2005a). Cyclone Device Handbook. San Jose.

http://www.aldec.com/products/active-hdl/
http://www.aldec.com/products/active-hdl/
http://www.altera.com/literature/hb/cyc/cyc_c5v1.pdf

BIBLIOGRAPHY

Altera (2005b). Stratix Device Handbook. San Jose.

Altera (2006). MAX 3000A Programmable Logic Device Family - Data Sheet. San Jose.

Altera (2007a). Embedded Memory in Altera FPGAs. http://www.altera.com/

technology/memory/embedded/mem-embedded.html.

Altera (2007b). Stratix III TriMatrix Memory. http://www.altera.

com/products/devices/stratix3/overview/architecture/

st3-trimatrix.html.

Altera (2008). Synthesis. In: Design and Synthesis volume 1 of Quartus II Development

Software Handbook (v8.0) pp. 8–1–8–98. San Jose:.

Baranov, S. I. (1994). Logic Synthesis for Control Automata. Boston: Kluwer Academic

Publishers.

Baranov, S. I. (1998a). Minimization of algorithmic state machines. In: 24th EUROMI-

CRO’98 Conference. Engineering Systems and Software for the Next Decade volume 1

pp. 176–179, Vesteras, Sweden: IEEE Computer Society.

Baranov, S. I. (1998b). CAD system for ASM and FSM synthesis. In: Field-Programmable

Logic and Applications From FPGAs to Computing Paradigm. 8th International Work-

shop FPL’98, (Hartenstein, R. W. & Keevallik, A., eds) volume 1482 of Lecture Notes in

Computer Science pp. 119–128. Berlin/Heidelberg: Springer.

Baranov, S. I. & Keevallik, A. E. (1980). Synthesis of control automata using graph-schemes

of algorithms. Digital Processes, Vol. 6 (No. 2-3), 149–165.

Barkalov, A. (1994a). Structures of the multilevel circuits of microprogram automata on

PLA. Cybernetics and System Analysis, No. 4, 22–29.

Barkalov, A. (1994a). Struktury mnogourovnevyh shem mikroprogrammnyh avtomatov

na PLM. Kibernetika i sistemny� analiz, } 4, 22–29.

Barkalov, A. (1994b). Development of Formal Methods of Structural Synthesis of Composi-

tional Automata. Donetsk: DonTSU.

Barkalov, A. (1994b). Razrabotka formal~nyh metodov strukturnogo sinteza kompozi-

cionnyh avtomatov. Doneck: DonGTU.

-102-

http://www.altera.com/literature/hb/stx/stratix_handbook.pdf
http://www.altera.com/literature/ds/m3000a.pdf
http://www.altera.com/technology/memory/embedded/mem-embedded.html
http://www.altera.com/technology/memory/embedded/mem-embedded.html
http://www.altera.com/products/devices/stratix3/overview/architecture/st3-trimatrix.html
http://www.altera.com/products/devices/stratix3/overview/architecture/st3-trimatrix.html
http://www.altera.com/products/devices/stratix3/overview/architecture/st3-trimatrix.html
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://csdl.computer.org/comp/proceedings/euromicro/1998/8646/01/864610176abs.htm

BIBLIOGRAPHY

Barkalov, A. (2002). Synthesis of Control Units on PLDs. Donetsk: DonNTU.

Barkalov, A. (2002). Sintez ustro�stv upravleni� na programmiruemyh logiqeskih us-

tro�stvah. Doneck: DonNTU.

Barkalov, A. (2003). Synthesis of Operational Units. Donetsk: DonNTU.

Barkalov, O. (2003). Sintez operac��nih pristroı̈v. Donec~k: DonNTU.

Barkalov, A. (2005). Synthesis of control units into programmable arrays. In: Proceedings

of 2nd Scientific Conference Computer Science - Art or Craft KNWS’05 pp. 9–16, Złotniki

Lubańskie, Poland: University of Zielona Góra Press.

Barkalov, A. (2005). Synteza jednostek sterujących w strukturach programowalnych. W: Materiały II

Konferencji Naukowej Informatyka - Sztuka czy Rzemiosło KNWS’05 ss. 9–16, Złotniki Lubańskie, Polska:

Oficyna Wydawnicza Uniwersytetu Zielonogórskiego.

Barkalov, A. & Barkalov Jr., A. (2005). Design of Mealy finite-state machines with the trans-

formation of object codes. International Journal of Applied Mathematics and Computer

Science, Vol. 15 (No. 1), 151–158.

Barkalov, A. & Bukowiec, A. (2004a). Design of Mealy FSM with multiple encoding of

internal states. Radiotechnika, No. 138, 114–117.

Barkalov, A. & Bukowiec, A. (2004b). Synthesis of control unit with multiple encoding

of the sets of microoperations. In: Proceedings of the 2nd International Workshop on

Discrete-Event System Design DESDes’04 pp. 75–78, Dychów, Poland: University of

Zielona Góra Press.

Barkalov, A. & Bukowiec, A. (2004c). Synthesis of Mealy FSM with transformation of sys-

tem of microoperations in excitation functions. Radioelectronics and Computer Science,

No. 3, 82–85.

