Cover Page
Editorial Board and Information for Authors
Aims and Scope
Contents
Contents
Zhirabok A. and Shumsky A.
An approach to the analysis of observability and controllability in nonlinear
systems via linear methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
Balachandran K. and Kokila J.
On the controllability of fractional dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . .523
Ostalczyk P.
Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains . . . . . . . . .533
Dos Santos Martins V., Rodrigues M. and Diagne M.
A multi-model approach to Saint-Venant equations:
A stability study by LMIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
Filasová A. and Krokavec D.
H∞ control of discrete-time linear systems constrained in state by equality
constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
Hladík M.
Enclosures for the solution set of parametric interval linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .561
Liu W.J.
Variable structure observer design for a class of uncertain systems with a time-varying delay . . . . . . . . . . . . . . .575
Zaidi A., Ould Bouamama B. and Tagina M.
Bayesian reliability models of Weibull systems: State of the art . . . . . . . .585
Djebrani S., Benali A. and Abdessemed F.
Modelling and control of an omnidirectional mobile manipulator . . . . . . . . 601
Soltani M., Chaari A. and Ben Hmida F.
A novel fuzzy c-regression model algorithm using a new error
measure and particle swarm optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
Piegat A. and Landowski M.
Optimal estimator of hypothesis probability for datamining problemswith small
samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .629
Jankowski N.
Graph-based generation of ameta-learning search space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .647
Gocławski J., Sekulska-Nalewajko J. and Kuźniak E.
Neural network segmentation of images from stained
cucurbits leaves with colour symptoms of biotic and abiotic stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .669
Tan Y., Dong R., Chen H. and He H.
Neural network based identification of hysteresis in human meridian
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
Fabijańska A.
A survey of subpixel edge detection methods for images of heat-emitting metal specimens . . . . . . . . . . . . 695
Biedrzycki R. and Arabas J.
KIS: An automated attribute induction method for classification of DNA
sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711
Péter T.
Modeling nonlinear road traffic networks for junction control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723
Chmaj G., Walkowiak K., Tarnawski M. and Kucharzak M.
Heuristic algorithms for optimization of task
allocation and result distribution in peer-to-peer computing systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
Olwal T.O., Djouani K., Kogeda O.P. and van Wyk B.J.
Joint queue-perturbed and weakly coupled power
control for wireless backbone networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .749
Formanowicz P. and Tanaś K.
The Fan–Raspaud conjecture: A randomized algorithmic approach and
application to the pair assignment problemin cubic networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .765