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1. Introduction

Problems of optimum control of complex industrial systems,
such as e.g. an integrated power system, steel mill; chemical
factory, etc., create a new branch of optimization theory.

In this theory two basic trends may be distinguished. The
. first one which can be referred to as analytic, aims at decom-
posing the original large-scale problem into a pumber of smal-
ler and simpler sub-problems which can be solved effectively
by the existing mathematical tools. The second trend,which can
be referred to as synthetic, starts with simple controlled sub-
processes having known performance properties,and by a process
called aggregation creates a complex system with the desirable
property. In other words: the first trend stems from the de-
sire for better knowledge of the complex nature of large-scale
problems by breaking them down to simple sub-problems,the se-
cond trend tries to synthesize the large scale project from
the well known sub-systems or operations.

It should be noted that the intuitive idea of decomposition
as well as aggregation is not new and it is frequently used in
the design of complex industrial systems. However, for the
purpose of optimization of large-scale systems formal notions
of the decomposition and aggregation is needed. The papers by
Dantzig and Wolfe ''* 72 constitute an important contribu -
tion in this respect. These authors formulate the decoﬁposi—
tion problem for the complex linear-programming problem and
give an effective algorithm for the solution of complex prob-
lem .n terms of solution of sub-problems. A similar method was
also applied to nonlinear programming problems %6 .

In control theory and its applications, +the decomposition
methods for dynamic processes constitute the most important
and interesting problem which can be formulated in the follow-
ing way. Let the functionals Fi(xi), i=1 ¢eey n, and the
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operators Gi(‘i)' Hi. (11) ¢ A= ooy By be given, where
xi‘xig Gi H xi — Yi. Hi H xi — Z, 1 = q, ssey Dy ‘nd xi,Yi,
Z be generally speaking, Banach spaces

The local optimigation problems consist in finding elements
x = ii € x1 such that the functionals Fi(xi) attain their

conditional meximum subject to the inequality constraints
Gi(‘i) >0, viz,,

F;(%) = max Fi(x),i=1 w0y n (1)
G:l(xi) 20

The global optimisation problem consist in finding  suoh

elements x, = xi € xi » for which the functional

B(Xqs Xph eoey Xy) = Z Py (xy) T
i=1

attains its conditional meximum subject to the inequality con=-
straints

Gi(xi) > 0y, i =1, ssey N \ (3)
n g
2 E(x) >h (»)
i=1

where h is a given element of 2 .

Relation (4) represents the intéractions between the n -
_1nd1v1dual sub-systens spooiﬁcd by By end G . If (4) is

abnont or motiv. (i.e i2 }: H,(x,) > h for all x €X,,

i= 1, ssey n) tho slobnl probhn decomposes into n local
problems. ;

Let us assume ‘that the solutions for the local and global
problems exist and that it is much easier to derive the local ,
than the global optimum solution.' Then,assuming that the local
solutions are know, we search for the global solution in terms
of local ones. In the sections to follow several methods of
this type shall be considered.

~ A typical optimization problem of the type considered is
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the optimization of integrated power system 13 which consists
of m thermal and n hydro atations generating electrical
power for common load.

Assuming that the instantaneous cost of generating electric
power P4 in the i-th thermal station is ri(Poi). the re-
sulting cost in the mtorvu [0,7] vecomes

°'Z§ Poy [Py at (%)
i=1 ‘

The hydrostations are characterized by functions PHi [qi]
where PB:I. ‘i8 the power generated by the i1~-th hydrostation
and g is the rate of water-flow through the hydro-turbine.

Denoting by r( v ) the rate of water inflow and by v(t)
the instantaneous water storage in the reservoir we get the
relation -
. t
v(t) = Vo~ Vm + S (v )ar

0o

where: vo - amount of water at ¢ = O, vm - minimum admissi-
ble amount of water in the reservoir. If now we assume  that
all the hydrostations are being supplied by the same reservoir
we obtain

Z S g (% )ar < W(¥) (6
1'1 o :

Denoting the power demand by P(t) and neglecting transmis-
sion losses we get :

n n
2 Fa[u] +.2 Boy = B(®) @
i=1 i=1

The problem consists in finding such strategies q(t) =
= q; (%), t € [0,7] , which minimize (5) subject to the set of
local constraints

Py min € Pou(®) < Py oy 243
°<Q1(t)<€1. 1.1. esey B



and global constraints (6), (7).

A similar optimization problem exists in the case of inte-
grated utility gas system , certain dynamic inventory problems,
etc.

The optimum strategy for a sing%e system wvhere m=n=1
can be derived relatively easily . However, when the system
consists of many stations (m , n > 1) and the interactions (6)
(7) occur the effective computation of optimum strategies poses
a difficult optimization problem.,

It should be observed that simpler optimization problems al-
so exist when there are no local constraints or when equality
signs appear in (3), (4).

A class of control problems called autonomous control is al-
so known in which the interactions appearing between the coor-
dinates of a dynamic system can be compensated in the con-
troller. However, in systems of this type +the processes con-
troled are, generally speaking, neither optimum nor sometimes
even realizable.

The purpose of the present paper is to give a short review
of optimization methods based on the decomposition or aggrega-
tion of large-scale systems, which can be implemented in the
form of a two- or multi-level structure including 1local and
higher level controllers. The problem of optimum organization
of the multilevel structure will be also considered.

The limited space, however, will not allow to present all
the methods known, and greatest stress will be laid on the op-
timization of dynamic systems. The studies made in P- . and will
also be emphasized.

2. Two-level Control of Linear Systems with Interactions o

let us consider linear system shown in Fig. 1 with
controlled inputs u;, Uy esey W, 82d 1 output~ terminals ,
71’ sy yn .

The input-output relations are specified by the formuia

n
yi=;1.&13(u3), £ a4 siasin 9)



where Aij are linear continuous operators in Hilbert space H.
The performance measure is assumed to be
n P n 4 :
P(u) = {lluill S I W CH | (10)
=1

i1

where: P\i ~ given positive pumbers, y_. - given elements of
pi
Hilbert space.
The space of square integrable functions L2 [0,'.[‘] and the

integral operator of Volterra type (1) are concrete examples -
of H and A‘ij’ respectively,

t
By Cuy) = S gt = 7 Jug(w )ax (1)
0
where uj( r) and kia(t-'t‘ ). are square-integrable for t,r €
€ [O’T]o P
The norm

lagl? = § lugceriZen, 321, ouey
0

represents here the cost of control-energy whereas
n
' 2
"yp:l. o 321 Aia(ua)“

represents the square-error .between the outputs desired (7p:l)
and actual (71) of the system .

Using variational methods it is possible to derive the op-
timum controls uy = Ei sy =1, «eso, n, which minimize the
functional (10), which become 20 :

ug == ) Ay [Z ‘xj(“a)] + . A Gpe) (12
=1 3= k=1

i=1’ ecsey I

where ‘;i - linear operator , adjoint to A, .When 4,; has
the form like in (11), the adjoint operator becomes
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A =§ K - (e (13)
%

For physically realizable operators A;i can be realized
by analogue devices in an approximate manner only. By analys—
ing the form of the optimum solution (12) it is possible to
observe that the analogue synthesis of the optimum controller
assumes an "adjoint" form shown for n = 2 in Fig. 2.

That property can be also expressed in the form of the fol-
lowing principle of reflected images.

The optimum structure of the controller, minimizing  the
measure of the quadratic performance (10),should be a reflect-
ed image of the system structure controlled.

Using this principle it is possible to synthesize the struc-
ture of an optimum controller for‘complicated multidimensional
processes in a simple manner.

Using the terminology already introduced the controllers
specified by the operators A;i s 1 =1, «esy n, can be refer-
red to as local (or 1st-level) controllers, and the controller
which realizes the operators Azj’ 0T 0 & Tt T VR LR ST,
can be referred to as coordinating (or 2nd-level) controller.

It should be stressed here that the two-level control prob-
lems play an important role not only when planning and design-
ing complex controlled systems, but are also when a system is
being reconstructed and supplied with new controlling devices.
In the 1latter situation it is sometimes convenient to apply
simple 2nd-level controllers only instead of replacing all
controllers by a multidimensional and expensive global con-
troller. The decentralized system operates with relatively
simple e.g. onedimensional controllers only.

Now we can consider the problem of implementing the opti-
mum solutions (12) by means of digital controllers. In +that.
case it will be convenient to write Eq. (12) in a vector form

u=4A(w +3y (14)
where

u= (u1. u2, sesy lln)



and the components of A and y are
n n \ s n
* %*
D [Z Ak:j(uj)} end ) A b (Yor)
k=1 =1 k=1
1=1 3 ecey I

respectively. A 1is a linear matrix selfadjoint operator. We
assume that A 1is a contracting operator, i. e. for arbitrary
elements u4, U € H we get

I ACaq) '_A(.‘_lg)“ < Bllu, - 22” (13)

where fp < 1.
Then the optimum solution of (14) u=1 can be approximat-
ed by iteration

2(k+1) A é(_l_l(k)) = Z ’ k = 0' 1, sse (16)

k) =Eu

‘where 1_1(°) € H is an arbitrary element, and lim g(

k —» oo
When n = 2, the iteration (16) can be written in the fol-
lowing form

(k+1
D)

ugk-i-'l)

- Aqh%, [ag0af®) - - A ) A A (1?7)

- Agh3s [Anp(uf?) - Tpa] * Sox (18)

where
Sqie ==Aph3y [Apq(af®) - Vpo] +
- [Afakaz + ApASihno |(uf)
S = = Aala[Agp(fD) - 3]+
-[AAZAp + Aqhiphqq] (af¥)
‘It can be observed that the algorithms (17), (18) and. the

one dimensional algorithms (without interactions) differ by
additive terms é’lm’ o om ©nly. Then the organization of the



computations can be changed to +that showvn in Fig. 3, where
the 1st-level controllers C,, Cp compute ugk+ﬂ)’ u£k+q) by
formulae 17 , 18 ,whereas the 2nd-level controller C computes
é1m’ 62m using the results ugk), ugk) obtained from Cq,Ca.
The optimization process requires then an exchange of infor-
mation between the 1st- and 2nd-level controllers.

The optimization process of this type can be easily extend-
ed to the multidimensional case (n > 2). The main advantage of
the two-level optimization is that one can use loczl sub-pro-
grammes of the type (17), (18) which are only slightly modifi-
ed by the additive terms é1m} 62m suppiied by the coocrdi -
nating (supervisory) controller C .

Is should be noted that the idea of using two-level imple-
mentation of iterational solutions of optimization problens
for linear and .nonlinear processes was used by many au-
thors .

In the case considered so far, +the interactions take place
among the inputs and outputs of the optimized system. Another
kind of interactions is obtained when the controllers are sup-
plied from the same source of energy, and consequently

o g
> Iyl? < v (19)
i=1

where U is a given number. In this case we shall also neg-

lect the input-output interactions éeting Aij = Oy oy

i, =1, 25 ¢eey n, and denoting Aii by Ai’ 1'=24,2,i009n

The performance measure shall be given the following form

n
(o) = 3 vy - 45Cupl? (20)
i=1

Using variational methods it is possible to showzo,that the

optimum u = U which minimizes the functional (20) subject to ,
the condition (19) can be derived from the equations

Uy = — *i*[ypi & A{ﬁi)]’ L w e e, n (21)



- *
ui = RiA[Ai(ypi)] ’ i = 1’ es ey n (22)
where R = (AI + AiAi)-1 is called the resolvent operator,
and the A parameter A can be determined from the equation
- 2
* -
2 ke o)l = v - hes)
i=1 1

Using this procedure it is possible to synthesize the two-
-level optimum control-system. A system for the case of two
sub-processe, n = 21 is given-in Fig. 4 as an example.The op-
timum control strategies (21) can be realized in the form of
feedback systers 81, sa, where Ai, i=1, 2,represents plant
operators, AI - the correcting systems,and Ami - eamplifiers
with an amplification factor B = 1/Ai. The systems describ-
ed by piAi can be referred to as 1st-level controllers.

The 2nd-level controller observes ybi and finds the value
of A which is the solution of Eq. (23). This value of A is
transmitted to the first-level controllers, where it readjusts
the amplification factors of the amplifiers ‘mi in such a
way that ny = 1/ A .. If the inputs Tpi do not vary in a
certain number of consecutive optimization intervals, it is
possible to cdnstruct a simpler analogue 2nd-level controller,

n
which observes the allowed (U) and actual (fi: ”ui”é> energy
i1

consumptions, and by readjusting the amplification factor p =
= 1/A in the 2nd-level controllers tries to satisfy Eq. (23).
This method may be particularly advantageous when the charac-
teristics of the sub-systems are not completely known to the
2nd-level controller, and an adaptive optimization approach is
needed.

Since A may be regarded to be a Lagrange multiplier for

Lagrangian
n n
o(w) =2 [Z lagl? - U] + ) l7ps = ayCap)]?

=1 i=1
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it can be also regarded to be the price asigned to the con-
trol energy. This price is derived by the 2nd-level control-
ler and communicated to the 1st-level ones.

It should be observed that the goal of the 2nd-level con-
troller is to find such a price strategy which makes the loss

; n
of the unemployed resources, U - E::Ilﬁiﬂa s equal zerojwhile
i=1 ;

the goal of the 1st-level controllers is to minimize  the re-
spective performance factors for every value of A dictated by
the 2nd-level 22 ,

It should be also noted that the decomposition methods "and
optimum two-level control is possible also for other perform-
ance criteria, such as minimum time, minimum magnitude, etc.

