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Chapter 1

INTRODUCTION

Recent years have witnessed the increasing impact of the theory of graphs on the
development of digital technology. This is due to the fact that logic systems have
grown in size and, what follows, innovative designing methods for digital systems
have been developed. Yet a few years ago designers could specify and elaborate
the functionality of their systems easily and quickly, while today it is impossible
without the application of computer-aided design tools. Numerous current decom-
position methods for discrete systems, used by leading manufacturers who prepare
tools for the synthesis of digital systems, rely on the utilisation of classical undi-
rected graphs. Such an approach exerts the application of ever more advanced
computational methods as well as the modification of the existing algorithms. It
is caused by the continuous growth of the size of constructed digital systems, what
in turn results in essential changes in the implementation of the developed model
in a real logic system.

One of the possible solutions to the problem may be the application of hyper-
graph theory and related algorithms. The application of hypergraphs to the op-
erations used in digital technology, such as, e.g., minimization of logical functions
(DeMicheli, 1994; Eiter, 1994; Łuba, 2005) or partitioning of a discrete system (Lee-
Kwang and Cho, 1996; Leinweber and Bhunia, 2008), seems to be intuitive, more
transparent and more effective than in the case of classical graphs (Wiśniewska
and Adamski, 2008b).

This book includes the analysis of some of the existing general methods which
support the design of digital systems with the use of hypergraphs, whose effective-
ness and the operation speed were thoroughly examined. On this basis the author’s
own new algorithms, binding the theory of hypergraphs with the theory of Petri
nets, were developed. The algorithms are to solve a given problem faster and more
efficiently than the so far applied methods. Moreover, an innovative application
supporting digital system design with the use of the theory of hypergraphs was
developed and implemented.

1.1. Current State of Knowledge, Motivation for Addressing
the Issue

The work considers discrete systems described with the use of Petri nets (Murata,
1989; Girault and Valk, 2003) or equivalent transition systems. The examined
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space of discrete states consists of fundamental local states grouped in global
states. Local states refer to the places in a Petri net, whereas global states re-
fer to the respective states of a given transition system (Adamski, 1990; Węgrzyn
et al., 1996; Karatkevich, 2007; Zakrevskii, 1986). The scope of issues considered
in this book is limited to the analysis of such discrete systems in which the states of
a transition system correspond to the global states of a Petri net. Such a restraint
is a generally assumed practice, used in the analysis of Petri net state spaces, places
and transitions (PT-nets), and discussed, among others, in the works of (David
and Alla, 1992; Banaszak et al., 2008). The subject of the research is the analysis
of the concurrency relation between local states, in terms of the decomposition
of a discrete system into concurrent subsystems. The assumed restriction, result-
ing from theoretical and practical reasons, is the postulate that all local states
in a concurrent subsystem remain in a sequentiality relation.

The analysis of discrete systems described with Petri nets in terms of de-
composition has been presented in numerous publications. M. Adamski recapit-
ulates the results of the research carried out with the use of an original method
of the analysis of undirected concurrency graphs (Adamski, 1990). Parallel works
of a similar range were carried out in the National Academy of Sciences of Be-
larus (A. Zakrevskij), University of Bristol (E. Dagless, M. Bolton) and University
of Minho in Braga and Guimaraes (J.L. Monteiro, A.J. Proença). The work of
A. Karatkevich, (Karatkevich, 2007) constitutes a valuable monograph on various
aspects of dynamic analysis of Petri-net based discrete systems.

The review of the literature reveals that the proposed in Zielona Góra concept
of the application of hypergraphs in the representation of Petri net space states
has an innovative character on a worldwide scale. The fundamental trend of the
research was realized by the author of this book.

The discussed hypergraphs, unlike ordinary undirected graphs, present the re-
lations between both local and global states of an analyzed discrete system. Owing
to this fact, the decomposition methods for a discrete system become essentially
simpler, since the data for the analysis consists of the spaces of both local and
global states. In consequence, it leads to a faster process of obtaining the results,
especially for the Petri net state spaces described by exact hypergraphs.

1.2. The Thesis, Objectives and Tasks of the Work

On the basis of the conducted research as well as the review of the world literature,
the following thesis of the work was formulated: The application of hypergraphs
into the decomposition of state space in discrete systems improves the process of
designing concurrent digital automata owing to effective mathematical methods for
examining the graph structures.

The term effectiveness of the computational method refers to its efficiency
(obtaining correct results) as well as to its performance (obtaining the result in an
acceptable time) with the use of available computer-aided tools.
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The main thesis implies the following detailed assumptions:

• an exact hypergraph unambiguously represents the local state space of Petri
nets;

• a state machine component (SMC) of a regular Petri net corresponds to an
exact transversal of a concurrency hypergraph.

These terms are discussed in details in Chapter 5. The objective of the work
is the proposal, development and algorithmisation of decomposition methods for
discrete systems, useful in the design of configurable logic controllers, of consider-
able practical values and computational efficiency.

The main tasks of the book are:

1. Improvement of the decomposition methods for discrete systems by the use of
the theory of hypergraphs, which is intensively and independently developed
and turned into algorithms for the needs of computational logic.

2. Development of innovative, more efficient decomposition methods for discrete
systems with the application of hypergraphs.

3. Realization of a computer aided design system for logic controllers with the
application of hypergraph algorithms (CAD).

1.3. The Structure of the Book

The work consists of eight chapters and three appendices. The first chapter in-
cludes the introduction to the ideas covered by the book, formulation of the thesis
as well as the objectives and tasks of the book.

Chapter Two deals with discrete systems and possible ways of their represen-
tation. Most important ideas relating to a discrete system described with Petri
nets are discussed, with a particular emphasis to the realization of the structures
in the form of concurrent digital automata.

The basic concepts of the theory of undirected graphs and hypergraphs are dis-
cussed in Chapter Three, whereas the most important algorithms are addressed in
Chapter Four. Mathematical research methods in graphs and hypergraphs, such as
the determination of a complement, vertex cover, coloring, or the determination of
exact transversals, are thoroughly discussed. All the algorithms were implemented
in the author’s own Hippo system, which is widely described in Appendix A.

Chapters Five and Six describe innovative solutions introduced in the book.
Chapter Five includes the author’s definitions and theses relating to the decom-
position of discrete systems. Chapter Six presents the author’s decomposition
methods for discrete systems.

The verification of the effectiveness of the developed methods is carried out in
Chapter Seven. It presents the author’s own tools supporting the research process,
together with the libraries for test modules, and the results of the experiments.
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Chapter Eight includes the summary and conclusions. What is more, it outlines
possible directions of further research.

Appendix A includes the description of particular modules of the author’s
Hippo system, which supports the decomposition of discrete systems with the
application of hypergraphs. Appendix B contains a detailed list of the results
of the experimental research. Appendix C contains Verilog source codes which
illustrate a possible way to realize exemplary discrete systems presented in the
book.



Chapter 2

DISCRETE SYSTEM

The Chapter presents basic problems connected with discrete systems as well as the
methods of their representation. It also introduces the most important definitions
and relations (concurrency, sequentiality) between the states of a discrete system.

2.1. The Representation of a Discrete System

Definition 2.1. A discrete system is a system consisting of a finite number of
local and global states (Steiglitz, 1974; Adamski, 1990; Banaszak et al., 2008). In
a discrete system, one or more local states can be active simultaneously. Global
states are described by maximal sets of all active local states. Since discrete systems
considered in the book may belong to a finite number of the reached global states,
they may be precisely illustrated by finite graph representations and mathematical
models (Wiśniewska et al., 2007a).

Discrete systems model arbitrary discrete processes, both sequential and con-
current. They are very frequently applied to model and represent controlling sys-
tems described by Petri nets. The successive subchapters include the discussion
on the selected methods of the representation of Petri nets used in the work.

2.1.1. A Petri Net

Definition 2.2. A Petri net is a directed bipartite graph with two kinds of
vertices: places and transitions connected by a directed arc (Petri, 1962; Murata,
1989; Banaszak et al., 1993; Girault and Valk, 2003). A Petri net is defined by
the following 3-tuple:

PN = (P, T, F ), (2.1)

where:
P is a finite, nonempty set of places;
T is a finite nonempty set of transitions;
F ⊆ (P × T )

⋃
(T × P ), is a finite, nonempty set of arcs.

Petri nets are used to represent the discrete systems in which mutually condi-
tioning states and events occur. Places are usually interpreted as conditions (local
states of a discrete system), whereas transitions - as events (alterations of local
states). The conditions imposed on an incidence relation result in the fact that
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each place and each transition should be associated with an arc. It means that,
in the considered interpretation, each event (transition) responds to a certain set
of places (conditions) enabling an event, and consequently satisfying a set of out-
put conditions, represented by suitable output places of the transition. Satisfying
the output conditions may thus mean satisfying successive input conditions, etc.
Transitions are active, if in all input transition places there is at least one token,
whereas the firing of a transition is understood as the removal of a single token
from input places and placing it in transition output places.

Let’s introduce some definitions that will be used further in the book to
describe the properties of a Petri net.
Definition 2.3. A state machine (SM) is a subclass of a Petri net such that
each transition t has exactly one input place and one output place (Murata, 1989):

∀t ∈ T : | • t| = 1 = |t • |. (2.2)

Definition 2.4. A state machine component (SM-component, SMC) of
a Petri net PN is a strongly connected subnet PN ′ generated by places in PN
(Murata, 1989):
• each transition of a subnet PN ′ has exactly one input and one output arc;

• all input and output transitions of places in PN ′ and their connecting arcs
belong to PN ′.

Definition 2.5. A marked graph (MG) is a subclass of a Petri net such as each
place has exactly one input transition and exactly one output transition (Murata,
1989):

∀p ∈ P : | • p| = 1 = |p • |. (2.3)
Each Petri net has its own behavioral properties (Murata, 1989). The work

presents the selected properties of Petri nets which are used in the further part of
the book, for the description of decomposition algorithms of discrete systems with
the application of hypergraphs:

? Reachability. A marking Mn is said to be reachable from the initial marking
M0 if there is a sequence of firings that transforms M0 to Mn.

? Liveness. The transition t is live if from any marking Mn of a Petri net it
is possible to fire transition t by a sequence of firings of other transitions.
A Petri net is live if from any marking Mn of a Petri net it is possible to fire
any transition in a net by a sequence of firings of other transitions.

? Safeness. A place p of a Petri net is safe if there is no reachable state that
contains more than one token in this place. A Petri net is safe if each place
in the net is safe. Thus, places of a safe net model Boolean conditions, which
may be either satisfied (token present) or not (token absent). The liveness
and the safety of a net may be tested by determining a reachability graph,
which represents the tree where repetitive markings have been combined in
a single node. Problems connected with reachability of particular states in
a Petri net are described in details in the further part of the work.
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The book considers live and safe Petri nets that belong to the subclass of
marked graphs (Murata, 1989). The decompositions of Petri nets into state ma-
chine components (subnets of an automaton type) are discussed in details in Chap-
ter 6.

2.1.2. An Interpreted Petri Net

Definition 2.6. An interpreted (labeled) Petri net is a live and safe Petri
net with defined input and output signals (Girault and Valk, 2003). Both sets of
inputs X and outputs Y are defined by binary vectors:
X={x1, x2, . . . , xn},
Y={y1, y2, . . . , ym}.

An interpreted Petri net is a refinement of Definition 2.2 (Banaszak et al.,
1993). The consideration of binary vectors of input and output states enables
a very convenient representation of binary systems (logic systems) which may
be realised e.g., using digital systems. A concurrent digital automaton (more
extensively presented in Chapter 2.2) is most frequently used as an implementation
model. The automaton outputs may be defined as binary outputs of Moore’s type
(if the output state depends on the configuration of active local states exclusively)
or of Mealy’s type (when the output state is also directly conditioned by the output
state of the system).

 PITS 
x5 – all riders 

in the pits 

x2 – riders on the track 

y2/y3 – gate to enter the pits or track 

starting tape 

y4/y6 

x1 x3 x4 

REFEREE’S BOX 

preparation to 

the start 
start of 

the heat  

end of 

the heat 

y1 

safety mode 
y5/y7 

clock counting the 

time of the heat  

Fig. 2.1. Simplified controlling system of a speedway tournament
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To shed some light on the issue, a real-life problem will be presented as an
example illustrating how Petri nets are used to represent discrete processes. Figure
2.1 presents a simplified system controlling the preparation to a single heat and
race itself during a speedway tournament. Initially, the system is in the standby
mode to begin preparations to a heat. After the referee has pushed button x1,
three concurrent operations are performed. A pit gate is opened and the riders
are allowed to get on track (which is illustrated by active output signal y2). At
the same time, a starting tape is being prepared (a "ready" position of the tape
is illustrated by active signal y4). Simultaneously, a safety mode is turned on,
which means that unauthorised persons are not permitted on to the track (only
the riders are allowed to be on the track). The mode is induced by active output
signal y1.

 

P1 

P3 P4 

P5 

P7 

P8 

T1 

T2 

T3 

T5 

T4 

x1 preparation to the heat (referee) 

(ready for the heat) 

y4 starting tape is 

being prepared 
y2 gate to the track 

is being opened 

x2 

gate to the track   

is being closed (y3) 

x3 start of the race (referee) 

y5 turning on the 

chronometer 

calculating the time 

x4 end of the race 

y2 gate to the pits is being opened P9 

y3 gate to the pits is being closed 

P2 

T7 

y1 safety mode (only 

riders are allowed  

to be on the track) 

P6 y6 starting tape is going up 

y7 turning off the chronometer 

calculating the time of the race 

T6 x5 all riders in the pits, the track is empty 

P10 

Fig. 2.2. Interpreted Petri net PN1
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When all the riders racing in a heat enter the track (which is signalled with
x2), the pit gate is closed (y3). Waiting for the heat to start is the subsequent
phase. Signal x3 indicates that the starting button has been pushed by the race
referee, which results in turning on a chronometer calculating the time of the race,
(signal y5) and raising the starting tape (y6). The finish of the race is signalled
with condition x4. The chronometer is turned off, next the pit gate is opened.
When all the riders leave the track and get to the pits (active condition x5), the
gate is closed and next the safety mode is turned on. The procedure of a single
heat is finished, and the system goes to the standby mode, waiting for the next
race.

The system was described by Petri net PN1 shown in Fig. 2.2. The presented
controller, from the formal point of view, is a digital automaton with five input
signals, seven output signals and ten local states.

2.1.2.1. A Macronet

For complex control systems described with Petri nets, the reduction methods
which allow simplification of the initial structure are frequently used. For this pur-
pose, the feature of hierarchy of Petri nets can be exploited to create a macronet.
This means that fragments of the initial Petri net are replaced with macroplaces.
The operation may simplify considerably the analysis (or decomposition) of a given
net, not affecting the final result.

 

M1 

M3 M4 

M7 

T1 

T4 

T7 

M2 

P1 

P3 P5 

 
P4 

P8 P9 P10 

P2 M5 M6 P6 P7 

T3 

Fig. 2.3. Macronet MN1 for Petri net PN1
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The determination of a macronet is carried out with the "descending structural
method" (from generalities to details), obtaining a base net and a set of mutually
nesting subnets (Banaszak et al., 1993). A detailed description of the reduction
of Petri nets and the determination of macronets can be found in the literature
(Peterson, 1981; Murata, 1989; Karatkevich, 2008). Figure 2.3 presents macronet
MN1 for Petri net PN1. The sequential fragments of the net were replaced with
macroplaces. The resultant macronet MN1 is a condensed version of net PN1,
maintaining its features and properties. The reduction allowed the significant
decrease of the initial form of the Petri net. Structure PN1 consists of 10 places,
whereas its reduced equivalent includes 7 macroplaces (noted with symbol M ,
other frequently used symbol is MP ). The figure demonstrates how places of
initial net PN1 form sequential macroplaces in macronet MN1 (e.g., macroplace
M7 includes places P8, P9, P10).

2.1.3. A Transition System

Petri nets were developed primarily to analyse sequential and concurrent processes
which take place in a designed discrete system. Most frequently, the first step in
the examination of Petri net properties (liveness, safety) is to determine the reach-
ability graph (other names - a marking graph or a graph of reachable markings).

The structure is determined on the basis of the initial Petri net or its con-
densed version, i.e. a macronet (the representation of a Petri net by a macronet
allows shortening the concurrency analysis, which was shown in (Kovalyov, 1992;
Adamski et al., 2005; Karatkevich, 2007)). The formation process of a reachabil-
ity graph is by the analysis of alterations in net marking when the transitions are
ready to be fired. The values are described in the form of a graph whose vertices
respond to a set of places marked in a given state, whereas its edges determine the
fired transitions (Murata, 1989; Adamski and Chodań, 2000; Karatkevich, 2008).
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Fig. 2.4. Marking graph for macronet MN1
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Figure 2.4 presents a graph of markings for macronet MN1. The structure
illustrates basic relations which occur in the considered automaton. As it results
from the figure, places M2, M3 and M4 are marked in the same macrostate. It
means that the three fragments are performed concurrently (Murata, 1989; Ro-
guska, 2001).

A reachability graph of a Petri net is a transition system, where global states
(vertices of a marking graph) determine concurrency relations between particular
local states. The system illustrates alterations in global states whose values are
determined by subsequent transitions. The detailed analysis of the concurrency
between particular states may be inconvenient. The next stage in the process of
examining the concurrency of a Petri net may be the determination of a concur-
rency graph or a concurrency hypergraph which is proposed and defined in the
work (Chapter 5).

2.1.4. Local States, Global States, Concurrency Relations

Discrete systems are particularly useful for describing concurrent phenomena
(Banaszak et al., 1993). Sequential and parallel processes may be easily presented
by means of concurrency graphs or hypergraphs, which are discussed in more detail
in the subsequent chapters of the book. Local states of the structures respond to
places (or macroplaces) of a Petri net, whereas global states determine concurrency
relations between local states.

The examination of the concurrency in discrete systems described by Petri
nets is realised on the basis of a concurrency graph (Adamski, 1990). A concur-
rency graph is most frequently determined on the basis of a marking graph of
a Petri net. Its vertices correspond to places (or macroplaces) of the initial Petri
net, whereas the edges illustrate the concurrency between these places. If there is
an edge between two places, the two fragments may be executed independently.
Analogically, the lack of an edge between two vertices means that the places are
mutually dependant and cannot be performed simultaneously.

Another frequently examined relation between Petri net states is a sequen-
tiality relation. In a sequentiality graph (also called a non-concurrency graph or
a consequency graph) there is an edge between these places of a Petri net which
are not concurrent. The book considers regular Petri nets in which a sequentiality
graph is a complement to a concurrency graph, and on the contrary: a concurrency
graph may be determined as a complement to a sequentiality graph.

Incidence matrix AGMN1
of a sequentiality graph, for the analysed net, is

presented in Fig. 2.5. The seven vertices represent the macroplaces in net MN1.
The connections (i.e., edges in the graph) between the vertices determine the
concurrency relation.

A relation between a marking graph and a concurrency graph is interesting in
terms of the analysis and decomposition of a Petri net. In its structure, a marking
graph stores the information about all the marked places in a given global state
and connections with other global states (transitions between these states). This
information disappears when a concurrency graph is determined. It describes con-
currency relations between at most two local states. Concurrency determination
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M1 M2 M3 M4 M5 M6 M7

AGMN1
=



0 1 1 0 0 0 0
0 1 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 0 0 1 0
0 1 0 0 0 0 1
0 0 1 1 0 0 0
0 0 0 0 1 1 0



E1
E2
E3
E4
E5
E6
E7

Fig. 2.5. Incidence matrix of a concurrency graph for macronet MN1

between more than two states involves the need for the determination of maximum
cliques in a concurrency graph, i.e., de facto the retrieval of information which has
already been stored by a marking graph. Classical decomposition methods of
Petri nets are generally limited to the application of traditional methods based
on undirected graphs. Therefore a notion of a concurrency hypergraph is defined
in this book. Although the concept appeared in the author’s former publications
(Wiśniewska and Adamski, 2006), neither a formal definition nor the area of appli-
cation were determined. A concurrency hypergraph stores all information about
global states posed by a marking graph. What is more, there is no need to per-
form any additional transformations to determine the edges since the values are
suitably stored by a marking graph. A hypergraph is defined in Chapter 5, which
comprises definitions and theorems introduced in the book.

2.2. Concurrent Automata

A concurrent automaton is an abstract model of a discrete system which may be
present simultaneously in one or several local states (Banaszak et al., 1993). An
automaton is a very useful device to describe concurrent discrete systems, which
are realised with the use of digital systems. An interpreted Petri net is useful
to represent a concurrent automaton (Pardey et al., 1994; Kozłowski et al., 1995).
Local states of an automaton are reflected by the places of an interpreted Petri net,
and events of a discrete system (alterations of states) are illustrated by transitions.
Figure 2.6 presents a general model of a concurrent digital automaton of n binary
inputs and m binary outputs.

2.2.1. A Discrete Binary System

A discrete binary system is an indirect form of the representation of a concurrent
discrete system which is executed in the implementation process of a concurrent
automaton in digital systems (Adamski, 1990). Such a system is formed by en-
coding each global state of a net with the use of binary signals. Unlike a digital
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Fig. 2.6. General model of a concurrent digital automaton

automaton, a concurrent automaton may be present in more than one local state,
therefore in the encoding process all concurrent relations occurring in the system
must be considered.

Various encoding options are possible, depending on the assumed strategy of
optimisation. The simplest method is one-hot), where each place of an interpreted
Petri net is described with a binary value „1” (when a local state is active) or „0”
(for an inactive local state). The code of a global state is determined as the con-
catenation of the values of all components of local states. In case of realisation of
the system in digital circuits, such an approach extorts the application of a gnum-
ber of flip-flops equal to all the local states. It is inefficient particularly in case
of nets containing a relatively considerable number of places in the sequentiality
relation.

Another, widely applied encoding method of the states of a concurrent au-
tomaton is a separate encoding of state machine components (subnets) incorpo-
rated in an initial interpreted Petri net. Each SMC forms an independent se-
quential system, which is formed as a result of a parallel decomposition of the
interpreted Petri net (for a detailed description of a subnet as well as the whole
decomposition process see Chapters 5 and 6). Internal states of each of the ob-
tained subnets may be encoded independently, with the use of traditional encoding
methods (e.g., natural binary code, Gray’s code). What is more, generally known
optimisation algorithms may be applied to encoding, such as Espresso method,
NOVA or JEDI (Rudell, 1989; Sentovich et al., 1992; Shi and Brzozowski, 1992).

The method of encoding under consideration is particularly useful for the
automata realisation in PAL-type structures (Kania, 2004). The fundamental
advantage of a concurrent digital automaton developed in such a way is a smaller
number of flip-flops than in the case of encoding with "one-hot" method (Adamski,
1990; Banaszak et al., 1993).

The prepared discrete binary system may be implemented with the use of
digital systems. The ways of realisation of the interpreted Petri net with the ap-
plication of the described encoding methods are presented in the next Subchapter.
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2.2.2. The Realisation of a Petri Net in the Form of Digital Systems

The Subchapter presents alternative methods of the realisation of a concurrent
automaton described with an interpreted Petri net in digital systems. A general
idea as well as the most important aspects of particular solutions are discussed.
A detailed description of the manner of the implementation of an interpreted Petri
net is discussed in Subchapter 6.1.3.

2.2.2.1. The Implementation of a Concurrent Automaton with "One-Hot"
Encoding

A concurrent automaton, in which the "one-hot" encoding method was used, is
realised in digital systems as a single block. Each local state is represented by one
flip-flop, value "1" refers to an active state, value "0" - inactive state. The transi-
tions between the particular states are realised with the use of combinational logic,
with the regard to binary values of the input signals. The state of outputs may
be conditioned by the values of active inputs and local states (Mealy-type outputs
(Mealy, 1955)), or may depend exclusively on the current values of local states
(for Moore-type outputs (Moore, 1956)). The idea of a concurrent automaton
with "one-hot" encoding is demonstrated in fig. 2.7.

 

COMBINATIONAL LOGIC 

FLIP-FLOPS (REGISTRY) 

x 
y 

Fig. 2.7. Schematic diagram of a concurrent automaton with "one-hot" encoding

The main disadvantage of a "one-hot"-encoded automaton is the number of
flip-flops which is closely related to the number of local states. Moreover, the
concurrency of local places, in case of such encoding, definitely hinders the organ-
isation and storage of outputs as structural memory, since it would be possible
then to request the access to various memory cells (microinstructions) simultane-
ously (when more than one local state is active). Therefore, the frequently used
solution involves parallel encoding (concurrent fragments of a net are encoded in-
dependently within a mutual encoding vector) or the realisation of a concurrent
automaton in the form of a modular digital system (decomposition of a concurrent
automaton into sequentially interlinked classical automata).
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2.2.2.2. The Implementation of a Concurrent Automaton with Parallel
Encoding

Modular parallel encoding of a concurrent digital automaton is based on a par-
allel decomposition of a discrete system. In the process, a concurrent automaton
described by an interpreted Petri net is divided into independent concurrent sub-
nets (state machine components). In the encoding process, each of the resultant
subnets is treated independently, with the use of generally known encoding meth-
ods of classical sequential automata (Finite State Machine). For the places which
occur in several subnets, superposition of codes occurring in subnets is performed
(Banaszak et al., 1993).
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Fig. 2.8. Schematic diagram of a concurrent automaton with parallel encoding

The basic advantage of a concurrent automaton with parallel encoding is the
reduction of the number of flip-flops necessary for the system implementation,
when compared to "one-hot" encoding. The total number of flip-flops depends
on the applied method of encoding of the internal states of particular subnets.
A schematic diagram of a concurrent automaton with parallel encoding is presented
in Fig. 2.8 (it has been assumed that the system consists of k-parallel subnets).

2.2.2.3. The Implementation of a Petri Net in the Form
of a Modular Digital System

The last method of the implementation of a concurrent automaton presented in the
book is the realisation of a system after a parallel decomposition, with the use of
independent sequential automata. A parallel decomposition is described in details
in Chapter 6, this chapter includes only a brief, general idea of the implementation
of a prototyped system in digital devices.

The discussed method of the realisation of a concurrent automaton is based
on parallel encoding. First, a concurrent automaton described by an interpreted
Petri net is decomposed into SMCs. Next, each of the obtained subnets is treated
as an independent sequential automaton, where it is indispensable to ensure the
communication between particular automata in order to maintain the concurrency
relation (Adamski, 1991; Banaszak et al., 1993; Adamski and Barkalov, 2006).
Moreover, an independent realisation of a system in the form of sequential au-
tomata results in the possibility to organise outputs of particular subnets in the
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form of a memory (Wiśniewski, 2009). Thus, the concurrent fragments of a net are
supplied with an independent memory and so any possible conflicts of the access to
particular macrooperations are prevented. A schematic diagram of the discussed
method of the implementation of a concurrent automaton in digital systems is
presented in Fig. 2.9 (it has been assumed that the system was decomposed into
k-parallel subnets).
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Fig. 2.9. Schematic diagram of a modular digital system



Chapter 3

UNDIRECTED GRAPHS AND HYPERGRAPHS

3.1. Graphs

The research on the theory of graphs dates back to the 16th century. Leonhard
Euler, a Swiss mathematician and physicist who formulated the first theorem, is
regarded to be the pioneer of the field. His inspiration came from the desire to find
a path enabling a walk around Królewiec (Kaliningrad) in such a way that each
bridge would be crossed just once. Euler proved that it was impossible. In his
solution, the mathematician illustrated the problem with a graph, simultaneously
formulating a general mathematical theorem connected with the graph cohesion.
This example demonstrates the practicality of the theory of graphs, which are used
today in numerous fields of science (Wilson, 1979; Harary, 1994).

Formally Graph G is defined by a pair:

G = (V,E), (3.1)

where:
V={v1, . . . , vn}, is a finite, non-empty set of vertices;
E={E1, . . . , Em}, is a finite set of unordered pair of vertices, called edges (Berge,
1973). Exemplary graph G1 is presented in Fig. 3.1.
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Fig. 3.1. Exemplary graph G1
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The presented graph consists of n=6 vertices: V={v1, . . . , v6} andm=7 edges:
E={E1, . . . , E7}. According to the presented definition, the edges form a set of
unordered pairs of vertices. In the considered example: E1={v1, v2}, E2={v2, v3},
E3={v3, v4}, E4={v2, v4}, E5={v2, v6}, E6={v1, v6} and E7={v5, v6}.

It should be clearly stated here, that any descriptions or definitions connected
with the graphs mentioned in this book refer to undirected graphs, in which the
set of edges consists of unordered pairs of vertices, as opposed to directed graphs,
whose edges are composed of ordered pairs of vertices.

One of the methods of graph representation is an incidence matrix, with rows
referring to edges, and columns referring to graph vertices. If a matrix element
equals 1, the i-th edge (i ∈ 1, . . . ,m) is incident to the j-th vertex (j ∈ 1, . . . , n).
Otherwise, the element equals 0:

A =
{

1 if vj ∈ Ei

0 if vj /∈ Ei
, (3.2)

Incidence matrix A1 for graph G1 is shown in Fig. 3.2. Since graph G1 comprises
7 edges, matrix A1 has 7 rows. Analogically, six vertices are represented by six
columns of matrix A1.

v1 v2 v3 v4 v5 v6

A1 =



1 1 0 0 0 0
1 0 0 0 0 1
0 1 1 0 0 0
0 1 0 1 0 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 0 0 1 1



E1
E2
E3
E4
E5
E6
E7

Fig. 3.2. Incidence matrix of graph G1

Another widely used representation of graphs is a neighborhood matrix. In
this case, it is a symmetric matrix including relations between particular vertices.
The entry in the i-th row and j-th column of the matrix determines the number
of edges joining the i-th and the j-th vertices.

Neighborhood matrix N1 for graph G1 is presented in Fig. 3.3.
The most important definitions connected with the graph theory which are used
in the work are presented below (Berge, 1973; Korzan, 1978; Wilson, 1979; Harary,
1994).

Definition 3.1. Subgraph P of graph G is a graph formed by removing vertices
or edges from graph G.

For example, subgraph P1 consisting of n=6 vertices: V={v1, . . . , v6} and
m=6 edges: E={E1, E2, E3, E4, E6, E7} may be obtained by removing edge E5
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v1 v2 v3 v4 v5 v6

N1 =


0 1 0 0 0 1
1 0 1 1 0 1
0 1 0 1 0 0
0 1 1 0 0 0
0 0 0 0 0 1
1 1 0 0 1 0


v1
v2
v3
v4
v5
v6

Fig. 3.3. Neighborhood matrix of graph G1

from graph G1. Other examples may be: subgraph P2, comprising three vertices
{v1, v2, v6} and three edges {E1, E5, E6}, as well as subgraph P3 consisting of the
same vertices as P2 but including only two edges E1 and E6.

Definition 3.2. Complete graph Kn is a graph where each of n vertices is
connected by an edge with all the remaining vertices. The number of edges in
a complete graph equals:

mKn
= n ∗ (n− 1)

2 . (3.3)

An example of a complete graph is subgraph P2, presented above (see Def-
inition 3.1). In this case all three vertices are joined with each other by edges.
According to the definition, the total number of edges in such a subgraph equals
mK3=3 ∗ (3− 1)/2=3. Indeed, subgraph P2 consists of three edges: {E1, E5, E6}.

Definition 3.3. Clique Cl is a subnet of vertices of graph G, where each two ver-
tices are connected with an edge. In other words, clique Cl is a complete subgraph
of graph G.

The determination whether there is a clique in a graph of a given size, is an
NP-complete problem. There is no algorithm enabling the determination of all
the cliques in a graph in a polynomial time (Berge, 1973; Harary, 1994).

An example of clique Cl1 in graph G1 is subgraph P2. Additionally, graph
G1 contains one more clique consisting of three vertices: Cl2={v2, v3, v4}.

Definition 3.4. The complement of graph G = (VG, EG) is graph G =
(VG, EL), of the same set of vertices VG, and the same set of edges EL, which
is the complement of set EG. It means that there is an edge between vertices of
graph G if and only if there is no edge between these vertices in graph G.

The complement of graph G1, presented in Fig. 3.4, is graph G1, which, just
as graph G1 contains six vertices: V={v1, . . . , v6}. The edges in graph G1 occur
only when there are no connections between vertices of graph G1, and so the set of
edges in G1 consists of eight elements: EL={E8, . . . , E15}. It is worth mentioning
that the total number of edges in graphs G1 and G1 is equal to the number of
edges of a complete graph of V=6 vertices, that is mK6=15.
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Fig. 3.4. Graph G1 (the complement of graph G1)

Definition 3.5. Vertex cover of graph G = (V,E) is set V ′ ⊆ V containing
vertices incidental to each graph edge. The smallest subset of vertices of a graph
incident to all the graph edges is called the smallest vertex cover.

Exemplary graph vertex cover is shown in Fig. 3.5 (a).

Definition 3.6. Edge cover of graph G is such a subset E′ ⊆ E of its edges
in which each vertex of graph G is incident to at least one edge from this subset.
The smallest subset of graph edges incident to all its vertices is called the smallest
edge cover.

An exemplary graph cover is shown in Fig. 3.5 (b).
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Fig. 3.5. Exemplary graph cover a) vertex cover b) edge cover

Definition 3.7. Graph coloring or graph vertex coloring is the assignment
of one selected color to each graph vertex such that no two adjacent vertices (i.e.,
such vertices which are joined by an edge) share the same color.
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Definition 3.8. Chromatic number χ(G) is equal to the smallest number of
colors which the graph can be colored with (i.e., the smallest possible k-coloring of
a graph).
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Fig. 3.6. Coloring of G1

Figure 3.6 demonstrates one of the possible ways of coloring of G1. In the
presented example the smallest possible number of colors the graph can be colored
with equals χ(G1)=3. The first color was used for vertices v1, v3 and v5, the
second color was used for v2, whereas the third color for v4 i v6.

The determination of a chromatic number (i.e., finding a solution with the
smallest number of colors) is an NP-complete problem. As in the case of graph
covering, there are numerous methods of graph coloring (exact, stochastic etc.).
The basic algorithms of graph coloring are described in Chapter 4.

Definition 3.9. A color class is a set of all the graph vertices marked with the
same i-th color.

Definition 3.10. A compatibility class Ci (an independent set) is a set
of graph vertices, which are not connected by any edge. Compatibility class Ci is
called a maximum (or a maximal independent set) if there is no class Cj

such that Cj ⊃ Ci.

Unlike the color classes, various compatibility classes may contain the same
graph vertices. Thus it means that a color class constitutes simultaneously a set
(or a subset) of a graph compatibility class, however, the reverse dependency need
not be true.

Definition 3.11. A set of compatibility classes CC is a set of all compatibility
classes of graph CC={C1, . . . , CK}.

For the coloring of G1 shown above there exist K=5 independent sets
CC={C1, . . . , C5}. Particular classes include the following vertices: C1={v1,v3,
v5}, C2={v1, v4, v5}, C3={v2, v5}, C4={v3, v6}, C5={v4, v6}. Therefore, classes
C1 and C5 refer to the first and third color classes of the graph, whereas the
only vertex marked with the second color is simultaneously a subset of the third
compatibility class.
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3.2. Hypergraphs

The notion of a hypergraph was first used in the second half of the previous century.
In 1973, a French mathematician, Claude Berge, published a monograph "Graphs
and Hypergraphs" in which he formalised and uniformed the basic definitions of
the theory of hypergraphs.

From the formal point of view, a hypergraph is an extension of the idea of
a graph. Its edges, called hyperedges, may be incident to an arbitrary number of
vertices (Berge, 1973).

Hypergraph H is defined by a pair:

H = (V,E), (3.4)

where:
V={v1, . . . , vn}, is an arbitrary, non-empty set of vertices;
E={E1, . . . , Em}, is a set of hypergraph edges, i.e., a subset of set P (V ) of all the
possible non-empty sets, elements of which belong to V .

An example of hypergraph H1 is presented in Fig. 3.7.
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Fig. 3.7. Exemplary hypergraph H1

There are m=3 hyperedges: E={E1, . . . , E3} in hypergraph H1. According
to the presented definition of a hypergraph, each hyperedge is a non-empty set of
vertices. For H1 edge E3 contains two vertices, whereas hyperedges E1 and E2
are incident to three vertices. This is the basic difference in comparison to graphs,
edges of which may be incident to maximum two edges. The presented hypergraph
is a generalisation of graph G1. Edges E1, E5 and E6 form a clique in graph G1,
and in the hypergraph they are represented by single hyperedge E1. Analogically,
edges E2, E3 and E4 refer to hyperedge E2.

In the incidence matrix A of a hypergraph, the rows refer to hypergraph
edges and the columns refer to its vertices. If a matrix element equals 1, i-th edge
(i ∈ 1, . . . ,m) is incident to j-th vertex (j ∈ 1, . . . , n). Otherwise the element
equals 0:
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A =
{

1 if vj ∈ Ei

0 if vj /∈ Ei
, (3.5)

Incidence matrix A1 for hypergraphH1 is shown in Fig. 3.8. Since hypergraph
H1 consists of three edges, matrix A1 has three rows. Analogically, six vertices
are represented by the columns of matrix A1.

v1 v2 v3 v4 v5 v6

A1 =

 1 1 0 0 0 1
0 1 1 1 0 0
0 0 0 0 1 1

 E1
E2
E3

Fig. 3.8. Incidence matrix for hypergraph H1

Definition 3.12. A hypergraph in which no edge contains any other edges is called
a simple hypergraph. From a formal point of view, hypergraph H = (V,E) is
a simple hypergraph if for an arbitrary hyperedge Ei ∈ E, there is no hyperedge
Ej ∈ E such that Ei ⊂ Ej.

Definition 3.13. The complement of hypergraph H = (V,E) is hypergraph
H = (V,E) of the same set of vertices as the hypergraph H and the set of hyper-
edges E, being the complement of set E. Vertices of hypergraph H are connected
by a hyperedge if and only if the vertices are not connected by a hyperedge in
hypergraph H.

Figure 3.9 presents a complement of hypergraph H1 shown in Fig. 3.7. Hy-
pergraph H1 consists of E=5 edges, two of which (E4 oraz E5) are incident to
three vertices, whereas the remaining three contain two vertices each.

Definition 3.14. For each hypergraph H = (V,E), there is dual hypergraph
H*=(E, V ), edges of which correspond to vertices of hypergraph H, whereas ver-
tices refer to its edges. The incidence matrix A∗ of the dual hypergraph H∗ is
a transposed matrix A of hypergraph H. Analogically, matrix A of hypergraph H
is a transposed matrix A∗ of hypergraph H∗.

Definition 3.15. A transversal (hitting set, vertex cover) of hypergraph
H is set T ⊆ V containing vertices incident to each edge of the hypergraph (Berge,
1989; Eiter and Gottlob, 2002). A minimal transversal is such a transversal
which contains no other transversal of hypergraph H (Eiter and Gottlob, 1995).

Definition 3.16. The smallest transversal τ(H) of hypergraph H is a transver-
sal with the smallest number of vertices of all the transversals of hypergraph H.
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Fig. 3.9. Complement of hypergraph H1

Definition 3.17. The exact transversal D of hypergraph H is set D ⊆ V
of vertices of hypergraph H, which is incident to all edges of hypergraph H, where
each edge is incident to exactly one vertex of set D.

Definition 3.18. The smallest exact transversal δ of hypergraph H is an ex-
act transversal containing the smallest number of elements of all the exact transver-
sals of hypergraph H.
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Fig. 3.10. Transversals of hypergraph H1

Fig. 3.10 presents all possible smallest transversals of hypergraph H1. In the
presented example, there are four smallest transversals: τ1={v2, v5}, τ2={v2, v6},
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τ3={v3, v6} and τ4={v4, v6}. It is worth adding that three out of the above cov-
erings are simultaneously the smallest exact transversals (τ1, τ3 and τ4), since
each of the remaining vertices is incident to one edge. In the case of τ2, vertices
v2 and v6 are incident to the same edge E1, so that they do not form an exact
transversal. More information connected with transversals and basic methods of
their determination may be found in Chapter 4.

There is no direct relation between the vertex cover of graphs and transversals
of hypergraphs. The above considerations imply that the smallest cover of graph
G1 is realised by three vertices, whereas the smallest transversal is a two-element
set in the corresponding hypergraph H1. The difference results from the hyper-
graph structure, in which hyperedge E2 includes both vertex v2, and v4. More
information on the relation between graphs and hypergraphs may be found in
Subchapter 4.3.
Definition 3.19. An essential vertex - is the only vertex that belongs to a given
edge. Essential vertices must be a part of each transversal (Rudell, 1989; DeMicheli,
1994).
Definition 3.20. An exact transversal hypergraph (xt-hypergraph) is a hy-
pergraph in which all minimal transversals are also exact transversals.

The determination of the first and the subsequent exact transversals in a hy-
pergraph is connected with the exponential calculation complexity. It has been
proved (Eiter, 1994; Elbassioni and Rauf, 2010) that the determination of the
first and the subsequent transversals in an exact transversal hypergraph may be
performed in polynomial time. Moreover, it has been revealed that determin-
ing whether a given hypergraph is an exact transversal hypergraph may also be
performed in polynomial time.

All the problems connected with the calculation complexity of algorithms
discussed in the book are interpreted as time complexity of an algorithm, which
is determined as a relation between the size of input data and the number of
operations performed by the algorithm.
Definition 3.21. A c-exact hypergraph is a hypergraph in which a pair of com-
patible vertices (not connected with an edge) belongs to at least one exact transver-
sal.

A c-exact hypergraph is a generalisation of an exact transversal hypergraph.
In this case, the condition that each minimal transversal is also an exact transversal
does not have to be satisfied. However, any two arbitrary vertices which are in
a compatibility relation (i.e., not connected by an edge) must belong to at least
one exact transversal. Hence, each vertex of the c-exact hypergraph must belong
to at least one exact transversal.

The notion of a c-exact hypergraph has not occurred in the liter-
ature so far and has been introduced for the needs of the book. It is
shown in Chapter 5 that the determination of the first and the subse-
quent transversals for a c-exact hypergraph is connected with a poly-
nomial calculation complexity, as in the case of the exact transversal
hypergraph.
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Hypergraph H1, presented in Fig. 3.7, is a c-exact hypergraph. Each pair of
vertices which are compatible is included in an exact transversal. For example,
vertices v1 and v3 are compatible. They do not form a transversal (edge E3 not
covered) thus, there must be a vertex which is exclusively incident to this particular
edge. In fact, vertex v5 is complementary to elements v1 and v3, which together
form an exact transversal. Hypergraph H1 on the other hand, is not an exact
transversal hypergraph where all minimal transversals are also the exact ones.
The transversal formed by vertices v2 and v6 is minimal, but not exact.

A c-exact hypergraph has very interesting properties. The removal of any
arbitrary vertex (along with incidence edges and other vertices belonging to these
edges) results in the reduced hypergraph which is also c-exact. Moreover, the
complement to a c-exact hypergraph also constitutes a c-exact hypergraph. This
fact is of a great importance for the relations describing two complementary rela-
tions, such as compatibility - incompatibility, concurrency - sequentiality, etc. The
exemplary hypergraph H1, presented in Fig. 3.9, is a c-exact hypergraph since it
constitutes a complement to hypergraph H1.

The detailed analysis of the above-mentioned relations and the sketches of the
theorems and proofs are presented in Chapter 5.

Definition 3.22. An edge cover of hypergraph H is a set of hyperedges inci-
dent to all vertices of the hypergraph.

In the theory of hypergraphs, an edge cover used as a mathematical appara-
tus is definitely less frequent than transversals. It results from the fact that an
edge cover of hypergraph H may be replaced with a notion of a vertex base of
a dual hypergraph H*. Therefore in practice, the research connected with hyper-
graph covering is reduced to finding hypergraph transversals (or dual hypergraph
transversals, if there is a need).

Definition 3.23. Vertex coloring of a hypergraph, also referred to as strong
hypergraph coloring or merely hypergraph coloring, is the assignment of a se-
lected color to each hypergraph in such a way that two adjacent vertices (i.e., such
vertices which are joined by a hyperedge) are of a different color.

There is a close relation between exact transversals and hypergraph color-
ing. For c-exact hypergraphs, coloring may be carried out with the help of exact
transversals. Then, vertices combined in the same exact transversal are marked
with the same color (if a given vertex occurs in several transversals, it is removed
from other exact transversals). This problem is not widely discussed in the book,
however, it may serve as a base for the further research (taking into account the
polynomial character of the process of determining subsequent exact transversals).

Definition 3.24. Edge coloring of a hypergraph, also referred to as weak
coloring of a hypergraph, is the assignment of a selected color to each hyper-
graph edge in such a way that two neighboring edges (i.e., the ones that contain
common vertices) are of a different color (Kubale et al., 2006).
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The works and research presented in the book focus on strong coloring of
hypergraphs. Therefore all terms and issues connected with hypergraph coloring
refer to strong hypergraph coloring.
Definition 3.25. A strong chromatic number or merely chromatic number
χ(H) is the value equal to the smallest number of colors the hypergraph vertices
may be colored with.
Definition 3.26. A color class is a set of all the vertices of a hypergraph marked
with the same color.

Definition 3.27. A compatibility class Ci (an independent set) is a set of
these vertices of a hypergraph which are not connected by a hyperedge. A com-
patibility class Ci is called a maximum compatibility class (or a maximal
independent set), if there is no class Cj such that Cj ⊃ Ci (Eiter, 1994).
Definition 3.28. A set of compatibility classes CC is a set of all compatibility
classes of hypergraph CC={C1, . . . , CK}.

It should be clearly stated that definitions 3.9 and 3.26 as well as 3.10 and 3.27
are interrelated. In practice, the set of color classes of a graph is equal to the set of
color classes in a corresponding hypergraph. Analogically, the set of independent
classes in a graph corresponds to the set of independent classes in a hypergraph.
A detailed analysis of the dependencies between graph and hypergraph algorithms
is described in Subchapter 4.3.

Fig. 3.11 presents an exemplary coloring of hypergraph H1. The smallest
possible number of colors has been used, the chromatic number equals χ(H1)=3.
There is a close connection between graph and hypergraph coloring. The presented
results of the coloring of hypergraph H1 are identical to the results obtained for the
coloring of graph G1. It results from the fact that there is a relationship between
coloring and cliques occurring in a graph. Vertices comprised in a given clique
cannot be colored with the same color, therefore naturally the same relationship
occurs for hypergraph edges. A detailed comparison of graph and hypergraph
coloring is presented in Chapter 4.
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Fig. 3.11. Example of hypergraph H1 coloring



Chapter 4

GRAPH AND HYPERGRAPH ALGORITHMS

The chapter presents mathematical methods of examining graph and hypergraph
structures including the determination of complements, coloring or covering. The
operations are the key elements of the decomposition methods for discrete systems,
developed in the book.

All the presented methods have been implemented with the use of
C++ (Kernighan and Ritchie, 1977; Stroustrup, 1986) and have been com-
bined in the Hippo system (the program is presented in Appendix A). There
are numerous methods of solving the same problem, e.g., various algorithms of
covering, coloring etc. (Cormen et al., 2001), therefore the work includes only
these methods which were realised and implemented in the Hippo system.

4.1. Mathematical Methods of Examining a Graph

4.1.1. A Graph Complement

According to Def. 3.4, a graph complement is a graph containing the same vertices,
but its edges occur between vertices which have not been connected in the primary
graph (Berge, 1973; Harary, 1994). It implies that one of the simplest methods
of the complement determination may be the application of the graph adjacency
matrix. Unlike the incidence matrix, it stores all information about the connections
between particular vertices, hence, in practice, finding the complement is reduced
to replacing the content of the matrix.

Formally, an algorithm to determine the complement of graph G may be
described as follows:

1. The presentation of graph G with the use of adjacency matrix N .

2. The replacement of the values of all the elements in matrix N from 1 to 0
and from 0 to 1, for elements lying above the diagonal of matrix N (elements
lying below the diagonal are filled symmetrically).

The obtained adjacency matrix N represents the values of graph G, which is
the complement of graphG. The graphical representation of the graph complement
is very intuitive. The formed graph G contains connections (edges) between these
vertices which are not adjacent in the initial graph G.
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Fig. 4.1. Graph G2

A complement of graph G2 shown in Fig. 4.1, will be determined as an exam-
ple. The presented graph consists of |V |=8 vertices and |E|=14 edges. In order
to improve legibility, the names of the edges have been ignored in the graphical
presentation, leaving merely the labels of particular vertices.

According to the presented algorithm, the first step is to determine the adja-
cency matrix. In the discussed example, it has eight rows and eight columns. The
adjacency matrix N2 of graph G2 is illustrated in Fig. 4.2.

v1 v2 v3 v4 v5 v6 v7 v8

N2 =



0 0 0 1 0 0 1 0
0 0 1 0 1 1 0 1
0 1 0 1 1 1 0 1
1 0 1 0 0 0 1 0
0 1 1 0 0 1 0 1
0 1 1 0 1 0 0 1
1 0 0 1 0 0 0 0
0 1 1 0 1 1 0 0



v1
v2
v3
v4
v5
v6
v7
v8

Fig. 4.2. Adjacency matrix of graph G2

Next, the complement of graph G2 is determined. The particular elements of
the adjacency matrix are modified. If a given element lies above the main diagonal
of the matrix, its value is altered (ones are replaced with zeros, whereas - zeros
with ones). Since the matrix is symmetric, the elements below the main diagonal
are modified simultaneously. The final form of adjacency matrix N2 for the graph
being the complement of graph G2 is presented in Fig. 4.3.
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v1 v2 v3 v4 v5 v6 v7 v8

N2 =



0 1 1 0 1 1 0 1
1 0 0 1 0 0 1 0
1 0 0 0 0 0 1 0
0 1 0 0 1 1 0 1
1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0
0 1 1 0 1 1 0 1
1 0 0 1 0 0 1 0



v1
v2
v3
v4
v5
v6
v7
v8

Fig. 4.3. Adjacency matrix N2 of graph G2

It results from matrix N2 that graph G2 contains |V |=8 vertices and |E|=14
edges. The total number of edges in graphs G2 and G2 should be equal to the
number of edges in a complete graph with eight vertices. The relation is satisfied
(mK8=|EG2 |+|EG2 |=28), which means that the complement has been determined
properly. The graphical illustration of the complement G2 is presented in Fig. 4.4.
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Fig. 4.4. Complement of graph G2

4.1.2. A Graph Vertex Cover

The problem of a vertex cover is reduced to finding a subset of vertices in such
a manner that each edge is incident to at least one vertex from this subset. The
smallest vertex cover is the smallest possible set of vertices realising the graph
cover. Finding the smallest vertex cover in a graph is classified as an NP-complete
problem (Berge, 1973). It means that the exact solution, allowing the smallest
vertex cover to be found in the polynomial time, is currently unknown. For small
graphs, the cover problem may be solved with the use of the backtracking algo-
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rithm. The method checks all possible combinations, therefore it gives the best
results, i.e., the smallest vertex cover in the graph. An essential disadvantage
of the backtracking algorithm is its computational complexity which is exponen-
tial. It means that in practice the method is limited to relatively small graphs.
In this case, the application of other solutions seems to be helpful. One of the
most efficient solution is the greedy algorithm, which finds a global result through
a local-decision-making process. Its greatest advantage is its computational com-
plexity (the method operates in a quasi-linear time) (Aho et al., 1974; Papadim-
itriou, 1994; Knuth, 1997). Unfortunately, the found solution is not always the
best one. What is more, it may happen that the algorithm gets stuck in a lo-
cal minimum (DeMicheli, 1994). The book presents these two methods of the
determination of a graph vertex cover in detail.

4.1.2.1. A Backtracking Algorithm

A backtracking algorithm searches the possible set of solutions (DeMicheli, 1994;
Sapiecha, 1999; Sysło et al., 1983). A vertex marked with the lowest value (ac-
cording to the lexicographic order) is selected and reduced from the set of graph
vertices. If the remaining set of vertices still remains the graph cover, and the
obtained result is better than the one found so far, the current cover becomes the
best one. In the subsequent stages, the algorithm recursively searches for the best
solution for all the vertices.
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Fig. 4.5. Graph G3

For graphG3, illustrated in Fig. 4.5, the set of vertices consists of five elements
V={v1, . . . , v5}. According to the presented algorithm, vertex v1 is selected for the
analysis as the first one. After the reduction, the graph consists of four vertices:
V 1={v2, . . . , v5}. Since the remaining elements still form a cover, the set becomes
the best currently found solution, thus V ′=V 1={v2, . . . , v5}. Next, vertex v2 is
removed, thus the vertex set is reduced to V 2={v3, . . . , v5}. The resulting set
does not form a cover since edge E1 is not incident to any vertex comprised in V 2.
Therefore, the algorithm comes back to the previous solution (V 1) iand continues
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searching for the cover, reducing the subsequent vertex, i.e., v3. The remaining
graph vertices form set V 3={v2, v4, v5} incident to all the edges. The solution is
better than the previous one, thus set V 3 becomes the best found solution. In the
subsequent phase, vertex v4 is reduced and only vertices V 5={v2, v5} remain in
the graph. Thus this set is a cover which is better than the previously found ones.
In the further stage, vertex v5 is eliminated, therefore V 6={v2}. The set does not
compose a cover, so solution V 5 remains the best cover.

The algorithm recursively comes back to the previous states, checking all
possible solutions. The subsequent stages are performed analogically to the ones
presented above. Eventually, set V 5 appears to be the best cover. The set contains
two vertices (v2 and v5), which are incident to all six edges of graph G3 (Fig. 4.6).
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Fig. 4.6. Vertex cover of graph G3

4.1.2.2. A Greedy Algorithm

The algorithm presented in the previous chapter always returns the best solution.
An essential drawback of the method is its exponential computational complexity,
which frequently means that the given problem may not be solved or the solution
may be obtained in an unsatisfactory time.

A greedy algorithm searches for a solution on the basis of the locally optimal
decision (DeMicheli, 1994; Sapiecha, 1999; Hoos and Stützle, 2000). It means that
in each step, the current best possibility is selected, and it does not matter if the
decision is globally optimal in a given moment (hence the name "greedy"). The
indisputable advantage of the algorithm is its computational complexity. However,
the method does not always find the best solution, i.e., the smallest vertex cover
of a graph.

The rule for a greedy algorithm is as follows:

1. Determine the value of the covering set V ′=∅. At the beginning the searched
set of the cover is empt, the vertices will be determined and added in the
subsequent cycles.
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2. Select an essential vertex, if such does not exist - select a vertex with the
largest degree. At this stage, the algorithm carries out a local selection of
the optimal solution. The essential vertex is selected (which has to be a part
of the searched cover). If there is no such vertex, a vertex incident to the
largest number of edges is selected for the further analysis. If there are more
than one solution (e.g., there are two essential vertices or two 0), then the
algorithm realises the selection according to the lexicographic order.

3. Add the selected vertex to the cover set V ′, and then remove the vertex from
the graph together with all edges incident to it.

4. Check if V ′ forms a cover, if not - repeat the algorithm from step 2. In this
step, set V ′ is checked. If the vertices comprised in the set form the searched
vertex cover, the algorithm finishes its operation. Otherwise, the method
undergoes another cycle in which the next local optimum is searched (i.e.,
the subsequent essential vertex or a vertex with the largest degree).