Barkalov, A. & Bukowiec, A. (2005a). Optimization of Mealy FSM with decoding of the

microoperations system. Control Systems and Computers, No. 5, 51–56.

Barkalov, A. & Bukowiec, A. (2005b). The synthesis of microprogram automat with multy-

sets of microoperations. Informatics, No. 2, 54–61.

Barkalov, A. i Bukovec, A. (2005b). Sintez mikroprogrammnogo avtomata s mno�estven-

nym kodirovaniem naborov mkrooperaci�. Informatika, } 2, 54–61.

-103-

BIBLIOGRAPHY

Barkalov, A. & Bukowiec, A. (2007). Realization of Mealy automata with transformation of

microoperations in the registers excitation functions. In: Proceedings of the 6th Interna-

tional Conference on Computer-Aided Design of Discrete Devices CAD DD’07 volume 2

pp. 34–38, Minsk, Belarus.

Barkalov, A., Bukowiec, A., & Kovalyov, S. (2004). Synthesis of Mealy FSM with multi-

ple encoding of internal states. In: Proceedings of East-West Design & Test Workshop

EWDTW’04 pp. 193–196, Yalta, Ukraine: Kharkov National University of Radioelectron-

ics.

Barkalov, A., Bukowiec, A., Malcheva, R., & Wȩgrzyn, M. (2005). Synthesis of Mealy

finite state machines based on multiple encoding. In: Proceedings of the XII Interna-

tional Science and Engineering Conference Machine-Building and Technosphere of the

XXI Century volume 5 pp. 7–10, Sevastopol, Ukraine: DonNTU.

Barkalov, A. & Palagin, A. (1997). Synthesis of Microprogram Control Units. Kiev: IC NAC

of Ukraine.

Barkalov, A. i Palagin, A. (1997). Sintez mikroprogrammnyh ustro�stv upravleni�.

Kiev: IK NAN Ukrainy.

Barkalov, A. & Titarenko, L. (2007a). Design of control units with programmable logic

devices. In: Measurements Models Systems and Design, (Korbicz, J., ed) pp. 371–391.

Warszawa: Wydawnictwa Komunikacji i Ła̧czności.

Barkalov, A. & Titarenko, L. (2007b). Synthesis of Compositional Microprogram Control

Units. Kharkiv: Kollegium.

Barkalov, A. i Titarenko, L. (2007b). Sintez kompozicionnyh mikroprogramnyh us-

tro�stv upravleni�. Hark�v: Kollegium.

Barkalov, A. & Wȩgrzyn, M. (2006). Design of Control Units with Programmable Logic.

Zielona Góra: University of Zielona Góra Press.

Barkalov, A., Wȩgrzyn, M., & Bukowiec, A. (2006a). Synthesis of fast control units for

telecommunication system. In: Proceedings of the International Conference Modern

Problems of Radio Engineering, Telecommunications and Computer Science TCSET’06

pp. 530–532, Lviv-Slavsko, Ukraine: Publishing House of Lviv Polytechnic.

Barkalov, A., Wȩgrzyn, M., & Wiśniewski, R. (2006b). Partial reconfiguration of compo-

sitional microprogram control units implemented on FPGAs. In: Proceedings of IFAC

-104-

BIBLIOGRAPHY

Workshop on Programmable Devices and Embedded Systems PDeS’06 pp. 95–100, Brno,

Czech Republic.

Borowik, G. (2004). FSM synthesis based on networks of FPGA’s embedded memory

blocks. In: Proceedings of the VI International Workshop for Candidates for a Doctor’s

Degree OWD’04 volume 19 of Conference Archives PTETiS pp. 361–366, Wisła, Poland.

Borowik, G. (2004). Synteza układów sekwencyjnych w siechiach wbudowanych matryc logicznych struk-

tur FPGA. W: Materiały VI Międzynarodowych Warsztatów Doktoranckich OWD’04 vol. 19, Archiwum

Konferencji PTETiS ss. 361–366, Wisła, Polska.

Borowik, G. (2005). FSM coding for optimal serial decomposition. In: Proceedings of the

VII International Workshop for Candidates for a Doctor’s Degree OWD’05 volume 21 of

Conference Archives PTETiS pp. 243–248, Wisła, Polska.

Borowik, G. (2005). Kodowanie stanów automatu dla potrzeb optymalnej dekompozycji szeregowej.

W: Materiały VII Międzynarodowych Warsztatów Doktoranckich OWD’05 vol. 21, Archiwum Konferencji

PTETiS ss. 243–248, Wisła, Polska.

Borowik, G. (2007). Synthesis of sequential devices into FPGAs with embedded memory

blocks. PhD thesis, Warsaw University of Technology, Faculty of Electronics and Infor-

mation Technology. Supervisor: Prof. Tadeusz Łuba, Ph.D. D.Sc.

Borowik, G. (2007). Synteza układów sekwencyjnych w strukturach FPGA z wbudowanymi pamiȩciami.

Rozprawa doktorska, Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych. Promotor:

prof. dr hab. inż. Tadeusz Łuba.

Brayton, R., Hachtel, G., McMullen, C., & Sangiovanni-Vincentelli, A. (1984). Logic Mini-

mization Algorithms for VLSI Synthesis. Boston: Kluwer Academic Publishers.

Brown, S. & Vernesic, Z. (2005). Fundamentals of Digital Logic with VHDL Design. New

York: McGraw-Hill, 2nd edition.

Bukowiec, A. (2004a). Synthesis Mealy finite state machines with multiple encoding of in-

ternal states or sets of microoperations. In: Proceedings of the VI International Workshop

for Candidates for a Doctor’s Degree OWD’04 volume 19 of Conference Archives PTETiS

pp. 367–372, Wisła, Poland.

Bukowiec, A. (2004a). Synteza automatów skończonych Mealy’ego z wielokrotnymi kodami stanów

wewnętrznych lub zbiorów mikrooperacji. W: Materiały VI Międzynarodowych Warsztatów Doktoranckich

OWD’04 vol. 19, Archiwum Konferencji PTETiS ss. 367–372, Wisła, Polska.

-105-

BIBLIOGRAPHY

Bukowiec, A. (2004b). Synthesis of Mealy automata with multiple encoding of internal

states. In: Proceedings of Scientific Conference Computer Science - Art or Craft KNWS’04

pp. 29–34, Zamek Czocha, Poland: University of Zielona Góra Press.

Bukowiec, A. (2004b). Synteza automatów Mealy’ego z wielokrotnymi kodami stanów wewnętrznych. W:

Materiały Konferencji Naukowej Informatyka - Sztuka czy Rzemiosło KNWS’04 ss. 29–34, Zamek Czocha,

Polska: Oficyna Wydawnicza Uniwersytetu Zielonogórskiego.

Bukowiec, A. (2005a). Automata synthesis with application of multiple encoding. In: Pro-

ceedings of 2nd Scientific Conference Computer Science - Art or Craft KNWS’05 pp. 17–

22, Złotniki Lubańskie, Poland: University of Zielona Góra Press.

Bukowiec, A. (2005a). Synteza automatów skończonych z wykorzystaniem metod kodowania wielokrot-

nego. W: Materiały II Konferencji Naukowej Informatyka - Sztuka czy Rzemiosło KNWS’05 ss. 17–22,

Złotniki Lubańskie, Polska: Oficyna Wydawnicza Uniwersytetu Zielonogórskiego.

Bukowiec, A. (2005b). Mealy FSM with multiple shared encoding of microinstructions and

internal states. In: Proceedings of the VII International Workshop for Candidates for a

Doctor’s Degree OWD’05 volume 21 of Conference Archives PTETiS pp. 175–180, Wisła,

Poland.

Bukowiec, A. (2005b). Automat skończony z wyjściem typu Mealy’ego z wielokrotnym współdzielonym

kodowaniem mikroinstrukcji i stanów wewnętrznych. W: Materiały VII Międzynarodowych Warsztatów

Doktoranckich OWD’05 vol. 21, Archiwum Konferencji PTETiS ss. 175–180, Wisła, Polska.

Bukowiec, A. (2006a). Synthesis of Mealy FSM with multiple shared encoding of microin-

structions and internal states. In: Proceedings of IFAC Workshop on Programmable De-

vices and Embedded Systems PDeS’06 pp. 95–100, Brno, Czech Republic.

Bukowiec, A. (2006b). Synthesis of finite state machines with verticalization of microin-

structions. Mensurations Automation Control, No. 6 bis, 35–37.

Bukowiec, A. (2006b). Synteza skończonych automatów stanów z zastosowaniem szeregowego przeksz-

tałcenia mikroinstrukcji. Pomiary Automatyka Kontrola, Nr 6 bis, 35–37.

Bukowiec, A. (2008). Automata Synthesis System. http://willow.iie.uz.zgora.

pl/~abukowie/AS/as.htm.

Bukowiec, A. & Barkalov, A. (2006). Verticalization of direct structural table in synthesis

of Mealy FSMs for FPGAs. In: Proceedings of the 13th International Conference Mixed

Design of Integrated Circuits and Systems MixDes’06 pp. 407–411, Gdynia, Poland.

-106-

http://willow.iie.uz.zgora.pl/~abukowie/AS/as.htm
http://willow.iie.uz.zgora.pl/~abukowie/AS/as.htm

BIBLIOGRAPHY

Bukowiec, A. & Barkalov, A. (2007). Logic synthesis of FSMs based on multiple encoding

of states. In: Proceedings of International Workshop - Control and Information Technol-

ogy IWCIT’07 pp. 225–228, Ostrava, Czech Republic.

Bukowiec, A. & Barkalov, A. (2008). Logic synthesis of FSMs with multiple encoding of

states. Telecommunication Review and Telecommunication News, No. 6, 766–769.

Bukowiec, A. & Barkalov, A. (2008). Synteza logiczna skończonych automatów stanów z zastosowaniem

wielokrotnego kodowania stanów. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, Nr 6,

766–769.