3. Multistage Optimization

A characteristic feature of large-scale optimization prob-
lems is the large number of decision varisbles which should be
determined in such a way that the given performance factors
reach their minimum or maksimum value.In many cases it is con-
venient to realize the optimization in the form of a nmulti-
stage process, when at each stage the optimization is perform-
ed with respect to certain variables, whereas the remaining
variables are kept constant. :

The main problem connected with this procedure, may be for-
mulated as follows: what are the conditions for the multistage -
optimization process being optimum overall?In the case of con-
tinuous performance functions f(x, y), x e X, > Y,where X,
Y are compact sets in vector space En, B s, respectively, it
is possible to show that

- [m§x 2(x, 3)] B [max £z, )]

b :
wia l'_mii.zn 2(x, 7)] = Ma [m;n £(x, 7]

However
min [mex £(x, 3)] > mex [min £(x, ¥)] o (e
S A e e x-k'y b



11

According to the well known minimax theorem we have the
equality sign in (24) if X, Y are convex and f(x, y) is con-
tinuous and convex in y for eack x , and concave in x for
each Yy .«

Let us consider the system consisting of N controlled sub-
systems with variables Xi9 Ty i =61, 2y eeey N, as a typical
example of multistage optimization ~. The performance of each
sub-system can be evaluza'zd using the functions Fi(xi 3 yi),
1 =21, 2, ¢sey Ne

The sub-system constraints take the form

Ri(xi' yi) €0, i=1,2, «e0, N (25)

It is required to find such values x; = ii, ¥y =7, 1=
=1, 2, ssey N, which minimize the global performance

N
KZ 3) =D By(xys 7p) (26)
‘ =]
subject to the global constraints
o :
3 8%y + %< 0, 12,2 cuey W (27)

= -

where ay j and oy are given real numbers.
Iet us assume that ]?i, Ri are convex functions of real

variables X;, J; - Then, the Lagrangian

N
¢(_x_’ Zoé’ a) = Z[Fi(xi’ Yi) + Aini(xi’ 71)] *
1=1

! n n A3
DI DM By LT CRB)
1= 3=

has the saddle-point (X, ¥, A, 22) which represents the global
solution, viz.,

¢(:’ Ion E) i m{m ¢(§’ I’é’ E)} (29)
AR

%,5
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By interchanging the order of summation in Eq. (29) we get

N
O(X, TrAy T) = max{max [min Z(Ficxi.yi) + A4R(X;5,75) +
H A X,y i=1

n
*x Zaid Ry= 2 °‘i)]} (30
J=1

As it may be seen, the sub-system variables in Eq. (30)
are grouped in such a manner that we have the sum of N in-
dependent functions depending only on Xis Ty i=1,2,¢.0,N.
The optimization problem may than be performed in <following
stages:

1. Local problems (1st-level): minimize functions

n
fj_(xiy 71) = Fi(xi’ 71) +x E aij )lj - Py (31)
3=1

i = 1 ) 2, esey N
subject to the constraints :
Ri(xj-’ xi) < 0, i = 1’ 2’ LR Y N (52)

and fixed numbers By 20, i=1, «ssy 0.

When it is pcssible to solve thege problems and find X =
= ‘ii, Iy = ii, as explicit functions of u , i.e. ii( A) and
;?i( B), it is also possible to derive the functions

o3( W = 2 [F (W], 1212 0y § (33)

2. Coordination problem (2nd-level):find the values Py o=
= }_11 s 1 =21, «eey ny; such that the function

N : '
S (34) -
i=1

reaches its maximum value. It is possible then to derive also
'x'i( R ii( A)y i=1, ..., N, which represent the solution
of the global problem . ; I
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Another popular example of multistagé optimization is a wa-
ter distribution system. Let us consider for instance the sys-
tem shown in Fig. 5, which consists of two reservoirs Z1, 22
containing V,, ¥, [2”] of water, respectively. Besides, the
quantity q4p [p5 ]of water may be delivered from 2z, to Z,.
The water volume V1 - Q4o s contained in Zﬂ, should be di-
stributed among n receivers, demanding 849 ooy an_[m}J of
water, respectively. Since

n
2% >V - 30
i=1

the receivers obtain Xy < ay cubic meters of water only and
they suffer the losses estimated by

n
8@ = > (8 - x;)° (36)
i=1

In a similar way for the reservoir 22 we obtain

n
PRI AR P (37
i=1

where b1, bz, P bm are water demands of the receivers sup-
plied by 22 .
The losses connected with 22 are

m
SZ(Z) = Z (bi - 71)2
=1

where Jqs eees Ty ave the quantities of water supplied to
the receivers from 22 .