According to the presented scheme, searching for the cover with the greedy
method always starts with the determination of the value of set V ′=∅. Next, the
local minimum is searched through the selection of a vertex with the largest degree
(in the given graph, there exists no essential vertex). In the case of graph G3 there
are two vertices with the largest degree: v2 and v5. According to the lexicographic
order, element v2 is added to set V ′ and, simultaneously, removed from the graph
together with the edges incident to it (i.e., E1,E3 and E4). Thus, the graph has
been reduced to four vertices and three edges (Fig. 4.7).
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Fig. 4.7. Graph G3 after the first stage of the greedy algorithm

In the subsequent step, it is checked if set V ′ is the cover of graph G3. Since
the relation is not satisfied, the cycle is repeated. Again, there exists no essential
vertex, so a vertex with the largest degree is selected. Among the remaining ver-
tices, there exists only one vertex v5 incident to three edges, whereas the remaining
vertices are of the first degree. It means that v5 is added to V ′, and then it is
removed from the graph. Since set V ′ realises the vertex cover, the algorithm is
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finished. The obtained solution V ′={v2, v5} is simultaneously the smallest cover,
and the same result has been obtained for the backtracking algorithm.

v1 v2 v3 v4 v5 v6 v7

AZ =


1 1 0 0 0 0 0
0 1 0 0 1 0 0
1 0 1 0 0 0 0
0 0 1 0 0 1 0
1 0 0 1 0 0 0
0 0 0 1 0 0 1


E1
E2
E3
E4
E5
E6

Fig. 4.8. Incidence matrix AZ

The example presented below shows that although the greedy algorithm finds
a cover, it is not the smallest one. The analysis includes an exemplary graph
with incidence matrix AZ presented in Fig. 4.8. The graph has |V |=7 vertices
and |E|=6 edges. There exists a smallest vertex cover. The set consists of three
vertices: V ′={v2, v3, v4}. Such a solution may be obtained by applying the back-
tracking algorithm. However, in the case of the greedy algorithm, the result is
different, which is demonstrated below.

In the graph there exists no essential vertex, so in the first cycle of the greedy
method, a vertex with the largest degree is selected. In this case, it is vertex
v1, which is incident to three edges: E1, E3 and E5. The vertex is added to
the searched set V ′, whereas the graph is reduced. Both vertex v1, and all the
edges incident to it are removed. As a result of the reduction, there occurs a new
structure with an incidence matrix presented in Fig. 4.9.

v2 v3 v4 v5 v6 v7

A′Z =

 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 E2
E4
E6

Fig. 4.9. Incidence matrix AZ after the removal of vertex v1

Since the initial graph cover has not been found, the greedy algorithm repeats
the procedure of vertex selection. Again, there exists no essential vertex, so the
vertex of the largest degree is taken into account for further consideration. It
results from Fig. 4.9 that all the remaining vertices are first degree vertices, so the
next vertex to be reduced will be the one resulting from the lexicographic order,
i.e., v2. Continuing the procedure, the algorithm reduces vertex v3 in the next
step and v4 - in the last.
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As can be seen from the above considerations, the greedy algorithm returns
a set consisting of four vertices. The obtained result forms a graph cover which,
however, is not a minimal one. It results directly from the method itself in which
the decisions are exclusively made on the basis of local information. This is so in
the case of the selection of vertex v1, which indeed is incident to the largest number
of edges, although its selection prevented the global minimum to be obtained,
which, in the presented example, is a vertex cover consisting of three elements
V ′={v2, v3, v4}.

4.1.3. Graph Coloring

Graph coloring relies on marking all the graph vertices in such a way that the ver-
tices connected with an edge were not of the same color. This chapter includes the
presentation and comparison of most popular coloring algorithms (Kubale, 2002).
The first four methods are based on the sequential vertex coloring and they search
for an approximate solution. The advantage of such an approach is the compu-
tational complexity (the coloring process is reduced to a greedy determination of
subsequent vertices). Unfortunately, sequential coloring does not always returns
the best solution. The process of searching for the local optimum is improved
by vertex ordering algorithms (LF, SL, sometimes random ordering returns very
good results). By far the most effective graph coloring method is an exact method
checking all the possible solutions (backtracking algorithms). The algorithm al-
ways returns the best solution (in practice, the graph is colored with the use of
the smallest possible number of color classes), its basic disadvantage is its compu-
tational complexity of the exponential order.

4.1.3.1. Unordered Sequential Coloring

The unordered sequential coloring method browses the graph vertices one by one
assigning the smallest possible color to each vertex. Initially, the number of colors
k equals to zero. In the subsequent stages, as the vertices are marked, successive
labels are added.

The sequential coloring procedure is as follows:

1. Reset the colors of all the vertices and set the number of colors k=0. Initially,
the colors of all vertices are reset. What is more, variable k, storing the
number of currently used colors is reset.

2. Select the subsequent uncolored vertex vi out of set V . An uncolored vertex
is selected (according to the lexicographic order) for the analysis needs.

3. Assign the smallest possible color to vertex vi. If possible, a color with the
smallest index from the set of colors that have been already assigned to other
vertices is assigned to vertex vi. Otherwise, vertex vi is marked with a new
color, and value k is increased by one.
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4. Repeat steps 2 and 3 until all graph vertices are colored. Finally, all graph
vertices are marked with the use of k colors.
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Fig. 4.10. Graph G4

The presented algorithm has been illustrated by an example. Graph G4 shown
in Fig. 4.10 consists of |V |=6 vertices and |E|=6 edges. Initially k=0 and the colors
of all vertices are reset. According to the presented algorithm, vertex v1 is colored
first. Since the previous set of colors is empty, the vertex is marked with color 1.
The same value takes variable k, which stores the number of all used colors. In the
next stage, vertex v2 is selected for the analysis. The element is connected with
edge v1, therefore it cannot be marked with the first color. Consequently, value k
is increased, and v2 takes the second color.

The next phase is to mark vertex v3. Since the element is not connected with
v1 by an edge, it is colored with the smallest possible color, i.e., the first one, and
the general number of colors remains unchanged (k=2). A similar situation occurs
for vertex v4, which is colored with the same label as v1 and v3, since it is not
adjacent to these elements. Vertex v5 is a neighbor of both v2 and v3, therefore
it cannot be marked with any of the previously used colors. Thus, the general
number of colors is increased, and v5 is marked with the third color. The last
vertex v6 is connected with v1 and v4, and cannot be colored with the first label.
However, it is not a neighbor of v2, so it is marked with the second color. Finally,
graph G4 is divided into k=3 sets (color classes). Vertices v1, v3 and v4 are colored
with the first color, vertices v2 and v6, with the second color, whereas the third
color is used for vertex v5 (Fig. 4.11).

4.1.3.2. Random Ordered Coloring

Random ordered coloring of graph vertices is a process analogical to the sequential
coloring method. However, before performing the coloring process, the vertices are
randomly selected. The main idea of random selection of vertices is the possibility
to avoid local optima which frequently lead the algorithm to results which are not
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Fig. 4.11. Unordered coloring of graph G4

globally best, but simultaneously allow maintaining the computational complexity
at the same level as for the unordered sequential coloring.

Random ordered coloring may be divided into the following stages:

1. Order the vertices randomly. All the elements from set V are sorted in the
random order.

2. Reset the colors of all the vertices and set the initial number of colors k=0.

3. Select the subsequent uncolored vertex vi from set V according to the or-
der established previously. An uncolored vertex is chosen for the analysis
(according to the order established in point 1).

4. Assign the smallest possible color to vertex vi. If possible, the color with the
lowest index from the set of colors previously assigned to other vertices is
assigned to vertex vi. Otherwise, vertex vi is marked with a new color, and
value k is increased by one.

5. Repeat steps 3 and 4 until all the graph vertices are colored. Finally, all graph
vertices are marked with the use of k colors.

Let us suppose that the successive vertices: v6, v5, v2, v4, v3 and v1 have been
randomly selected for graph G4. According to the presented algorithm, element
v6 is marked with the first color. Then, vertex v5, which is not a neighbor of v6,
is chosen and therefore it is also classified to the first color class. The subsequent
vertex, i.e., v2 is connected with v5, by an edge, so the general number of colors
is increased, and v2 receives the second color. Vertex v4 is a neighbor of both v6
and v2, which means that it cannot be marked with any of the previously used
colors. Finally, it is added to the new color class, and the general number of colors
is increased and equals k=3. The subsequent vertex is v3. Since it is connected
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by an edge with v5, it cannot be classified to the first independent set. However,
it is not a neighbor of v2, and therefore it is finally marked with the second color.
The last vertex, v1, is connected by an edge with both v6 and v2, whereas it is
not a neighbor of v4, therefore it gets the third color. As a result of the coloring
process, three compatibility classes have been formed: C1={v5, v6}, C2={v2, v3},
C3={v1, v4}. Figure 4.12 illustrates the final result for the random ordered coloring
of graph G4.
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Fig. 4.12. Final result for the random ordered coloring of graph G4

The result of the random ordered coloring method is similar to the one for
the unordered coloring method. In both cases three color classes were obtained.
However, the random ordered coloring caused a uniform distribution of vertices in
all the compatibility classes which is essential for the further encoding of particular
elements (see Chapter 6).

4.1.3.3. Largest-First Coloring

The Largest-First coloring algorithm of a graph is based on a sequential marking
of all the vertices. However, unlike in the unordered method, elements from set
V are selected according to the number of neighbors (i.e., the degrees of vertices).
Therefore, vertices with the largest number of edges connecting them with other
elements of set V are marked in the first place. The algorithm does not change
the order during the whole coloring procedure, and thus the order of the vertices
established at the beginning remains unchanged.

The LF coloring method may be divided into the following stages:

1. Order the vertices by degree. All elements from set V are sequenced from
the vertex with the largest degree to the one with the smallest degree. If
two vertices are of the same degree, the lexicographic order decides about
the sequence.
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2. Reset the colors of all the vertices and establish the number of colors k=0.

3. Select the subsequent uncolored vertex vi from set V , according to the already
established order. An uncolored vertex is chosen for the analysis (according
to the sequence established in point 1).

4. Assign the smallest possible color to vertex vi. If it is possible, the color with
the lowest index from the set of colors already assigned to other vertices is
assigned to vertex vi. Otherwise, vertex vi is marked with a new color, and
value k is increased by one.

5. Repeat steps 3 and 4 until all the graph vertices are colored. Finally, all the
graph vertices are marked with the use of k colors.

For graph G4, LF coloring is carried out as follows. In the first stage, the
sequence of vertices is established. Since v2 is of the highest degree (3), it is
colored as the first one. Then, vertices v1, v4, v5 and v6, which are of the second
degree, are marked. Vertex v3, which is the neighbor of only one vertex, is colored
as the last one. Finally, the ordered set of vertices selected successively for coloring
with the LF method is as follows: {v2, v1, v4, v5, v6, v3}.

The coloring procedure itself is analogical to the unordered method. The
subsequent vertices are marked with the lowest possible label among the already
used colors. If there is no such possibility, the next color is added and value k is
increased. At the beginning, vertex v2 is colored with the first color, and variable
k takes the value 1. In the next stage, vertex v1 is selected for the analysis. It
cannot be marked with the first color since it is a neighbor of vertex v2. Therefore
the general number of colors is increased, and v1 gains the label with the second
color. The next analyzed vertex is v4. It is a neighbor of v2, so it cannot be
allocated to the first color class. However, the lack of mutual edge with v1 allows
for the assignment of the second color. Analogical coloring process takes place for
vertex v5. However, vertex v6 is marked with the first color, because there is no
edge connecting it with v2. The last element from set V , which does not yet have
a label, is vertex v3. The vertex is not a neighbor of neither v2 nor v6, therefore
the first color may be assigned to it. Eventually, the graph has been colored with
k=2 colors. It means that one less color class has been used than in the case of
unordered coloring. The result of LF ordered coloring is illustrated in Fig. 4.13.

4.1.3.4. Smallest-Last Ordered Coloring

The Smallest-Last graph coloring process is analogical to the LF coloring. Also
in this case the vertices are sorted and then colored according to the established
sequence. The basic difference is the process of ordering vertices. For SL method,
vertices with the smallest degree are successively removed from the graph together
with the edges incident to them. The operation is performed dynamically. The
degrees of the remaining vertices are calculated in each phase. The procedure is
repeated until all vertices and edges are removed from the graph. Finally, the
vertices are ordered in the sequence reverse to the process of their reduction.
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Fig. 4.13. Result of LF order coloring of graph G4

For example, for graph G4, the first reduced vertex is the one with the small-
est degree, i.e., v3. Also edge E4, which is incident to it, is reduced. In the
subsequent stage, the degrees of the vertices are calculated for the reduced graph,
and then a vertex neighboring the smallest number of vertices is selected, i.e., v5.
It is removed from graph G4 together with the edge incident to it, i.e., E3. The
presented process is repeated until the graph is reduced completely. In the sub-
sequent stages the following vertices are reduced: v1 (here, all the vertices are of
the second degree so lexicographic order is applied), v2, v4 and then v6. Finally,
the vertices are ordered reversely to the reduction process, therefore the sequence
of the coloring process is as follows: {v6, v4, v2, v1, v5, v3}.

The graph coloring is identical as for the earlier described methods. At the
beginning vertex v6 is marked with the first color. Then element v4 is analyzed.
Since it is a neighbor of v6, it obtains the second color. The next vertex, i.e., v2
is not connected by any edge with v6, therefore it is marked with the first color.
The procedure is performed for all the remaining vertices and finally the graph is
colored with the use of two colors. Vertices v2, v3 and v6 are marked with the first
color, whereas - v1, v4 and v5 with the second color. It means that the solution is
identical to the one obtained for LF coloring algorithm (Fig. 4.13).

4.1.3.5. Graph Coloring with the Use of Exact Algorithms

The sequential methods of graph coloring, presented in the previous subchapters,
do not always return the optimal solution. Sometimes it is necessary to obtain
the smallest possible chromatic number. In practice it involves coloring of a graph
with the use of the smallest possible number of colors. For this purpose, exact
algorithms, which browse all possible variations of solutions, should be applied.
One of most popular algorithms is the backtracking algorithm, searching recur-
sively for the best solution. The method checks all possible solutions, selecting the
best one, according to the posed criterion (e.g., the smallest number of colors).
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In the case of graph G4, vertex v1 is colored with the first color in the exact
method. Next, the algorithm marks recursively the subsequent vertices with the
smallest possible color, analysing all possible combinations. Finally, the graph is
colored with the use of two colors (vertices v1, v4 and v5 are marked with the first
color, whereas v2, v3 and v6 - with the second color). The result is identical as in
the case of LF and SL ordered coloring algorithms.

4.1.4. Determining Cliques of a Graph

According to Definition 3.3, a clique is a subset of graph vertices in which each
two vertices are edge-connected. Determining all the maximal cliques of a graph
is an NP-complete problem. It is impossible to find an exact solution to this prob-
lem in the polynomial time (Berge, 1973). This subchapter describes a method of
determining cliques of a graph which is based on the backtracking algorithm. All
possible solutions are checked, therefore the method makes sense only for relatively
small graphs (the research has shown that the threshold value is approximately 20
vertices, for a larger number of vertices, the performance time increased consider-
ably and the determination of the cliques took more than an hour).

It should be distinctly emphasized here that the algorithm determining cliques
of a graph was developed and implemented only to supplement the basic methods
of complementing discrete systems. The algorithm is not connected with the main
objective of the book therefore some aspects of determining cliques of a graph are
described very briefly (more information may be found in (Berge, 1973; Corno
et al., 1995)).

The developed method of clique determination is based on the following re-
cursive algorithm:

1. Set the value of the solution set H=� and establish the sequence of vertices.
The initial set of solutions (set of all cliques) is reset, whereas vertices are
sorted on the basis of their degrees, which enhances the chance for finding the
biggest clique of a graph faster (Berge, 1973; Eiter and Gottlob, 1995; Corno
et al., 1995).

2. Set the initial value of the clique set Cl=�. Set Cl containing the vertices
belonging to the clique is reset.

3. Select the next vertex for the analysis. At this stage, the next vertex vi is
selected according to the established sequence. If vi does not belong to Cl,
the dependency if set Cl ∪ vi composes a clique is checked. If it does, vi is
attached to Cl. Otherwise, the vertex is neglected and the algorithm repeats
performing point 3 for the subsequent vertex.

4. Browse set H and reduce the excessive cliques. It may happen that clique Cl
overlaps one or several solutions found earlier. If any of the sets H is a subset
of Cl, it is removed from H, whereas Cl is added to H. Analogically, if there
is any Cl constituting a subset of any sets H, then the further analysis is
neglected and the algorithm goes to point 2.
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Steps 2-4 are repeated recursively so that all combinations of vertices are
examined. The final solution is set H, which consists of set of cliques Cl1,. . . ,Clk.
It is worth mentioning that the obtained solution includes maximal cliques, which
results from the reduction of the excessive cliques in each cycle of the algorithm.

The obtained set H represents a hypergraph, whereas each clique
is a hyperedge of the newly formed hypergraph. Hypergraph H contains
n vertices and k edges. The number of vertices equals the number of vertices in
the initial graph G, whereas the number of hyperedges k is less or equal to the
number of edges m in graph G.

4.2. Mathematical Methods for the Study of Hypergraphs

The subchapter presents the most important mathematical algorithms investigat-
ing hypergraph structures. Each method is described in details and compared with
the corresponding graph algorithm.

4.2.1. Hypergraph Complement

According to Definition 3.13, the complement of hypergraph H is hypergraph H
containing the same vertices as H, whereas its set of edges comprises the comple-
ment of the set of edges of hypergraph H. Thus, in hypergraph H the vertices
are adjacent if and only if there is no edge connecting them in hypergraph H.
The determination of the hypergraph complement is an NP-complete problem
(Berge, 1989). The analysis of the connections between the particular vertices is
relatively uncomplicated, however, the determination of the relationship between
the vertices in the newly-formed hypergraph is actually reduced to the determina-
tion of cliques in the complement. It is interesting that there is a wide spectrum
of methods that can be used in the determination of a hypergraph complement.
Obviously, the simplest and the most intuitive solution is to transform the hyper-
graph into a graph, next to determine its complement and then to find the cliques
in this complement.

Another method is to determine the largest independent sets of the considered
hypergraph. Such sets may be determined by the application of the Gentzen’s
theory (Tkacz, 2006) or by finding all the variants of hypergraph coloring (Kubale
et al., 2006). The final result are the maximal independent sets containing vertices
which will form an edge in the target hypergraph H.

There is also a relationship between an exact vertex cover and a hypergraph
complement. The vertices comprised in the exact transversal of hypergraph H
form simultaneously a hyperedge in the complement H. Generally, the determi-
nation of all the exact transversals does not mean finding all the hyperedges in H,
although it may improve the process considerably. Determination of the comple-
ment in a c-exact hypergraph is particularly interesting. In this case, the edges in
hypergraph H refer to exact transversals of hypergraph H, each of which may be
determined in the polynomial time. Unfortunately, the problem with the number
of all transversals, which can be exponential, still remains (Eiter, 1994).
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4.2.2. Hypergraph Transversals

According to Definition 3.15, the presented hypergraph transversal (see previous
chapter) is a set of vertices incident to each hypergraph edge. For example, the
transversal of hypergraph H2, incidence matrix of which is presented in Fig. 4.14,
can be a set of 3 vertices: T1={v1, v3, v6}. The particular vertices from set T1 are
incident to each edge of the hypergraph: v1 is incident to edge E1 and E3, v3 to
E5, whereas v6 belongs to hyperedges E2, E3 and E4. It should be emphasized
here that the presented vertex cover is just one of the possible solutions. For
example, the sets: T2={v3, v5, v6}, T3={v4, v6}, etc., may also be transversals for
hypergraph H2.

v1 v2 v3 v4 v5 v6

A2 =


1 1 0 1 1 0
0 1 0 0 0 1
1 1 0 0 0 1
0 0 0 0 0 1
0 0 1 1 0 0


E1
E2
E3
E4
E5

Fig. 4.14. Incidence matrix A2 for hypergraph H2

It can be easily concluded from Fig. 4.14 that the smallest hypergraph
transversal will consist of a two-element set. There is a single smallest vertex
cover which consists of vertices v4 and v6, thus τ1={v4, v6}.

The problem of the determination of the smallest hypergraph transversal is
defined as an NP-complete problem (Berge, 1973; Eiter and Gottlob, 1995; Eiter
and Gottlob, 2002). There is a number of algorithms of finding the smallest vertex
cover of a hypergraph (Eiter and Gottlob, 2002; Wahlström, 2004; Kavvadias and
Stavropoulos, 1999). The subsequent subchapters present the basic methods of
determining the smallest hypergraph transversal. The presented algorithms have
been illustrated with an example.

4.2.2.1. A Fast Reduction Algorithm

A fast reduction method is a modified version of an algorithm proposed by R. Rudell.
In his doctoral dissertation, he presented the idea of reducing the table of simple
implications in the process of minimization of logic functions (Rudell, 1989), which
today constitutes an integral part of numerous methods and optimization systems
(e.g., Espresso).

A fast reduction algorithm is based on the use of dependencies and relation-
ships stored in a hypergraph. The first step to be done is to present a hypergraph
in the form of an incidence matrix. The rows of the incidence matrix correspond
to the hypergraph edges which should be covered with vertices represented by the
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matrix columns. A fast reduction algorithm operates on the following hypergraph
properties (Rudell, 1989; DeMicheli, 1994; Łuba, 2005):

? Essential column (essential vertex) - according to Definition 3.19, if for
a given vertex (column) there is a row with a single "one", it means that only
this particular vertex belongs to a given hyperedge. Such vertices (columns)
must be a part of each cover.

? Elimination of dominated columns - a column dominates another column
when elements of the previous column are greater than or equal to the el-
ements of the subsequent one. Analogically, a vertex dominates another
vertex if it is incident to at least all the edges which are also incident to an-
other vertex. Dominated columns (vertices) may be neglected in the further
considerations.

? Elimination of dominating rows - a row dominates another row when the
elements of the previous one are greater than or equal to the corresponding
elements of the subsequent one. Analogically, an edge dominates another
edge if it is incident to at least all vertices incident to another edge. Dom-
inating rows (edges) may be neglected since each dominated set cover is
a cover of a complete set (DeMicheli, 1994).

The determination process of the smallest transversal is based on the ap-
plication of the above rules, while the phase of determining and removing the
dominated columns and dominating rows is performed in cycles until the smallest
vertex cover is achieved. The final result is obtained from the reduced matrix - the
vertices which are incident to any edge of the reduced hypergraph will compose
the searched smallest transversal.

In order to illustrate a fast reduction algorithm, the smallest transversal of
hypergraphH2 is determined. In the incidence matrix of the examined hypergraph,
there exists an essential column. It represents vertex v6 which, as the only one, is
incident to edge E4. It means that vertex v6 has to be the part of each transversal of
the hypergraph. Next, according to the presented algorithm, dominated columns
are removed from matrix A2. At this stage column 1 (dominated by column 2)
and column 5 (dominated by 4) are reduced. In the next step, dominating vertices
are reduced. For the considered example, rows 2 and 3 are identical, therefore one
of them can be removed. It should be stated here that there is no difference which
row is reduced (unlike in the case of reducing identical columns, it is certain that
the hypergraph has more than one smallest transversal).

Figure 4.15 presents incidence matrix A′2 after the first reduction cycle. In the
next stage, dominated columns are removed again (a column representing vertex
v2, since it is dominated by a column responding to vertex v4). Next, dominating
vertices are reduced (in the presented example, they are vertex responding to edges
E1 and E2). At this stage, incidence matrix A′′2 contains 3 columns and 2 vertices
(Fig. 4.16).
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v2 v3 v4 v6

A′2 =


1 0 1 0
1 0 0 1
0 0 0 1
0 1 1 0


E1
E2
E4
E5

Fig. 4.15. Incidence matrix A2 after the first reduction cycle

Subsequent reductions will not result in any changes, which means that matrix
has been reduced. Fig. 4.16 shows that the smallest transversal consists of two
vertices: τ1={v4, v6}.

v1 v4 v6

A′′2 =
[

0 0 1
0 1 0

]
E4
E5

Fig. 4.16. Reduced incidence matrix A2

The fast reduction algorithm finds the approximate solution, which means
that the determined result cannot be optimal. Admittedly, the found transversal is
always minimal (contains no other transversals) but, in the given hypergraph, there
may exist a more advantageous solution consisting of fewer number of vertices.
Such a problem does not occur in the case of exact algorithms (e.g. backtracking
method), but their exponential computational complexity is disadvantageous, and
in some particular cases, the solution cannot be found at all.

4.2.2.2. A Backtracking Algorithm

A backtracking algorithm operates analogically to the method of searching for
the graph cover presented in 4.1.2.1. First, a vertex marked with the smallest
value (according to the lexicographic order) is selected and reduced. When the
remaining vertex set is still a hypergraph cover, and the obtained result is better
than the previously found, the current transversal becomes the best one. Next,
the algorithm recursively carries out the process of searching for the best solution
for all the vertices.

For hypergraph H2, the vertex set consists of six elements: V={v1, . . . , v6}.
According to the presented algorithm, vertex v1 is selected to be reduced as the first
one. After the reduction, the hypergraph consists of five vertices: V 1={v2, . . . , v6}.
Since the remaining elements still form the cover, the set becomes the currently
best found solution. Then vertex v2 is removed, thus the vertex set is reduced
to V 2={v3, . . . , v6}, which is also a cover and the smallest obtained transversal.
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Similar situation takes place in the subsequent stage. The reduction of vertex v3
limits the set of the remaining vertices (V 3={v4, v5, v6}), and the obtained solution
still forms the cover of the hypergraph. In turn, the removal of vertex v4 results
in the fact that the vertex set is now limited to two vertices: V 4={v5, v6}, which
do not form the hypergraph cover, though. Therefore, the algorithm recursively
returns to solution V 3, and now the subsequent vertex v5 is removed from the
set. The remaining set of vertices V 5={v4, v6} is also the smallest currently found
transversal. The presented methodology is repeated for all the hypergraph vertices,
and the subsequent stages are performed analogically to the ones presented above.
Finally, set V 5 appears to be the best transversal. It means that the found solution
is identical to the one obtained in the case of searching for the cover with the use
of the fast reduction algorithm.

4.2.2.3. A Greedy Algorithm

The method for the determination of transversals presented in the previous sub-
chapter, based on the backtracking algorithm, always returns the best solution.
The disadvantage of the method is its exponential computational complexity,
which means that given problem may not be solved, or the obtained solution
may not be reached in the satisfying time.

As in the case of graph covers, the greedy method searches for the solution on
the basis of a locally optimal decision. A great advantage of the algorithm is its
speed, whereas its disadvantage - the fact that there is no possibility to determine
if the found solution is really the best one.

The principle of operation of a greedy algorithm is practically identical as for
the graph cover (4.1.2.2). The method also searches for the solution on the basis of
the local optimum, therefore in the subsequent stages, a vertex with the smallest
degree is selected for the analysis needs. The essential difference is the fact that
the method assumes that there exist hyperedges which may connect more than
two vertices. The method searching for transversals is as follows:

1. Determine the value of the cover set T=∅. At the beginning, a set of cov-
ers (transversals) is empty, vertices will be determined and added in the
subsequent cycles.

2. Select an essential vertex, and if such a vertex does not exist, select a vertex
with the largest degree. At this stage, the algorithm selects an optimal local
solution. An essential vertex (which has to be a part of the searched cover)
is selected. If such a vertex does not exist, a vertex incident to the largest
number of hyperedges is selected for the further analysis. If there exist more
than one solution (e.g., there exist two essential vertices, or two vertices are
of the same degree), the algorithm selects a vertex randomly.

3. Add the selected vertex to the cover set T , and next remove the vertex from
the hypergraph together with all the edges which are incident to it.
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4. Check if T is a transversal, if not, repeat the algorithm from step No. 2.
In this step, set T is checked. If the vertices belonging to the set form the
searched cover, the algorithm finishes its operation. Otherwise, the method
proceeds to the next cycle in which the next local optimum (i.e., the subse-
quent essential vertex of the largest degree) is searched.

