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The article focuses on the problem of building dense 3D occupancy maps using commercial RGB-D sensors and the SLAM
approach. In particular, it addresses the problem of 3D map representations, which must be able both to store millions of
points and to offer efficient update mechanisms. The proposed solution consists of two such key elements, visual odometry
and surfel-based mapping, but it contains substantial improvements: storing the surfel maps in octree form and utilizing
a frustum culling-based method to accelerate the map update step. The performed experiments verify the usefulness and
efficiency of the developed system.
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1. Introduction

Industrial robots operate in structured, fully deterministic
environments, thus they usually do not need an explicit
representation of the environment. In contrast, the lack
of up-to-date maps of the surroundings of service and
field robots might cause serious effects, including the
damaging of both robots and objects, or even injuring
people. Besides, the diversity and complexity of tasks
performed by such robots requires several types of maps
and different abstraction levels of representation. For
example, simple geometric (occupancy) maps enable
robots to avoid obstacles and collisions, whereas
semantic maps allow reasoning, planning and navigation
between different places (Martínez Mozos et al.,
2007). A semantic map combines a geometric map of
the environment with objects recognized in the image
(Kasprzak, 2010; Kasprzak et al., 2015).

Multiple sensor readings (images, point clouds) are
required to generate a geometric map of the environment.
Theoretically, the coordinate system transformation
between a pair of readings can be obtained in advance,
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i.e., from the wheel odometry of mobile robots or from the
direct kinematics of manipulators. However, inaccurate
robot motion models (wheel drifts, friction, imprecise
kinematic parameters, etc.) lead to faulty odometry
readings, resulting in map inconsistencies. To overcome
these effects, algorithms were developed to estimate the
robot’s trajectory directly from sensor readings. They are
part of a solution named “simultaneous localization and
mapping” (SLAM) (Thrun and Leonard, 2008). There are
many flavours of SLAM systems, using diverse methods
of estimation of the robot and environment state, as
well as applying all kinds and combination of sensors,
e.g., monocular vision in an probabilistic, EKF-based
framework (Skrzypczyński, 2009). In particular, a
specialized term “visual SLAM” (V-SLAM in short) was
coined to distinguish the SLAM systems relying mainly
on cameras, which relates to the fact that the estimation of
subsequent poses of the moving camera is called “visual
odometry” (VO) (Nistér et al., 2004).

The recent advent of cheap RGB-D sensors
accelerated the V-SLAM research. An RGB-D
sensor provides two concurrent, synchronized image
streams—colour images and depth maps, which represent
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Fig. 1. Components of an example RGB-D-SLAM system.

the colour of observed scene points and their relative
distance to the camera—that subsequently can be
combined into point clouds. Those clouds contain
typically hundreds of thousands of points, acquired with
with a high-framerate, while the mapped areas are usually
complex. Thus, several efficiency and quality issues in
V-SLAM must be addressed:

• precision and computational efficiency of point cloud
registration,

• global coherence of maps,

• efficient and precise representation of a huge number
of points.

In this paper, the focus is on the third issue. There
is a proposition developed for an efficient representation
of a precise three-dimensional map of the environment.
An “efficient representation” means it is compact (there
are few spurious points) and can be rapidly accessed and
updated.

A 3D occupancy map can be represented in several
ways:

1. “voxel” representation—the 3D space is divided into
small “cubes” (Marder-Eppstein et al., 2010),

2. “surfel” representation—the space is modelled by
an arrangement of surface elements (Krainin et al.,
2010),

3. MLS (multi-level surface)—contains a list of
obstacles (occupied voxels) associated with each
element of a 2D grid (Triebel et al., 2006),

4. octal trees (octrees)—constitute an effective
implementation of the voxel map using the octal tree
structure (Wurm et al., 2010),

5. combined voxel-surfel representation (e.g., the
multi-resolution surfel map).

The core of the proposed system is a map of
small surface patches of uniform size (called surfels),
integrating readings of an RGB-D sensor. The utilization
of a surfel map has several advantages (Weise et al., 2009;
Henry et al., 2014). Firstly, it is a compact representation
of a sequence of point clouds being merged into surfels.
Secondly, the surfel update procedure takes the sensor’s

current pose into account, allowing both visibility checks
and reduction of depth quantization noise—the most
prominent type of noise in cheap RGB-D sensors. Finally,
every surfel can be processed independently, simplifying
and speeding up the map update procedure in comparison
with a mesh-like representation.

The existing solutions for surfel map creation are not
speed-optimized. A single update of the map might take
even several seconds (Henry et al., 2012). In this paper,
two substantial efficiency improvements are proposed:

1. utilization of the “frustum culling” method, based
on an octree representation, to accelerate surfel
updating;

2. replacement of a dense ICP algorithm by a much
more efficient sparse-ICP method, as proposed by
Dryanovski et al. (2013).

The article is organized as follows. In Section 2
the recent developments in the field of RGB-D-based
mapping are presented. A structure of a typical V-SLAM
system is described (Section 2.1), followed by a survey
of its key steps: the feature extraction (Section 2.2),
feature matching (Section 2.3) and the estimation of
camera motion (Section 2.4) in visual odometry. Then,
solutions to dense point clouds alignment (Section 2.5)
and global map coherence (Section 2.6) are explained. In
Section 3 the most popular 3D mapping systems based
on RGD-D V-SLAM are reviewed. Section 4 describes
the proposed solution, starting from its important data
structures, followed by a short overview of the system and
operation details. In Section 5, the ROS-based system
implementation is shortly outlined. Section 6 presents
experiments performed for the validation of developed
solution. Conclusions are given in Section 7. Appendix
contains a theoretical primer on “frustum culling”.

2. RGB-D-based V-SLAM

2.1. Structure of the RGB-D-SLAM system. A
state diagram of an example RGB-D-SLAM system
is presented in Fig. 1. First, the camera motion
(the transition between consecutive poses) is estimated.
Typically, it is based on matching features extracted from
both current and previous images, finding parts of both
images corresponding to the same scene elements. There
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are algorithms based only on RGB image features (either
for a single camera (Nistér et al., 2004) or a stereo-camera
case (Konolige et al., 2011)), but the additional depth
information makes the matching process much easier.
As a result, a sparse 3D cloud of features is generated,
allowing robust estimation of the transformation between
camera poses.

Usually, a subset of detected features is sufficient to
estimate the transformation. Thus, when taking numerous
subsets, different estimates of the transformation are
found. Typically this step is based on the RANSAC
(random sample consensus) algorithm (Fischler and
Bolles, 1981), which selects the transformation that is the
most consistent with the majority of feature pairs.

The next step, transformation refinement is
typically based on the ICP (iterative closest point)
algorithm (Zhang, 1994). This is an iteration of
least-square-error (LSE) solutions to the problem of
dense point cloud correspondence.

The four steps above (feature extraction and
matching, transform estimation and refinement) are
repeated for every next RGB-D image. However,
the optimal alignments between every two consecutive
images can eventually lead to a map that is globally
inconsistent. This is especially visible in the case of
closed loops in the sensor’s trajectory. In order to handle
this issue, a loop closure procedure is performed. It refines
both the 3D coordinates describing the scene geometry
and the motion of the camera, using several or all views in
the sequence.

In the following subsections, algorithms used in the
above mentioned steps are presented.

2.2. Feature extraction. Two major categories of
image features can be distinguished: global and local. The
former represent certain characteristics calculated on the
basis of a whole image. In the case of objects, global
features can be extracted from the entire point cloud
constituting the object or all image segments making
it up (however, one must a priori determine which
elements belong to a given object). In contrast, local
features are associated with locations of the so-called
keypoints—pixels in the image (or points in a 3D
space) considered to be characteristic, hence important.
Additionally, local features express the characteristics
of the neighbourhood of this point in the form of a
descriptor. Global features allow quick determination of
the similarity of entire images or objects, while the local
ones are useful for the comparison of individual parts.
With respect to the alignment of two point clouds, only
local features are of interest.