The problem consists in finding such values of X = Ei e
Qo = 612, ¥ = ii, which minimize the global losses

8(x, 3) = 54(X) +8,(3) (38)

subject to constraints (35), (37), and x5 >0, 35 > O,q12 > 0.
Instead of solving the global problem it is possible to fix
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Q429 and find at the first stage; the optimum water distribu-
tion ii’ id’ s LG “’ 2. eeey I, j = 1, eeey I, 8S fu.nctions of
q42° It is then possible to compute the functions

¢1(Q42) = S1E§(Q128 ' TZ(Q42) = SaE?(Qqaﬂ (39)

and at the 2nd stage to determin the optimum value QY2 = 512.
For further details on this procedure and several extenssions
cf. Ref. 13, 30

It should be also observed that many examples of the multi-
stage optimization procedure may be found in the Bellman  dy-
namic programming.

When this procedure is used, the problem that poses great-
est difficulties is the derivation of the resulting function
(such as ¢y in (33) and (39)).

Many examples of problems are known when this function can-
not be derived in an explicit manner. However, methods exist
which help to overcome this drawback. We shall describe such a
method 37 recurring to the formulation of local and global
problems given in section 1. We assume that Fi’ Gi, Hi are
concave differentiable functions of real variables. It is also
assumed that a solution of m auxiliary 41st-level problems
exists i.e. it is possible to derive the solution Xy = ii of

max Fi(xi) (40)
subject to
Gy(x5) >0 (41)
Hi(xi) = yi, i = 1, 2, cesey n

where - given real numbers.
This solution is a function of y; , i.e. §a(yi).
Let us define

fi(yli) = FiFi(yi)], i = 1, eesey m °
By the 2nd-level optimization problem we shall understand

the problem of finding y = 5&, i=1, «ssy m, such that the
function

m
> () - (42)
i=1
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attains the maximum value subject to the constraint

n
> gyam (43)
i=1

It is obvious that (42), (43) represent a nonlipnear program-

ming problem which may be solved by known iterative procedures
when the gradient of the function (42) is known. Since for the
sub-problem Lagrangians J

by = Fy(xg) + A46(x) + Pi[ni(’i) 3 71]

the well known property
dl?i('ii)

aH, (X;)
bolds, and the Lagrange multipliers By may be derived by the
1st-level controllers, the gradient of (42) may also be de-
termined. The 1st-level controllers derive then components of
the gradient for the 2nd-level, and an iterational optimiza-
tion procedure can be realized. As shown in Ref. 48,1:1:15 pro-
cedure may be extended to the case when ]?1, Hi are functionals
and Gi - operators in the Banach spaces. o

Another interesting approach, used by economists s has
been based on the iterational solution of a fictitious game
which is being played between level 1 and 2. To explain this
approach - we shall consider the dual problems of linear pro-

gramming:

= By 121 ooy m (44)

Problem 1 Problem 2
max (¢, x) min (y, b)
x p O

i KD
x50

Id |Ib
VvV

<
0

\Y

where b is the magnitude of the resources used in the given
technological processes with the intensity x . The intensity
vector x should be chosen in Problem 1 in such a manner that
the global production income (c, _x_)__be maximum. In Problem 2

(0O TR
o
".:'\\
w \
-

{ = :f'.f\'ﬁsiQkJE |
\\ _;' A

\\ S5/
NATP at oy AN
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the cost of the resources consumed (y, b) should be minimized
by a proper choice of the price—vectd; Y . The constraints
Ax (b, JA > ¢ represent the restrictions imposed on the mag-
nitude of resources consumed and production costs,respectively.
Let us assume that the solutions X # 0, ¥ # O of problem 1
and 2, respectively, exist and that the saddle-point relation

mex (g, X)= max y,b = (e, X)=(Fb)=K | (45)
xeX Je¥l Jf

holds, X, f, 1, 4 representing the sets of admissible and op-
timum solutions for problems 1 and 2, respectively.Let us also
assume that the matrix A consists of n sub-matrices, viz.,

& =ll&qy ho» ooy A
and the vectors X, ¢ consists of n sub-vectors

X = [Eop r ST RERER) En]v S =[21' 8oy ee0y 2,.,]

We now introduce the vector u with components LT 3i=4
. - n

esey N, which have the same dimensions as b and E u; = b.
i=1

This vector sﬁall be called the central strategy, and the lin-
ear programming sub-problems :
m(gi’ Ei) ’ i=1, esey I (4‘6)
e
Aixy < 8y
320

shall be referred to as sector optimization.