Bukowiec, A. & Wȩgrzyn, M. (2005a). Design of logic controllers for safety critical sys-

tems using FPGAs with embedded microprocessors. In: Real-Time Programming 2004. A

Proceedings volume from the 28th IFAC/IFIP Workshop WRTP’04, (Colnaric, M., Halang,

W. A., & Wȩgrzyn, M., eds) pp. 97–102. Oxford: Elsevier Ltd.

Bukowiec, A. & Wȩgrzyn, M. (2005b). Design of safety critical logic controller using de-

vices integrated microprocessor with FPGA. In: Photonics Applications in Astronomy,

Communications, Industry, and High-Energy Physics Experiments III, (Romaniuk, R. S.,

ed), volume 5775 of Proceedings of SPIE, pp. 377–384. Bellingham, WA: SPIE.

Bursky, D. (1999). Embedded logic and memory find a home in FPGAs. Electronic Design,

Vol. 47 (No. 14), 43–56.

Cabodi, G., Quer, S., & Camurati, P. (1995). Transforming Boolean relations by symbolic en-

coding. In: Correct Hardware Design and Verification Methods. IFIP WG 10.5 Advanced

Research Working Conference CHARME’95, (Camurati, P. E. & Eveking, H., eds), volume

987 of Lecture Notes in Computer Science, pp. 161–170. Berlin/Heidelberg: Springer.

Ciesielski, M. J. & Yang, S. (1992). PLADE: a two-stage PLA decomposition. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 11 (Issue 8),

943–954.

Curtis, H. A. (1962). A New Approach to the Design of Switching Circuits. Princeton: Van

Nostrand.

Dagless, E. L. (1983a). Logic design with emphasis on ASM method. In: Semi-Custom IC

Design and VLSI, (Hicks, P. J., ed) IEE Digital Electronics and Computing Series 2 pp.

93–107. Herts: Peter Peregrinus Ltd.

-107-

http://doi.ieeecomputersociety.org/10.1109/43.149766

BIBLIOGRAPHY

Dagless, E. L. (1983b). PLA and ROM based design. In: Semi-Custom IC Design and VLSI,

(Hicks, P. J., ed), IEE Digital Electronics and Computing Series 2, pp. 121–135. Herts:

Peter Peregrinus Ltd.

De Micheli, G. (1994). Synthesis and Optimization of Digital Circuits. New York: McGraw-

Hill.

Devadas, S., Wang, A. R., Newton, A. R., & Sangiovanni-Vincentelli, A. L. (1988). Boolean

decomposition of programmable logic arrays. In: Proceedings of the IEEE Custom Inter-

national Circuit Conference CICC’88 pp. 251–255, Rochester, NY.

Devadas, S., Wang, A. R., Newton, A. R., & Sangiovanni-Vincentelli, A. L. (1989). Boolean

decomposition in multilevel logic optimization. IEEE Journal of Solid-State Circuits,

Vol. 24 (Issue 2), 399–408.

Drusinsky, D. & Harel, D. (1989). Using statecharts for hardware description and synthesis.

IEEE Transactions on Computer-Aided Design, Vol. 8 (No. 7), 798–807.

Eles, P., Kuchcinski, K., & Peng, Z. (1998). System Synthesis with VHDL. Norwell: Springer.

Eto, E. (2007). Difference-Based Partial Reconfiguration (v2.0). Application Note, No. 290.

Xilinx, Inc. San Jose.

Figler, K. (2006). Analysis of Formal Methods of Synthesis of One-Level Finite State Ma-

chines. Master’s thesis, University of Zielona Góra, Faculty of Electrical Engineering,

Computer Science and Telecommunications. Supervisor: Prof. Alexander Barkalov, Ph.D.

D.Sc., co-supervisor: Arkadiusz Bukowiec, M.Sc.

Figler, K. (2006). Opracowanie i analiza formalnych metod syntezy jednopoziomowych skończonych au-

tomatów stanów. Praca magisterska, Uniwersytet Zielonogórski, Wydział Elektrotechniki, Informatyki

I Telekomunikacji. Promotor: prof. dr hab. inż. Alexander Barkalov, konsultant: mgr inż. Arkadiusz

Bukowiec.

Gajski, D. (1997). Principles of Digital Design. New Jersy: Prentice Hall.

Gomes, L. & Costa, A. (2003). From use cases to system implementation: Statechart based

co-design. In: Proceedings of 1st ACM & IEEE Conference on Formal Methods and Pro-

gramming Models for Codesign MEMOCODE’03 pp. 24–33, Mont Saint-Michel, France:

IEEE Computer Society Press.

-108-

http://www.xilinx.com/support/documentation/application_notes/xapp290.pdf

BIBLIOGRAPHY

Grushnitsky, R., Mursaev, A., & Ugrjumov, E. (2002). Design of the Systems Using Micro-

circuits of Programmable Logic. Sankt-Petersburg: BHV-Petersburg.