Furthermore, in the case of RGB-D images, another
orthogonal division of features can be proposed: features
extracted from the appearance (i.e., colour) and features
extracted from the 3D shape (a depth map or a point

cloud). An example of a global feature calculated from the
RGB image is a color histogram of all the object points. A
good example of a global feature extracted from the point
cloud is the VFH (viewpoint feature histogram) (Rusu
et al., 2010), which creates a histogram of angles between
surface normal vectors for pairs of points constituting the
object cloud.

In the case of local features, one should consider
keypoint detectors and feature descriptors. Recently
proposed detectors locating key points in RGB images
include the FAST (features from accelerated segment
test) (Rosten and Drummond, 2006) and the AGAST
(adaptive and generic accelerated segment test) (Mair
et al., 2010)), whereas sample novel descriptors
are BRIEFs (binary robust independent elementary
features) (Calonder et al., 2010) and the FREAK (fast
retina keypoint) (Alahi et al., 2012).

There are also several features having their
own detectors and descriptors, such as SIFT (Lowe,
1999) or BRISKs (binary robust invariant scalable
keypoints) (Leutenegger et al., 2011). The latter possess
the so-called “binary descriptor”—a vector of boolean
values instead of real or integer numbers. It is worth
noting that in recent years binary descriptors have become
more popular, especially in real-time applications due to
their very fast matching ability (Miksik and Mikolajczyk,
2012; Figat et al., 2014; Nowicki and Skrzypczyński,
2014).

Several approaches explore the depth information
only, aiming at detecting keypoints (i.e., corners) by
adapting well-known 2D methods, like the “Harris 3D”’
detector (Sipiran and Bustos, 2011). Examples of local
features extracted from point clouds include the SHOT
(signature of histograms of orientation) (Tombari et al.,
2010) and SC (3-D shape context) features (Frome et al.,
2004). The NARF (normal aligned radial feature) (Steder
et al., 2011) is both a keypoint detector and a descriptor,
designed to work with depth maps.

If the information to be processed consists of an
RGB image along with the aligned depth information,
classic keypoint detectors can be used to extract points
of interest based on color information and then employ
their coordinates to extract descriptors from the depth
data. Such an example is the “5D Harris” detector, which
detects corners based on the gradient image (computed
from the intensity image) and an image containing
normal vectors to the surface (determined on the basis
of a depth map). An example of an RGB-D-based
descriptor is “color-SHOT” (CSHOT) (Tombari et al.,
2011), an extension of the SHOT feature. The CSHOT
descriptor consists of a histogram of orientations of
points constituting the neighborhood of a given keypoint
(identically as in the original SHOT approach), extended
by the color histogram computed on the basis of the colour
of these points.
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2.3. Finding correspondences. The problem of
finding the correspondences in two sets of points is
typically solved by a “k-nearest neighbors” (k-NNs)
algorithm. However, because feature descriptors are
typically vectors of large, constant sizes (e.g., the SIFT
descriptor is a single 128-dimensional vector), this is a
high-dimensional problem. The most popular solution
is the FLANN (Fast Library for Approximate Nearest
Neighbors) (Muja and Lowe, 2009), an approximate
nearest neighbour search algorithm. It utilizes multiple
randomized kd-trees or a combination of hierarchical
k-means trees with a priority search order (depending
on input data). The same authors also proposed
an improvement of the FLANN for fast approximate
matching of binary features using parallel search of
randomized hierarchical trees (Muja and Lowe, 2012).

Fig. 2. Example of VO-based alignment of the “five people”
cloud.

Figure 2 presents VO-based alignment of a sample
cloud from the Point Cloud Library (PCL) (Rusu
and Cousins, 2011), with marked features and feature
correspondences.

2.4. Transformation estimation. A single point in
the Cartesian space has only a “position” attribute; thus,
for a given pair of corresponding points a translation
vector can be computed. Hence, in contrary to the
estimation of the epipolar geometry from 2D point
correspondences, the estimation of the full transformation
(i.e., translation along with rotation) between two point
clouds requires three 3D point correspondences (assuming
non-collinear points). To find which of the many possible
correspondences is the best, a RANSAC-based (Fischler
and Bolles, 1981) algorithm is typically used. In every
iteration, the transformation is computed on the basis of
three randomly selected point correspondences. Next, the
remaining correspondences are validated as to whether
they fit into this transformation, thus forming two sets:

inliers (the fitting ones) and outliers (the correspondences
that do not fit). The procedure is repeated for a given
number of iterations or until the sum of estimation errors
falls below a given threshold.

2.5. Transformation refinement. The initial
transformation, computed on the basis of sparse
clouds of features, is typically refined with the use of the
“iterative closest point” (ICP) algorithm (Zhang, 1994).
It improves the initial transformation while evaluating
the alignment of dense point clouds created on the basis
of RGB-D images. The principle of ICP is to refine
the transformation iteratively by minimizing the mean
square error between the new cloud transformed into the
original reference frame and the original cloud. There are
many different flavours of ICP (Pomerleau et al., 2013),
like utilizing additional information for both the nearest
neighbour candidate selection of a given point (e.g.,
utilizing normal vectors (Censi, 2008)) or between point
distance computation (e.g., metrics using both position
and colour information (Men et al., 2011; Łępicka
et al., 2016)).

2.6. Loop closure. When only two consecutive clouds
are matched against each other, the matching errors tend to
accumulate over time, giving significant discrepancies at
the end of given sequence. This is especially visible when
returning to the point of origin (closing a loop). Several
approaches have been proposed to handle this so-called
“drift” problem. In the following, three most popular
methods are described.

Global path optimization using graph approaches.
Vertices in a graph represent sensor positions and
are associated with the collected point clouds.
Edges represent constraints and are created when
correspondences between particular clouds are obtained.
To improve efficiency, only some selected point clouds
are memorized, or only keypoints are stored, instead of
full clouds. The graph is then optimized to find globally
the best set of transformations between memorized point
clouds. For this purpose, a global graph optimization
method is applied, e.g., TORO optimization (Henry
et al., 2012) or g2o optimization (Kummerle et al., 2011).
The set of sensor positions is optimized by introducing
artificial error measures to compare actual relations
between sensor poses (as they are described by the
parameter vector) and recorded pose differences acting as
constraints.

Bundle adjustment. In the case of “bundle adjustment”
methods, the optimization criterion is the reprojection
error as used in Section 2.4. The basic idea is to
perform the transformation estimation step with the
correspondences extended to several consecutive frames
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(images). If k is the average number of point
correspondences between two frames and n is the number
of frames used in bundle adjustment, the total number
of point correspondences filling the optimization process
is around n(n−1)

2 k. Thus, the number of constraints
grows quadratically with that of frames, while the number
of parameters grows linearly only. This leads to a
robust optimization task and an expected improvement
of the camera pose path. One of the most successful
algorithms is the “sparse bundle adjustment” (Konolige,
2010). The bundle adjustment procedure can be part of
the transformation estimation step, or it can be a separate
post-processing step.

Matching against the full map. An alternative solution
for maintaining map consistency is to match the current
frame features with the full map constructed so far, instead
of matching them with features of one or several most
recent frames (Dryanovski et al., 2013). Efficiency is
ensured by storing in the map only selected keypoints
from each frame. However, this approach deteriorates
for loops of arbitrary length, and therefore it is usually
accompanied by a global graph optimization step.

3. RGB-D-based mapping systems

Recently, several systems have been proposed for
V-SLAM and 3D occupancy mapping using RGB-D
sensors. The most successful ones include

• RGB-D mapping (Henry et al., 2012) (Peter Henry,
University of Washington, Seattle),

• KinectFusion (Izadi et al., 2011) (Microsoft
Research, UK) and Kintinuous (MIT) (Whelan
et al., 2013),

• RGB-D SLAM (Endres et al., 2012) (University
Freiburg, TU Munchen),

• fast visual odometry and mapping from RGB-D data
(Dryanovski et al., 2013) (The City University of
New York).

In the case of the latter three, there are implementations
available in the ROS (Quigley et al., 2009) or PCL (Rusu
and Cousins, 2011). Short descriptions of the listed
solutions follow below.