The algorithm starts its operation with the determination of the value of set
T=∅. Next, an essential vertex is selected in order to find the local optimum.
For hypergraph H2, it is vertex v6, since it is the only one which is incident to
column E4. Therefore it is added to set T and simultaneously removed from the
hypergraph together with the edges incident to it (i.e., E2, E3 and E4). Thus,
the hypergraph has been reduced to five vertices and two hyperedges. Figure 4.17
presents incidence matrix A′′′2 of hypergraph H2 after the reduction of vertex v6.

v1 v2 v3 v4 v5

A
′′′

2 =
[

1 1 0 1 1
0 0 1 1 0

]
E1
E2

Fig. 4.17. Incidence matrix A2 after the reduction of vertex v6

Next, the condition if set T constitutes a transversal of hypergraph H2 is
examined. Since the relation is not satisfied, the cycle is repeated. Among the
remaining vertices, there exists one vertex v4 incident to two hyperedges, whereas
the remaining vertices are of the first degree. It means that v4 is added to T , and
next it is removed from the hypergraph. Since set T realizes vertex cover, the
algorithm is finished.

In the considered example, the solution is T={v4, v6}. This is simultaneously
the smallest cover, and the identical result was obtained in the case of searching
for a transversal using the exact methods. At this point it needs to be emphasised
that the solution was already found in the second cycle. It clearly demonstrates the
predominance of the greedy method over the earlier presented algorithms, if the
computational complexity and the time of search are the criteria. Unfortunately,
as it was mentioned before, the method does not return the best solution. The
further part of the chapter considers the example in which a greedy algorithm finds
a transversal, which is not the smallest one, though. An exemplary hypergraph H3
with incidence matrix A3, demonstrated in Fig. 4.18, will be used for the analysis.

The presented hypergraph has |V |=7 vertices and |E|=12 edges. There exists
one smallest transversal. The set consists of three vertices: τ={v1, v2, v3}. Such
a solution may be obtained in both the fast reduction algorithm and in the back-
tracking method. However, the result will be different for the greedy algorithm,
which is demonstrated below.

In hypergraph H3 there is no essential vertex, therefore a vertex of the largest
degree is selected in the first cycle of the greedy method. In this case, it is vertex
v4, which is incident to six edges: E1, E3, E5, E7, E9, E11. The vertex is added to
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v1 v2 v3 v4 v5 v6 v7

A3 =



1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
0 1 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 1 0 0 0
0 1 0 0 0 0 1
0 0 1 1 0 0 0
0 0 1 0 0 1 1
0 0 1 1 0 0 0
0 0 1 0 0 1 0



E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12

Fig. 4.18. Incidence matrix A3 of hypergraph H3

the searched set of solutions T , whereas the hypergraph is reduced. Both vertex
v4 and all the hyperedges incident to it are removed. The resultant structure has
the incidence matrix illustrated in Fig. 4.19.

v1 v2 v3 v5 v6 v7

A
′

3 =


1 0 0 1 0 0
1 0 0 1 0 0
0 1 0 1 0 0
0 1 0 0 0 1
0 0 1 0 1 1
0 0 1 0 1 0


E2
E4
E6
E8
E10
E12

Fig. 4.19. Incidence matrix A3 after the reduction of vertex v4

Since no cover of the initial hypergraph H3 has been found, the greedy al-
gorithm repeats the procedure of vertex selection. Again, there is no essential
vertex, therefore a vertex with the largest degree is selected for the subsequent
considerations. It results from Fig. 4.19 that vertex v5 should be selected, since
it is incident to the largest number of hyperedges of all the remaining vertices.
Therefore, vertex v5 is added to set T , whereas edges E2, E4 and E6 are removed
from the hypergraph. Since the searched transversal is still unknown, the greedy
algorithm repeats the procedure for the hypergraph reduced by vertices v4 and v5.
The matrix of the reduced hypergraph is presented in Fig. 4.20. The considered
structure includes the remaining three edges and five vertices.
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v1 v2 v3 v6 v7

A
′′

3 =

 0 1 0 0 1
0 0 1 1 1
0 0 1 1 0

 E8
E10
E12

Fig. 4.20. Incidence matrix A3 after the reduction of vertices v4 and v5

In the subsequent stage, one of the three vertices: v3, v6 or v7, will be reduced
at random. Thus, it is possible to obtain several solutions. In each case, one more
cycle will have to be performed, since set T will still not constitute the cover of
hypergraph H3. It will happen no sooner than in the subsequent reduction of the
hypergraph vertices. Independently from the vertex selected to be removed (v3,
v6 or v7), set T will finally consist of four elements. The example presented below
considers all the possible solutions:

? If vertex v3 is selected, in the next step there will remain vertices v2 or v7 to
choose, therefore the transversal may consist of vertices T1={v4, v5, v3, v2}
or T2={v4, v5, v3, v7};

? If vertex v6 is selected, in the next stage there will remain vertices v2 or v7
to choose, so the transversal may consist of vertices T3={v4, v5, v6, v2} or
T4={v4, v5, v6, v7};

? If vertex v7 is selected, in the subsequent stage there will remain vertices v3 or
v6 to choose, thus the transversal may consist of vertices T5=T2={v4, v5, v7, v3}
or T6=T4={v4, v5, v6, v7}.

The above considerations demonstrate that the greedy algorithm will return
a set consisting of four vertices. In each case it will be the minimal transversal
of the hypergraph (that is the one which contains no other transversal), however,
it will not be the smallest cover. It results from the method itself, which makes
decisions exclusively on the basis of local information. This is true in the case
of the selection of vertex v4, which on the one hand is incident to the largest
number of edges, but on the other hand its selection made it impossible to achieve
the global minimum, which in the presented example is the smallest transversal
consisting of three elements: τ1={v1, v2, v3}.

It should be emphasised here that the selection of the proper algorithm de-
termines the way in which discrete systems are designed and analyzed. The ap-
plication of the particular methods is conditioned by the given criteria, and the
obtained results oscillate between the exactness of the searched solution and the
time of its realization.
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4.2.3. Exact Transversals of a C-Exact Hypergraph

A c-exact hypergraph is a very interesting structure in the class of hypergraphs.
Its basic feature is the fact that each pair of compatible vertices is a component
of at least one exact transversal. The most essential advantage of a c-exact hyper-
graph is the polynomial computational complexity in the case of determination of
the subsequent exact transversals, which is shown in Chapter 5. It is a very impor-
tant property in comparison to the remaining classes of hypergraphs (i.e., the ones
which are not exact), for which the determination of exact transversals is connected
with the exponential computational complexity (Berge, 1989; Eiter, 1994; Elbas-
sioni and Rauf, 2010).

Obviously, such an essential reduction of the computational complexity results
from the fact that the considered hypergraphs are strictly limited to the class of ex-
act hypergraphs. Nevertheless, the research carried out by the author of this work
confirms the practical application of exact hypergraphs primarily in both design-
ing and analyzing digital systems. This book discusses an innovative way of the
decomposition of a discrete system described with Petri nets through searching for
subsequent transversals in concurrency hypergraphs. The decomposition methods
used so far are based on approximate (greedy) algorithms and the application of
exact methods was connected with exponential computational complexity. Chap-
ter 6 presents the concept based on the utilization of exact transversals in the
process of the decomposition of Petri nets into subnets of an automaton type.

This chapter describes the author’s own idea of determining subsequent
transversals in a c-exact hypergraph. For the needs of the proposed method,
the Dancing Links (DLX) algorithm was adopted and modified. The algorithm
was described in (Knuth, 2000) who proposed a solution to the exact cover prob-
lem which uses a four-direction list. The links between the particular elements of
the list are dynamically removed and recovered (hence the name "dancing links").
Such an approach considerably reduces the time necessary to obtain the subse-
quent exact cover sets, therefore the algorithm is widely used in solving various
problems (e.g., placing queens on a chessboard, or solving sudoku). Taking into
account the properties of a c-exact hypergraph (maximal independent sets cor-
respond to the searched exact transversals), the DLX algorithm has been suited
for the needs of the determination of exact transversals in a c-exact hypergraph.
The devised method has been included in the realized hypergraph library and
constitutes an integral part of Hippo system.

As it is shown below, the simplified algorithm, searching for the subsequent
exact transversals was later realized in C++:

1. If the list describing a c-exact hypergraph is empty, the solution has been
found. Return the current solution. Otherwise select edge Ee containing the
smallest number of vertices.

2. For each vertex vi comprised in Ee perform the following operations:

(a) add vertex vi to the current cover (an exact transversal);
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(b) cover vertex vi together with all hyperedges to which vi is incident and
all the vertices belonging to the edges;

(c) perform recursively point (2a);
(d) uncover vertex vi together with all edges incident to it and all vertices

belonging to these edges;
(e) remove vertex vi from the current cover (an exact transversal).

The most essential element of the described algorithm is the option of covering
and uncovering particular objects of the four-list. The process is reduced to the
change of the values of indicators of particular objects (physically they are neither
added to nor removed from the list), which significantly speeds up the whole cycle
of finding the transversals. The detailed description of the DLX method can be
found in (Knuth, 2000).

For the needs of the methods developed in this book, the algorithm has been
improved so that the searching process can be halted when the found set of the ex-
act transversals covers all hypergraph vertices. Thus there is no need to determine
all exact transversals in a given exact hypergraph. If the first and each subsequent
transversal can be determined in the polynomial time, the whole number of all
exact transversals may be exponential (Eiter, 1994).

4.2.4. Vertex Coloring of a Hypergraph

Vertex coloring of a hypergraph (further referred to as coloring) is strictly con-
nected with coloring of the graph vertices. The idea behind it is the same: all ver-
tices of a hypergraph must be marked in such a way that any vertices linked with an
edge were of a different color. The subsequent subchapters present some methods
of hypergraph coloring (Berge, 1973; Lovász, 1973; Franklin and Saluja, 1994; Kriv-
elevich and Sudakov, 1998; McDiarmid, 1997; Tuza and Voloshin, 2000; Tuza et al.,
2002; Acharya and Acharya, 2003; Czumaj and Sohler, 2005; Kubale et al., 2006).
Due to the fact that there are significant analogies between the algorithms of
graph hypergraph coloring, only most essential features of particular methods will
be discussed.

4.2.4.1. Unordered Sequential Coloring

The procedure of unordered sequential coloring of hypergraphs proceeds as follows:

1. Reset the colors of all the vertices and set the number of colors k=0. At
the beginning the colors of all the vertices are reset. Moreover, variable k,
storing the number of currently used colors, is also reset.

2. Select a subsequent uncolored vertex vi from set V . An uncolored vertex is
selected for the analysis (according to the lexicographical order).

3. Assign the smallest possible color to vertex vi. If it is possible, the color with
the smallest index in the set of colors already assigned to other vertices, is



56 4. Graph and Hypergraph Algorithms

assigned to vertex vi. Otherwise, vertex vi is marked with a new color, and
value k is increased by one.

4. Repeat steps 2 and 3 until all the hypergraph vertices are colored. Finally, all
vertices of the hypergraph are marked with k colors.
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Fig. 4.21. Hypergraph H4

For the exemplary hypergraph H4, presented in Fig. 4.21, coloring proceeds
as follows: vertex v1 is selected for the analysis as the first one. The element is
marked with the first color. The vertex cannot be colored with the same label as
it is linked to v1 with a hyperedge. Therefore, v2 takes the second color. A similar
situation takes place for vertex v3, which is adjacent to both v1 and v2. Therefore
the vertex is marked with the third color. The next examined element is v4. The
vertex can be colored with the first label, since there is no edge connecting it to
v1. Vertex v5 cannot be marked with neither the first (adjacent to v4) nor the
second (adjacent to v2), or the third (adjacent to v3) color. Therefore the fourth
color is assigned to it. The last vertex (v6) is neither adjacent to v1 nor to v4, thus
it may be marked with the first label. The final result of the unordered coloring
is presented in Fig. 4.22.
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Fig. 4.22. Unordered coloring of hypergraph H4
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4.2.4.2. Randomly Ordered Coloring

The randomly ordered coloring method includes the following stages:

1. Order the vertices randomly. All the elements from set V are ordered in
a random sequence.

2. Reset the colors of all vertices and set the initial number of colors k=0.

3. Select a subsequent uncolored vertex vi from set V , according to the earlier
determined order. An uncolored vertex is selected for the analysis (according
to the order determined in point 1).

4. Assign the smallest possible color to vertex vi. If possible, the color with
the smallest index from the set of the already assigned colors is assigned to
vertex vi. Otherwise, vertex vi is marked with a new color, and value k is
increased by one.

5. Repeat steps 3 and 4 until all the hypergraph vertices are colored. Finally, all
the hypergraph vertices are marked with the use of k colors.

Let us assume, that for hypergraph H4 the subsequent vertices have been
randomly selected: v4, v2, v6, v1, v3 and v5. In this case, element v4 is marked with
the first color. Next, vertex v2 is analyzed. Since it is not adjacent to vertex v4, it
also takes the first color. Vertex v6 is incident to the same edge as v2, therefore it
has to be marked with the next label - the second color. A similar situation takes
place for v1, which is adjacent to v2. Since there is no edge connecting v1 and v6,
the vertex is finally marked with the second color. For element v3 it is necessary
to increase the number of colors, since it is adjacent to both v4 (the first color)
and v1 (the second color). The last vertex (v5) can be colored with none of the
previous labels, therefore it is marked with the fourth color. Figure 4.23 illustrates
the final result of the randomly ordered coloring of hypergraph H4.
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Fig. 4.23. Coloring of hypergraph H4 with randomly ordered vertices
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4.2.4.3. Largest-First Ordered Coloring

The method of Largest-First ordered coloring proceeded as follows:

1. Order the hypergraph vertices according to the degrees. All elements from set
V are sequenced starting from the vertex with the highest degree down to
the vertex with the lowest degree. If two vertices are of the same degree, the
order is determined on the basis of the lexicographic order.

2. Reset colors of all the vertices and set the number of colors k=0.

3. Select the subsequent uncolored vertex vi from set V , according to the previ-
ously determined order. An uncolored vertex (according to the order deter-
mined in point 1), is selected for the analysis.

4. Assign the smallest possible color to vertex vi. If it is possible, a color with
the smallest index from the set of already assigned colors, is assigned to
vertex vi. Otherwise, vertex vi is marked with a new color, and value k is
increased by one.

5. Repeat steps 3 and 4 until all the hypergraph vertices are colored. Finally, all
the vertices of the hypergraph are marked with the use of k colors.
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Fig. 4.24. LF ordered coloring of hypergraph H4

In hypergraph H4, vertices v2, v3 and v5 are of the third degree, whereas v1,
v4 and v6 - of the second degree. Therefore the LF ordering will take the form:
{v2,v3,v5,v1, v4,v6}, and it will result in the occurrence of three color classes k=3.
Vertices v2 and v4 will be marked with the first color, v3 and v6 with the second
color, whereas v1 and v5 - with the third color (Fig. 4.24).

4.2.4.4. SL Ordered Coloring of a Hypergraph

The SL ordered coloring of a hypergraph is analogical to the LF coloring. Vertices
are sorted and then colored according to the previously determined order. The
ordering proceeds as follows: the subsequent vertices of the lowest degree, together
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with the edges that are incident to them, are removed from the hypergraph (in
each phase the degrees of the remaining vertices are calculated). The procedure is
finished when all the vertices and edges are removed from the hypergraph. Finally,
the vertices are ordered in the reverse order to the reduction process.

For hypergraph H4, vertex v1, the one of the lowest degree is reduced as the
first one (although vertices v4 and v6 are also of the same degree, the lexicographic
order is the decisive factor). In the subsequent steps, the vertices are reduced in
the following order: v2, v6, v3, v4 and v5. Therefore finally the vertices are ordered
as follows: {v5, v4, v3, v6, v2, v1}. Figure 4.25 presents hypergraph H4, vertices of
which are colored according to SL ordered algorithm.
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Fig. 4.25. SL ordered coloring of hypergraph H4

4.2.4.5. Coloring of a Hypergraph with the Use of Exact Algorithms

Similarly to graphs, hypergraphs may also be colored with the use of exact algo-
rithms. The procedure is identical: all possible solutions are examined and the
best result is selected. Thus, the algorithm omits any possible local minimums,
returning the most beneficial solution. However, for its exponential complexity,
the operation time is considerably longer than for methods searching for approxi-
mate results (in numerous cases, the result is even impossible to obtain, which is
shown in Chapter 7).

For hypergraph H4, the result of coloring with the exact method is identical
to the one obtained for coloring with the use of LF-ordering. It appears that the
best solution consists of three colors, and each color class contains two vertices.

4.3. The Analysis of the Relations between Graphs
and Hypergraphs

This chapter presents the analysis of the relations between graphs and hyper-
graphs. All the properties mentioned in the book are the author’s conclusions and
thoughts which occurred during the research and work over the two structures.
Some of the described features have been commonly known for a couple of years
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(Lovász, 1972; Berge, 1973; DeMicheli, 1994). It seems that the current literature
does not present any clear systematisation of graphs and hypergraphs. What is
more, it neither provides any comparison between them nor any determination of
their similarities and differences. The chapter is a preliminary attempt to face the
problem, and the presented conclusions will be the base for the characteristics of
the proper methods of discreet systems decomposition, described in Chapter 6.

4.3.1. General Relations between a Graph and a Hypergraph

The most obvious difference between the discussed structures is the number of ver-
tices which may be linked by an edge. In a graph, an edge may contain maximally
two vertices, whereas in a hypergraph, edges may be incident to an arbitrary num-
ber of vertices. It implies that each graph is simultaneously a hypergraph, whereas
the inverse property is not true. The rule is of a great importance for algorithms
operating on the discussed structures: methods based on hypergraphs also refer
to graphs. Naturally, in numerous cases, the property is of an insignificant impor-
tance, but e.g., the coloring algorithms intended for hypergraphs are also efficient
for traditional undirected graphs.

4.3.2. Relations between Graph and Hypergraph Vertex Covers

Despite a great similarity between a graph vertex cover and a hypergraph vertex
cover, they do not return the same results. It is due to the properties of the
structures. The fact that an edge can connect maximum two vertices, significantly
limits the vertex cover in a graph. For example, Fig. 4.26 presents graph G5
consisting of only three vertices. As can be easily noticed, G5 is a full graph since
all its vertices are connected with each other. However, the smallest cover consists
of two vertices, which results from the fact that each edge is not incident to one
vertex.
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Fig. 4.26. Graph G5 and hypergraph H5

The smallest transversal of hypergraph H5, corresponding to the structure of
graph G5, consists of just one element. This is so as one edge connects all vertices.
Therefore the vertex cover of a graph is not equivalent to the vertex cover of
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a hypergraph. Obviously, there are some exceptions in which such a situation may
take place, but generally, the result of a graph cover may not be substituted with
an equivalent hypergraph cover and vice versa.

The extension of a graph cover is a clique cover of a graph (Berge, 1973).
The method consists in finding the smallest cover with the use of the largest full
subgraphs (cliques). Formally, a clique cover is constituted of sets V1,V2,. . ., Vk,
which are subsets of set V consisting of all the vertices of graph G such that
each set Vi contains a full subgraph of the full graph G. Additionally, for each
edge 〈u, v〉 ∈ E there exist such set Vi which contains both u and v. In practice,
a hypergraph transversal is equivalent to the clique cover of a graph. It should
be clearly stated here that the determination of the clique cover of
a graph is always preceded by the stage of the determination of cliques
in a graph, which is an NP-complete problem. The step is not required
for hypergraphs, since cliques (i.e., hyperedges) compose an integral
property of a hypergraph.

4.3.3. Relations between Graph and Hypergraph Coloring

Vertex coloring of graphs and hypergraphs is very strictly interrelated. The
problem of hypergraph coloring is the generalization of graph coloring (Kubale
et al., 2006; Lovász, 1973). It results from the reciprocal relations between the
two structures. If there is a connection between two vertices in a given graph,
they cannot be marked with the same color. Analogical situation takes place in
a corresponding hypergraph, irrespectively to the fact that the edge connecting
the two mentioned vertices can also be incident to other vertices of the hyper-
graph. It means that problems solved with the graph coloring may be equivalently
calculated with the use of hypergraph coloring. The relation was used in this book
and served as a base for the research and experiments carried out to testify the
effectiveness of the developed methods for the decomposition of discrete systems.

Due to the properties of hypergraphs and the stored information about cliques
which determines the connections between particular vertices, the algorithm of
hypergraph coloring should be slightly faster than the corresponding graph algo-
rithm. It should be clearly emphasized that the reduction does not refer to the
order of computational complexity, since the determination of the best solution
still implies the exponential computational complexity.

4.4. Summary

The chapter presents the most important mathematical methods for the study of
undirected graphs. It presents graph algorithms which enable the determination of
the complements of the structures. Moreover, it describes a method enabling the
determination of all the cliques in an undirected graph which, in practice, corre-
spond with edges in the newly formed hypergraph. The chapter contains a detailed
description of the algorithms of vertex cover which, in the case of hypergraphs,
have particularly essential properties since the determination of subsequent ex-
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act transversals is connected with the reduction of the computational complexity
from exponential (in a general case) to polynomial (for c-exact hypergraphs). It
describes five coloring algorithms of graphs and hypergraphs. Because of the fact
that there is a considerable analogy in the process of vertex coloring, the methods
for graph and hypergraph coloring are very similar, whereby the hypergraph color-
ing may be slightly faster due to the properties of the structures (the results of the
research including the comparison between the coloring of graphs and concurrency
hypergraphs are presented in Chapter 7).

All described algorithms have been practically realized and imple-
mented in the C++ programming language. A measurable result of the
developed methods is the Hippo system whose functionality is described
in Appendix A.



Chapter 5

DEFINITIONS AND THEOREMS

This chapter constitutes a set of definitions and theorems of the author introduced
in the book. The following notions are determined: concurrency hypergraphs, se-
quentiality hypergraphs and selection hypergraph. The theorems improving math-
ematical operations which exploit the mentioned structures are also introduced.

All introduced theorems and definitions refer to live and safe dynamic Petri
nets that belong to Marked Graph class. The discussed mathematical appara-
tuses have been practically used in the decomposition processes of discrete systems
(Chapter 6).
Definition 5.1. Concurrency hypergraph is a hypergraph that presents a con-
currency relation between the places in a Petri net. The vertices of the concur-
rency hypergraph correspond to various places in a Petri net, whereas hyperedges
determine relations between these places. Vertices in a concurrency hypergraph
are connected by a hyperedge if and only if they are marked in the same state of
a marking graph. A concurrency hypergraph is proper if none of its hyperedges is
contained in any other hyperedges.

A concurrency hypergraph is a mathematical structure useful for the analysis
of the properties of Petri nets. The subsequent edges of the concurrency hyper-
graph may be obtained directly from an initial Petri net in a polynomial time
(Wiśniewski et al., 2012), however the number of hyperedges can be exponent.
What is important, it can be also obtained in a different way, i.e. directly from
a reachability graph (Wiśniewska et al., 2007b).

The work focuses on the issues connected with the decomposition of Petri nets
into state machine components (decomposition methods are described in Chapter
6). The detailed description of the application of a concurrency hypergraph in the
analysis as well as the theorems connected with the correctness of the constructed
Petri net may be found in (Wiśniewska and Adamski, 2006).

Figure 5.1 presents an incidence matrix of a concurrency hypergraph for net
MN1 presented in Fig. 2.3. The hypergraph vertices reflect macroplaces of the
considered macronet. The edges, in turn, determine sets of places marked in the
same state which may be performed by an automaton in parallel. For example,
vertices M2, M3 and M4 are connected by an edge, which means that the places
are concurrent.
Theorem 5.1. A concurrency hypergraph of a Petri net is
a c-exact hypergraph.
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M1 M2 M3 M4 M5 M6 M7

AWMN1
=


1 0 0 0 0 0 0
0 1 1 1 0 0 0
0 1 0 0 1 1 0
0 1 0 0 0 0 1


E1
E2
E3
E4

Fig. 5.1. Incidence matrix of a concurrency hypergraph for macronet MN1

Proof. According to Definition 3.21, a c-exact hypergraph is a hypergraph in which
each pair of vertices not connected by an edge is incorporated in at least one exact
transversal. With respect to a Perti net, the relation is understood as follows:
each two places in a Petri net (belonged to Marked Graphs) which are not linked
by the concurrency relation are the components of at least one automaton sub-
net. If two places of a Petri net are not in a concurrency relation, they must be
performed sequentially, since both relations are mutually exclusive and comple-
mentary (Murata, 1989). It results from the fact that both places must belong to
at least one SMC in which processes are performed sequentially.

Theorem 5.2. A state machine component in a Petri net corresponds
to an exact transversal in the concurrency hypergraph.

Proof. A state machine component (SMC) is a set of places which are performed
sequentially (Murata, 1989). SMCs form a closed cycle between the marked places
in a Petri net. Therefore each SMC in a concurrency hypergraph is represented
as a transversal (an intersection of all edges of a hypergraph). Additionally, all
places comprised in SMC must be performed sequentially which means that they
must have exactly one representative in each global (concurrent) state. It re-
sults in the fact that each subnet (SMC) is simultaneously an exact transversal of
a concurrency hypergraph.

Definition 5.2. A sequentiality hypergraph is a hypergraph obtained as a re-
sult of the determination of exact transversals in a concurrency hypergraph. The
vertices of a sequentiality hypergraph represent places (or macroplaces) of a Petri
net, whereas the edges correspond to the determined exact transversals. Each edge
of a sequentiality hypergraph represents a single subnet (SMC) in which particular
places of a Petri net are in a sequentiality relation, i.e., they are not active at the
same time.

A sequentiality hypergraph determines SMCs which occur in a Petri net that
belong to Marked Graph class. Fig. 5.2 ppresents an incidence matrix of a se-
quentiality hypergraph for macronet MN1. There are five exact transversals in
the macronet, therefore the sequentiality hypergraph contains five edges. Each
edge determines a single sequential automaton (SMC).
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M1 M2 M3 M4 M5 M6 M7

ASMN1
=


1 1 0 0 0 0 0
1 0 1 0 1 0 1
1 0 1 0 0 1 1
1 0 0 1 1 0 1
1 0 0 1 0 1 1


D1
D2
D3
D4
D5

Fig. 5.2. Incidence matrix of a sequentiality hypergraph for macornet MN1

In practice, it is frequently necessary to perform the operation of selection
in order to reject excessive components and to obtain the best solution. For this
reason, a selection hypergraph is determined.

Definition 5.3. A selection hypergraph is a hypergraph obtained in the reduc-
tion of edges in a hypergraph dual to a sequentiality hypergraph. The vertices of
a selection hypergraph refer to the exact transversals of a concurrency hypergraph,
whereas the edges determine the places of a Petri net after the reduction.

The process of creating a selection hypergraph may be divided into two es-
sential stages. First, a hypergraph dual to a sequentiality hypergraph should be
determined. In practice it reduces to the determination of a transposed matrix for
a given sequentiality hypergraph. In such a matrix, it is necessary to remove the
dominant rows (corresponding to the edges of a dual sequentiality hypergraph),
that is, the ones whose elements (values) are greater or equal to the corresponding
elements of another arbitrary row. Next, dominated columns are removed from
the hypergraph (i.e., vertices of the hypergraph). The resulting hypergraph is
a searched selection hypergraph. The reduction operation and the whole process
of the decomposition of Petri nets is discussed in details in Subchapter 6.1.

The propositions of theorems and sketches of proofs connected with the com-
putational complexity of algorithms operating on exact hypergraphs are presented
below. The work focuses on presenting induction proofs. The detailed and formal
mathematical proofs definitely exceed the scope of this work and may constitute
a broad area for further scientific research. It is worth mentioning that all theo-
rems have been verified empirically with the use of the set of real test modules,
i.e., live and safe Petri nets that belong to the class of Marked Graph.