Gruxvicki�, R.,Mursaev, A. i Ugr�mov, E. (2002). Proektirovanie sistem na mikroshe-

mah programmiruemo� logiki. Sankt-Peterburg: BHV-Peterburg.

Halang, W. A., Śnieżek, M., & Jung, S.-K. (1994). A real-time computing architecture for

applications with high safety and predictability requirements. In: 1st IEEE International

Workshop on Real-Time Computing System and Applications RTCSA’94 pp. 153–157,

Seoul, South Korea.

Hopcroft, J. & Ullman, J. (1979). Introduction to Automata Theory, Languages, and Com-

putation. Boston: Addison-Wesley.

Jacobson, N. (1999). Internet reconfigurable logic leveraging PLDs to enhance embedded

system functionality. TechOnLine, Dec. 10.

Jantsch, A. (2003). Modeling Embedded Systems and SoC’s: Concurrency and Time in

Models of Computation. San Francisco: Morgan Kaufmann.

Jenkins, J. (1994). Designing with FPGAs and CPLDs. New Jersy: Prentice Hall.

Kania, D. (2000). Decomposition-based synthesis and its application in PAL-oriented tech-

nology mapping. In: Proceedings of the 26th EUROMICRO Conference EUROMICRO’00

volume Informatics: Inventing the Future pp. 1138–1145, Maastricht, The Netherlands:

IEEE Computer Society.

Kania, D. (2004). The logic synthesis for the PAL-based complex programmable logic de-

vices. Lecture Notes of Silesian University of Technology. Gliwice: Silesian University

of Technology Press.

Kania, D. (2004). Synteza logiczna przeznaczona dla matrycowych struktur programowalnych typu PAL.

Zeszyty Naukowe Politechniki Śla̧skiej. Gliwice: Wydawnictwo Politechniki Śląskiej.

Kania, D. & Grabiec, W. (2007). Logic synthesis dedicated for CPLDs with XOR gates.

Mensurations Automation Control, No. 7, 54–56.

Kania, D. & Grabiec, W. (2007). Synteza logiczna przeznaczona dla struktur CPLD z elementami XOR.

Pomiary Automatyka Kontrola, Nr 7, 54–56.

Kania, D., Kulisz, J., Milik, A., & Czerwiński, R. (2005a). Models of decomposition for

CPLDs. In: Proceedings of 7th National Scientific Conference on Reprogramable Digital

-109-

http://www.techonline.com/
http://csdl.computer.org/comp/proceedings/euromicro/2000/0780/01/07801138abs.htm
http://csdl.computer.org/comp/proceedings/euromicro/2000/0780/01/07801138abs.htm

BIBLIOGRAPHY

Devices RUC’05 pp. 77–83, Szczecin, Poland.

Kania, D., Kulisz, J., Milik, A., & Czerwiński, R. (2005a). Modele dekompozycji przeznaczone dla struk-

tur matrycowych. W: Materiały VIII Krajowej Konferencji Naukowej Reprogramowalne Układy Cyfrowe

RUC’05 ss. 77–83, Szczecin, Polska.

Kania, D., Milik, A., & Kulisz, J. (2005b). Decomposition of multi-output functions for

CPLDs. In: 8th EUROMICRO Conference on Digital System Design DSD’05, (Wolinski,

C., ed) volume Architectures, Methods and Tools pp. 442–449. Los Alamitos, CA: IEEE

Computer Society Press.

Kubátová, H. (2005). Finite state machine implementation in FPGAs. In: Design of Embed-

ded Control Systems, (Adamski, M., Karatkevich, A., & Wȩgrzyn, M., eds), pp. 177–187.

New York: Springer.

Lee, J. M. (1999). Verilog QuickStart: A Practical Guide to Simulation and Synthesis in

Verilog. Norwell, MA: Kluwer Academic Publishers.

Lee, S. S. & Hwang, S. H. (1993). State assignment scheme for two-level logic imple-

mentation based on a simulated annealing algorithm with a fast cost estimation method.

Electronics Letters, Vol. 29 (No. 18), 1625–1626.

Łabiak, G. (2005). The use of hierarchical model of concurrent automaton in digital con-

troller design, volume 6 of Lecture Notes in Control and Computer Science. Zielona Góra:

University of Zielona Góra Press.

Łabiak, G. (2005). Wykorzystanie hierarchicznego modelu współbieżnego automatu w projektowaniu

sterowników cyfrowych, tom 6, Prace Naukowe z Automatyki i Informatyki. Zielona Góra: Oficyna

Wydawnicza Uniwersytetu Zielonogórskiego.

Łabiak, G. (2006). From statecharts to FSM-description – transformation by means of sym-

bolic methods. In: Discrete-Event System Design 2006. A Proceedings volume from the

3rd IFAC Workshop DESDes’06, (Adamski, M., Gomes, L., Wȩgrzyn, M., & Łabiak, G.,

eds) pp. 161–166. Zielona Góra: IFAC by University of Zielona Góra Press.

Łach, J., Sapiecha, E., & Zbierzchowski, B. (2003). Synthesis of sequential circuits for FP-

GAs with embedded memory blocks. Telecommunication Review and Telecommunication

News, No. 2-3, 81–86.