3.1. RGB-D mapping. A characteristic feature of
the RGB-D mapping system presented by Henry et al.
(2012) is the surfel representation of the occupancy map.
The initialization of a two point cloud correspondence is
based on SIFT descriptors of key image points. After
the initial alignment, the solution is fine-tuned using
the ICP algorithm, which optimizes a double criterion
encompassing the point-to-plane distance for the dense

cloud and the distance of matched SIFT points (using
elastic weights for both the components).

During map creation, a graph of key frames is
prepared containing transformations between frames and
probabilistic constraints. Graph optimization (loop
closure) is performed with the TORO method (which
is actually a maximum likelihood estimator). It is
worth mentioning that sparse bundle adjustment is another
option evaluated in this work. System performance is
described to be satisfactory; however, it is far from
real-time: cloud alignment takes about 1 s, whereas the
surfel update step takes 3 s per frame.

3.2. KinectFusion. The KinectFusion method is
optimized for utilization of GPU and real-time processing.
It uses a simplified point-to-plane version of the
ICP algorithm, which results from GPU processing
restrictions. This boosts the performance, but clouds must
be sampled frequently enough.

The map is represented as a set of voxels. However,
the voxels are interpreted in terms of the truncated
signed distance function (TSDF) and contain the truncated
distance from the closest surface. The voxel map is stored
in GPU; thus the map size is limited by the GPU memory.
This limitation was overcome in the Kintinuous method
(Whelan et al., 2013), where the map is transferred to
and from external memory when necessary. In the latter
approach, ICP is supported also by the visual odometry
system FOVIS.

The reduction of noise and measurement errors is
performed by averaging TSDF values. The map is
represented as a set of voxels; however, for visualization,
ray-casting is used to extract surfaces (by detecting
zero-crossing of the TSDF). The method works in real
time (thanks to GPU).

The results of some of our experimental mapping
with the KinectFusion algorithm are given in Fig. 3.

3.3. RGB-D SLAM. The RGB-D SLAM system is
organized in a fairly uncomplicated way. It uses only
matchings between keypoint descriptors SIFT, SURF,
ORB (and their GPU versions) in order to compute
transformation between two frames. Application of
keypoints cannot provide very accurate results, thus loop
closure algorithms are used extensively to achieve a
globally optimal solution. New frames are compared with
a group of previous frames (some of them are selected
deterministically and some randomly). The frames and
relations between them constitute vertices and edges of
the graph. The graph is then optimized using the g2o
framework. The method was implemented in the ROS
framework (Quigley et al., 2009) and cooperates with
the ROS OctoMap (Hornung et al., 2013) package for
creation of the occupancy map. A sample map, which
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Fig. 3. 3D scene of “a desk in a room” registered from multiple
viewpoints using the KinectFusion algorithm.

Fig. 4. On-line updating of the depth map for the “a desk in a
room” scene using the RGB-D SLAM method.

is the result of our mapping experiments with RGB-D
SLAM, is presented in Figs. 4 and 5.

3.4. FVOM: Fast visual odometry and mapping.
A characteristic feature of the approach proposed by
Dryanovski et al. (2013) is that the ICP algorithm does not
work on two most recent points clouds, but instead aligns
the newest point cloud to the complete model of the scene
constructed from point clouds collected so far. In order to
do it efficiently, only selected keypoints from each frame
are taken into account and incorporated into the model
(the full clouds can be stored in external memory).

For each frame, Shi–Tomasi keypoints (Shi and
Tomasi, 1994) are extracted from the RGB image
(also other keypoints are supported), but the original
descriptor is replaced with a new one, containing the

Fig. 5. Depth map exported to OctoMap for the “a desk in a
room” scene using the RGB-D SLAM method.

mean Cartesian position of the keypoint along with the
position variance, computed on the basis of the proposed
model of sensor measurement uncertainties (depending on
distance measurements). The resulting sparse cloud is
aligned against the current model of the scene using the
ICP. After alignment, the new cloud is incorporated into
the model. The assimilation process takes into account
point uncertainties and uses Kalman filter update rules
to propagate uncertainties from measurements into the
model. This probabilistic framework is to some extent
used also for computation of distances between features
in the ICP algorithm.

The alignment of the new cloud against the whole
model decreases the extent of alignment error propagation
(the drift). However, in new implementations (under
the ROS), the basic algorithm is supplemented also with
g2o global optimization for off-line processing. On-line
processing is very fast. The average processing time of a
single frame is about 16.1 ms.

Mapping results that we obtained using the FVOM
method are presented in Figs. 6 and 7. Figure 6 presents
keypoints captured during the on-line processing, whereas
Fig. 7 presents the final integrated cloud optimized with
the g2o algorithm.

4. Proposed 3D mapping system

In this section the architecture and steps of the proposed
3D mapping system are presented. It creates a 3D surfel
map and makes updates of it using the incoming RGB-D
sensor frames. The main advantage of such a surfel map
is that it provides significant data compression with only
a very small data loss. What is even more important, the
quantization noise of the sensor is also kept under control,
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Fig. 6. Keypoints generated for the “a desk in a room” scene
during on-line registration using the fast visual odometry
algorithm.

since the surfel-scan averaging procedure is performed
mainly along the depth axis.

4.1. System architecture. The data-flow diagram of
our system is given in Fig. 8. The data obtained from
the RGB-D sensor are first processed by the Visual odom-
etry module in order to obtain a sequence of sensor
poses. The next module, the Keyframe generator, selects
keyframes from the input sequence of frames. The Loop-
closure module takes as inputs the generated keyframes
and estimated poses, and performs global sensor path
optimization.

The generated keyframes and refined sensor poses

Fig. 7. G2o-optimized depth map for the “a desk in a room”
scene using the fast visual odometry algorithm.

are input data for the Surfel update and Surfel addition
modules, which modify the Surfel map data container.
The Surfel update module modifies existing scene surfels
based on sensor readings, while the Surfel addition
module adds new surfels in unoccupied locations.

The Frustum culling module works as an
intermediary between the Surfel map container and
the Surfel update module and efficiently filters surfels that
cannot be currently observed by the sensor, thus reducing
the workload of the Surfel update module.

The above mentioned system modules are described
further on in this section.

4.2. Novelty of the approach. The proposed approach
to surfel mapping follows to some extent solutions
described by Krainin et al. (2010) and Henry et al. (2012);
however, it contains some novel elements that provide
an efficiency improvement. The first improvement is the
acceleration of the surfel map update procedure thanks to
“octree-based frustum culling”.

Octree-based frustum culling applied for map updat-
ing. As the utilization of frustum culling in registration
is not new, it is necessary to point out the novelty of
the proposed approach. Luck et al. (2000) utilize a
frustum-based segmentation technique in order to outline
the portions of the scene visible from the range sensor in
the currently estimated position, which are next registered
with the newly added point cloud with the use of the
ICP. Hence, in this case, the frustum (modelled here
simply as a set of triangles extending from the laser
scanner) is used to accelerate the ICP. An extension
of this approach is proposed by May et al. (2009),
who embed frustum culling in the ICP, by employing
the pose estimate of the previous iteration step. As a
result, the scene points outside the model frustum are
filtered out by testing against clipping planes before the
nearest neighbour search, which, analogically, fastens the
computations. Hence both of the mentioned approaches
utilize frustum culling for the estimation (or refinement)
of the current sensor pose.

On the contrary, in the proposed system, frustum
culling is employed in a different step of the registration
process, i.e., in scene model update. This is related to the
fact that the update of surfel map requires transforming
(even) millions of surfels into camera coordinate frame
and subsequently projecting them onto image plane,
which is much slower than the merging of two point
clouds. The utilization of octree-based frustum culling for
rapid outlining of portions of a map to be updated fastened
this step and enabled the system to work in near real-time.

Sparse ICP in visual odometry. The second novelty
concerns the utilization of a visual odometry method
based on a sparse ICP algorithm (Dryanovski et al., 2013)
that is more efficient than the one proposed in another
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Fig. 8. Data flow in the proposed system.

surfel-based approach (Henry et al., 2012). In addition to
the sole sparsity, the new scan is matched against multiple
previous ones, eliminating the need for a loop closure of
small areas. The implementation of this method is able to
work at the rate of even 60 fps.