Basic notions connected with the computational complexity of algorithms
(Papadimitriou, 1994) will be determined for the sake of theorems. As already
mentioned, all considered issues are connected with the time complexity of an
algorithm, determined as a relation between the size of input data and the number
of basic operations performed by the algorithm (Aho et al., 1974). The process of
the analysis of the computational complexity has mainly been taken from (Eiter,
1994), but also from (Rudell, 1989) and (DeMicheli, 1994).

In the analysis, the following notations will be used: n - number of hypergraph
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vertices, m - number of hyperedges. The worst possible solution to a given problem
is taken into account in all the considerations (Aho et al., 1974).

Theorem 5.3. The first exact transversal in a c-exact hypergraph may
be determined in a polynomial time.

Proof. Let us consider the following algorithm FIRST_EXACT searching for
first exact transversal D1 in hypergraph H of n vertices and m edges:

1. Select an arbitrary vertex vi of a c-exact hypergraph and add it to set D1.

2. Remove vertex vi and all the hyperedges to which vi is incident and all the
vertices belonging to these edges.

3. If the hypergraph is empty (contains no edges or vertices) - the solution has
been found. Otherwise perform point 1 recursively.

In terms of computational complexity, a single cycle of the above algorithm
is the analysis of point 2. All edges incident to vi are removed in maximum m
steps. In turn, the removal of all vertices comprised in theses edges is connected
with O(n) complexity. Therefore, a single cycle of the algorithm is of a quadratic
computational complexity O(m ∗ n), in the case of a primary hypergraph. Natu-
rally, in each subsequent recursive call, the complexity of a single cycle may be of
at least the same, quadratic, order.

As a result of the operations carried out in point 2, the following are removed
from the hypergraph vertex vi, all edges to which it is incident, as well as all
vertices which belong to these hyperedges. It means the removal of all the vertices
remaining in an incompatibility relation with vertex vi from the hypergraph. Thus,
only the vertices compatible with vertex vi remain in the hypergraph. Let us
consider all the possible results of point 2 of the algorithm:

1. The reduced hypergraph is empty.
A solution has been found (an exact transversal, determined by set D1).

2. One vertex or all vertices of the hypergraph remain in a compatibility relation.

According to the definition of a c-exact hypergraph, each pair of adjacent
vertices forms at least one exact transversal. If a single vertex remains after
the reduction process and is adjacent to vi, it constitutes a complement to
the exact transversal (in the subsequent recursive step it is added to set D,
the subsequent reduction results in the fact that the hypergraph is empty and
the algorithm finishes its operation). Similar situation takes place when all
remaining vertices in the hypergraph are compatible. Then, the subsequent
vertices are recursively added until the hypergraph is completely reduced (at
most in n− 1 subsequent recursive calls).

3. All vertices in the reduced hypergraph remain in the incompatibility relation.
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Such a state means that independently from the fact which vertex is selected
in the subsequent step of recurrence, the hypergraph is completely reduced,
and the solution is found.

4. In the hypergraph, there are at least three vertices left, which are both in the
compatibility and incompatibility relation.
Previous steps exclude the possibility when one or two vertices (mutually
compatible or incompatible) remain in the hypergraph. What is more, such
a situation necessitates that at least two vertices of the hypergraph are com-
patible and two are incompatible. To illustrate the discussed case, Fig. 5.3
presents a matrix of hypergraph HD, containing three vertices v1, v2, v3.
Vertices v1 and v2 remain in the incompatibility relation, whereas pairs v1
and v3 as well as v2 and v3 are compatible. Since all vertices were compatible
to vertex vi before the reduction, the operation could not modify the rela-
tions between them in any way (only vertices incompatible to vi and edges
which could not be incident to the remaining vertices were removed from
the primary hypergraph). Therefore, the obtained reduced hypergraph must
still remain a c-exact hypergraph. The algorithm is recursively continued
until the hypergraph is completely reduced (at most in n− 1 steps).

v1 v2 v3

AD =
[

1 1 0
0 0 1

]
E1
E2

Fig. 5.3. Matrix AD of exact hypergraph HD

It results from the above considerations that the algorithm performs, in the
worst case, n recursive calls (it is possible if all vertices of a c-exact hypergraph
remain in the compatibility relation). It is very important that independently
from the selected vertex, the subsequent steps result in obtaining exact transver-
sals. Taking into account the fact that each single cycle (a single recursive call)
is realized in O(m ∗ n), time, the whole algorithm may be of a maximum cubic
complexity O(m∗n2). The fact means that the determination of the first transver-
sal in a c-exact hypergraph is connected with at most polynomial computational
complexity (which may even be linear in some particular cases - e.g., when all
vertices are compatible).

Theorem 5.4. Subsequent exact transversals of a c-exact hypergraph
may be selected in a polynomial time.

Proof. Let us expand the previously presented algorithm in such a way that it
searches for all exact transversals in hypergraph H of n vertices:

1. Select edge Ee, containing the smallest number of vertices.
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2. For each vertex vi comprised in edge Ee:

(a) Add vertex vi to the currently searched transversal Dd.
(b) Remove vertex vi together with all hyperedges to which vi is incident

and all vertices belonging to these edges.
(c) If the hypergraph is empty (contains no edges or vertices) - exact transver-

sal Dd, has been found, and is added to the searched set of all transver-
sals D.
Otherwise, perform recursively point 1.

The discussed algorithm ALL_EXACT is a modified version of the
X-algorithm, proposed by D.E. Knuth for a general search for an exact cover
in an arbitrary hypergraph (Knuth, 2000). The general outline and the effective
way of the implementation of the algorithm with the use of "dancing links" (DLX)
is presented in Subchapter 4.2.3.

It is shown below that the algorithm finds the subsequent exact transversal
in a hypergraph in the polynomial time (generally, for an arbitrary hypergraph,
it is an exponential complexity (Knuth, 2000)). The notion "subsequent" refers
here to the determination of the next solution on the basis of the currently found
exact transversal (i.e., after finding the first exact transversal in a hypergraph,
the second is found in the polynomial time, after the second exact transversal
has been found - finding the third - also involves the polynomial computational
complexity, etc.). It is worth stressing that if the determination of each subsequent
exact transversal is connected with polynomial complexity, the number of exact
transversals itself may be exponential, which is shown in (Eiter, 1994). Therefore,
there is no algorithm determining all exact transversals in polynomial time.

Let us examine the algorithm in terms of computational complexity. The
method functions as follows: first edge Ee (containing the smallest number of ver-
tices) of a c-exact hypergraph is selected for the analysis. The edge of the smallest
degree may be determined in the maximal time O(m ∗ n), with the assumption
that the hypergraph is fully examined. In practice, the operation is frequently
performed linearly (Knuth, 2000). Next, for each vertex vi contained in edge
Ee, the operations presented in 2 are performed subsequently and independently.
The maximal number of vertices composing a single edge equals n, and for the
subsequent recursive calls, the value must be smaller. Stages from 2a to 2c are
performed identically as for determining the first exact transversal. The difference
occurs for a recursive call in which once again an edge with the smallest number
of vertices is selected (the previous algorithm involved a selection of an arbitrary
vertex). Let us consider two possibilities:

1. Selected set of solutions D is empty (no transversal has been found yet).
In this case, the algorithm performs the subsequent operations analogically
to the algorithm FIRST_EXACT . Additionally, in each cycle (of recur-
rence), edge Ee of the smallest degree is selected. For the further analysis,
the first vertex vi (no matter which) being the component of edge Ee is se-
lected. The algorithm recursively performs subsequent operations until the
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hypergraph is completely reduced, which in turn means that the first exact
transversal has been found. The additional stage of the selection of edge Ee

does not influence the increase in the order of the computational complex-
ity of a single cycle in the method, which was also quadratic in the case of
the FIRST_EXACT algorithm. Thus, finding the first exact transversal
in a c-exact hypergraph with the use of the ALL_EXACT algorithm is
connected with the complexity O(m ∗ n2) at most.

2. The searched set of solutions contains one or more exact transversals.
Such a state means that the first (or the subsequent) exact transversal has
been found in the hypergraph. The analyzed hypergraph is currently empty,
therefore the algorithm recursively returns to the previous cycle (dominant
recursive call). If in this cycle the analyzed edge Ee contained one vertex -
the algorithm proceeds to the subsequent dominant recursive cycle (and the
vertex added in this recursive cycle is removed from the current transver-
sal). Otherwise, the next vertex vj , being a component of edge Ee is selected
for the analysis (it is obvious that the maximum number of returns of the
algorithm to the higher level of recurrence equals n, i.e., the number of all
vertices of the hypergraph, and that it is the particular case when all vertices
are compatible). Next, transversal Dd is completed with vertex vj , and the
vertex itself is removed from the hypergraph together with all the edges it is
a component of and all the vertices incident to these edges. It means that all
vertices which are in the incompatibility relation with vertex vj are removed
from the hypergraph, and all the remaining vertices have to be compatible to
vj . Such a state, in turn, means a situation analogical to the one considered
in point 1, where the exact transversal was searched. The analyzed algorithm
recursively performs the subsequent cycles until the hypergraph is reduced,
which means that the subsequent exact transversal has been found. In a par-
ticular case it may happen that the found exact transversal differs from the
previous one only in one element (interchangeably: vertices vi and vj). The
analysis reveals that the computational complexity of the determination of
the second exact transversal is of the same order as in the case of the first
exact transversal. The subsequent returns to the higher levels of recurrence
are performed until edge Ee contains more than one vertex (n - the maxi-
mum number of returns). Finding the subsequent exact transversal, together
with vertex vj may be maximally connected with the complexity O(m ∗ n2)
in the case when the algorithm returns to the first level of recurrence.

The presented solutions show that the determination of each subsequent exact
transversal in a c-exact hypergraph may be performed in O(m ∗ n2) time. It is
worth stressing that the identical computational complexity was obtained by T.
Eiter for a hypergraph of exact transversals.

In order to make the presented sketches of proofs more clear, the process
of the analysis of the computational complexity is illustrated on the following
example. There is hypergraph HWMN1

, the incidence matrix of which is presented
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in Fig. 5.1. Hipergraf HWMN1
is a proper concurrency hypergraph of a Petri net.

Therefore, by virtue of Theorem 5.1 it is simultaneously a c-exact hypergraph.
Initially, the set of exact transversals D is empty. In its first step, the al-

gorithm searches for an edge containing the smallest number of vertices. Let us
assume that the full review of hyperedges is performed (the number of vertices
which belong to a given edge is calculated each time). In this case, the deter-
mination of the edges of the smallest degree is performed in the quadratic time
O(m ∗ n). For the further analysis, edge E1 is selected, since it contains just
a single vertex M1. The vertex is added to the currently searched transversal Dd.
All edges incident to the vertex are removed from the hypergraph as well as all
vertices belonging to the edges (in this case only edge E1 is removed). The reduc-
tion in this case means the removal of one vertex and one edge, therefore it also
does not increase the computational complexity, which still remains quadratic.
The incidence matrix AW 1 of a hypergraph formed as a result of the reduction of
vertex M1 and a hyperedge E1 is shown in Fig. 5.4. Compared to the original
hypergraph, HW 1 contains n− 1 vertices and m− 1 edges.

M2 M3 M4 M5 M6 M7

AW 1 =

 1 1 1 0 0 0
1 0 0 1 1 0
1 0 0 0 0 1

 E2
E3
E4

Fig. 5.4. Incidence matrix of hypergraph HW 1

In the next step the algorithm recursively proceeds to point 1 and per-
forms operations on the reduced hypergraph. Once again, an edge (E4) con-
taining the smallest number of vertices is determined, which is performed in time
O((m − 1) ∗ (n − 1)). This time the edge contains two vertices: M2 and M7.
The process of vertex selection is of an insignificant importance. For the greater
clarity, vertex M2 is selected according to the lexicographic order. The vertex is
added to the searched transversal Dd, and next all the edges incident to M2 are
removed together with the vertices which belong to these edges. In this case, it
involves the removal of m−1 edges and n−1 vertices (quadratic complexity), and
the reduced hypergraph is empty. It means that the first exact transversal has
been found and that it contains elements: D1=Dd={M1,M2}. To sum up, the
determination of the first exact transversal in the considered hypergraph, taking
into account the lexicographic order of vertices, is connected with the quadratic
complexity. Obviously, another example (even with a different order of vertices)
could result in a different complexity, but it is clearly visible that in the worst case
the computational complexity of the determination of the first exact transversal
in a hypergraph is at most of a cubic order.

The subsequent stage is the return of the algorithm to a higher level of re-
currence. Simultaneously, vertex Dd is removed from set M2 (since it is not an
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element of the searched transversal at this stage of recurrence), and the subsequent
vertex belonging to edge E4, i.e., M7, is selected for the analysis. The vertex is
added to the searched transversal, thereby complementing M1. As a result of the
reduction of vertex M7, edge E4 is removed from the hypergraph together with
vertex v2. Hypergraph HW 2, whose incidence matrix is shown in Fig. 5.5, is the
result of performed operations.

M3 M4 M5 M6

AW 2 =
[

1 1 0 0
0 0 1 1

]
E2
E3

Fig. 5.5. Incidence matrix of hypergraph HW 2

The further analysis of the algorithm is obvious. In the next stage, edge E2
is selected, and vertex M3 is added to the transversal. Hyperedge E2 is removed
from the hypergraph which results in the fact that vertices M5 and M6 remain
in the reduced hypergraph. According to the lexicographic order, vertex M5 is
selected in the next recursive call, and after its reduction the hypergraph is empty.
Thus, the subsequent transversal D2={M1,M7,M3,M5} has been found. It can
be easily noticed that despite the greater number of recursive calls, the complex-
ity of the algorithm has remained polynomial. The subsequent exact transversal
are determined analogically. The algorithm recursively returns to higher levels
and searches for subsequent unreduced vertices. For example, transversal D3
will be found already in the subsequent cycle, through replacing vertex M5 with
M6: D3={M1,M7,M3,M6}. The two remaining exact transversals may be de-
termined in a similar way. Analogically, the two remaining exact transversals:
D4={M1,M7,M4,M5} and D5={M1,M7,M4,M6} may be determined.



Chapter 6

METHODS FOR DECOMPOSITION
OF DISCRETE SYSTEMS

The chapter presents innovative methods for decomposition of discrete systems.
The developed algorithms constitute a complete tool enabling the decomposition of
a concurrent automaton into sequential automatons whereby a discrete system may
be easily realized with the use of real digital systems, e.g., FPGA (Maxfield, 2004).

The first of the discussed methods is connected with the decomposition of
a concurrent automaton described by Petri nets. An innovative manner of dividing
the controller into state machine components (SMCs) has been proposed. In the
realization, exact transversals of the concurrency hypergraph have been applied so
that the determination of the subsequent automaton subnets involves a polynomial
computational complexity.

Another proposed method enables the decomposition of the discrete system
memory. The algorithm is grounded on the reduction of the microinstruction
size. The result of the performed operations is the decomposition of the primary
memory into a reduced part (the memory with encoded microinstructions) and
a decoder part. The algorithm is based on the already exiting solutions. However,
the introduction of hypergraphs enables its improvement through the application
of an arbitrary known method of the determination of the smallest transversal in
a hypergraph. The memory reduction method shown in this chapter is a peculiar
complement to the method for decomposition of the controlling part of a discrete
system. As a result, a complete method enabling the division of a discrete system
has been obtained (for both the controlling part and the memory parts of particular
sequential automata). However, each of the discussed algorithms may be applied
independently.

6.1. Parallel Decomposition of a Discrete System

This subchapter presents an innovative method for the parallel decomposition of
concurrent systems, described with the use of Petri nets, carried out through the
decomposition of hypergraphs. The aim of the decomposition is the division of
a reconfigurable logic controller into concurrent modules each of which can be then
optimized and synthesized with the use of the classical theory of digital automata.

In contrast to the solutions used so far, the author’s entirely new
method for the determination of non-concurrent sets is based on the
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computation of the subsequent exact transversals in a concurrency hy-
pergraph. Thanks to this, the subsequent subnets are determined in
a polynomial time. Such an approach is impossible for traditional con-
currency graphs, in which the determination of independent sets (fre-
quently based on coloring or finding a clique cover) involves exponential
computational complexity.

6.1.1. Problem Formulation

When designing a discrete system (in particular the part realizing a function of
a controller), it may appear that the size of the system exceeds the frames imposed
by the size of a prototyped system. Then, it is divided into a series of collaborating
subsystems. The decomposition facilitates the designing process and its results
may be used in effective encoding of internal local states of a controlling system
(Brayton et al., 1984; Sentovich et al., 1992; Kania, 2004; Łuba, 2005). The most
frequently applied method of a digital system synthesis is the decomposition of
a concurrent automaton into sequential component automata (Papachristou, 1979;
Girault and Valk, 2003; Kozłowski et al., 1995; Adamski and Węgrzyn, 2009).

The method for the decomposition of Petri nets with the use of concurrency
graph coloring or searching for clique covers for the complement of a concurrency
graph (i.e., a non-concurrency graph, or sequentiality graph) has already been
known (Banaszak et al., 1993; Adamski, 1990; Karatkevich, 2007). This book in-
cludes only the most important features and properties which are indispensable
for the proposed method to be presented. The detailed description of the trans-
formation of a net into a macronet as well as its decomposition with the use of
graphs may be found in (Valette, 1978; Adamski et al., 2005).

The previous method for decomposition of logic controllers with the use of Petri
nets may be divided into the following stages:

1. Formation of a macronet for the considered Petri net. At this stage, it is
necessary to determine a macronet which is a condensed version of a given
Petri net, maintaining its basic structure and properties. The aim is to de-
prive the net of all the fragments which do not influence its final solution
and which increase the time of analysis. The formed macromodules con-
tain multi-input/output transitions as well as places replacing singly-marked
fragments of the net.

2. Determination of a reachability graph. The activity involves the analysis of
changes in the net markings as the ready transitions are fired, and recording
any possible states in a form of a graph. The graph vertices contain the set of
marked places in a given state, the edges correspond to the fired transitions
(Valette, 1978; Banaszak et al., 1993; Adamski and Chodań, 2000).

3. Determination of a concurrency graph. At this stage the concurrency graph
is determined. The graph stores the information about relations between
the places of the decomposed Petri net, and it constitutes the basis for the
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determination of concurrency relations (Kozłowski et al., 1995; Zakrevskij
et al., 2002; Mielcarek, 2009).

4. Concurrency graph coloring. The stage involves the determination of the
concurrency relations for the graph determined in the previous point. In
general, the operation reduces to graph coloring (Kubale, 2002). Independent
sets determined in such a way contain macroplaces which are components of
particular SMCs (places marked with the same color form a single concurrent
system).

5. Replacing the macroplaces with suitable subsets of places of the considered
net. This is the last step in the decomposition of a controller into SMCs.
Concurrent controllers obtained in such a way may be modelled with the
use of languages of equipment description, and then implemented, e.g., in
matrix systems FPGA (Maxfield, 2004; Wiśniewski, 2009).

For designers, the greatest problem and the weakest point of the algorithm
presented above is the concurrency graph coloring. To determine the optimal so-
lution it is necessary to repeat the coloring process, which involves the exponential
computational complexity. For larger Petri nets the decomposition process may
take very long or even be impossible at all. In order to eliminate the above prob-
lem, one of the approximate coloring methods, described in Subchapter (4.1.3, is
interchangeably used).

In (Adamski and Wiśniewska, 2006; Wiśniewska, 2005; Wiśniewska et al.,
2006; Wiśniewska and Adamski, 2008a; Wiśniewska and Wiśniewski, 2010) nu-
merous authors’ algorithms can be found in which Petri nets are decomposed on
the basis of hypergraph coloring. Such an approach allows the reduction of time
which is necessary to perform the process of partition of a controller. However,
finding an optimal solution still involves the application of the repetitive coloring
and exponential complexity.

In the next subchapter, an entirely innovative approach to the decomposition
of a controlling part of a discrete system is proposed. The partition is realized
through the determination and selection of subsequent exact transversals in a con-
currency hypergraph. The result of the process is the optimal partition of a con-
troller, the same as for repetitive coloring of a graph or a concurrency hypergraph.
The determination of the subsequent exact transversal in a c-exact hypergraph
presenting concurrent relations in a Petri net is connected with the polynomial
complexity, which is shown in Chapter 5.

6.1.2. The Idea of the Proposed Method

Developing a new parallel decomposition method of a controlling system, it was
taken into account that each exact transversal of a concurrency hypergraph corre-
sponds to a single SMC in a given Petri net that belong to the class Marked Graph.
In the proposed algorithm, the subsequent exact transversals are determined, i.e.,
a controller can be decomposed into the subsequent concurrent automata. The
operation is performed until all local states (vertices of a concurrency hypergraph)
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are covered with the determined exact transversals. If the number of the deter-
mined automata is larger than the minimal number of SMCs covering the whole
Petri net, it is necessary to perform the selection process. The process is also
executed through the determination of exact transversals. For this purpose, a se-
lection hypergraph is defined, and the exact transversals, determined in the hy-
pergraph, exactly indicate which automaton components form the final solution
of the decomposition of a Petri net.

Particular steps of the decomposition of a Petri net, based on the application
of exact transversals of a c-exact hypergraph, are presented below. For the needs of
the discussed algorithm, the author’s own definitions of a concurrency hypergraph,
a sequentiality hypergraph as well as a selection hypergraph introduced in Chapter
5 have been used.

1. Formation of a macronet. At this stage a macronet should be determined,
i.e., a condensed version of a given Petri net. The stage proceeds analogically
as for the standard method for the decomposition of a Petri net.

2. Determination of a concurrency hypergraph. A concurrency hypergraph rep-
resents true concurrency between the places of Petri net. The vertices of
a concurrency hypergraph correspond to the places of a Petri net, whereas hy-
peredges determine relations between these places (Wiśniewska and Adamski,
2006; Wiśniewska et al., 2007b). The concurrency hypergraph may be ob-
tained directly form the initial Petri net (Wiśniewski et al., 2012) or in
a different way, i.e. from the reachability graph.

3. Determination of subsequent exact transversals in a concurrency hypergraph.
In a concurrency hypergraph the subsequent exact transversals are deter-
mined according to the author’s algorithm presented in details in Chapter
4. The process is performed until all vertices of the hypergraph are covered
with the smallest possible number of the determined exact transversals (the
value is already known at the stage of the determination of the concurrency
hypergraph and equals to the degree of the largest hyperedge).
If the number of found transversals equals to the number of the smallest
possible automaton subnets, into which the primary Petri net can be de-
composed, the decomposition process is finished. Otherwise, the selection
operation has to be performed.

4. Determination of a sequentiality hypergraph. The vertices of a sequentiality
hypergraph respond to the vertices of a concurrency hypergraph, whereas the
edges - to the determined exact transversals. The sequentiality hypergraph
illustrates places which are performed sequentially in a given Petri net. The
detailed description of this structure and the analysis of the relation between
the concurrency and sequentiality hypergraphs are presented in Chapter 5.

5. Determination of a hypergraph dual to the sequentiality hypergraph. At this
stage, vertices and edges are interchanged, i.e., the incidence matrix of the
sequentiality hypergraph is transposed.
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The subsequent two stages are connected with the reduction of the hyper-
graph. The idea of the reduction has been taken from (Rudell, 1989), who
proposed an innovative concept of the minimization of logic functions (in
practice the algorithm was used in Espresso system). The idea of the reduc-
tion of the array of covers of prime implicants inspired the author to adapt
an apply the method in the reduction of hypergraphs (in this case a hyper-
graph dual to the sequentiality hypergraph). The result of the performed
reduction is a selection hypergraph, discussed in details in Chapter 5.

6. Reduction of dominant edges in a hypergraph. Dominant edges may be ne-
glected as each cover of a dominated set is a cover of a full set (Rudell, 1989;
DeMicheli, 1994). Through the application of this operation, the exces-
sive relations (represented by hyperedges) which occur between the vertices
(i.e., excessive connections between exact transversals in a concurrency hy-
pergraph) are removed from the hypergraph. The process of reducing the
dominant edges is connected with the quadratic computational complexity,
which is shown in (Rudell, 1989).

7. Reduction of dominated vertices in a hypergraph. Analogically to the pre-
vious stage, dominated vertices are removed from the hypergraph (Rudell,
1989; DeMicheli, 1994). Also in this case, the reduction process involves the
quadratic computational complexity (Rudell, 1989).
The result of the conducted reductions is a selection hypergraph. The ver-
tices of the selection hypergraph correspond to the subsequently found exact
transversals in the concurrency hypergraph (i.e., with particular sequential
automata), whereas the edges illustrate the relations between these transver-
sals (between sequential automata). Therefore, the exact transversals can be
applied once again. The smallest exact transversal in a selection hypergraph
determines a set of vertices corresponding to the selected exact transversals
of the concurrency hypergraph.

8. Determination of the smallest exact transversal (if any exist) in a reduced
dual selection hypergraph. The smallest exact transversal of a selection hy-
pergraph indicates the solution. The selected vertices of the selection hy-
pergraph determine the searched exact transversals in a concurrency hyper-
graph. The sets of macroplaces forming part of each of the found exact
transversals in the concurrency hypergraph constitute the searched sequen-
tial automata.
This point does not apply if there is no exact transversal in a hypergraph.
In such a case the simple smallest transversal should be found. Detailed de-
scription how to calculate the smallest transversal is presented in Subchapter
6.2.
The determined SMCs refer to sequential automata that may then be de-
signed with the use of any method of the synthesis of controlling systems
(e.g., as a finite automaton of FSM states (Baranov, 1994)). Each of the
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controllers may also be subjected to the further process of decomposition, de-
pending on the assumed technology and the target digital system (Sentovich
et al., 1992; Sasao, 1999; Rawski et al., 2003; Kania and Kulisz, 2007; Barkalov
and Titarenko, 2009; Wiśniewski, 2009; Bukowiec, 2009; Łabiak, 2005; Doligal-
ski and Adamski, 2010)

6.1.3. The Example of a Parallel Decomposition

In order to present the idea of designing a reconfigurable logic controller, an ex-
ample taken from the literature illustrating the application of Petri nets to rep-
resent control systems, is presented below (Blanchard, 1979; Adamski, 1990; Ro-
guska, 2001).
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Fig. 6.1. Beverage production machine

Figure 6.1 presents a machine for beverage production and distribution (Mixer).
The controller functions in the following way: pressing the start button (x1) initi-
ates the processes in which containers 1 and 2 are being filled and the cups for the
beverages are delivered. Then valves y10 and y11 dare opened until the containers
are filled, and this information is indicated respectively by sensors x5 and x7. In
turn, the delivery of the cups is connected with the movement of the cart with
cups (active signal y12) and finishes when the cart reaches sensor x13. While the
containers are being filled, the ingredients are being prepared, which is indicated
with sensors: x2 - for the first container, x3 - for the second container and x4 - for
the cart. The ready components are poured into the third container and mixed,
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which is realized by opening valves y5 and y6 (active signal y4). The valves are
closed after emptying the containers 1 and 2 and mixing all the. The situation is
signalled with sensors x6, x8 and x9 respectively. When one of the containers is
ready, it is independently filled and closed (signals x10 and x11). After the comple-
tion of both processes, the cart with cups moves back to its initial position, which
is signalled with signal y9. Sensor x12 is active when the system is ready for the
further operation.
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Fig. 6.2. Petri net PN2 controlling the machine for beverage production

Formally, the presented controller consists of thirteen input and twelve output
signals. Figure 6.2 presents Petri net PN2 illustrating the operation of the machine
for beverage production (Blanchard, 1979).
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The first step in the decomposition of the controlling part of the discrete
system, is the formation of a macronet for a given Petri net. This is a condensed
version of a given Petri net (Valette, 1978), maintaining its basic features and
properties. The objective of the operation is to remove any sequential fragments
from the net, which do not influence its final solution in the process of the analysis,
and whose presence only increases the decomposition time.

