Cover Page
Editorial Board and Information for Authors
Aims and Scope
Contents
Contents
Jamouli H., El Hail M.A. and Sauter D.
A mixed active and passive GLR test for a fault tolerant control system.. . . . . . . . . 9
Uciński D.
Sensor network scheduling for identification of spatially distributed processes . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Yang F., Shah S.L. and Xiao D.
Signed directed graph based modeling and its validation from process
knowledge and process data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Ungermann M., Lunze J. and Schwarzmann D.
Test signal generation for service diagnosis based on local
structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Niemann H.H.
Amodel-based approach to fault-tolerant control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Yang H., Jiang B., Cocquempot V. and Lu L.
Supervisory fault tolerant controlwith integrated fault detection
and isolation:A switched system approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Olive X.
FDI(R) for satellites: How to deal with high availability and robustness in the space domain? . . . . . . . . . . . . . . . . . . 99
Edwards C., Alwi H. and Tan C.P.
Sliding mode methods for fault detection and fault tolerant control with
application to aerospace systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
Jain T., Yamé J.J. and Sauter D.
Model-free reconfiguration mechanism for fault tolerance . . . . . . . . . . . . . . . . . . . . . . . 125
Weber P., Boussaid B., Khelassi A., Theilliol D. and Aubrun C.
Reconfigurable control design with
integration of a reference governor and reliability indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
Patton R.J., Chen L. and Klinkhieo S.
An LPV pole-placement approach to friction compensation as an FTC problem . .149
Montes de Oca S., Puig V., Witczak M. and Dziekan Ł.
Fault-tolerant control strategy for actuator faults
using LPV techniques:Application to a two degree of freedomhelicopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161
Gáspár P., Szabó Z. and Bokor J.
LPV design of fault-tolerant control for road vehicles . . . . . . . . . . . . . . . . . . . . . . . . . .173
Xu D., Jiang B. and Shi P.
Nonlinear actuator fault estimation observer: An inverse system approach via a
T–S fuzzy model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Ichalal D., Marx B., Ragot J. and Maquin D.
New fault tolerant control strategies for nonlinear Takagi–
Sugeno systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Yetendje A., SeronM.M. and De Doná J.
Robust multisensor fault tolerant model-following MPC design for
constrained systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Patan K. and Korbicz J.
Nonlinear model predictive control of a boiler unit: A fault tolerant control study . . . . . . . . . . . . . .225