4.3. Visual odometry. The Visual odometry module
is responsible for computation of the pose increment
of the Kinect sensor between consecutive frames. The
approach by Dryanovski et al. (2013) is followed and the
algorithm proposed by Shi and Tomasi (1994) is used for
detection of keypoints in the image, whereas the mean
and the covariance matrix of the Cartesian positions of
each keypoint constitute the feature descriptor. The mean
and covariances are computed by applying the Gaussian
mixture model in the keypoint Cartesian position. The
3D uncertainty used in those computations is derived
from the depth uncertainty model of the camera with
additional assumptions that not only z, but also x and
y coordinates are prone to errors and that there are
dependencies between those measurements.

The resulting sparse cloud is right after the passed to
the ICP, with the assumption that the initial transformation
is equal to the transformation computed for the previous
frame. Hence, although it operates on features, there
is in fact no feature matching step. Instead, the new
sparse cloud is aligned with the one containing the whole
model of the scene (instead of the cloud extracted from
the last frame), with additional mechanism for forgetting
the oldest points. As result, the algorithm is capable
of creating quite coherent maps even without the bundle
adjustment procedure.

4.4. Keyframe generation. The inputs to the
Keyframe generation module are the transformation
information from the Visual odometry module and the

RGB-D image. Raw RGB-D frames coming from the
sensor usually contain redundant data captured from
similar sensor positions, which do not deliver much new
information. Hence the main goal of the module is
to select the most important RGB-D frames in order
to reduce the volume of data processed by subsequent
modules. This is achieved by selecting only the frames
obtained from sensor positions significantly different from
the corresponding previous sensor positions.

The algorithm defines two thresholds: talpha for an
angle between two sensor poses and tdist for distances
between two sensor poses. When the incoming sensor
pose differ by no more than talpha regarding the orientation
and tdist regarding the the position from the sensor pose
associated with the last keyframe, no new keyframe is
created. Otherwise, a new keyframe is constructed and
submitted to further processing.

4.5. Loop closure. The loop closing procedure is
performed off-line and consists of two steps. In the
first one it creates a graph, with vertices corresponding
to the selected keyframes and edges corresponding to
transformations between the overlapping keyframes. In
the second step, the sensor poses are globally optimized
using the g2o framework (Kummerle et al., 2011).

In order to identify overlapping keyframes, the
procedure extracts SURF features for every pair of
keyframes and finds the best matching between their
features. Next, the transformation between each two
keyframes is established using the RANSAC algorithm.
A pair of keyframes is identified as overlapping, when
enough inlier correspondences vote for the specific
transformation. The transformation is then associated
with the newly created edge in the graph.

The g2o algorithm uses the created graph as a
source of constraints in the optimization problem.
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Fig. 9. Illustration of a surfel with its attributes.

Fig. 10. Octree example.

The optimized parameters are sensor poses associated
with the keyframes. For each value of the parameter
vector between-keyframe pose, transformations may by
computed. These transformations are subsequently
compared against the constraint transformations
computed from SURF feature matchings. The error
function thus obtained forms an optimization criterion for
the g2o procedure. As an outcome, a vector of optimized
sensor poses for keyframes is given.

4.6. Surfel map. The surfel map is composed
of elements called surfels. The name surfel is an
abbreviation for surface element and has its origin in
computer graphics (Pfister et al., 2000). A surfel
represents a surface patch (usually circular) in a 3D space,
characterised by its position, radius and a normal vector
describing its orientation (Fig. 9). Additionally, it may
contain other useful attributes, e.g., color, curvature or
a measure of confidence. The measure of confidence
may be defined as the number of views where the surfel
was observed, but also (in a more complex solution) as a
histogram of viewing directions. Surfels became useful as
building blocks of 3D maps, as proposed by Weise et al.
(2009) and followed by others, e.g., Krainin et al. (2010)
or Henry et al. (2012), mainly due to point compression
and noise reduction capabilities of surfel-based mapping

algorithms.
In the proposed approach, every i-th surfel si

contains the following attributes: position in the Cartesian
space pi = [Xi, Yi, Zi]

T , radius ri, orientation ni, color
ci and confidence vi, being equal to the number of views
in which the surfel was observed.

4.7. Octree storage. The surfel map is stored in an
octree, which is a tree data structure used for storing data
in three dimensions. Each octree node represents a cube
in a 3D space. The cube is divided into 8 octants (by
bisecting the space along each of the 3 dimensions), and
each of the node children represents one of the octants.
Thus, each of the nodes in the tree has an associated
bounding box. When the surfel is added to the tree,
it either occupies one of the existing leaf nodes, or a
new one is created to accommodate the new surfel. An
image presenting division of a 3D space by an octree
is presented in Fig. 10. After addition of all surfels to
the tree, the structure of occupied voxels resembles the
general structure of the underlying surfel cloud. The
octree is especially useful for performing volume queries
with a complexity independent of the existing point
configuration. For instance, it enables fast rejection of
large subsets of surfels from further deliberations as lying
outside of the area of interest.

4.8. Frustum culling. The most computationally
expensive operation in the surfel map creation is the surfel
update step. During this step, the surfels in the scene need
to be reprojected onto the sensor image plane, so their
coordinates might be compared with the new scan. In the
work of Henry et al. (2012), all surfels were transformed
into the current camera coordinate frame and projected
onto the image plane. This approach is not very efficient,
since the number of surfels that need to be transformed
and projected may reach several millions. As a result,
Henry et al. (2012) report that the surfel processing step

Fig. 11. Octree frustum culling example.
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takes on average 3 seconds per frame.
In the proposed approach, frustum culling is applied

immediately to the surfels to efficiently prune surfels
outside the sensor cone of view, called the frustum. The
adopted approach is similar to the one used in computer
graphics, e.g., in the Point Cloud Library (Rusu and
Cousins, 2011) visualization module, with the exception
that we develop the real camera model instead of a
simplified artificial one. The frustum culling algorithm
can be divided into two major steps: the computation
of clipping planes equations and using clipping planes to
filter out 3D data. For brevity, the theoretical details of
the computation of clipping planes for the Kinect camera
at a specific position in world coordinates are skipped here
and included in Appendix.

In the implementation of the second step, an octree
is utilized for efficient organization of the surfel map
in a 3D space. When applying a hierarchical search to
the octree, one can easily prune certain segments of the
space at coarse resolution, thus saving computation time.
More precisely, in the case when the whole octree node is
outside or inside the frustum, the same applies to all of its
children, so they must not be further verified. The idea of
combining frustum culling with an octree representation
to select the subset of surfels that must be reprojected is
presented in Fig. 11.

4.8.1. Frustum culling for a voxel. With a 3D scene
organized in voxels, we must be able to decide whether a
voxel lies within the frustum or not. The simplest way is
to check each vertex of the voxel against frustum clipping
planes. However, this can be done more efficiently by
approximating the voxel with the smallest circumscribing
sphere. Then, we say that the voxel lies within the frustum
if the corresponding sphere lies within it. This is achieved
by a simple sphere test, defined as follows.

Let us describe a sphere S by its center and radius
(p0, r). The sphere coordinates are compared against all
frustum clipping planes, and for each plane a decision is
made whether the sphere lies within a positive halfspace
of the plane, a negative halfspace of the plane, or intersects
the plane. Let us assume that each plane P is described by
the equation in Hessian normal form:

n · p = −t, (1)

where the vector n normal to the plane is standardized
and t is the distance from the plane to the origin of the
coordinate system. We also assume that the normal vector
points in the direction of the frustum interior, thus dividing
the space into positive and negative halfspaces. This
enables fast computation of the “signed” distance between
the center of the sphere and the plane:

d(S, P ) = n · p0 + t. (2)

Now,

• if d(S, P ) > r, then the sphere lies within the
positive half-space of the plane;

• if −r ≤ d(S, P ) ≤ r, then the sphere intersects the
plane;

• if d(S, P ) < −r, then the sphere lies in the negative
half-space of the plane.