Here x; represent the production-intensities of sector i.
Vectors Iq 0 i=1, «sey n, appearing in the corresponding
dual of (46) represent the prices in the sector i , when the.
magnitude of resources in that sector is u; . Hence the cen-
tral strategy consists in finding the optimum distribution of
the given magnitude of resources among n sectors,and the op-
timum sector strategies ii s i=1, ¢y n,consist in finding
the corresponding optimum production intensities. i
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Let us assume further that for each admissible central

strategy u; there exist vector functions

e;(8y) = s (gyy %50 = nax (73 8y (47)
2 € X3 (yy) Fie¥i(yy)

n
P =) | 95(8)
i=1

and denote

The two-level optimization consists in:

(a) Finding the admissible central strategies u = [51, 45,
sy En] which ensure the global maximum, i.e.solving the con-
cave programming problem

mex @ (u) (48)
zed

(b) Finding the optimum production intensities in each sec-
tor _3::.1 y i.€. solving the linear programming problem

m (g5 %) (49)
i_i ui, i = 1' 2, ey n

Since the effective determination of ¢ (u) is not easy,
this problem has been reduced to the two lis person  polyhedral
game.

The first (maximizing) player strateéy is the vector u =
= §1, o 4 _'_%] € U , and the second (minimizing) player strat-
egy is the vector v = [21'12’ g _y_n_l 30 %

The game value is i

The iteration process, known as the Brown fictitious play
has been used to find the best game strategies ue U, v € V.
This process has an interesting economic interpretation.As al-
ready shown, the initial optimization problem has been reduced
-to the two-level fictitious play between sectors (1st-level )
and center (2nd-level). The 2nd-level strategy is the admissi-
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ble distribution of resources and the 1st-level strategy - the
admissible prices in dual problems. In the process of iteratio-
nal solution each sector optimizes its own strategy according
to the resources received from the 2nd-level,and after solving
the dual problem it sends the result of optimization +to the
2nd-level. The 2nd-level solves the problem of optimum distri-
bution: of resources and sends a new distribution strategy to
1st=level, etc.

The decentralized optimization process derived in this way
has ggoved to be usefull in the planning of socialist econ-

omy

4, Two-level Adaptive Optimization of Interacting Systems

So far the assumption was made that the optimized processes
were deterministic and completely known %o +the controllers.
However, in many practical systems the information on plant
characteristics may be incomplete.  In these cases one may use
the known adaptive control methods in which the controller i-
dentifies the plant characteristics during the control actiomns
by proper organization of the control actions and observation
of output reactions. We shall consider a simple example of an
iterational procedure, based on the so called stochastic - ap-
proximations, which can be realized .in the form of a decen -
tralized, two-level control system.

Let us now consider a simple regulator system, which con-
sists of n sub-systems including processes Pi and local con-
trollers C; , i = 1y 24 eeey N, which is shown in Fig. 6 for
n=2. $

The input-output relation for the sub-systems

and the additive interactions
zdi = (Pji(xa), i,j = 1, 2, esey I

are given continuous functions of x5 .
It is desired to obtain the resulting outputs
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n
ti(xi) + § ?ji(xj)s i=12) eoey n
3=1
J#i
equal to the given numbers ;. ¢
If no interactions were present, each controller ci could

determine the required control values x; = X; by solving the
equation

fi(xi) = Ii, 1 = 1’ 2, scey n

For this purpose it is convenient to solve the equivalent
equation
X, = x; + ai[xi < fi(xi)] =Fi(x)s L=1 seepn (50

where the numbers a; are chosen in such a way that the func-
tions Fi(xi) satisfy the contraction conditions in the in-
tervals X, including ii :

|7y =) - RGED| <o |x -2, «< B U P

where X, x';. - arbitrary points in X, .
The values ii can then be derived by iterations

D - p x{®), k20,1, 2, cee,ny 121, 2, ey n (5

starting with the arbitrary values xio) € Xy 1=1,2, ceepne
It is well known that lim x{¥) = ¥ , and the solution ob-
k = co i

tained is unique. -

The iterations can be also used when the explicit form of
the input-output relations is unknown, but the controllers can
observe the outputs y{k) y Which correspond to the fixed input
x',sk) s using feedback loops (denoted by the dashed line in Fig.
6). Since these observations are frequently influenced by ran-
dom noise, in the present case we are interested in the expec-
ted values of yik (w) , i.e.

E{yik)(m)|x§k)(W)}= fi(xj(_k)), 121 2y eeuyny k = 0415000
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where w is a random variable.