Łach, J., Sapiecha, E., & Zbierzchowski, B. (2003). Synteza układów sekwencyjnych w strukturach FPGA

z wbudowanymi blokami pamięci. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, Nr 2-3,

81–86.

-110-

http://doi.ieeecomputersociety.org/10.1109/DSD.2005.29
http://doi.ieeecomputersociety.org/10.1109/DSD.2005.29
http://link.aip.org/link/?ELL/29/1625/1
http://link.aip.org/link/?ELL/29/1625/1
http://zbc.uz.zgora.pl/dlibra/doccontent?id=500&dirids=1
http://zbc.uz.zgora.pl/dlibra/doccontent?id=500&dirids=1
http://lord.uz.zgora.pl:7777/skep/skep_upload.download_file?wp_jezyk=1&wp_publikacja_id=17975&wp_rodzaj_pub=KONF
http://lord.uz.zgora.pl:7777/skep/skep_upload.download_file?wp_jezyk=1&wp_publikacja_id=17975&wp_rodzaj_pub=KONF

BIBLIOGRAPHY

Łuba, T. (2001). Synthesis of Logic Circuits. Warszawa: Warsaw Information Technology.

Łuba, T. (2001). Synteza układów logicznych. Warszawa: Wyższa Szkoła Informatyki Stosowanej i

Zarza̧dzania.

Łuba, T. (2005). Synthesis of Logic Circuits. Warszawa: Warsaw University of Technology

Press.

Łuba, T. (2005). Synteza układów logicznych. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.

Łuba, T., Rawski, M., & Jachna, Z. (2002). Functional decomposition as a universal method

of logic synthesis for digital circuits. In: Proceedings of the 9th International Confer-

ence Mixed Design of Integrated Circuits and Systems MixDes’02 pp. 285–290, Wrocław,

Poland.

Łuba, T., Rawski, M., Tomaszewicz, P., & Zbierzchowski, B. (2003). Synthesis of Digital

Circuits. Warszawa: Transport and Communication Publishers.

Łuba, T., Rawski, M., Tomaszewicz, P., & Zbierzchowski, B. (2003). Synteza układów cyfrowych.

Warszawa: Wydawnictwa Komunikacji i Ła̧czności.

Mc Cluskey, E. (1986). Logic Design Principles. Englewood Cliffs: Prentice Hall.

Mealy, G. H. (1955). A method for synthesizing sequential circuits. Bell System Technical

Journal, Vol. 34 (No. 5), 1045–1079.

Moore, E. F. (1956). Gedanken-experiments on sequential machines. In: Automata Studies,

(Shannon, C. E. & McCarthy, J., eds) volume 34 of Annals of Mathematical Studies pp.

129–153. Princeton, NJ: Princeton University Press.

Nowicka, M. (1999). Balanced method of technological mapping for FPGA devices. PhD

thesis, Warsaw University of Technology, Faculty of Electronics and Information Tech-

nology. Supervisor: Prof. Tadeusz Łuba, Ph.D. D.Sc.

Nowicka, M. (1999). Zrównoważona metoda odwzorowania technologicznego dla układów FPGA.

Rozprawa doktorska, Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych. Promo-

tor: prof. dr hab. inż. Tadeusz Łuba.

Opara, A. & Kania, D. (2007). Multi-output logic devices synthesis utilizing common logic

blocks. Mensurations Automation Control, No. 7, 39–41.

Opara, A. & Kania, D. (2007). Synteza wielowyjściowych układów logicznych prowadząca do wykorzys-

tania wspólnych bloków logicznych. Pomiary Automatyka Kontrola, Nr 7, 39–41.

-111-

BIBLIOGRAPHY

Papachristou, C. A. (1979). A scheme for implementing microprogram addressing with

programmable logic arrays. Digital Processes, Vol. 5 (No. 3-4), 235–256.

Perkowski, M., Jóźwiak, L., & Zhao, W. (2001). Symbolic two-dimensional minimization

of strongly unspecified finite state machines. Journal of Systems Architecture, Vol. 47,

15–28.

Pruteanu, C. (2004). Kiss to Verilog FSM Converter. http://codrin.freeshell.

org.

Pruteanu, C. (2005). Finite State Machine Generator. http://codrin.freeshell.

org.

Rawski, M., Jóźwiak, L., & Łuba, T. (2001). Functional decomposition with an efficient in-

put support selection for sub-functions based on information relationship measures. Jour-

nal of Systems Architecture, Vol. 47, 137–155.

Rawski, M., Łuba, T., Jachna, Z., & Tomaszewicz, P. (2005). The influence of functional de-

composition on modern digital design process. In: Design of Embedded Control Systems,

(Adamski, M., Karatkevich, A., & Wȩgrzyn, M., eds), pp. 193–206. Boston: Springer.

Rawski, M., Morawiecki, P., & Selvaraj, H. (2006). Decomposition of combinational circuits

described by large truth tables. In: Proceedings of the 8th International Conference on

Systems Engineering ICSE’06, pp. 401–406, Coventry, United Kingdom.