By applying these simple decision rules to all planes
constituting the frustum, we may decide whether the
sphere (hence the inscribed voxel) lies within, outside or
intersects the frustum.

4.8.2. Frustum culling for a cloud organized in an oc-
tree. If the cloud is organized in an octree, the frustum
culling technique can be performed quite efficiently since
most of the pruning affects higher tree levels. The idea
of a hierarchical, logarithmic culling procedure was first
proposed in the classic work of Clark (1976). In our
system, in order to perform the culling, we traverse the
surfel octree in a depth-first manner. For each node,
the following actions are undertaken based on the sphere
circumscribing its bounding box:

• if the node is a leaf node and its bounding box is
within the frustum or intersects the frustum, add all
its points to the observed cloud;

• if the node is a leaf node and its bounding box is
outside the frustum, skip all the points associated
with the node;

• if the node is a branch node and its bounding box is
within the frustum, add all the points to the observed
cloud;

• if the node is a branch node and its bounding
box intersects the frustum, recursively process the
children of the node,

• if the node is a branch node and its bounding box is
outside the frustum, skip the children of the node.

The procedure above implies that for points from
leaf nodes that intersect the frustum one cannot conclude
whether they lie inside or outside the frustum, and
the decision must be made individually for each point.
Therefore, the size of the leaf node determines the
efficiency of frustum culling. There emerges a trade-off
between the efficiency of the frustum culling method
and the octree depth, and the overheads associated with
management of large data structures.

4.9. Surfel update. With all the surfels constituting
the observed cloud, determined they can be updated
with the new scan. The map update consists of two
steps: surfel update and surfel addition. Before updating
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and adding new surfels, normal vectors are computed
for the new scan. For this purpose, an effective
normal computation method for RGB-D cameras was
implemented, as described by Holzer et al. (2012).

In the model update procedure, the method proposed
by Weise et al. (2009) and Krainin et al. (2010) is followed
quite closely. For each subsequent j-th sensor scan from
visual odometry, the j-th sensor pose G

Cj
T with respect to

the global reference frameG is obtained. This information
is subsequently utilized in transforming the position
Gpi and normal vector Gni of every surfel from the
current map into the current camera frame, obtaining Cjpi
and Cjni. Thus, assuming the right-handed coordinate
system, the surfel depth is simply a z-coordinate of Cjpi,
i.e., Cjzi.

Then, the surfel is projected onto the image plane and
a sensor reading associated with the surfel is obtained (for
efficiency the “nearest-neighbor interpolation” is used).
If, based on the interpolated coordinates, no reading can
be associated with the surfel (the surfel projection is out of
bounds of the RGB-D image, or there is no valid reading),
the surfel is not updated.

Let us denote the depth currently acquired from the
sensor as Cjz′i. The depth reading is regarded as valid
if the depth is within the bounds of a reliable reading
[zr,min, zr,max] and the z-component of n′

i is above a
certain threshold. If the reading is regarded as valid, then,
similarly to Weise et al. (2009), different update rules are
used depending on the difference Cjz′i − Cjzi:

• if
∣
∣Cjz′i − Cjzi

∣
∣ ≤ zmax, then the surfel is updated.

The running averages are computed to update the
point position, normal direction and color; if the new
reading is taken from a closer location, also the surfel
radius is updated; with each new reading associated
with the surfel, the visibility confidence vi of the
surfel is incremented;

• if Cjz′i − Cjzi < −zmax, then the reading is behind
the surfel, and therefore it becomes invalid or the
surfel is removed, depending on the value of surfel
confidence (a static threshold is used here);

• if Cjz′i − Cjzi > zmax, then the sensor reading is
ahead of the surfel, so the surfel is not updated, and
the reading may be subsequently used to form a new
surfel.

An illustration of different cases of surfel update is
shown in Fig. 12. Here zmax is a constant describing
the maximum depth difference between the surfel and
the reading still allowing the merge operation. In order
to speed up computations, surfels that are outside depth
bounds of the reliable reading (increased by zmax, i.e.,
[zr.min − zmax, zr.max + zmax]) are not updated.

Fig. 12. Different cases of the surfel update procedure. The
large disc is the surfel to be updated (the black dot de-
notes the actual reading).

4.10. Surfel addition. For each sensor reading with
a valid depth that was not used for surfel update, a
new surfel is created by making a copy of the reading
position, normal vector and color (Cjp′k,

Cjn′
k,

Cjc′k).
The projection of the surfel onto the image plane
approximately corresponds to the camera pixel size, so the
radius must take into account both the distance and normal
vector orientation. The radius computation formula is
adopted from the work of Weise et al. (2009) as

rk =
√
2
Cjz′k/(α+ β)

n′
k(z)

, (3)

where α and β denote the focal lengths of the sensor along
its x and y axes.

5. Implementation

The above described mapping system was implemented in
the Robot Operating System (ROS) framework (Quigley
et al., 2009) with the use of the Point Cloud Library
routines (Rusu and Cousins, 2011). The system is
constructed from 3 main ROS nodes: the visual_odometry
node, the keyframe_mapper node, and the surfel_mapper
node. The data flow between nodes (presented in the form
of ROS topics) is given in Fig. 13. The characteristic of
each node is given below.

• visual_odometry node—the main node responsible



110 A. Wilkowski et al.

Fig. 13. Implementation-specific system architecture.

for establishing sensor position based on sensor
readings. The node subscribes a sequence of RGB
and depth images from the sensor and publishes
the odometry information (current sensor pose with
respect to the first sensor pose):

– /rgbd/rgb—rectified image from RGB camera,

– /rgbd/depth—rectified image from Depth
camera, the image is registered in the RGB
coordinate frame,

– /camera_info—RGB (and Depth) the camera
information regarding camera reference frame
and camera parameters,

– /tf—estimated transformation between a fixed
coordinate frame and the current sensor
coordinate frame:

• keyframe_mapper node—an auxiliary node used for
keyframe generation and sensor path optimization.
The node takes as an input visual odometry messages
and RGB-D data, and outputs registered keyframes
generated for sufficiently distinct sensor positions. It
also performs an off-line loop closing and provides a
new set of registered keyframes together with a new
set of positions as /mapper_path data;

– /mapper_path—an ROS topic with path
messages containing sensor positions, which
positions either mirror positions provided
by visual_odometry (at start) or represent
a corrected set of positions (after loop closure);

– /keyframes—keyframe point clouds registered
in the fixed odometry frame. Registration uses
sensor positions identical to /mapper_path;

• surfel_mapper node—the main node used for
surfel map creation. Its input: registered point
clouds keyframes and estimated sensor positions
/mapper_path. Its output: snapshots of the
constructed surfel map;

– /surfelmap—surfel information from the
bounding box specified, published in the form
of ROS markers,

– /surfelmap_preview—fast low resolution
preview of the full constructed surfel map (for
each octree leaf only a single point is generated
(see Fig. 14)).

The ROS implementation of the system
described in this paper is available at
github.com/piappl/robrex_mapping.git. For
the visual_odometry and keyframe_mapper nodes,
there was used an implementation provided at
github.com/ccny-ros-pkg/ccny_rgbd_tools.

6. Experiments

6.1. Experimental setup. The experiments were
performed on sequences of synchronized RGB and Depth
images. The first set of three sequences was recorded
using the Kinect camera in PIAP laboratories. The three
sequences used are: the “PIAP Office Room” (PIAP
OR for short) sequence, the “PIAP Room and Corridor”
(PIAP RC) sequence (containing the same room with
the corridor fragment and the stairway) and the “PIAP
Hangar” (PIAP H) sequence (representing a walk around
a 17 × 8 m robot hangar). The sequences here are
given in the order of the increasing size of the mapped
area. Additionally, for demonstration purposes, some
preliminary experiments were also performed on a shorter
“PIAP Desk” sequence.