Figure 6.3 presents macronetMN2 for Petri net PN2. Its sequential fragments
have not been replaced with macroplaces. The resultant macronet MN2 is a con-
densed version of net PN2, maintaining its properties and features. The process
of reduction allowed a considerable decrease of the primary Petri net. Structure
PN2 consists of 19 places, whereas its reduced equivalent contains 11 macroplaces.
The figure presents visually how places of primary net PN2 form the particular
macroplaces in macronet MN2. For example, macroplace MP1 contains places 2,
5, 8; macroplace MP2 places 3, 6, 9, etc.
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Fig. 6.3. Macronet MN2 for Petri net PN2

In the subsequent stage of the decomposition, a concurrency hypergraph is
formed. This structure can be obtained in a various way. Here we will use addi-
tional formation of the reachability graph, however the concurrency hypergraph
can be calculated directly from the Petri net (Wiśniewski et al., 2012).

The reachability graph is determined on the basis of the primary Petri net
or its condensed version, i.e., a macronet (the representation of a Petri net with
a macronet allows considerable shortening of the analysis of concurrency, which
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was proved in (Murata, 1989; Adamski et al., 2005; Karatkevich, 2007)).
The formation process of a marking graph reduces to the analysis of changes

in the net markings when the ready transitions are fired. The values are described
in a form of a graph, whose vertices correspond to the set of places marked in
a given state, whereas the edges determine the fired transitions.
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Fig. 6.4. Marking graph for macronet MN2

Figure 6.4 presents a marking graph for macronet MN2. The structure il-
lustrates the basic relations in the considered automaton. The figure shows that,
e.g., places MP1, MP2 and MP3 are marked with the same state. It means that
the three fragments are performed in parallel. Nevertheless, the thorough analysis
of the concurrency relations between the particular states may be troublesome.
Therefore, the process of the examination of the concurrency and decomposition
of Petri net involves the application of a next step which is the determination of
a concurrency hypergraph. The concurrency hypergraph perfectly captures the
relations between the particular local states of the controlling part of a discrete
system. The hypergraph vertices refer to the places of the analyzed Petri net,
whereas the edges illustrate the relations between particular places of Petri net.
What is essential, unlike the commonly used concurrency graph, the concurrency
hypergraph holds full relations between particular states.

Figure 6.5 presents concurrency hypergraph HMN2 for net MN2. The hyper-
graph vertices reflect macroplaces in the considered macronet. The edges of the
concurrency hypergraph determine the sets of places marked in the same state,
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which may be performed by an automaton in parallel. For example, verticesMP1,
MP2, MP3 are linked by an edge, which means that the places are concurrent.
The macronet shows that the macroplaces refer to the processes of preparing the
containers and the ingredients, and they may be performed in parallel. Whereas
macroplaces MP1 (preparing the first ingredient) and MP4 (mixing the ingredi-
ents) should be performed in a respective sequence. In fact, in the concurrency
hypergraph, the places are not connected by a concurrency relation thus they are
performed sequentially.
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Fig. 6.5. Concurrency hypergraph HMN2 for macronet MN2

In order to illustrate the subsequent steps of the proposed idea of the decom-
position of a controlling part of a discrete system better, the incidence matrix of
concurrency hypergraph HMN2 is additionally presented in Fig. 6.6.

The matrix columns refer to the macroplaces of the Petrie net, whereas the
rows refer to the relations between the places. To increase the legibility of the
matrix, the particular macroplaces in the figure have been called from M1 to M11.

At this stage, the smallest possible number of SMCs into which the Petri net
can be decomposed is determined. The value defines the number of places which
are performed concurrently. In the concurrency hypergraph, it equals the degree
of the edge containing the largest number of vertices. In the analyzed example,
hyperedges E1 and E3, degree of which equals 4, contain the largest numbers of
vertices. Thus, Petri net PN2 may be divided into at least four SMCs.

The next step is the determination of the subsequent exact transversals in the
concurrency hypergraph. The process is performed until the found transversals
cover all the vertices in the concurrency hypergraph.
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M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

AHMN2
=



1 1 0 0 1 0 0 1 0 0 0
1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 0 0 1 0 0 0
0 0 1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 0
0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1



E1
E2
E3
E4
E5
E6
E7
E8
E9
E10

Fig. 6.6. Incidence matrix of concurrency hypergraph HMN2

In the presented example, six exact transversals are determined finally:

D1={MP1,MP4,MP6,MP9,MP11},
D2={MP2,MP4,MP6,MP9,MP11},
D3={MP1,MP4,MP7,MP10,MP11},
D4={MP2,MP4,MP7,MP10,MP11},
D5={MP3,MP5,MP9,MP11},
D6={MP3,MP8,MP10,MP11}.

Since the number of the determined exact transversals covering all the vertices of
the concurrency hypergraph is greater than the smallest possible number of SMCs,
it is necessary to conduct the selection. Of all the determined exact transversals,
an optimal solution should be selected for the further analysis, which would de-
termine the smallest possible number of sequential automata (in this example - 4)
into which the primary Petri net can be decomposed.

According to the presented decomposition algorithm, the sequentiality hyper-
graph is determined in the subsequent stage. The hypergraph vertices correspond
to the found exact transversals, whereas the edges represent macroplaces of the
Petri net.

Next, a hypergraph dual to the sequentiality hypergraph is determined. It
means that hypergraph vertices and edges are interchanged. In practice, it means
that the incidence matrix of the hypergraph is transposed. For the analyzed
example, matrix AH∗

D
of a hypergraph dual to the sequentiality hypergraph is

presented in Fig. 6.7.
The next step is the reduction of dual hypergraph H∗D. First, dominant edges

(corresponding to rows of an incidence matrix) are removed from the hypergraph,
i.e., the edges whose elements (values) are greater than or equal to the respective
elements of another arbitrary edge MP5. Then the hypergraph vertices are sub-
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D1 D2 D3 D4 D5 D6

AH∗
D

=



1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 1
1 1 1 1 0 0
0 0 0 0 1 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 0 1
1 1 0 0 1 0
0 0 1 1 0 1
1 1 1 1 1 1



MP1
MP2
MP3
MP4
MP5
MP6
MP7
MP8
MP9
MP10
MP11

Fig. 6.7. Incidence matrix of hypergraphH∗D dual to the sequentiality hypergraph

jected to the analogical reduction process. The dominated vertices are removed
from the final solution. The result of the performed operation is a selection hy-
pergraph (Fig. 6.8).

D1 D2 D3 D4 D5 D6

AHS
=


1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 0 1


MP1
MP2
MP5
MP6
MP7
MP8

Fig. 6.8. Reduced hypergraph HS

The last stage is connected with the determination of the smallest transversal
in the reduced hypergraph HS . Thus, a searched subset of exact transversals is
determined. The operation is performed identically to the process of the determi-
nation of an exact transversal of the concurrency matrix, and for the subsequent
considerations only solutions containing the smallest number of elements are taken
into account. In hypergraph HS two smallest exact transversals can be distin-
guished:

δ1={D1, D4, D5, D6},
δ2={D2, D3, D5, D6}.
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Both sets contain four elements each, therefore it does not matter which of
them would be selected. In the considered example, the first solution is selected
for the further analysis. It contains four selected exact transversals which deter-
mine sets of concurrent macroplaces (sequential automata). The number of exact
transversals conforms to the previously established smallest number of concurrent
automata net PN2 may be decomposed into.

The first set contains places determined by transversal D1. It consists of the
following macroplaces: MP1,MP4,MP6,MP9 andMP11. The second concurrent
automaton is described by transversal D4. Since its excessive places (which have
already occurred in transversal D1) are removed, it contains the following places:
MP2,MP7,MP10. Analogically, the third independent set consists of placesMP3
and MP5, whereas the fourth set includes macroplace MP8.

On the basis of the obtained results, the Petri net is divided into k=4 concur-
rent automata: a, b, c, d. Figure 6.9 presents the final result of the decomposition.
If a given set of non-concurrent places does not contain the initially marked place
of the net, a resting place containing a sign is added to it (e.g., place P20).

The above example was verified experimentally. The controller was decomposed
with the use of the classical method (backtracking coloring) as well as the one pro-
posed in the book. The results of the experiments confirm the very high efficiency
of the method. The time necessary to find the solution with the classical method
was 18 times longer than when exact transversals were applied, and both algo-
rithms returned identical solution. The detailed results of the research (including
the Mixer net) are discussed in Appendix B.

Then the functional verification of the obtained results was carried out. For
this purpose, three different versions of a controller were prepared to be imple-
mented in a digital system, according to the description presented in Subchapter
2.2.2. The developed prototypes were modelled with the use of Verilog equipment
(Brown and Vernesic, 2000; Thomas and Moorby, 2002). Next, a behavioral ver-
ification (simulation) of the particular versions was performed and the synthesis
and implementation were conducted in a real system FPGA (system XC3S500E
of Spartan family, made by Xilinx). The source codes for all the three mod-
els are placed in Appendix C. It should be distinctly emphasized here that the
range of the work does not include the implementation of the discrete systems,
the focus has been put on the presentation of new, more effective decomposition
methods. The methods of the realization of Petri nets, and, above all, the decom-
posed sequential automata in digital systems provide a broad stream of research
discussed, among others, in (Bilinski et al., 1994; Kozłowski et al., 1995; Fernan-
des et al., 1997; Girault and Valk, 2003; Adamski and Węgrzyn, 2009; Banaszak
et al., 2008; Szpyrka, 2008).

First of the models constituted a description of an appliance realized as a Petri
net with the use of "one-hot" encoding. Each of the states was encoded indepen-
dently, and the number of flip-flops closely depended on the number of local states.
In this case 19 flip-flops were obtained, which is equivalent to the number of states
of a Petri net.
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Fig. 6.9. Decomposed Petri net PN2
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The subsequent methods of realization were based on the application of the
decomposition of a Petri net. Thus, the second model is a description of a system
with parallel encoding. Since the decomposition resulted in four automaton sub-
nets, each of them is encoded independently. In the system PN2_ParallelEncoding,
presented in Appendix C, 10 flip-flops were used to encode all the nets, and the
shared places are encoded with the application of superposition encoding (e.g.,
place p1 is a superposition of the codes of the first, second and third automata).

The last of the developed models is the realization of a Petri net in the form
of a modular digital system. The obtained SMCs were modelled independently
as sequential automata, according to the scheme presented in Fig. 2.9. Also
in this case, the final result of the implementation reveals the application of 10
flip-flops. However, the most essential fact is the application of FPGA dedicated
memory blocks, which store outputs of particular sequential automata. Such an
approach enables further decomposition of the memory block with the use of the
method described in the subsequent chapter, which may be particularly essential
for system-on-a-chip or system-on-a-programmable-chip, where the size of blocks
may be limited (Wiśniewska et al., 2005; Wiśniewski, 2009).

The behavioral simulation, carried out with the use of Active-HDL, system,
demonstrated the relevance of the developed models. The outputs of the last of
the systems (realization of a controller as a modular digital system) are delayed
by half of a clock cycle in relation to the remaining models, which results from
the application of synchronous memory of FPGA system (in order to maintain
the proper functionality of the whole system, the memory blocks are active at
the low edge of the clock signal). Figure 6.10 presents the obtained results of
the simulation. The results obtained for all three versions of the controller are
presented in the book. The values of the input signals (denoted with x), local
states (p) and outputs (y for the first model, z for the second, v for the third) have
been listed as a vector of values written in a hexadecimal notation.

Fig. 6.10. Results of the simulation for net PN2
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6.2. Structural Decomposition of a Discrete System

The problem of microinstruction size reduction is an important issue in the pro-
cess of designing digital systems. The algorithm is based on the determination
and selection of compatibility classes of particular microoperations. Microoper-
ations which are pairwise compatible may be encoded with the use of a smaller
number of bits. The selection process of compatibility classes is NP-complete
(Dasgupta, 1979; Robertson, 1979), therefore a number of methods which search
for the solution were created (Hong et al., 1990; Puri et al., 1993). This subchap-
ter presents an innovative method of compatibility class selection based on the
theory of hypergraphs. The proposed solution has been thoroughly analyzed and
compared to the traditional methods which are based on undirected graphs and
operations on matrices.

6.2.1. Problem Formulation

Practically each major system exploits external memory to store information. For
systems realized as system-on-a-chip (SoC), the capacity of the memory mod-
ule closely relates to the production costs of the whole system. On the other
hand, in complex solutions like system-on-a-programmable-chip (SoPC), in which
FPGA dedicated memory blocks are used, the capacity of the memory is limited
(Wilkes, 1951; Maxfield, 2004; Łuba, 2005). Therefore the reduction of the mem-
ory capacity is very frequently necessary. The operation may be performed in
numerous ways, one of them is the decomposition, i.e., the division into smaller
blocks. Another commonly used solution is the reduction of the memory word size
through appropriate encoding of microinstructions (Wiśniewska, 2009; Wiśniewska
et al., 2009a). Thus, a total memory capacity may be reduced (Wiśniewska
et al., 2009b; Wiśniewska et al., 2010). Obviously, the content of the memory
is decoded at a later phase, but the process may be easily realized through simple
logic blocks of the prototyped system, e.g., multiplexers (Wiśniewska et al., 2005).

As mentioned before, the reduction algorithm of the microinstruction length
is based on the selection of compatibility classes of particular microoperations.
It is an NP-complete problem. A considerable number of algorithms improv-
ing the process selection of compatibility classes appeared in the world literature
(Dasgupta, 1979; Hong et al., 1990; Puri et al., 1993; Malykh and Shakhnovskii,
2004; Wiśniewska and Wiśniewski, 2005). A vast majority of the solutions is based
on stochastic and heuristic algorithms. Their undoubted advantage is their speed
of operation since their computational complexity is essentially reduced. However,
it should be clearly stated here that all the developed methods enable solving only
one particular problem which is the reduction of the microinstruction size. This
chapter presents a general method enabling the selection of compatibility classes
with the use of the theory of hypergraphs. In practice it means that the solu-
tion can be obtained with any known method for the determination of the
smallest transversal of a hypergraph.

The classical (standard) method is grounded on the application of the theory
of undirected graphs. In the first phase, the relation mapping between particular
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microoperations with the use of a compatibility graph takes place. If two micro-
operations are not performed at the same time, i.e., do not occur in the same
microinstruction, they are connected with an edge. In the subsequent step, the
class selection is performed. In practice it consists in the determination of the
cliques in the compatibility graph. Next, the particular classes are described with
the help of compatibility matrix (graph vertices are represented by columns, the
edges by rows). The standard selection of compatibility classes relies on the matrix
reduction. Its rows and columns are subsequently reduced (a detailed algorithm
is described in the further part of the book). The remaining rows indicate the
solution, i.e., the searched compatibility classes.

Although the term "hypergraph" has not been mentioned in the previous lit-
erature dealing with the reduction of microinstructions size, it is clearly visible
that the compatibility matrix is nothing else but a matrix of a compatibility hy-
pergraph. Compatibility classes correspond to its hyperedges, whereas microoper-
ations included in these classes - to particular vertices. Analogically, the classical
selection process is in fact the searched edge cover of a compatibility hypergraph
(Wiśniewska et al., 2011). It is similar to the fast reduction algorithm discussed
in Chapter 4, proposed by (DeMicheli, 1994), which, in turn, is a modification
of a method presented in (Rudell, 1989) (actually, it is the same algorithm, how-
ever introduces certain improvements and advances). Therefore this algorithm is
recognized as a representative of classical solutions in the further considerations.

6.2.2. The Idea of the Proposed Method

The chapter presents an innovative method for the reduction of the microinstruc-
tion length. The algorithm is based on traditional solutions. Therefore two first
steps of the presented method are identical with the standard methods. In the
subsequent stages the proprietary solution using the theory of hypergraphs is ap-
plied.

The proposed method for the reduction of the microinstruction length may
be divided into the following stages:

1. The formation of set Cc of microoperation compatibility (coherence) classes.
Microoperations are compatible (coherent) if they are not performed con-
currently, i.e., when they do not occur in the same microinstructions. The
set of compatibility classes is represented as CC={C1, . . . , CK}.
The detailed description of how compatibility classes are determined may be
found in publications recognized as classics in the field of the reduction of
the microinstruction length (Hong et al., 1990; Puri et al., 1993).

2. The determination of weight (cost) for each compatibility class.
The weight (cost) of a class is a minimal number of bits which are necessary
to represent microoperations comprised in the class. The weight of the class
may be easily determined from the formulation:

Li = dlog2(|Ci|+ 1)e. (6.1)
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The excessive bit is necessary to determine the state in which no encoded
microoperation is performed. In the presented formula Ci denotes the i-th
compatibility class, whereas Li - the value of the weight of class Ci.

3. The formation of the incidence matrix of a hypergraph for fixed compatibility
classes.
The subsequent step is the formation of the incidence matrix of hypergraph
H, which illustrates relations between microoperations. The vertices of the
hypergraph correspond to the particular microoperations, whereas compati-
bility classes - to hyperedges. Formally, the incidence matrix of a hypergraph
may take the value:

Aij =
{

1 → compatibility
0 → incompatibility ,

where i = {1, . . . ,K} denotes the i-th compatibility class, j = {1, . . . , N}
denotes the j-th microoperation. If entry Aij of the incidence matrix con-
tains value 1, it means that the j-th microoperation belongs to the i-th
compatibility class.

4. The formation of hypergraph H∗ dual to hypergraph H.
In this step, a dual hypergraph is formed. In practice, the determination of
a dual hypergraph consists in the transposition of incidence matrix A into
transposed matrix A*.

5. The determination of the smallest transversal τ(H∗) of dual hypergraph H*.
This stage may be realized with the use of any method enabling the calcula-
tion of the vertex cover of a hypergraph. The thesis involves the examination
and comparison of all the methods for determining hypergraph transversals,
which are described in Subchapter 4.2.2.
It is worth mentioning that there is a possibility of obtaining more than
a single smallest transversal. Therefore it is necessary to determine the
best solution through the calculation of total cost, i.e., the number of bits
necessary to encode the microoperations.

6. The calculation of total cost for all the smallest transversals.
For each smallest transversal τS ∈ τ the total cost (weight) Ws is calculated.
The value may be determined from the formulation:

Ws =
I∑

i=1
Li, (6.2)

where Ws denotes the total weight (total cost) of transversal τs. It is equal
to the sum of weights Li of all compatibility classes (i.e., it equals I), which
belong to a given transversal. For further calculations, transversal τMin of
the smallest total cost Ws is selected.
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7. Encoding compatibility classes which realize a minimal hypergraph transver-
sal.

The subsequent step is to encode compatibility classes. The number of vari-
ables Q necessary for the realization of the task results directly from the
weights assigned to these classes. The choice of the code is arbitrary, but
the assignment of the first code (consisting of 0 exclusively) is recommended
for these rows in which no microoperation is generated.

8. The determination of a new content of memory with encoded compatibility
classes.

The content of the memory is determined through juxtaposition of all vari-
ables obtained in the previous stages. It implies that the size of the memory
word (microinstruction) after the reduction equals the sum of weights of all
the classes used for the smallest cover:

t =

1−

I∑
i=1

Li

N

 ∗ 100%, (6.3)

where:
t - reduction (expressed in %) of the memory capacity;
I - number of compatibility classes realizing the smallest vertex cover;
Li - weight of the i-th class comprised in the minimal cover;
N - primary size of a microinstruction.

The system prepared in such a way may be easily realized with the use of
digital systems. For example, in the case of FPGA programmable matrices, a de-
composed memory may be implemented with the use of dedicated memory blocks,
whereas the decoding particular microoperations is performed trough the logic
blocks of an FPGA (e.g., LUTs).

6.2.3. An Example of Structural Decomposition

Let us consider memoryM1 (Tab. 6.1) containing N=6 outputs (microoperations)
performed in M=4 microinstructions assigned to the same automaton subnet,
which has been formed through the decomposition of an exemplary Petri net. It
implies that the total initial capacity of the memory equals Vpocz=N*M=24 bits.

According to the proposed reduction algorithm of the microinstruction length,
the first stage relies on the determination of compatibility classes. For the pre-
sented example, the set consists of K=4 elements: CC={C1, . . . , C4}, where
C1={y1, y2, y3}, C2={y1, y3, y4, y6}, C3={y2, y5} and C4={y4, y5, y6}. The par-
ticular classes comprise sets of compatible elements, i.e., microoperations which
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Tab. 6.1. Exemplary memory M1

µM
Microoperation M

y1 y2 y3 y4 y5 y6
µ1 0 1 0 0 0 1 1
µ2 0 1 0 1 0 0 2
µ3 1 0 0 0 1 0 3
µ4 0 0 1 0 1 0 4

do not occur in the same microinstructions. For example, set C1 contains ele-
ments y1, y2 and y3, which means that the three microoperations do not occur
concurrently in any of the four microinstructions.

In the subsequent step, the weights of compatibility classes are determined.
According to Formulation 6.1, the particular classes take the following weights:

C1=dlog2 (3 + 1) e=2,
C2=dlog2 (4 + 1) e=3,
C3=dlog2 (2 + 1) e=2,
C4=dlog2 (2 + 1) e=2.

The third stage of the reduction algorithm is the determination of the incidence
matrix of the compatibility hypergraph. The hypergraph illustrates the relations
between microoperations and compatibility classes. The graphical form of com-
patibility hypergraph HM1 is presented in Fig. 6.11.
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Fig. 6.11. Hypergraph HM1

For the considered example, compatibility hypergraph HM1 consists of six
vertices (corresponding to particular microoperations) and four hyperedges (rep-
resenting compatibility classes). Since incidence matrix AM1 consists of 24 fields,
the rows correspond to the compatibility classes, whereas the columns - to the
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microoperations. Figure 6.12 presents incidence matrix AM1 of a compatibility
hypergraph.

y1 y2 y3 y4 y5 y6

AM1 =


1 1 1 0 0 0
1 0 1 1 0 1
0 1 0 0 1 0
0 0 0 1 1 1


C1
C2
C3
C4

Fig. 6.12. Incidence matrix AM1 of compatibility hypergraph HM1

Then a hypergraph dual to the compatibility hypergraph is determined. The
edges of the dual hypergraph correspond to the vertices of the compatibility hyper-
graph, whereas its vertices - to the edges. The incidence matrix of dual hypergraph
A∗M1

(Fig. 6.13) is a transposition of the matrix of the compatibility hypergraph.

C1 C2 C3 C4

A∗M1
=


1 1 0 0
1 0 1 0
1 1 0 0
0 1 0 1
0 0 1 1
0 1 0 1


y1
y2
y3
y4
y5
y6

Fig. 6.13. Incidence matrix of a dual hypergraph A∗M1

In the subsequent step, all smallest transversals of the dual hypergraph are
determined. The operation may be performed with the use of any method cal-
culating the smallest vertex cover of a hypergraph. It is a very important stage
of the reduction process of the microinstruction size since the degree of the re-
duction is closely connected with the result of the performed selection. The cover
with the smallest sum of weights of compatibility classes constitutes, in this case,
the criterion of effectiveness. Obviously, the best solution is returned if exact
algorithms are applied (e.g., back tracking), but it involves the exponential com-
putational complexity (Robertson, 1979). Therefore, approximate solutions are
frequently applied (a fast reduction algorithm, a greedy algorithm). A detailed
description of the experiments and the examinations of the effectiveness of the
discussed algorithms are given in Chapter 7.

For the considered dual hypergraph there exist two smallest transversals, both
consisting of two elements: τ1 realizes the cover with the use of edges C1 and C4,
whereas τ2 consists of C2 and C3. To select the best solution, it is necessary to
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perform the subsequent stage of the reduction algorithm of the microinstruction.
For all determined smallest transversals, their total weight (cost) is calculated.

According to the results obtained in the second stage of the proposed method, the
weights of the particular classes are, respectively: C1=C3=C4=2 and C2=3. Thus,
the total cost of the smallest transversals equals:

? for transversal τ1: W1=L1+L4=2+2=4;

? for transversal τ2: W2=L2+L3=3+2=5.

It follows that the cover realized by edges C1 and C4, should be selected for
the further analysis, since the number of bits necessary for encoding compatibility
classes is the smallest. The total number of bits clearly defines the number of
variables which are used to encode microoperations. In the considered example
|Q|=4, thus Q={q1, q2, q3, q4}. Since both classes have the same weight, equal
2, therefore variables q1 and q2 are used to encode class C1, whereas q3 and q4
represent microoperations comprised in C4. The code selection is arbitrary. In the
presented example, the natural binary code is used. Microoperation encoding is
presented in Tab. 6.2.

Tab. 6.2. Compatibility class encoding

Class C1 Code Class C4 Code
y1 y2 y3 q1 q2 y4 y5 y6 q3 q4
0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 1 0 1 0
0 0 1 1 0 0 1 0 1 0

The final content of the memory with encoded microinstructions is determined
on the basis of Table 6.2. Since |Q|=4 variables have been used in the encoding
process, the new size of the microinstruction is four bits. Table 6.3 illustrates the
content of the memory with the encoded microinstructions.

Tab. 6.3. Content of memoryM1 after the reduction of the microinstruction length

µM
Microoperation M
q1 q2 q3 q4

µ1 0 0 0 0 1
µ2 0 0 0 1 2
µ3 0 1 1 0 3
µ4 1 0 1 0 4
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The above table implies that the size of the encoded microinstruction is equal
to four bites, thus the total capacity of the new memory equals Vkońc=16 bits.
Thus, it can be concluded that the initial memory Vpocz has been reduced by
t=33%.

The illustrated example focuses on the demonstration the essence of the algo-
rithm. However, the method for the reduction of a microinstruction has been
thoroughly examined with the use of four different methods for the determination
of the smallest transversal (a fast reduction algorithm, a backtracking algorithm,
a greedy algorithm and a mixed algorithm). The detailed description and the
results of the performed experiments are presented in Chapter 7.

The discussed example was modelled with the use of the Verilog language, and
then implemented in a real programmable system FPGA (the system XC3S500E
of Spartan3E family made by Xilinx was used) (Węgrzyn et al., 1996; Zwolin-
ski, 2000). The source code of both memory versions (before and after decompo-
sition) is presented in Appendix C. The encoding operation was realized through
the determination of logic formulas for the particular microoperations (module
Pamiec_zdekomponowana).

The simulation confirmed the functional correctness of the performed reduc-
tion of the microinstruction length. The obtained results were identical for both
the initial memory (microoperations denoted as y) and the decomposed memory
(denoted as (z) (Fig. 6.14).

Fig. 6.14. Results of the simulation of memory M1 before (y) and after (z)
decomposition

6.3. Summary

The chapter presents two innovative methods for the decomposition of discrete
systems. The first method refers to the parallel decomposition of concurrent au-
tomata described by Petri nets. The algorithm is based on the determination and
selection of exact transversals in a concurrency hypergraph. The method searches
for the subsequent automaton subnets in a polynomial time, which means that the
computational complexity has been reduced in comparison to the methods used so
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far (exponential complexity). The detailed results of the research have confirmed
high efficiency of the proposed method, which proved to be nearly 100 times faster
than in average the algorithms operating on graphs.

The second proposed solution refers to the reduction of the memory capacity.
The algorithm operates on the selection of the compatibility classes of microoper-
ations on the basis of hypergraph transversals. An innovative solution, based on
the application of an arbitrary method searching for the vertex cover in the com-
patibility hypergraph, has been proposed. The results of the research (Chapter 7)
have revealed that the application of the greedy algorithm is the most effective.
The method enables obtaining better results than the traditional method (on av-
erage, the memory is smaller by 16%) in a considerably shorter time (on average,
12 times faster).

An in-depth study was conducted for both methods. The detailed descrip-
tion of the experiments, the obtained results and their analysis are presented in
Chapter 7.



