International Journal of Applied Mathematics and Computer Science 2012

Volume 22 Number 1

•  Cover Page
•  Editorial Board and Information for Authors
•  Aims and Scope
•  Contents


Contents 

Jamouli H., El Hail M.A. and Sauter D. A mixed active and passive GLR test for a fault tolerant control system.. . . . . . . . . 9
Uciński D. Sensor network scheduling for identification of spatially distributed processes . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Yang F., Shah S.L. and Xiao D. Signed directed graph based modeling and its validation from process
knowledge and process data
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Ungermann M., Lunze J. and Schwarzmann D. Test signal generation for service diagnosis based on local
structural properties
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Niemann H.H. Amodel-based approach to fault-tolerant control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Yang H., Jiang B., Cocquempot V. and Lu L. Supervisory fault tolerant controlwith integrated fault detection
and isolation:A switched system approach
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Olive X. FDI(R) for satellites: How to deal with high availability and robustness in the space domain? . . . . . . . . . . . . . . . . . . 99
Edwards C., Alwi H. and Tan C.P. Sliding mode methods for fault detection and fault tolerant control with
application to aerospace systems
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
Jain T., Yamé J.J. and Sauter D. Model-free reconfiguration mechanism for fault tolerance . . . . . . . . . . . . . . . . . . . . . . . 125
Weber P., Boussaid B., Khelassi A., Theilliol D. and Aubrun C. Reconfigurable control design with
integration of a reference governor and reliability indicators
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
Patton R.J., Chen L. and Klinkhieo S. An LPV pole-placement approach to friction compensation as an FTC problem . .149
Montes de Oca S., Puig V., Witczak M. and Dziekan Ł. Fault-tolerant control strategy for actuator faults
using LPV techniques:Application to a two degree of freedomhelicopter
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161
Gáspár P., Szabó Z. and Bokor J. LPV design of fault-tolerant control for road vehicles . . . . . . . . . . . . . . . . . . . . . . . . . .173
Xu D., Jiang B. and Shi P. Nonlinear actuator fault estimation observer: An inverse system approach via a
T–S fuzzy model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Ichalal D., Marx B., Ragot J. and Maquin D. New fault tolerant control strategies for nonlinear Takagi–
Sugeno systems
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Yetendje A., SeronM.M. and De Doná J. Robust multisensor fault tolerant model-following MPC design for
constrained systems
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Patan K. and Korbicz J. Nonlinear model predictive control of a boiler unit: A fault tolerant control study . . . . . . . . . . . . . .225