In addition to our own sequences, we wanted
to experimentally verify our system on some publicly
available datasets, which would enable other researchers
to compare their results with ours. We decided to use the
dataset proposed by Handa et al. (2014) (Imperial College
London, ICL), containing two artificially generated
scenes, being dedicated in principle for the purpose of
benchmarking visual SLAM. The dataset is partitioned
into two subsets: “Living Room” (ICL LR for short)

github.com/piappl/robrex_mapping.git
github.com/ccny-ros-pkg/ccny_rgbd_tools
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Fig. 14. Preview of the “room” sequence. Leaf nodes of the
surfel map octree are diplayed.

and “Office Room” (ICL OR), each containing four
sequences. Each sequence comes in two flavors—the pure
rendered one and that with noise added.

During the experiments, the visual_odometry module
was used to provide visual odometry information and
the keyframe_mapper module generated a sequence of
keyframes. The keyframes were subsequently used by the
surfel_mapper module for surfel map creation. The octree
preview of the “PIAP OR” sequence is given in Fig. 14.

In a typical scenario, all three modules, as well as the
data acquisition process, work simultaneously. For our
PIAP test sequences, we were able to process incoming
data in real time. The surfel_mapper module, the vi-
sual_odometry module and the keyframe_mapper module
were all run in separate threads.

6.2. Visual odometry performance. Although the
evaluation of the third-party fast visual odometry
algorithm is not the main topic of this paper, some crude
quality assessment turned out to be necessary in order to
ensure reliability of visual odometry data for subsequent
benchmarking of our surfel representation. Each sequence
was used for generating the map with explicit loop closing
turned on or off. The results were visually inspected and
are given in Table 1. In addition, for sequences with
ground truth trajectories available we computed absolute
trajectory errors (ATEs) and relative pose errors (RPEs).
These results are given in Table 4. Visualizations of
trajectories together with ground truth and residuals are
given in Fig. 15. The analysis of quantitative results
confirms the visual inspection of map quality.

During the experiments it was established that fast vi-
sual odometry and mapping is prone to failures in the case
of mapping large surfaces with a small number of features
(such as large walls or empty corridors). This is basically

Table 1. Visual evaluation of VO quality (without and with loop
closing turned on) for the test sequences. The follow-
ing notation is used: “–” (scene geometry is visually
wrong), “+/–” (scene geometry is generally fine, but
some artifacts can be easily spotted, e.g., “doubled”
surfaces), “+” (scene geometry is fine, there are no eas-
ily perceivable artifacts).

no loop loop

“PIAP OR” + +
“PIAP RC” +/– +/–
“PIAP H” – +/–
“ICL LR 0” + +
“ICL LR 0 (with noise)” +/– +
“ICL LR 1” +/– +
“ICL LR 1 (with noise)” +/– +
“ICL LR 2” +/– +
“ICL LR 2 (with noise)” – –
“ICL LR 3” – –
“ICL LR 3 (with noise)” – –
“ICL OR 0” +/– +/–
“ICL OR 0 (with noise)” +/– +
“ICL OR 1” +/– –
“ICL OR 1 (with noise)” +/– +
“ICL OR 2” + +
“ICL OR 2 (with noise)” +/– +
“ICL OR 3” + +
“ICL OR 3 (with noise)” +/– +

a result of the fact that FVOM performance is based on
utilization of sparse features. This applied both to basic
mapping (using ICP on a sparse feature map) and mapping
with loop closing (which matches features globally).

For larger sequences (e.g., “PIAP H”), the basic ICP
mapping fails to properly close the sequence loop, which
is to a large extent amended by application of the explicit
loop closing feature. What is more, the utilization of the
off-line loop closing increased mapping accuracy for all
sequences, which is reflected, e.g., in a smaller (by a few
percent) number of surfels constituting the resulting scene
(due to relatively more surfel updates).

For the “ICL LR” test sequences it was possible to
evaluate the odometry quality by comparing the resulting
map with the ground truth model of the room. Such
comparison was performed on two sequences (“ICL LR 0
(with noise)” and “ICL LR 1 (with noise)”; cf. Table 2). It
must be noted that the mean distance between the ground
truth model and the map estimated using visual odometry
is very close to the map obtained based on the ground
truth trajectory. For ground truth trajectories the error is
between 6 and 9 mm, whereas for visual odometry the
error is between 9 or 11 mm, which we found acceptable.
The results suggest also some noise reduction capabilities
of surfel update over simple point summation, as the map
constructed using surfel update gives 1–2 mm smaller
average distance-to-ground-truth than the reconstruction
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Table 4. Generated trajectories compared to ground truth trajectories. The RMSE of the absolute trajectory error (ATE) and the relative
pose error (RPE) (rotational (t-RPE) and translational components (r-RPE)) are given. Procedures proposed by Handa et al.
(2014) were used for benchmarking.

no loop RMSE loop RMSE
ATE t-RPE r-RPE ATE t-RPE r-RPE
[m] [m] [deg] [m] [m] [deg]

ICL LR 0 0.025 0.039 2.765 0.012 0.021 1.062
ICL LR 0 (with noise) 0.036 0.066 2.931 0.018 0.030 1.487
ICL LR 1 0.103 0.147 4.924 0.011 0.022 0.647
ICL LR 1 (with noise) 0.143 0.204 5.968 0.013 0.020 0.752
ICL LR 2 0.068 0.105 3.983 0.013 0.023 0.761
ICL LR 2 (with noise) 1.063 1.770 86.633 1.057 1.762 86.627
ICL LR 3 0.413 0.610 11.179 0.080 0.155 5.405
ICL LR 3 (with noise) 0.498 0.727 8.926 0.134 0.245 5.434
ICL OR 0 0.025 0.040 1.855 0.022 0.033 0.971
ICL OR 0 (with noise) 0.068 0.120 7.475 0.027 0.043 1.355
ICL OR 1 0.041 0.070 1.823 0.306 1.017 74.496
ICL OR 1 (with noise) 0.061 0.106 2.691 0.182 0.368 8.868
ICL OR 2 0.021 0.031 1.074 0.012 0.019 0.397
ICL OR 2 (with noise) 0.098 0.152 3.535 0.022 0.036 1.059
ICL OR 3 0.028 0.048 0.760 0.011 0.023 0.889
ICL OR 3 (with noise) 0.059 0.092 2.527 0.038 0.059 1.935

Table 2. Comparison of the map with a ground truth 3D model.
The result is presented as the mean distance between
map points and the ground truth cloud. The compar-
ison was made using real (ground truth) trajectories
(denoted as GT) as well as visual odometry trajectories
(denoted as VO). Map types comprise points-based
maps and surfel-based maps. Procedures proposed
by Handa et al. (2014) with modifications given
at www.doc.ic.ac.uk/~ahanda/VaFRIC/
living_room.html (accessed July 2015) were
used for benchmarking.

traj. type mean dist. [m]

“ICL LR 0
(with noise)”

GT points 0.008
GT surfels 0.006
VO surfels 0.009

“ICL LR 1
(with noise)”

GT points 0.010
GT surfels 0.009
VO surfels 0.011

utilizing simple point summation.
Eventually, for detailed benchmarking of the surfel

map and frustum culling there were selected 6 sequences:
“PIAP OR”, “PIAP RC”, “PIAP H”, “ICL OR 2”, “ICL
OR 2 (with noise)”, “ICL LR 2”. From among the
synthetic sequences, those covering the largest portion of
the “virtual room” were selected. A brief characteristic of
the sequences used in benchmarks is given in Table 3.

6.3. Surfel data compression. One of the most
important features of a surfel map representation is
compression of incoming point clouds with as low

Table 3. Basic data describing benchmarking sequences.
“keyframes” is the number of keyframes generated
by the keyframe_mapper module, “points” is the total
number of scans considered usable for map creation.

keyframes points

“ICL OR 2” 86 14 963 707

“ICL OR 2 (with noise)” 84 13 392 091

“ICL LR 2” 81 13 751 353

“PIAP OR” 171 26 613 260

“PIAP RC” 355 39 271 937

“PIAP H” 367 37 844 437

information loss as possible. Some point compression was
provided by the utilization of keyframes, captured only
when the sensor position significantly changed. However,
even so, each surface in the map was captured from
several sensor positions and thousands of data merging
procedures were applied for each frame.