Rawski, M., Selvaraj, H., & Łuba, T. (2005a). An application of functional decomposition

in ROM-based FSM implementation in FPGA devices. Journal of Systems Architecture,

Vol. 51, 424–434.

Rawski, M., Selvaraj, H., Łuba, T., & Szotkowski, P. (2005b). Application of symbolic

functional decomposition concept in FSM implementation targeting FPGA devices. In:

Proceedings of the 6th International Conference on Computational Intelligence and Mul-

timedia Applications ICCIMA’05 pp. 153–158, Las Vegas, NV.

Salcic, Z. (1998). VHDL and FPLDs in Digital Systems Design, Prototyping and Customiza-

tion. Boston: Kluwer Academic Publishers.

Sasao, T. (1999). Switching Theory for Logic Synthesis. Boston: Kluwer Academic Publish-

ers.

-112-

http://codrin.freeshell.org
http://codrin.freeshell.org
http://codrin.freeshell.org
http://codrin.freeshell.org

BIBLIOGRAPHY

Scholl, C. (2001). Functional Decomposition with Application to FPGA Synthesis. Boston:

Kluwer Academic Publishers.

Selvaraj, H., Sapiecha, P., Rawski, M., & Łuba, T. (2006). Functional decomposition -

the value and implication for both neural networks and digital designing. International

Journal of Computational Intelligence and Applications, Vol. 6 (No. 1), 123–138.

Senhadji-Navarro, R., Garcia-Vargas, I., Jimenez-Moreno, G., & Civit-Ballcels, A. (2004).

ROM-based FSM implementation using input multiplexing in FPGA devices. Electronics

Letters, Vol. 40 (No. 20), 1249–1251.

Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H.,

Stephan, P., Brayton, R., & Sangiovanni-Vincentelli, A. (1992). SIS: A System for Se-

quential Circuit Synthesis. Technical Report, No. UCB/ERL M92/41. EECS Department,

University of California. Berkeley.

Skahill, K. (1996). VHDL for Programmable Logic. Redwood City: Addison-Wesley Pub-

lishing.

Smith, M. J. S. (1997). Application-Specific Integrated Circuits. Boston: Addison-Wesley

Publishing.

Solovjev, V. (1999). Refined CPLD macrocell architecture for the effective FSM implemen-

tation. In: 25th EUROMICRO’99 Conference. Informatics: Theory and Practice for the

New Millenium volume 1 pp. 102–109, Milan, Italy: IEEE Computer Society.

Solovjev, V. (2001a). Design of Digital Systems Using the Programmable Logic Integrated

Circuits. Moscow: HotLine-Telecom.

Solov~�v, V. (2001a). Proektirovanie cifrovyh sistem na osnove programmiruemyh

logiqeskih integral~nyh shem. Moskva: Gor�qa� lini� - Telekom.

Solovjev, V. (2001b). Synthesis of sequential circuits on programmable logic devices based

on new models of finite state machines. In: Euromicro Symposium on Digital Systems

Design Euro-DSD’01 pp. 170–177, Warsaw, Poland: IEEE Computer Society.

Szotkowski, P. & Rawski, M. (2007). Symbolic Functional Decomposition Algorithm for

FSM Implementation in FPGA Structures. Mensurations Automation Control, No. 7, 48–

50.

Szotkowski, P. & Rawski, M. (2007). Algorytm funkcjonalnej dekompozycji symbolicznej automatów

skończonych dla celów implementacji w strukturach FPGA. Pomiary Automatyka Kontrola, Nr 7, 48–50.

-113-

http://link.aip.org/link/?ELL/40/1249/1
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html
http://csdl.computer.org/comp/proceedings/euromicro/1999/0321/01/03211102abs.htm
http://csdl.computer.org/comp/proceedings/euromicro/1999/0321/01/03211102abs.htm
http://doi.ieeecomputersociety.org/10.1109/DSD.2001.952274
http://doi.ieeecomputersociety.org/10.1109/DSD.2001.952274

BIBLIOGRAPHY

Thomas, D. & Moorby, P. (2002). The Verilog Hardware Description Language. Norwell,

MA: Kluwer Academic Publishers, 5th edition.

Tkacz, J. (2006). Gentzen system calculus implementation for symbolic minimalization of

complicated logical expressions. In: Discrete-Event System Design 2006. A Proceedings

volume from the 3rd IFAC Workshop DESDes’06, (Adamski, M., Gomes, L., Wȩgrzyn,

M., & Łabiak, G., eds) pp. 53–56. Zielona Góra: IFAC by University of Zielona Góra

Press.

Wȩgrzyn, A. (2003). Symbolic Analysis of Binary Control Circuits with Use of Selected

Methods of Petri Nets Analysis, volume 3 of Lecture Notes in Control and Computer Sci-

ence. Zielona Góra: University of Zielona Góra Press.

Wȩgrzyn, A. (2003). Symboliczna analiza układów sterowania binarnego z wykorzystaniem wybranych

metod analizy sieci Petriego, tom 3, Prace Naukowe z Automatyki i Informatyki. Zielona Góra: Oficyna

Wydawnicza Uniwersytetu Zielonogórskiego.