The functions fi(xi) should be ncw treated as regression
functions, and the problem which faces us is the solution of
the regression equations

fi(xi)-xi=0, i=1’ 2’ ey n
by iterations, using values y§k)(m) taken from observations.

This may be done by the so called stochastic approximations
having the form

0’1,11-’

x§k+1)(0)) & Ig_k)(w) i an[Yi - ygk)(w)] MR <
f S PRI

which, as shown by Robbins, Monro 35 s, Will converge stochastic-
ally to the values ii i Braigie DLk e i e

lim E{||x§k>(m) - ii||}= 0

k —» co

if certain regularity conditions hold. The regularity con-
ditions include apart of the contractions the requirement that
the numbers c1, Ca) 03 exist such that:
(a) the probability P{|y(x)| < °1} R
C

c
(b) ;2< ‘k'-1‘< f » k=1, 2, ... and the dispersion of
x{%) is finite.

The iterations can be also used when interactions are pre-
sent. In that case we get

{1 o () ai.[xi - fi(xj(_k)):] = X (%0, ay ey

n
3#1
instead of (50) and (51), or when vector notation is used (52)%
(53) can be written:

£ 13[’—‘(1{)]’ R TR ' (54)

where x .-:—[x," Xoy sees xn], _E_‘s[F,], Foy ooy Fn] is 2 non~
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linear continuous operator in n dimensional space En.If F is
a contracting operator in a set I ¢ , and g?e X, the it-
erations (54) will converge to the unique solution E_c' E[i1,§2
vk g in] e X. '

The calculations corresponding to (52), (53) can be imple-
mented in the two-level form, shown in Fig. 6 for n = 2, where
the 2nd-level controller C derives the values Yj'. by (53),
and the 1st-level controller derive xg_k”) by (52).The advan-
tage of the two-level process is that it utilizes the  same
control algorithms for level 1 as in the case without interac- -
tions. However, it requires the exchange of information be-
tween 1st- and 2nd-level controllers.

The control processes (52), (53) can be also realized when
the values ygk (w), z;ji (w ) obtained from observations,are

used instead of fi[xfk)_-l e (L :Ji[xa(‘lﬂ . In that case, instead
of (52), (53), we get the following algorithms for level 1

{1 - 2(E) a§k)[Yi'(k)(w> & ygk)(m)], U e P FOCR
(55)
k=0,1400e6
and for level 2
n
I:{(k)(w) =1, - Z z(gg.(w) (56)
=1
gfi 5 1= 125009050

If the regularity conditions for the multidimensional case
hold, the two level iteration processes (55), (56) converges
stachastically to the solutions 'x'i, i=1, «..; n, of the re-
gression equation

n
!i - fi(xi) - E cpdi(x) =0
3=1
J#i
One should observe that the processes (50) - (54) can be
easily extended to the case when the outputs Y; derived, of

sub-systems P; ,are given functions (F;) of the outputs £ (x;)
and interactions gpji(xd), 150 21y 25  vneg By X8
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Ii = Pi[ri(xi)’ ?11(24), erey ‘?m(xnj (57)

We shall also assume that it is possible to derive fi(xi)
as the unique continuous functions (¢i) of Ii . and 931;

£30x5) = O4[Ti0 945020 een 0 (1)] (58)
i= 1' esey

Then, in order to solve the regression Eqs. (57) or the equi-
valent Eqs. (58), we can use the processes

xgk“) = xg_k) + ai[¢ j(.k) A fi(x:l(.k)ﬂ
¢5(,k) = ¢1[:Iiv ‘911(‘gk))’ g (Pni(x!gk)zl

i=1, essyg Dy k=1, 2’ cee

It is also possible to optimize the system when +the values
Wji(xgk))’ fi(zék)) are obtained by observation. The 1latter
case is illustrated in Fig. 7, where n = 2 and the values
@di(xgk)), 2,(z{*)) are denoted by zg’i‘)(w) ana  y{¥(w)
respectively.

In reference <2 it was shown that the stochastic approxima-
tions can be also used for the decomposition of complex opti-
mization problems.

. Apggregation and Synthesis of timum Organizational
Structures of Multi-level Systems

Many examples of complex technical, econcmic, social and
biological systems or organizations exist which are controlled
by several cooperating or interacting decision centers or con-
trollers. These systems are frequently organized according to
the hierarchic principle, i.e. each sub-system, consisting of ,
a controller and controlled processes, receives certain direc-
tions, information or resources from a higher-level controller
and at the same time it can influence the performance of lower-
-level sub-systems. :

An interesting feature of the hierarchic structure is:- that
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the particular sub-systems are autonomous in +the sense that
every controller derives his control-strategy on the basis of
a limited amount of information.The higher is the control-lev-
el the smaller is the global amount of information. In other
words the information is "compressed" or aggregated when it
travels from the lower to the higher levels of the hierarchic
structure. On the other hand the directions of the higher-lev-
els passing to lower-level suh-systems become supplemented by
information suitable for local conditions. This corresponds to
the "decompression" of information. It should be also noted -
that in such systems there exist a decentralization of deci-
sion processes, which permits the controllers to deal with (or
transform) a limited amount of information (or calculations)
in a fixed time interval. This feature also permits effective
control of complex processes or organizations by standard anal-
ogue and digital computers or by human operators.