During the experiments it was observed that
the system performs well concerning compression of
incoming points, and redundant surfels appear very rarely.
In Fig. 15 we may see small details of the mapped scenes.
In both the figures we observe small cracks between
surfels and the number of overlapping surfels is relatively
small. A larger overlap can be observed on surfaces that
are almost parallel to the sensor optical axis (e.g., a table
in Fig. 15(a)). This is mainly due to the fact that the
projection of the (circular) pixels on the surface under
such circumstances results in elongated ellipses, which
must be approximated by circles.

www.doc.ic.ac.uk/~ahanda/VaFRIC/
living_room.html
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(a) (b)
Fig. 15. Selected details of surfel maps for the sequences “PIAP Desk” and “PIAP OR”: teabox on the desktop (a), flower pot (b).

In our experiments we set the scan merging distance
to quite a large value of dmax = 5 cm. We believe that
this value is appropriate for mapping larger spaces such
as rooms, since it enables surfel-scan merging even for
imperfectly aligned scans, especially at a larger distance
from the sensor. However, such a value may lead to
merging finer details of objects into more prominent
surfaces. Therefore, for individual objects, smaller values
are recommended.

Our intuitive notion of good compression capabilities
of the surfel representation are also supported by
quantitative experiments performed on the benchmark
sequences. In Fig. 17 we compare a scenario where all
the readings from keyframes become part of the map with
the scenario of using our surfel mapping approach. The
results are the numbers of points/surfels in the map as a
function of the frame number. As may be seen by the
end of the sequence the number of surfels is from 4.5 to
6.5 times smaller than that of cloud points in the simple
method, depending on the sequence. We will later show
that such discrepancy may have a serious impact on the
complexity of subsequent processing as well as the quality
of results.

The level of participation of scans in the surfel
update procedure varies between sequences and also
inside sequences. In our benchmarks, the average level of
participation was about 84% for artificial ICL sequences
without noise and between 70–80% for real sequences
and artificial sequences with noise added. In most cases,
the level of participation was above 60% with occasional
valleys.

6.4. Frustum culling. We performed several
benchmarks to see if and to what extent the frustum

culling method improves the surfel update step.

The first experimental results, presented in Fig. 18,
concern the number of surfels that need to be transformed
into the camera frame in order to perform reprojection
onto the image plane at a new sensor position. In the
case of the update without utilization of frustum culling,
the number of surfels grows steadily with each subsequent
input frame (as it depends on the total number of surfels
in the scene). On the contrary, the number of surfels
transformed using the culling method is generally much
smaller and depends on the complexity of the actual
scene fragment observed by the sensor, rather than the
actual frame index. More precisely, peaks in the chart
correspond to exploration of already known areas of the
map, whereas valleys correspond to exploration of new
areas. The ratio between necessary surfel transformations
with and without frustum culling is the lowest for
sequences in small confined spaces (e.g., the “ICL OR”
sequences that produce only slightly above 2 mln surfels),
and the largest when mapping larger areas with only
seldom “remapping” of already known space (“PIAP RC”
and the “PIAP H” sequence, which produce 8–9 mln
surfels). For instance, for the “PIAP H” sequence the
average ratio is over 18.7, while for “ICL OR 2” it is only
3.9.

The time of single surfel processing varies. It
depends mainly on how many processing steps are applied
to each surfel. The surfel processing chain may consist
of surfel rigid transformation, surfel projection onto the
image plane and surfel update. Therefore, in addition to
the number of surfels that are taken into account during
processing, it is worth comparing the actual processing
time of each keyframe when using, or not, the frustum
culling method. In Fig. 19 we present a comparison
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ICL LR 0 ICL LR 0 (with noise) ICL LR 1 ICL LR 1 (with noise)

ICL LR 2 ICL LR 2 (with noise) ICL LR 3 ICL LR 3 (with noise)

ICL OR 0 ICL OR 0 (with noise) ICL OR 1 ICL OR 1 (with noise)

ICL OR 2 ICL OR 2 (with noise) ICL OR 3 ICL OR 3 (with noise)

Fig. 16. Comparison of estimated trajectories (gray) with ground truth trajectories (black). The difference is marked in light-gray. In
all cases, loop closing was explicitly utilized. Procedures proposed by Handa et al. (2014) were used for benchmarking.

of the time spent on the update and addition step for
each subsequent frame of benchmark sequences, while in
Fig. 20 we compare the total time of frame processing for
a surfel mapper with frustum culling turned on and off.

Those figures show that the surfel update method
using frustum culling offers superior performance over the
method that does not use it. The difference, however,
is not as prominent as in the case of comparing pure
numbers of processed surfels. The main reason is
that most surfels can be quickly rejected shortly after
transformation using z-range check and the processing of
“valid” surfels consumes a significant part of the resources
for both culling and no-culling methods. However, for
larger scenes, especially when new areas are scanned
(so only a limited number of surfels actually participate
in the update), the surfel transformation overhead must
eventually dominate. This is confirmed by analyzing
the processing times for different sequences. It can

be noticed that for longer sequences (such as “PIAP
H” or “PIAP RC”) the frame processing time can be
even considered constant (disregarding fluctations) when
applying frustum, while the processing time in the case of
no-frustum culling is a constantly growing function (again
disregarding fluctuations).

Taking as an example the “PIAP H” sequence, in
the case of frustum culling-based update the average
surfel update and addition time for the whole sequence
was about 24 ms and the total frame processing time
was 58 ms (with 27 ms spent on normals’ computation).
For no-frustum culling method the processing times were
equal to 63 ms and 96 ms, respectively (with comparable
time for normals’ computation). Thus, the speedup gained
due to using frustum culling was 2.62 regarding only
surfel update and addition and 1.65 regarding total frame
process time.
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Fig. 17. Comparison of cloud sizes when using the simple point addition model and the surfel update model. Sequences “ICL OR 2”
(a), “ICL OR 2 (with noise)”(b), “ICL LR 2” (c), “PIAP OR” (d), “PIAP RC” (e), “PIAP H” (f).
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Fig. 18. Comparison of the number of surfels that need to be transformed into a sensor frame (and possibly projected) with frustum
culling and without it. Sequences “ICL OR 2” (a), “ICL OR 2 (with noise)” (b), “ICL LR 2” (c), “PIAP OR” (d), “PIAP RC”
(e), “PIAP H” (f).

6.5. Frustum efficiency. In order to apply the frustum
culling technique, we used an octree with a leaf size of
20 cm. To evaluate the impact of this parameter on our
test sequence “PIAP OR” we collected information on

the current number of surfels in the scene, the number of
surfels pruned using frustum culling and the number of
surfels within the frustum, which gave valid projections
onto the image plane. As a result, we extracted two
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Fig. 19. Surfel processing times (comprising surfel update and addition steps). Sequences “ICL OR 2” (a), “ICL OR 2 (with noise)”
(b), “ICL LR 2” (c), “PIAP OR” (d), “PIAP RC” (e), “PIAP H” (f).
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Fig. 20. Total frame processing times. Sequences “ICL OR 2” (a), “ICL OR 2 (with noise)” (b), “ICL LR 2” (c), “PIAP OR” (d),
“PIAP RC” (e), “PIAP H” (f).

measures: culling efficiency (surfels pruned vs. all surfels
in the scene) and frustum precision (surfels correctly
projected on the image plane vs. surfels in the frustum).
The results are given in Fig. 21.

Based on the results we may say the frustum preci-
sion measure rarely falls below 70% for all sequences.
For the “PIAP OR” sequence, the average was 83% for
the whole sequence, which means that only 17% surfels

had to be unnecessarily transformed into the camera
frame. The figures are similar for the remaining sequences
(81–88%). This means that there is little justification
for further decreasing the octree leaf size, since the
expected benefits might be insignificant compared with
possible overheads related to management of a larger
octree structure.