Chapter 7

EXPERIMENTAL VERIFICATION OF DEVELOPED
DECOMPOSITION METHODS

The decomposition methods for discrete systems presented in this work have been
thoroughly examined. According to the description presented in Chapter 6, the
conducted experiments were divided into two independent parts. The first part
involved the examination of the effectiveness of the parallel decomposition of dis-
crete systems, i.e., the decomposition of a Petri net into automaton subnets. The
second part of the research included the structural decomposition of a memory
module.

This chapter describes the details of the performed research: the author’s tool
supporting the research process, the applied libraries of testing modules, as well
as the analysis of the obtained results of the experiments.

7.1. The Author’s Hippo System Supporting the Process
of Decomposition, Analysis and Design of Discrete Systems

To perform the verification of the experimental methods proposed in the book,
the author developed the Hippo, system to support the decomposition of discrete
systems. The author’s direct motivation was the lack of such programs both in
the world of computer science and mathematics. Although there are the pro-
grams and modules for information systems (such as, e.g., Matlab), which enable
basic mathematical operations on graphs (cover, complement, coloring), they are
strongly restricted and usually apply just one method of the result determination
(most frequently it is a kind of greedy algorithm). Whereas, no professional tool
performing (even basic) operations on hypergraphs had been encountered by the
author. Therefore, it was decided to develop original tool to support the decom-
position of discrete systems with the use of hypergraphs (Wiśniewska, 2011).

In most cases the Hippo system allows the application of several alternative
algorithms in solving a given problem (e.g., 5 different algorithms of the deter-
mination of hypergraph transversals were implemented). Such an approach made
it possible to perform complex experiments connected with the decomposition of
discrete systems, and, in particular, the comparison of the effectiveness of graph
and hypergraph methods. It is worth mentioning that the Hippo system finds
a practical application in the Institute of Computer Engineering and Electronics
at the University of Zielona Góra. What is more, it is used in the realizations
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of major projects presented, among others, during the International Science Pic-
nic in Warsaw or the Festivals of Science in Zielona Góra. Therefore, the initial
version of the system has been significantly expanded by a series of o subsequent
modules. At present the Hippo system is a complex tool that supports the process
of decomposition, analysis and design of discrete systems.

This subchapter focuses on the application of the system for the verification
of the effectiveness of the developed methods. The detailed description of all
modules is given in Appendix A. In order to conduct the research connected with
the decomposition of discrete systems the following modules were developed:

? Transversals - a module enabling the determination of the vertex cover in
a hypergraph, 5 different algorithms (fast, greedy, backtracking, and mixed
algorithms as well as DLX for the determination of exact transversals) were
implemented. The module was used both during the experiments connected
with the parallel decomposition (exact transversals in the concurrency hy-
pergraph) and in the structural decomposition (the determination of the
smallest transversal in the selection of compatibility classes).

? Coloring - a module enabling graph or hypergraph coloring, 6 different color-
ing methods were implemented, including 4 finding an approximate solution
(unordered coloring, SL-ordered coloring, LF-ordered and randomly ordered
coloring) and 2 finding an exact solution (backtracking algorithm and for
exact hypergraphs - coloring through the determination and selection of ex-
act transversals). The module formed the research basis for the parallel
decomposition (coloring of a graph or concurrency hypergraph vertices).

? Dualism - a module finding a hypergraph dual to a given hypergraph, con-
stitutes an integral part of the two decomposition processes (in parallel de-
composition during the determination of the selection hypergraph and in
structural decomposition during the selection of compatibility classes).

? Complement - a module enabling the determination of a complement for
a given graph or hypergraph. Two methods were implemented, and both of
them find an exact solution (a backtracking algorithm, and in the case of
c-exact hypergraphs - the complement is found through the determination of
all exact transversals). The module was applied in the formation process of
compatibility classes, which enabled the verification of the developed method
for the structural decomposition with the use of real memory modules.

The developed modules constituted the basis for the performed experiments.
During the experiments, the efficiency of the developed methods was tested, by
comparing the performance times and the obtained results. In order to achieve the
most reliable results, the proposed solutions were compared with the representa-
tives of the algorithms used currently, (for the parallel decomposition it was graph
coloring, whereas for structural decomposition - the selection of the compatibility
classes with the use of fast reduction algorithm).
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7.2. The Research Connected with Parallel Decomposition

7.2.1. The Library of Test Modules and Research Methodology

The developed method for parallel decomposition of a Petri net with the applica-
tion of determination and selection of exact transversals in the concurrency hyper-
graph was compared to the traditional solutions based on coloring of a classical
concurrency graph. For this purpose, the benchmarks elaborated at the University
of Zielona Góra were used. The examined examples were based on both - Petri
nets presenting real discrete systems (such as the controller of a volumetric feeder,
a system of a chemical reactor, etc.) and hypothetical systems. What is more,
all the systems described above were correctly formed Petri nets. The main ob-
jective of the performed experiments were the verification of the efficiency of the
proposed methods for the decomposition of discrete systems, based on the applica-
tion of exact transversals. The efficiency criterion was determined by the time of
the algorithm performance in relation to the traditional method based on concur-
rency graph coloring. The obtained result (the number of the achieved automaton
subnets) should be identical in both cases, as both methods are assumed to find
the optimal solutions, i.e., the smallest possible number of SMCs into which the
original Petri net can be decomposed.

7.2.2. The Research Results

Table 7.1 presents the averaged results of the research obtained in the conducted
experiments. The table lists the results of the decomposition of Petri nets with
the use of three methods for the decomposition of Petri nets. First two ways
were based on graph and concurrency hypergraph coloring with the use of the
exact method (a backtracking algorithm). The third method was based on the
determination and selection of exact transversals in a concurrency hypergraph.
The table includes respectively: the average number of vertices (number of the
Petri net places), the average number of edges in the given graph or concurrency
hypergraph, the average number of the obtained concurrent subnets (SMCs) and
the average execution time of the algorithm.

The present research results presented above clearly show the superiority of
the proposed method over the solutions used so far. The realization of the
algorithm, based on the determination and the selection of the exact
transversals in the concurrency hypergraph, was nearly one hundred
times faster in average than in the previously used solutions, and the
obtained (expected) results were identical for all the cases (detailed results
are presented in Appendix B).

The analysis of the obtained results for the particular test nets leads to the
conclusion that the efficiency of the algorithm depends strongly on the target
number of SMCs into which the original Petri net is decomposed. If a Petri net
is divided into a maximum of two SMCs, the proposed method may appear to be
considerably slower than classical solutions. However, it should be clearly stressed
here that this case is unique and occurs rather seldom. Yet in the case of three
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Tab. 7.1. Averaged results of the research of the parallel decomposition of discrete
systems

Concurrency Concurrency hyper- Calculation and selection
graph coloring graph coloring of exact transversals

Average number 11,44 11,44 11,44of vertices
Average number 35,06 16,04 16,04of edges
Average number 3,28 3,28 3,28of SMCs
Average execution time 4441,06 4325,45 45,58
of the algorithm [ms]

SMCs, the algorithm based on the calculation and selection of exact transversals
occurs to be distinctly faster than the methods based on the graph or concurrency
hypergraph coloring. The efficiency of the proposed method increases with
the number of the target SMCs, which is clearly visible in Fig. 7.1 (the
averaged results of all the examined test modules).
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Among the real discrete systems (the philosophers’ problem, beverage pro-
duction control), in which the number of automaton subnets ranged from 4 - 6,
the time of the solution determination with the use of exact transversals was over
100 times shorter than for the method applying concurrency graph coloring.

7.3. The Research Connected with the Structural Decomposition

7.3.1. The Library of Test Modules and Research Methodology

The second important aspect, of the research and experiments was the determina-
tion of the efficiency of the proposed method for the reduction of the microinstruc-
tion length. The method was verified experimentally with the use of four different
algorithms, realizing the hypergraph vertex cover. The fast reduction algorithm
(a representative of a classical method, most frequently used nowadays), greedy
algorithm, backtracking algorithm and hybrid algorithm (a mixture of fast reduc-
tion algorithm and the greedy algorithm) were examined. All the methods were
verified with the use of over 100 test memories. The vast majority of the exam-
ined tests (about 70) were real memory systems of logic controllers, taken from
the libraries provided by S. Baranov (Holon Institute of Technology) and the test
base of the University of Zielona Góra (teams led by L. Titarenko, A. Barkalov
and M. Adamski). The remaining modules are hypothetical memories (randomly
generated).

Each of the test memories was subjected to a full path of the reduction of
the microinstruction length. Thus, at the beginning, compatibility classes were
determined, and the weights for these classes were established. Then on this basis,
hypergraph H, illustrating the relations between the particular microoperations,
was formed, and next - according to the algorithm described in Chapter 6 - dual
hypergraph H∗. In the subsequent step, the smallest transversals for hypergraph
H∗ were determined. This stage was the main objective of the performed experi-
ments. Four different methods for the determination of transversals were examined
and compared. The execution time and the size of the found transversal were as-
sumed to be the comparative criteria (the costs of particular weights were taken
into account, according to the algorithm presented in Chapter 6).

7.3.2. The Research Results

Table 7.2 presents the averaged results of the conducted research. The columns
present the results obtained during the determination of the hypergraph transver-
sals with the use of the particular algorithms. The rows illustrate the efficiency of
a given algorithm - the proportional reduction of the total capacity of a memory
and the averaged time of the execution of a given algorithm.
Table 7.3 presents the results of the research in relation to the fast reduction
algorithm in order to illustrate and compare the algorithms better. As mentioned
in Chapter 6, the method was selected as a representation of traditional solutions
based on matrix operations (Dasgupta, 1979; Robertson, 1979).
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Tab. 7.2. Reduction of the microinstruction length - averaged research results

Fast reduction Greedy Backtracking Hybrid
algorithm algorithm algorithm algorithm

Reduction of the capa- 82% 69% 66% 74%city of a memory [%]
Average time 0,31273 0,02625 40, 8067[1] 0,37214of the execution [s]

[1] - due to the exponential computational complexity of the algorithm, a part of the tests was
stopped after an hour.

Tab. 7.3. Reduction of the microinstruction length - a comparison of algorithms

Greedy Backtracking Hybrid
algorithm algorithm algorithm

Reduction of the capacity in relation 84% 81% 92%to the fast reduction algorithm
Reduction of the time in relation 8% 13048%[1] 119%to the fast reduction algorithm

[1] - due to the exponential computational complexity of the algorithm, a part of the tests was
stopped after an hour.

According to the expectations, the backtracking algorithm appeared to be
the most efficient (on average by 29% better than the traditional solutions based
on the fast reduction algorithm). The fundamental disadvantage of the method
is its exponential computational complexity, which in practice precludes it from
being used in relatively large memories (it makes sense to apply the method for the
memory sizes up to about 400 bits, i.e., 20 microinstructions x 20 microoperations).
Surprisingly good effects were obtained for the greedy algorithm. On average,
the method was by as much as 16% better than the traditional solution (the
fast reduction algorithm), and was only slightly exceeded by the backtracking
algorithm. Combining it with the definitely shortest execution time, this solution
appeared to be the most efficient for larger memory modules.

7.4. Summary

The chapter presents a means of experimental verification used for the developed
method for decomposition of discrete systems. The base for the conducted research
was the author’s Hippo system, in which graph and hypergraph algorithms were
implemented. The obtained empirical results confirm the high efficiency of the
proposed method for the parallel decomposition of concurrent automata. The
application of the exact transversals accelerates the process of solution finding
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by nearly one hundred times, in comparison to the solutions based on classical
concurrency graph coloring. While in the case of structural decomposition, the
efficiency of algorithms based on the determination of the smallest transversal in
a compatibility hypergraph was tested. The research demonstrates surprisingly
good results for approximate solutions (a greedy algorithm), which are on average
16% more efficient (smaller memory capacity resulting from the decomposition)
and 12 times faster than the generally used methods.



Chapter 8

SUMMARY

Recent years have observed a dynamic development in electronic and information
technologies. It is connected with the growth of the realized discrete systems,
followed by the continuous improvement of design methods and tools. The main
objective of the developed algorithms is to obtain satisfactory results in the short-
est possible time. The vast majority of problems are currently realized with the
use of the classical theory of undirected graphs, which a few years fully complied
with the set objectives. However, the increase in the size of discrete systems
necessitates the continuous modifications of the existing methods for decomposi-
tion, analysis or design, and the search for the new ones. The introduction of
the theory of hypergraphs may appear to be a kind of a breakthrough. Despite
the fact that hypergraphs were proposed already in the 70s of the previous cen-
tury, it is only in recent years that they have been more and more boldly used
in the issues connected with mathematics, computer science or electronics. Fur-
thermore, very interesting properties of these structures cause the rapid growth of
interest of the researchers from all over the world, which in turn results in numer-
ous practical applications of hypergraphs in problem-solving in various domains,
such as mathematics (Elbassioni and Rauf, 2010), chemistry (Konstantinova and
Skorobogatov, 2001), and first of all computer science and electronics (Eiter and
Gottlob, 2002).

In the book two methods for decomposition of discrete systems are proposed.
Both solutions are based on the application of the theory of hypergraphs. The
first of the methods is connected with the parallel decomposition of concurrent
automata, described by Petri nets. The controller is divided into the sequential
automata cooperating with each other, whereas each of them may be designed
independently, e.g., as a controlling system with a memory. The second of the
proposed solutions refers to the structural decomposition of a discrete system.
In the process of decomposition, the capacity of the memory block is reduced
(particularly for memory blocks of sequential automata) by applying the reduction
of the microinstruction length.

The main objective of the developed methods is to improve the decomposition
process through the reduction of the algorithm execution time (both for the parallel
and structural decompositions), as well as to find a more effective solution (for
structural decomposition, the effectiveness is understood as obtaining a smaller
size of the decomposed memory), in comparison to the currently used solutions.
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This chapter constitutes a synthetic summary of the research and development
connected with the decomposition of discrete systems. It presents the innovative
elements of the work developed by the author herself. The chapter comments on
the thesis as well as the objectives of the work. Moreover, it outlines possible
directions of further research.

8.1. Confirmation of the Thesis

The thesis of the work has been theoretically justified and experimentally con-
firmed. The book shows that the application of hypergraphs in both parallel and
structural decompositions considerably improves the processes in comparison to
the generally used solutions.

Theoretical considerations, presented in Chapters 4, 5 and 6, connected with
the parallel decomposition of concurrent automata described by Petri nets, show
that the determination of the subsequent exact transversals in a concurrency hy-
pergraph may be performed in polynomial time. It means that the computational
complexity was considerably reduced in comparison to the commonly used solu-
tions in which finding the subsequent SMCs is connected with the exponential
complexity.

The experiments confirmed the high efficiency of the developed method for
the decomposition of discrete systems. The execution time of the algorithm
based on the determination and selection of exact transversals in a con-
currency hypergraph was nearly one hundred times faster in average
than the solutions used so far, and identical results (expected) were
obtained in all the cases (the detailed results are presented in Appendix B).

The analysis of the obtained results for the particular test nets allows the
statement that the algorithm effectiveness strongly depends on the target number
of SMCs into which the original Petri net was decomposed. If a Petri net is divided
into a maximum of two subnets, the proposed method may turn out to be even
slower than the classical solutions. However, it should be stressed clearly that it is
a special and rare case. Already in the case of three subnets, the algorithm based
on the calculation and selection of exact transversals turns out to be distinctly
faster than the methods based on graph or concurrency hypergraph coloring. The
effectiveness of the proposed method increases with the number of tar-
get SMCs. Among the real discrete systems (philosophers problem, beverage
production control) in which the number of subnets ranged from 4 to 6, the time
of finding the solution with the use of exact transversals was more than 100 times
shorter than for concurrency graph coloring.

The application of a hypergraph in the selection of compatibility classes in
the reduction of the microinstruction length allows not only reducing the time
necessary for obtaining the results, but it also significantly improves the reduction
algorithm. The performed experiments showed that the greedy algorithm is on
average 12 times faster and by 16% more effective than the commonly used method
which is based on the fast reduction algorithm (the effectiveness directly causes the
smaller memory capacity after the decomposition). It is worth mentioning that for
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the selection of compatibility classes any arbitrary algorithm determining the
smallest hypergraph transversal may be used, which opens future possibilities
to apply new, today unknown methods of finding the hypergraph vertex cover.
The most essential results of the research have been presented at conferences and
published in international and national journals.

The decomposition algorithms developed in the work and the Hippo system
have found practical application in the Institute of Computer Engineering and
Electronics at the University of Zielona Góra (both in teaching and in scientific
research). The program was used in the realization of the projects presented during
the International Science Picnic in Warsaw (2011), Festivals of Science in Zielona
Góra (2010 and 2011), as well as during the Days of Lubuskie Province (2010).

This book was realized within the research project financed from the Inte-
grated Regional Development Operational Programme funds and co-financed by
the European Social Fund (both projects in the years 2005-2006) and Sub-measure
8.2.2 "Regional Innovation Strategies", Measure 8.2 "Transfer of knowledge", Pri-
ority VIII "Regional Human Resources" for the economy of the "Human Capital
Operational Program" co-financed by the European Social Fund and the State
budget (2010-2011).
 

 

8.2. Innovative and Author’s Elements

The confirmation of the main thesis resulted in the innovative methods and ideas
developed by the author. The most essential and innovative elements introduced
in the work are as follows:

? the development of a method for parallel decomposition of discrete systems
described by Petri nets with the application of the theory of hypergraphs
whose aim was to improve the decomposition process of digital concurrent
automata;

? the development of a method for structural decomposition of discrete systems
based on the reduction of the memory microinstruction length (in particular,
the memory of sequential automata of the decomposed concurrent automa-
ton) with the use of the theory of hypergraphs;

? the introduction of new definitions connected with the application of the
theory of hypergraphs into the decomposition of discrete systems (terms
the concurrency hypergraph, the sequentiality hypergraph and the selection
hypergraph);
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? the development of theorems connected with the application of the theory
of hypergraphs into the decomposition of discrete systems (it was proved,
among others, that the first and the subsequent exact transversals in a con-
currency hypergraph may by determined in polynomial time).

? the development of the author’s Hippo system supporting the design pro-
cess, analysis and decomposition of discrete systems with the use of both
hypergraphs and traditional undirected graphs;

? the experimental verification of the effectiveness of the developed methods
for discrete system decomposition.

8.3. Directions of Further Work

The developed methods for decomposition of discrete systems may constitute the
base for further research. One of the possible directions of the work is to par-
ticularize the number and size of the obtained SMCs in parallel decomposition.
Currently, the algorithm returns the smallest possible number of subnets which,
for example, from the point of view of a digital system designer is not always bene-
ficial. It may sometimes happen that the effectiveness criterion will be constituted
by the smallest and possibly regular number of states in all decomposed SMCs,
with little attention to their general number. It is also possible to particularize the
search criterion (the exact number of expected subnets, their minimal/maximal
size, etc.). Obviously, the realization of the tasks formulated in such a way will be
connected with the extension of the decomposition process. However, the effective-
ness of an algorithm based on the determination of subsequent exact transversals
should increase in comparison to the traditional solutions (in which the solution
may be even impossible to be found).

The book highlights the series of very interesting properties of exact hyper-
graphs. Therefore the structure is currently the subject of intense research, pri-
marily because of the possibility to reduce the computational complexity of algo-
rithms. So far, it has been proved that the subsequent exact transversals may be
determined in polynomial time, but the exponential number of transversals still
remains a problem. The work presents a method based on a partial search for
the solution set until all vertices of the concurrency hypergraph are covered by
exact transversals. Although no theoretical proof was carried out (which is due
to advanced mathematical algorithms), the research and the experiments suggest
that the whole process of determination and selection of exact transversals may
be connected with polynomial computational complexity. It could result in the
possibility of parallel decomposition of Petri nets in polynomial time. The re-
search into this field may provide a very interesting work, particularly due to the
fact that exact transversals present a wide spectrum of applications, from math-
ematics and geometry (Elbassioni and Rauf, 2010), through entertainment, e.g.,
finding solutions to Sudoku puzzles or problem of placing queens on a chessboard
(Knuth, 2000), to computer science and discrete systems (Eiter, 1994; Wiśniewska
et al., 2007b).



Appendix A

HIPPO - AUTHOR’S SYSTEM SUPPORTING
THE PROCESS OF DECOMPOSITION

OF DISCRETE SYSTEMS

In order to improve the process of decomposition of discrete systems and automa-
tion of the performed research and experiments, the author’s Hippo system was
developed. The tool consists of the set of three modules, realizing the most essen-
tial operations concerning the theory of graphs and hypergraphs (among others
coloring, covering, complement, dualism, etc.). Figure A.1 demonstrates a graph-
ical representation of the Hippo system.

Fig. A.1. Graphical representation of the Hippo system
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Despite a very detailed analysis and the thorough searches on the Internet,
the author did not find any systems supporting the calculation process which
would exploit the theory of hypergraphs. Although there are ready-made ap-
plications (usually commercial ones) supporting the graph operation processes,
the programmes operating on the theory of hypergraphs were not encountered.
Therefore the author decided to realize her own system which was intended for
the verification and automation of the developed methods for the decomposition
presented in Chapter 6. Eventually, the project was significantly expanded and
a series of additional algorithms and methods (e.g., conversions between various
formats, graphical representation, the possibility of exporting vector graphics, etc.)
were implemented. In this case, the author was motivated by the practical use
of the system in the Institute of Computer Engineering and Electronics at the
University of Zielona Góra (both in teaching, promotion and scientific research).

A.1. Input Data for the Hippo System

The Hippo system operates on matrix structures. Standard input consists of a de-
scription of a graph or hypergraph presented in the form of a text. Output data
may be transferred as a text file or directly in a graphical environment. The struc-
ture of default input data is close to the incidence matrix of a graph/hypergraph:

? The first row defines the number of vertices of a graph/hypergraph

? The second row contains the number of edges of a graph/hypergraph

? The subsequent rows contain the values of the incidence matrix of a graph/hy-
pergraph. Value 1 means that the edge represented by the j-th column
contains a vertex represented by the i-th row. Analogically, value 0 is un-
derstood as the lack of a vertex belonging to a given column.

Fig. A.2. Input data of the Hippo system

Fig. A.2 presents a hypothetical description of a hypergraph of m=6 vertices
(V={v1, v2, v3, v4, v5, v6}) and n=3 hyperedges (E={E1, E2, E3}). In the consid-
ered example the particular edges contain the following vertices: E1={v1, v2, v6},
E2={v2, v3, v4}, E1={v5, v6}.

Additionally, input data may be presented as an adjacency matrix, (obviously,
it makes sense only in the case of graphs). It should be remembered, though, that
the representation may only be used in the combination with Graph2Hipergraph,
since the other modules are compatible only with the default data format.
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A.2. The Results of the Operation Execution
in the Hippo System

Depending on the used module, the system may return data in various formats. In
the case of modules Coloring and Transversals the result is a text description of the
obtained results (Fig. A.3). The remaining modules will return the result in the
form of an incidence (or adjacency) matrix. The result is graphically illustrated
which considerably enhances the readability of the obtained results. There is also
a possibility of displaying all the potential results of coloring and transversals
through the selection of an appropriate method (Fig. A.3).

Fig. A.3. Results of the Hippo system

A.3. Structure of the Hippo System

The Hippo system contains eight independent modules, and each is performed as
an independent process. The Hippo comprises the following modules:

1. Complement - a module determining the complement of a given graph/hy-
pergraph.

2. Coloring - a module realizing the coloring of a graph/hypergraph. Five
methods of graph and hypergraph coloring were implemented, four of which
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are based on the greedy algorithm (unordered, LF-type ordered, SL-type
ordered and randomly ordered). Moreover, there is a possibility of apply-
ing exact methods through the use of the backtracking algorithm (both for
graphs and hypergraphs) and through the determination and selection of
exact transversals (only for c-exact hypergraphs).

3. Transversals - a module calculating the cover. Four methods for the deter-
mination of transversals were implemented: the fast reduction algorithm,
greedy algorithm, backtracking algorithm, hybrid algorithm (a combination
of the fast reduction algorithm and the greedy method). Moreover, the algo-
rithm calculating the exact transversals in the c-exact hypergraph was im-
plemented. The method is based on a substantially modified D. E. Knuth’s
DLX algorithm, in which the possibility of interrupting the searching process
was introduced. Such a possibility may occur only then when the smallest
set of exact transversals which cover all the hypergraph vertices has been de-
termined. The improved algorithm was applied in the parallel decomposition
of discrete systems (Chapter 6).

4. Dualism - a module determining a hypergraph dual to a given hypergraph
(transposition of the incidence matrix of a hypergraph).

5. Graph2Hypergraph - a module converting a graph into a hypergraph. In
practice, the functionality of this module reduces to the determination of
all maximal complete subgraphs, and then replacing them with their hyper-
edges. The input may be an adjacency matrix or an incidence matrix.

6. Hypergraph2Graph Incidence - a module converting a hypergraph into a graph
(the conversion of a hypergraph incidence matrix into a graph incidence ma-
trix).

7. Hypergraph2Graph Adjacency - a module converting a hypergraph into a graph
(the conversion of a hypergraph incidence matrix into a graph adjacency ma-
trix).

8. Hypergraph2Tex - man additional module converting a hypergraph (or a graph)
described by an incidence (or adjacency) matrix into the form of a table in-
terpreted by the LATEXsystem.

Apart from these modules, in the Hippo system there are also the options
facilitating and improving the operations on graphs and hypergraphs, e.g., there
is a possibility to record the resultant picture in a vector form or turn off graph-
ics mode (particularly useful in the case of relatively large structures where the
graphical representation is illegible).

The basic objective of the developed modules was the automation of the de-
composition of discrete systems. Therefore the most essential algorithms for graph
and hypergraph coloring and covering were implemented (the investigation into
the usability and efficiency of the developed methods for decomposition of discrete
systems).



Appendix B

RESEARCH RESULTS

This appendix presents the detailed results of the research connected with the
decomposition of discrete systems with the use of hypergraphs. The attached
tables present the obtained results for the representative test modules, what is
more the obtained results are briefly characterized.

B.1. The Research on Parallel Decomposition

Tables B.1 and B.2 present the results of the research associated with the parallel
decomposition of discrete systems described by Petri nets. Sixteen test modules
were selected for the list, some of which describe real discrete processes, whereas
the others present a hypothetical and structurally correct Petri net (its name starts
with the word "Test").

Particular columns contain the following data:

? Benchmark - specifies the name of the used test module;

? Algorithm - a kind of applied decomposition algorithm (coloring of a con-
currency graph, coloring of a concurrency hypergraph, determination and
selection of exact transversals in a concurrency hypergraph);

? Number of vertices - a number of concurrency graph/hypergraph vertices;

? Number of edges - a number of concurrency graph/hypergraph edges;

? Number of SMCs - a number of subnets (SMCs) obtained in the decomposi-
tion process;

? Algorithm run-time - the time obtained in the decomposition with the use
of a specific algorithm;

? Run-time comparison - the ratio of the concurrency graph coloring run-time
to the given decomposition algorithm run-time;

? Execution speed comparison - the comparison of the given decomposition
algorithm run-time to the concurrency graph coloring run-time.
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114 B. Research Results

B.2. The Research on Structural Decomposition

Tables B.3 and B.4 present the results of the research connected with the decom-
position of 10 selected benchmarks. The particular columns contain the following
data:

? Benchmark - specifies the name of the used benchmark (test module);

? Initial capacity - the initial size of the test module memory;

? Algorithm - a kind of the reduction algorithm;

? Number of classes - a number of compatibility classes obtained as a result of
the reduction;

? Number of variables - a number of variables used to encode compatibility
classes;

? Run-time - the time obtained during the reduction with a given algorithm;

? Capacity after the reduction - the capacity of memory after the reduction
with the use of a given algorithm;

? Reduction of the memory capacity - the capacity of memory after the reduc-
tion in relation to the initial capacity (expressed in percentage terms);

? Relative time reduction - the time of reduction with the use of a given al-
gorithm in relation to the time of reduction with the use of the classical
algorithm (i.e., the fast reduction algorithm);

? Relative capacity reduction - the capacity obtained in the reduction with the
use of a given algorithm in relation to the capacity obtained with the use of
the fast reduction algorithm.