Wȩgrzyn, A. (2006). On decomposition of Petri net by means of coloring. In: Proceedings

of IEEE East-West Design & Test Workshop EWDTW’06 pp. 407–413, Sochi, Russia.

Wiśniewska, M., Wiśniewski, R., & Adamski, M. (2005). Usage of hypergraphs for opti-

mization of microoperation size in microprogrammable devices. In: Proceedings of 7th

National Scientific Conference on Reprogramable Digital Devices RUC’05 pp. 33–40,

Szczecin, Poland.

Wiśniewska, M., Wiśniewski, R., & Adamski, M. (2005). Wykorzystanie hipergrafów do optymaliza-

cji rozmiaru mikrooperacji w układach mikroprogramowanych. In: Materiały VIII Krajowej Konferencji

Naukowej Reprogramowalne Układy Cyfrowe RUC’05 pp. 33–40, Szczecin, Polska.

Wiśniewski, R. (2005). Partial reconfiguration of compositional microprogram control units

implemented on FPGA In: Proceedings of the VII International Workshop for Candidates

for a Doctor’s Degree OWD’05 volume 21 of Conference Archives PTETiS pp. 239–242,

Wisła, Poland.

Wiśniewski, R. (2005). Częściowa rekonfiguracja mikroprogramowanych układów sterujących implemen-

towanych z wykorzystaniem struktur FPGA. W: Materiały VII Międzynarodowych Warsztatów Doktoranc-

kich OWD’05 vol. 21, Archiwum Konferencji PTETiS ss. 239–242, Wisła, Polska.

Xilinx (2002). Virtex 2.5V Field Programmable Gate Arrays. San Jose.

Xilinx (2004a). Block RAM (BRAM) Block (v1.00a). San Jose.

-114-

http://zbc.uz.zgora.pl/dlibra/doccontent?id=2308&dirids=1
http://zbc.uz.zgora.pl/dlibra/doccontent?id=2308&dirids=1
http://www.xilinx.com/support/documentation/data_sheets/ds003.pdf
http://www.xilinx.com/support/documentation/ip_documentation/bram_block.pdf

BIBLIOGRAPHY

Xilinx (2004b). Spartan-II 2.5V FPGA Family: Complete Data Sheet. San Jose.

Xilinx (2005). XST User Guide (8.1i). San Jose.

Xilinx (2006a). CoolRunner-II CPLD Family. San Jose.

Xilinx (2006b). XC9500XL High-Performance CPLD Family Data Sheet. San Jose.

Xilinx (2007). Virtex-5 Family Overview LX, LXT, and SXT Platforms. San Jose.

Yang, S. (1991). Logic Synthesis and Optimization Benchmarks User Guide. Version 3.0.

Technical Report, No. 1991-IWLS-UG-Saeyang. Microelectronics Center of North Car-

olina. North Carolina.

Zieliński, C. (2003). Basics of Designing of Digital Circuits. Warszawa: Polish Scientific

Publishers PWN.

Zieliński, C. (2003). Podstawy projektowania układów cyfrowych. Warszawa: Wydawnictwo Naukowe

PWN.

Zwoliński, M. (2003). Digital System Design with VHDL. New Jersy: Prentice Hall, 2nd

edition.

-115-

http://www.xilinx.com/support/documentation/data_sheets/ds001.pdf
http://toolbox.xilinx.com/docsan/xilinx8/books/docs/xst/xst.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds090.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds054.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://jupiter3.csc.ncsu.edu/~brglez/Cite-BibFiles-Reprints-home/Cite-BibFiles-Reprints-Central/BibValidateCentralDB/Cite-ForWebPosting/1991-IWLSUG-Saeyang/1991-IWLSUG-Saeyang_guide.pdf

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Thesis of the Work
	Goals of the Work
	The Structure of the Work

	Architecture and Applications of Field-Programmable Devices
	Programmable Logic Devices
	Field Programmable Gate Arrays
	Designing with FPDs
	The design flow for FPDs
	Functional decomposition for FPDs

	Finite State Machines
	Methods of Specification of FSMs
	Realization of FSMs
	Decomposition of Circuit of FSM
	Functional Decomposition for FPGAs
	Realization of FSMs with ROM Memories
	Architectural Decomposition of FSMs

	Multi-Level Structures of Mealy FSMs
	Multiple Encoding of Microinstructions
	Multiple Encoding of Internal States
	Multiple Encoding of Internal States with Current States as a Partitioning Set
	Multiple Encoding of Internal States with Is as a Partitioning Set

	Multiple Encoding of Microinstructions and Internal States
	Shared Multiple Encoding of Microinstructions and Internal States
	Shared Multiple Encoding of Is and Internal States with Common Decoder

	Implementation into FPGAs
	Automata Synthesis System
	Behavioral Verification
	Logic Synthesis
	Implementation

	Summary
	The confirmation of the thesis
	Improvements and other applications

	CD-ROM
	Bibliography