While frustum precision is not dependent on the
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Fig. 21. Evaluation of octree frustum efficiency for the octree leaf size equal to 20 cm. Culling efficiency is computed as a ratio of the
number of surfels pruned to all surfels in the scene. Frustum precision is computed as a ratio of the surfels correctly projected
on image plane to all the surfels in the frustum. Sequences “ICL OR 2” (a), “ICL OR 2 (with noise)” (b), “ICL LR 2” (c),
“PIAP OR” (d), “PIAP RC” (e), “PIAP H” (f).

actual keyframe index, the culling efficiency value quickly
grows when new keyframes are acquired. Taking the
“PIAP OR” sequence as an example, culling efficiency
reaches the level of about 90% and stabilizes when we
start to reinspect areas already mapped. It is interesting
to note that around the 150th frame the value suddenly
drops, when the sensor reaches an area with view densely
packed with objects. This is accompanied by a peak in
frame processing time charts (see Fig. 20).
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Fig. 22. Octree leaf node size vs. time spent on the surfel update
and surfel addition steps for the “PIAP OR” sequence.

For the “PIAP OR” sequence the average value of
culling efficiency is about 78%, whereas the average for

the last 130 frames is 85%. The value is even higher for
large mapping areas (91% average for the whole “PIAP
H” sequence), but lower for small mapping areas (51%
for “ICL OR 2” sequence).

The cullling efficiency and frustum precision
measures may not reflect well the actual performance
gain obtained by using frustum culling, given the specific
octree leaf size. For instance, using a fine-grained octree
will result in very high frustum precision scores and also
higher culling efficiency.

However, the overall impact on performance may be
negative due to the overhead associated with management
of a large octreeindex. Therefore, for the “PIAP
OR” sequence we conducted a performance experiment,
measuring the average time of surfel update and surfel
addition steps for different sizes of the octree leaf node.
The results are presented in Fig. 22. Note that the best
performance was obtained for an octree leaf size varying
between 20 and 40 cm. The former value was consistently
applied in other experiments.

7. Conclusions

Typical approaches to surfel map creation (e.g., Henry
et al., 2012) suffer from efficiency problems, which
question their applicability to robotic tasks, where on-line
processing is important. Two sources of these problems
were identified. The first one is the typical use of an
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incremental, dense point cloud registration algorithm (for
the purpose of visual odometry) based on the ICP method,
which is highly resource consuming. The second reason is
the surfel update procedure, which is slow for sufficiently
large data clouds.

In the proposed system, both of above problems are
addressed and resolved. The incremental ICP is replaced
by a sparse ICP algorithm, as proposed by Dryanovski
et al. (2013). The algorithm is more efficient that its dense
version and is able to work at the rate of even 60 fps. What
is more important, it aligns the new scan against multiple
previous ones, eliminating the need for a loop closure of
small areas.

Secondly, a frustum culling procedure is applied in
order to eliminate as many surfels as possible from the
computationally expensive surfel update step. The surfel
map is indexed by an octree and the culling procedure
exploits the hierarchical map structure.

Taking into account the proposed improvements, a
mapping system was constructed and implemented under
the popular Robot Operating System (ROS). Finally, an
experimental validation of this system was performed.
The experiments carried out on RGB-D image sequences
obtained by the Kinect sensor showed superior efficiency
performance of the proposed surfel-level mapping over
simple point cloud summation.

The surfel update step using the proposed culling
method performs on average over two times faster than
a step without it. More likely, this ratio will grow when
larger scenes are processed. For the test sequences, the
frame processing time rarely exceeded 100 ms, which
allows on-line processing, since the acquisition rate of key
frames is usually lower than 0.1 fps.

For those reasons the proposed surfel map
representation and processing methods constitute very
promising tools for a 3D occupancy map representation
in V-SLAM systems based on modern, high-framerate
sensors such as Microsoft Kinect or ASUS XTion. Their
most important advantages are strong data compression
and noise reduction abilities, accompanied by a minimum
data loss.

The main area for further improvement targets the
problem of global optimization. So far the approach
has included a loop-closure method, supplementing the
FVOM module in an off-line manner (graph generation in
the case of longer test sequences takes several minutes).
Recently, new approaches emerged that enable fast,
on-line loop closure (Kawewong et al., 2013). It would be
beneficial to incorporate such an approach in the mapping
system, to obtain coherent large-scale maps in real-time.
Another interesting area of improvements is the utilization
of higher-level knowledge concerning surface smoothing
and noise reduction of the acquired surfel map.
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Appendix

Theoretical primer on frustum culling

A1. Frustum culling in computer graphics

Frustum culling is a common method used in computer
graphics to restrict a visualization only to volumes
actually observed by the virtual camera. Frustum culling
may be performed in two ways. Firstly, it may be done
after transforming all scene points into the camera frame
and further into the clipping space. Secondly, it may
be performed in the original scene space by computing
clipping planes and comparing points against them. In
both cases, it is useful to compute the so-called projection
matrix first.

A2. Projection matrix

In the OpenGL library, the projection matrix M4×4 is the
matrix transforming 3D point coordinates (in a camera
coordinate system) lying in the frustum view into a box
of extent [−1, 1]3. The transformation is performed using
homogeneous coordinates:

k

⎛

⎜
⎜
⎝

FX
FY
FZ
1

⎞

⎟
⎟
⎠

= M

⎛

⎜
⎜
⎝

CX
CY
CZ
1

⎞

⎟
⎟
⎠

, (A1)

where (CX, CY, CZ, 1)T are point coordinates in the
camera space and (FX, FY, FZ, 1) are the resulting clip-
ping space coordinates. Now, after transforming each
point, it is easy to decide whether or not it lies in the
frustum, since all points inside the frustum are mapped
into [−1, 1]3, and all points outside it are mapped out of
this box.

A3. 3D clipping planes

The projection matrix allows finding also the parameters
of the clipping planes, which is of more interest in
the solution presented in this paper. In the OpenGL
formulation of the projection matrix, the parameters
of the clipping planes are formed by the sums and
differences of adequate rows of the projection matrix M ,
as given by Gribb and Hartmann (2001). Thus, one
obtains plane parameters in the camera reference frame.
Because parameters of planes are required with respect
to the global reference frame, corresponding rows of the
projection-view matrix must be used, which is a matrix
resulting from multiplication of the rigid global-to-camera
transformation and the projection-matrix, i.e., M C

GT . The
resulting parameters of the clipping planes require only
standardization into Hessian normal form.

A4. Projection matrix for real-world
cameras

The formulation of projection matrix M in the OpenGL
library is given as follows (Song-Ho, 2013):

M =

⎛

⎜
⎜
⎜
⎝

2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0

⎞

⎟
⎟
⎟
⎠

, (A2)

where f and n are respectively the z-coordinates of the
near and far clipping plane and, l, r, t, b are left, right,
top and bottom bounds of the visible image plane (it is
assumed that the optical axis goes through the point (0, 0)
in the image plane).

In the case of real-world cameras, the optical axis is
assumed to cross the point (cx, cy) in the image plane,
and the camera intrinsics are described by the following
matrix:

K =

⎛

⎝

α 0 cx
0 β cy
0 0 1

⎞

⎠ , (A3)

where α and β are the focal lengths in the x and y
directions, respectively. Using these symbols and taking
into account that in OpenGL the z-axis points towards
the camera, one can rewrite the projection matrix M as
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follows:

M =

⎛

⎜
⎜
⎝

2α
w 0 2cx

w − 1 0

0 2β
h

2cy
h − 1 0

0 0 (f+n)
f−n

−2fn
f−n

0 0 1 0

⎞

⎟
⎟
⎠

, (A4)

wherew and h are respectively the image width and height
in pixels. It is easy to observe that each point located
between the far and the near plane, which is projected
inside the image bounds, is mapped into the cube [−1, 1]3

when transformed by the M matrix. For instance, the CX
coordinate is effectively computed as

FX =

(
CX
CZ

α+ cx

)

/w · 2− 1. (A5)

Noting the fact that the expression in parentheses is
simply the point’s x-coordinate in the image, we see that
all points projecting into the camera image must have
“clip space” coordinates within the [−1, 1] bounds. A
more detailed discussion regarding the relations between
camera intrinsics and projection matrices (although for
non-eccentric cameras) is given by Koshy (2014).
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