The presented results demonstrate that only in a few instances the reduction
with the use of the greedy algorithm gave worse results than the reduction with
the use of the backtracking method. It is worth emphasizing that in the case of
relatively large memories the reduction with the use of the exact algorithm was
interrupted after one hour (the run-time for the greedy method was shorter than
one second).
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Appendix C

AN EXAMPLE OF THE DISCRETE SYSTEM
DESCRIPTION WITH THE APPLICATION

OF VERILOG LANGUAGE

This appendix shows the description of all the models of discrete systems that
shown in Chapter 6. The models of parallel decomposition of a discrete system
are presented in (C.1), and the models of structural decomposition of a discrete
system are presented in (C.2). All the systems were described with Verilog-HDL
language.

C.1. Parallel Decomposition of a Discrete System

Lst. C.1. Description of Mixer (beverage machine), "one-hot" encoding
1 //Method 1 : encoding " one−hot " , as a standard Petr i −net
2 //
3 module PN2_OneHot(y , x , c lk , r e s e t ) ;
4 output [ 1 : 1 2 ] y ;
5 input [ 1 : 1 3 ] x ;
6 input r e s e t , c l k ;
7
8 reg [ 1 : 1 9 ] p ;
9 wire [ 1 : 1 5 ] t ;

10
11 assign t [1 ]= x [1]&~ x [4 ]&p [ 1 ] ;
12 assign t [2 ]= x [5 ]&p [ 2 ] ;
13 assign t [3 ]= x [7 ]&p [ 3 ] ;
14 assign t [4 ]= x [4 ]&p [ 4 ] ;
15 assign t [5 ]= x [2 ]&p [ 5 ] ;
16 assign t [6 ]= x [3 ]&p [ 6 ] ;
17 assign t [7 ]= x [13]&p [ 7 ] ;
18 assign t [8 ]=p [8 ]&p [ 9 ] ;
19 assign t [9]=~ x [6]&~ x [8]&~ x [9 ]&p [ 1 0 ] ;
20 assign t [10 ]=p [11]&p [ 1 3 ] ;
21 assign t [11 ]=p [12]&p [ 1 4 ] ;
22 assign t [12 ]= x [10]&p [ 1 5 ] ;
23 assign t [13 ]= x [11]&p [ 1 6 ] ;
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24 assign t [14 ]=p [17]&p [ 1 8 ] ;
25 assign t [15 ]= x [12]&p [ 1 9 ] ;
26
27
28 assign y [1 ]=p [ 5 ] ;
29 assign y [2 ]=p [ 6 ] ;
30 assign y [3 ]=p [ 4 ] ;
31 assign y [4 ]=p [ 1 0 ] ;
32 assign y [5 ]=p [ 1 0 ] ;
33 assign y [6 ]=p [ 1 0 ] ;
34 assign y [7 ]=p [ 1 5 ] ;
35 assign y [8 ]=p [ 1 6 ] ;
36 assign y [9 ]=p [ 1 9 ] ;
37 assign y [10]=p [ 2 ] ;
38 assign y [11]=p [ 3 ] ;
39 assign y [12]=p [ 7 ] ;
40
41 always @( posedge c l k or posedge r e s e t )
42 begin
43 i f ( r e s e t ) p<=19’b1000000000000000000 ;
44 else
45 begin
46 p[1]<=p[1]&~ t [ 1 ] | p [19]& t [ 1 5 ] ;
47 p[2]<=p[2]&~ t [ 2 ] | p [1 ]& t [ 1 ] ;
48 p[3]<=p[3]&~ t [ 3 ] | p [1 ]& t [ 1 ] ;
49 p[4]<=p[4]&~ t [ 4 ] | p [1 ]& t [ 1 ] ;
50 p[5]<=p[5]&~ t [ 5 ] | p [2 ]& t [ 2 ] ;
51 p[6]<=p[6]&~ t [ 6 ] | p [3 ]& t [ 3 ] ;
52 p[7]<=p[7]&~ t [ 7 ] | p [4 ]& t [ 4 ] ;
53 p[8]<=p[8]&~ t [ 8 ] | p [5 ]& t [ 5 ] ;
54 p[9]<=p[9]&~ t [ 8 ] | p [6 ]& t [ 6 ] ;
55 p[10]<=p[10]&~ t [ 9 ] | p [8 ]&p [9 ]& t [ 8 ] ;
56 p[11]<=p[11]&~ t [ 1 0 ] | p [10]& t [ 9 ] ;
57 p[12]<=p[12]&~ t [ 1 1 ] | p [10]& t [ 9 ] ;
58 p[13]<=p[13]&~ t [ 1 0 ] | p [7 ]& t [ 7 ] ;
59 p[14]<=p[14]&~ t [ 1 1 ] | p [7 ]& t [ 7 ] ;
60 p[15]<=p[15]&~ t [ 1 2 ] | p [11]&p [13]& t [ 1 0 ] ;
61 p[16]<=p[16]&~ t [ 1 3 ] | p [12]&p [14]& t [ 1 1 ] ;
62 p[17]<=p[17]&~ t [ 1 4 ] | p [15]& t [ 1 2 ] ;
63 p[18]<=p[18]&~ t [ 1 4 ] | p [16]& t [ 1 3 ] ;
64 p[19]<=p[19]&~ t [ 1 5 ] | p [17]&p [18]& t [ 1 4 ] ;
65 end
66 end
67 endmodule
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Lst. C.2. Description of Mixer, parallel encoding (after decomposition)

1 //Method 2 : p a r a l l e l encoding o f the p l a c e s a f t e r
2 // decomposi t ion o f the Pe t r i net
3 //
4 module PN2_ParallelEncoding (y , x , c lk , r e s e t ) ;
5 output [ 1 : 1 2 ] y ;
6 input [ 1 : 1 3 ] x ;
7 input r e s e t , c l k ;
8 reg [ 1 : 1 0 ] q ;
9 wire [ 1 : 1 5 ] t ;

10
11 ‘define p1 ~q [1]&~ q [2]&~ q [3]&~ q [4]&~ q [5]&~ q [6]&~ q [7]&~ q [8]&~ q [ 9 ]
12 ‘define p2 q [1]&~ q [2]&~ q [3]&~ q [ 4 ]
13 ‘define p3 q [5]&~ q [6]&~ q [ 7 ]
14 ‘define p4 ~q [8 ]& q [ 9 ]
15 ‘define p5 q [1 ]& q [2]&~ q [3]&~ q [ 4 ]
16 ‘define p6 q [5 ]& q [6]&~ q [ 7 ]
17 ‘define p7 q [8 ]& q [ 9 ]
18 ‘define p8 ~q [1 ]& q [2]&~ q [3]&~ q [ 4 ]
19 ‘define p9 ~q [5 ]& q [6]&~ q [ 7 ]
20 ‘define p10 ~q [1 ]& q [2 ]& q [3]&~ q [4]&~ q [5 ]& q [6 ]& q [ 7 ]
21 ‘define p11 ~q [1]&~ q [2 ]& q [3]&~ q [ 4 ]
22 ‘define p12 q [5 ]& q [6 ]& q [ 7 ]
23 ‘define p13 q [ 1 0 ]
24 ‘define p14 q [8]&~ q [ 9 ]
25 ‘define p15 ~q [1]&~ q [2 ]& q [3 ]& q [ 4 ]
26 ‘define p16 q [5]&~ q [6 ]& q [ 7 ]
27 ‘define p17 ~q [1]&~ q [2]&~ q [3 ]& q [ 4 ]
28 ‘define p18 ~q [5]&~ q [6 ]& q [ 7 ]
29 ‘define p19 ~q [1 ]& q [2]&~ q [3 ]& q [ 4 ]
30
31 assign t [1 ]= x [1]&~ x [4 ]& ‘p1 ;
32 assign t [2 ]= x [5 ]& ‘p2 ;
33 assign t [3 ]= x [7 ]& ‘p3 ;
34 assign t [4 ]= x [4 ]& ‘p4 ;
35 assign t [5 ]= x [2 ]& ‘p5 ;
36 assign t [6 ]= x [3 ]& ‘p6 ;
37 assign t [7 ]= x [13]& ‘p7 ;
38 assign t [8 ]= ‘p8&‘p9 ;
39 assign t [9]=~ x [6]&~ x [8]&~ x [9 ]& ‘p10 ;
40 assign t [10 ]= ‘p11&‘p13 ;
41 assign t [11 ]= ‘p12&‘p14 ;
42 assign t [12 ]= x [10]& ‘p15 ;
43 assign t [13 ]= x [11]& ‘p16 ;
44 assign t [14 ]= ‘p17&‘p18 ;
45 assign t [15 ]= x [12]& ‘p19 ;
46 assign y [1 ]= ‘p5 ;
47 assign y [2 ]= ‘p6 ;
48 assign y [3 ]= ‘p4 ;
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49 assign y [4 ]= ‘p10 ;
50 assign y [5 ]= ‘p10 ;
51 assign y [6 ]= ‘p10 ;
52 assign y [7 ]= ‘p15 ;
53 assign y [8 ]= ‘p16 ;
54 assign y [9 ]= ‘p19 ;
55 assign y [10]= ‘p2 ;
56 assign y [11]= ‘p3 ;
57 assign y [12]= ‘p7 ;
58
59 always @( posedge c l k or posedge r e s e t ) begin
60 i f ( r e s e t ) q<=0;
61 else
62 begin
63 q[1]<= ‘p1&t [ 1 ] | ‘p2 | ‘p5&~t [ 5 ] ;
64 q[2]<= ‘p2&t [ 2 ] | ‘p5 | ‘p8 | ‘p10&~t [ 9 ] | ‘p17&t [ 1 4 ] | ‘p19&~t [ 1 5 ] ;
65 q[3]<= ‘p8&t [ 8 ] | ‘p10 | ‘p11 | ‘p15&~t [ 1 2 ] ;
66 q[4]<= ‘p11&t [ 1 0 ] | ‘p15 | ‘p17 | ‘p19&~t [ 1 5 ] ;
67 q[5]<= ‘p1&t [ 1 ] | ‘p3 | ‘p6&~t [ 6 ] | ‘p10&t [ 9 ] | ‘p12 | ‘p16&~t [ 1 3 ] ;
68 q[6]<= ‘p3&t [ 3 ] | ‘p6 | ‘p9 | ‘p10 | ‘p12&~t [ 1 1 ] ;
69 q[7]<= ‘p9&t [ 8 ] | ‘p10 | ‘p12 | ‘p16 | ‘p18&~t [ 1 4 ] ;
70 q[8]<= ‘p4&t [ 4 ] | ‘p7 | ‘p14&~t [ 1 1 ] ;
71 q[9]<= ‘p1&t [ 1 ] | ‘p4 | ‘p7&~t [ 7 ] ;
72 q[10]<= ‘p7&t [ 7 ] | ‘p13&~t [ 1 0 ] ;
73 end
74 end
75 endmodule

Lst. C.3. Description of Mixer, after decomposition into 4 subnets
1 //Method 3 : decomposi t ion o f the Pe t r i net i n t o 4 subne t s (SMCs)
2 //
3 module PN2_Decomposition (y , x , c lk , r e s e t ) ;
4 output [ 1 : 1 2 ] y ;
5 input [ 1 : 1 3 ] x ;
6 input r e s e t , c l k ;
7 wire p1 , p7 , p8 , p9 , p10 , p11 , p12 , p13 , p14 , p17 , p18 , p20 , p22 , p21 ;
8 wire [ 1 : 9 ] q ;
9

10 SMC1 a1 ( p1 , p8 , p17 , p10 , p11 , q [ 1 : 4 ] , x [ 1 ] , x [ 2 ] , x [ 4 ] , x [ 5 ] , x [ 6 ] , x [ 8 ] ,
11 x [ 9 ] , x [ 1 0 ] , x [ 1 2 ] , c lk , r e s e t , p9 , p13 , p18 , p20 , p22 , p21 ) ;
12 Memory1 m1 ( y [ 1 ] , y [ 4 ] , y [ 5 ] , y [ 6 ] , y [ 7 ] , y [ 9 ] , y [ 1 0 ] , ~ c lk , r e s e t ,
13 q [ 1 : 4 ] ) ;
14 SMC2 a2 ( p9 , p12 , p18 , p20 , p21 , q [ 5 : 7 ] , x [ 1 ] , x [ 3 ] , x [ 4 ] , x [ 6 ] , x [ 7 ] , x [ 8 ] ,
15 x [ 9 ] , x [ 1 1 ] , c lk , r e s e t , p1 , p8 , p10 , p14 , p17 , p22 ) ;
16 Memory2 m2 ( y [ 2 ] , y [ 8 ] , y [ 1 1 ] , ~ c lk , r e s e t , q [ 5 : 7 ] ) ;
17 SMC3 a3 ( p7 , p14 , p22 , q [ 8 : 9 ] , x [ 1 ] , x [ 4 ] , x [ 1 3 ] , c lk , r e s e t , p1 , p12 , p20 ) ;
18 Memory3 m3 ( y [ 3 ] , y [ 1 2 ] , ~ c lk , r e s e t , q [ 8 : 9 ] ) ;
19 SMC4 a4 ( p13 , x [ 1 3 ] , c lk , r e s e t , p7 , p11 ) ;
20 endmodule
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21 module SMC1( p1 , p8 , p17 , p10 , p11 , q , x1 , x2 , x4 , x5 , x6 , x8 ,
22 x9 , x10 , x12 , c lk , r e s e t , p9 , p13 , p18 , p20 , p22 , p21 ) ;
23
24 output p1 , p8 , p10 , p11 , p17 ;
25 output reg [ 1 : 4 ] q ;
26 input x1 , x2 , x4 , x5 , x6 , x8 , x9 , x10 , x12 ;
27 input r e s e t , c l k ;
28 input p9 , p13 , p18 , p20 , p22 , p21 ;
29
30 wire t1 , t2 , t5 , t8 , t9 , t10 , t12 , t14 , t15 ;
31 wire p2 , p5 , p15 , p19 ;
32
33 assign p1=~q [1]&~ q [2]&~ q [3]&~ q [ 4 ] ;
34 assign p2=q [1]&~ q [2]&~ q [3]&~ q [ 4 ] ;
35 assign p5=q [1 ]& q [2]&~ q [3]&~ q [ 4 ] ;
36 assign p8=~q [1 ]& q [2]&~ q [3]&~ q [ 4 ] ;
37 assign p10=~q [1 ]& q [2 ]& q [3]&~ q [ 4 ] ;
38 assign p11=~q [1]&~ q [2 ]& q [3]&~ q [ 4 ] ;
39 assign p15=~q [1]&~ q [2 ]& q [3 ]& q [ 4 ] ;
40 assign p17=~q [1]&~ q [2]&~ q [3 ]& q [ 4 ] ;
41 assign p19=~q [1 ]& q [2]&~ q [3 ]& q [ 4 ] ;
42 assign t1=x1&~x4&p1&p20&p22 ;
43 assign t2=x5&p2 ;
44 assign t5=x2&p5 ;
45 assign t8=p8&p9 ;
46 assign t9=~x6&~x8&~x9&p10&p21 ;
47 assign t10=p11&p13 ;
48 assign t12=x10&p15 ;
49 assign t14=p17&p18 ;
50 assign t15=x12&p19 ;
51
52 always @( posedge c l k or posedge r e s e t )
53 begin
54 i f ( r e s e t ) q<=0;
55 else
56 begin
57 q[1]<=p1&t1 | p2 | p5&~t5 ;
58 q[2]<=p2&t2 | p5 | p8 | p10&~t9 | p17&t14 | p19&~t15 ;
59 q[3]<=p8&t8 | p10 | p11 | p15&~t12 ;
60 q[4]<=p11&t10 | p15 | p17 | p19&~t15 ;
61 end
62 end
63 endmodule
64
65 module Memory1( y1 , y4 , y5 , y6 , y7 , y9 , y10 , c lk , r e s e t , q ) ;
66 input c lk , r e s e t ;
67 input [ 1 : 4 ] q ;
68 output y1 , y4 , y5 , y6 , y7 , y9 , y10 ;
69 reg [ 1 : 7 ] y ;
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70 // s y n t h e s i s a t t r i b u t e bram_map o f Memory1 i s yes
71 always @( posedge c l k )
72 begin
73 i f ( r e s e t ) y=0;
74 case ( q )
75 4 ’ b1100 : y=7’b1000000 ;
76 4 ’ b0110 : y=7’b0111000 ;
77 4 ’ b0011 : y=7’b0000100 ;
78 4 ’ b0101 : y=7’b0000010 ;
79 4 ’ b1000 : y=7’b0000001 ;
80 default : y=0;
81 endcase
82 end
83 assign {y1 , y4 , y5 , y6 , y7 , y9 , y10}=y ;
84 endmodule
85
86 module SMC2( p9 , p12 , p18 , p20 , p21 , q , x1 , x3 , x4 , x6 , x7 , x8 ,
87 x9 , x11 , c lk , r e s e t , p1 , p8 , p10 , p14 , p17 , p22 ) ;
88 output p9 , p12 , p18 , p20 , p21 ;
89 input x1 , x3 , x4 , x6 , x7 , x8 , x9 , x11 ;
90 input r e s e t , c l k ;
91 input p1 , p8 , p10 , p14 , p17 , p22 ;
92
93 output reg [ 5 : 7 ] q ;
94 wire t1 , t3 , t6 , t8 , t9 , t11 , t13 , t14 ;
95 wire p3 , p6 , p16 , p18 ;
96
97 assign p3=q [5]&~ q [6]&~ q [ 7 ] ;
98 assign p6=q [5 ]& q [6]&~ q [ 7 ] ;
99 assign p9=~q [5 ]& q [6]&~ q [ 7 ] ;

100 assign p12=q [5 ]& q [6 ]& q [ 7 ] ;
101 assign p16=q [5]&~ q [6 ]& q [ 7 ] ;
102 assign p18=~q [5]&~ q [6 ]& q [ 7 ] ;
103 assign p20=~q [5]&~ q [6]&~ q [ 7 ] ;
104 assign p21=~q [5 ]& q [6 ]& q [ 7 ] ;
105 assign t1=x1&~x4&p1&p20&p22 ;
106 assign t3=x7&p3 ;
107 assign t6=x3&p6 ;
108 assign t8=p8&p9 ;
109 assign t9=~x6&~x8&~x9&p10&p21 ;
110 assign t11=p12&p14 ;
111 assign t13=x11&p16 ;
112 assign t14=p17&p18 ;
113
114 always @( posedge c l k or posedge r e s e t )
115 begin
116 i f ( r e s e t ) q<=0;
117 else
118 begin
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119 q[5]<=p1&t1 | p3 | p6&~t6 | p10&t9 | p12 | p16&~t13 ;
120 q[6]<=p3&t3 | p6 | p9 | p10 | p12&~t11 ;
121 q[7]<=p9&t8 | p10 | p12 | p16 | p18&~t14 ;
122 end
123 end
124 endmodule
125
126 module Memory2( y2 , y8 , y11 , c lk , r e s e t , q ) ;
127 input c lk , r e s e t ;
128 input [ 5 : 7 ] q ;
129 output y2 , y8 , y11 ;
130
131 reg [ 1 : 3 ] y ;
132 // s y n t h e s i s a t t r i b u t e bram_map o f Memory2 i s yes
133 always @( posedge c l k )
134 begin
135 i f ( r e s e t ) y=0;
136 case ( q )
137 3 ’ b110 : y=7’b100 ;
138 3 ’ b101 : y=7’b010 ;
139 3 ’ b100 : y=7’b001 ;
140 default : y=0;
141 endcase
142 end
143 assign {y2 , y8 , y11}=y ;
144 endmodule
145
146 module SMC3( p7 , p14 , p22 , q , x1 , x4 , x13 , c lk , r e s e t , p1 , p12 , p20 ) ;
147 output p7 , p14 , p22 ;
148 input x1 , x4 , x13 ;
149 input r e s e t , c l k ;
150 input p1 , p12 , p20 ;
151
152 output reg [ 8 : 9 ] q ;
153 wire t1 , t4 , t7 , t11 ;
154 wire p4 ;
155
156 assign p4=~q [8 ]& q [ 9 ] ;
157 assign p7=q [8 ]& q [ 9 ] ;
158 assign p14=q [8]&~ q [ 9 ] ;
159 assign p22=~q [8]&~ q [ 9 ] ;
160 assign t1=x1&~x4&p1&p20&p22 ;
161 assign t4=x4&p4 ;
162 assign t7=x13&p7 ;
163 assign t11=p12&p14 ;
164
165 always @( posedge c l k or posedge r e s e t )
166 begin
167 i f ( r e s e t ) q<=0;
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168 else
169 begin
170 q[8]<=p4&t4 | p7 | p14&~t11 ;
171 q[9]<=p1&t1 | p4 | p7&~t7 ;
172 end
173 end
174 endmodule
175
176 module Memory3( y3 , y12 , c lk , r e s e t , q ) ;
177 input c lk , r e s e t ;
178 input [ 8 : 9 ] q ;
179 output y3 , y12 ;
180
181 reg [ 1 : 2 ] y ;
182 // s y n t h e s i s a t t r i b u t e bram_map o f Memory3 i s yes
183 always @( posedge c l k )
184 begin
185 i f ( r e s e t ) y=0;
186 case ( q )
187 2 ’ b01 : y=7’b10 ;
188 2 ’ b11 : y=7’b01 ;
189 default : y=0;
190 endcase
191 end
192 assign {y3 , y12}=y ;
193 endmodule
194
195 //4 th SMC does not have any output thus t he r e i s no 4 th memory
196 module SMC4( p13 , x13 , c lk , r e s e t , p7 , p11 ) ;
197 output p13 ;
198 input x13 ;
199 input r e s e t , c l k ;
200 input p7 , p11 ;
201
202 reg q ;
203 wire t7 , t10 ;
204 wire p23 ;
205
206 assign p13=q ;
207 assign p23=~q ;
208 assign t7=x13&p7&p23 ;
209 assign t10=p11&p13 ;
210
211 always @( posedge c l k or posedge r e s e t )
212 begin
213 i f ( r e s e t ) q<=0;
214 else q<=p7&t7 | p13&~t10 ;
215 end
216 endmodule
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C.2. Structural Decomposition of a Discrete System

Lst. C.4. The description of the initial memory
1 // Descr ip t i on o f the i n i t i a l memory :
2 module Init ial_memory (y , c lk , r e s e t , address ) ;
3 output reg [ 1 : 6 ] y ;
4 input c lk , r e s e t ;
5 input [ 1 : 2 ] address ;
6
7 // s yn t h e s i s a t t r i b u t e bram_map of Initial_memory i s yes
8 always @(posedge c l k )
9 begin

10 i f ( r e s e t ) y=6’b 010001;
11 case ( address )
12 2 ’ b00 : y=6’b 010001;
13 2 ’ b01 : y=6’b 010100;
14 2 ’ b10 : y=6’b 100010;
15 2 ’ b11 : y=6’b 001010;
16 endcase
17 end
18 endmodule

Lst. C.5. The description of the memory after the structural decomposition
1 // The d e s c r i p t i o n o f the decomposed memory :
2 module Decomposed_memory (y , c lk , r e s e t , address ) ;
3 output [ 1 : 6 ] y ;
4 input c lk , r e s e t ;
5 input [ 1 : 2 ] address ;
6 wire [ 1 : 4 ] q ;
7
8 Memory_block mem (q , c lk , r e s e t , address ) ;
9

10 // decoding o f the microoperat ion :
11 assign y [1]=~q [1 ]&q [ 2 ] ;
12 assign y [2]=~q [1]&~q [ 2 ] ;
13 assign y [3 ]=q [1]&~q [ 2 ] ;
14 assign y [4]=~q [3 ]&q [ 4 ] ;
15 assign y [5 ]=q [3]&~q [ 4 ] ;
16 assign y [6]=~q [3]&~q [ 4 ] ;
17 endmodule
18
19 module Memory_block (y , c lk , r e s e t , address ) ; // memory b l o c k
20 output reg [ 1 : 4 ] y ;
21 input c lk , r e s e t ;
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22 input [ 1 : 2 ] address ;
23
24 // s yn t h e s i s a t t r i b u t e bram_map of Memory_block i s yes
25 always @(posedge c l k )
26 begin
27 i f ( r e s e t ) y=4’b 0000 ;
28 case ( address )
29 2 ’ b00 : y=4’b 0000 ;
30 2 ’ b01 : y=4’b 0001 ;
31 2 ’ b10 : y=4’b 0110 ;
32 2 ’ b11 : y=4’b 1010 ;
33 endcase
34 end
35 endmodule
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Dekompozycja systemów dyskretnych
z wykorzystaniem hipergrafów

Streszczenie

W ostatnich latach zaobserwować można dynamiczny rozwój technologii elek-
tronicznych oraz informatycznych. Wiąże się to ze wzrostem realizowanych sys-
temów dyskretnych, a co za tym idzie, ciągłym udoskonaleniem metod oraz narzędzi
projektowych. Głównym celem opracowywanych algorytmów jest uzyskanie satys-
fakcjonujących wyników w możliwie jak najkrótszym czasie. Zdecydowana więk-
szość zadań jest współcześnie realizowana z wykorzystaniem klasycznej teorii gra-
fów nieskierowanych, które jeszcze kilka lat temu w zupełności spełniały stawiane
cele. Jednakże wzrost rozmiaru systemów dyskretnych wymusza ciągłą mody-
fikację istniejących i poszukiwanie nowych metod dekompozycji, analizy czy też
projektowania. Swoistym przełomem może okazać się wprowadzenie teorii hiper-
grafów. Pomimo tego, że hipergrafy zostały zaproponowane już w latach 70
ubiegłego stulecia, dopiero w ostatnich latach coraz śmielej przebijają się zarówno
w zagadnieniach związanych z matematyką, jak i informatyką, czy też elektroniką.
Niemniej, bardzo ciekawe własności tych struktur powodują intensywny wzrost
zainteresowania badaczy na całym świecie, co z kolei wiąże się z praktycznym za-
stosowaniem hipergrafów w rozwiązywaniu problemów z różnych dziedzin, takich
jak matematyka, chemia, a przede wszystkim informatyka i elektronika.

W niniejszej monografii przedstawiono dwie nowe metody dekompozycji sys-
temów dyskretnych. Oba rozwiązania bazują na zastosowaniu teorii hipergrafów.
Pierwsza z metod wiąże się z dekompozycją równoległą automatów współbieżnych,
opisanych sieciami Petriego. Sterownik dzielony jest na współpracujące ze sobą
automaty sekwencyjne, przy czym każdy z nich może zostać zaprojektowany nieza-
leżnie, np. jako układ sterujący z pamięcią. Drugie z proponowanych rozwiązań
dotyczy dekompozycji strukturalnej systemu dyskretnego. W procesie dekompozy-
cji zmniejszana jest pojemność bloku pamięci (w szczególności bloków pamięci au-
tomatów sekwencyjnych), poprzez zastosowaną metodę redukcji rozmiaru mikroin-
strukcji.

Głównym celem opracowanych metod jest usprawnienie procesu dekompozy-
cji, poprzez zredukowanie czasu wykonania algorytmu (zarówno dekompozycja
równoległa, jak i strukturalna), a także znalezienie skuteczniejszego rozwiązania
(w przypadku dekompozycji strukturalnej, skuteczność rozumiana jest poprzez
uzyskanie mniejszego rozmiaru dekomponowanej pamięci), w porównaniu do roz-
wiązań obecnie stosowanych.
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