Examples are also known of systems or organizations whose
performance is evaluated as poor, inefficient or bureaucratic.
Many authors, including Parkinson, have contributed much to a
better understanding of these organizations.Holever,tho eval-
uvation of the quality of organization in these researches has
been performed on the basis of emotions rather than strict an-
alysis. :

In the present section we shall consider a simple model of
hierarchic organization, shown in Fig. 8, consisting of con-
trolled processes (denoted by circles), controllers (demnoted
by rectangles), and communication or tramsport means linking
the controllers and processes.

We shall show.that the performance of a controlled' process
can be described by a single number,referred to as the process

quality index P._Q. I. ,and that the losses due to the trans-
mission of information or resources can be again described by
numbers, referred %o as loss coefficients L.C. . The result-
ing performance index of the whole organization can then be
derived. Comparing organizations, described by different per-
formance indices, it is also possible to choose from the given
sets of controllers and processes the best organizational
structure or, in other words, it is possible to solve the syn-
thesis problem.
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The main concepts which are used in this section are based
on the ideas described in 10 23,

5.1. Performance Measure of Hierarchic Organizations

Let us consider a simple hierarchic organization, shown in
Fig. 8, which consists of controlled processes P1,...,Pn,loca1
(1st-level), controllers 01,...,Cn, supervisory (2nd-level)
controller G1n and transmission lines L1,...,Ln, which link
cqn with 01, veoy Cn .

The operation of controllers is specified by given objec~
tive functionals, which fogether with the process eguations
and constraints can be used for determination of the optimum
control algorithms. Since in the present section we are inter-
ested mainly in the organizational aspects of complex systems,
we shsll not devote much attention to the derivation of the op-
timum control algorithms, but we shell concentrate on the no-
tion of the so called optimum performance characteristics(O.P.
C.) of optimum processes, which are essential for the evalua-
tion of the orgenization guality,

For this purpose let us comsider a dynamic process which is
described by a given operator A :

T=ARX), ¥, xec X

where % is the controlled imput, y - output process, and X
is,; generally spesaking, a Banach space of functions of time t.
Now let us assume that there exiets 2 unique input Xe X, which
minimizes the given objective functional R(x), x & X (called
the control cost),gubject to a number of equality or inequali-
Ty constraintss
SLx) DBy wesy V(X)L B

where ¢ , ..., WV given functicrals in X and B, ssey & =
given nonnegative numbers which may represent the desired cut-

put production, magnitude of resources available, optimized
time~interval, ets.

If X can be effectively derived as a function of time t
and B; ...y Z, it is also possible to derive a function A =
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= F[?(t, By ceey Z)] = £(By ¢e¢ey Z), which represents the val-
ue of control cost as a function of "outer paremeters" B,...,Z
and which does not depend on the time variable t . The func-
tion A = £(B, ee¢ey 2) will be called the O.P.C. of processes
optimized.

As an example we shall consider a transport process, using
electrical motor, which should shift an inertial 1load to the
given distance Y in the given time interval T with minimum
energy consumption. ;

The position of the load y(t) can be described by the -

operator t
y(t) = A(x) = y(O) + a.S (t -7 ) x(v) dr (59)
0

where a - given coefficient, x(T ) - current in the armature
of the motor.
The optimization problem consists in finding such a control-
-current X(t) € Lz[p,ﬁ] s Which minimizes the energy cost
i
F(x) = S [x(r )]? at (60)
0
subject to the constraints

P(x) = y(T - 3(0) = Y
ay (%)

Y(x) = | = '0
at m=0
It can be shown that
PO G S
x(t) = aT3<2 ) (61)
and
A =Fx) = -1 vl (62)

42273
Relation (62) can be also written in the form

A%y2 - ¥, k= V/3/2e (63)
and can be called the 0.P.C. of the tramsport process.
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Another example is a P.E.R.T. x)-project in which the cost
C of each operation is assumed to be inversly proportional to
the optimization time T . In that case we get for the 0.P.C.
0 = ¥
where k is a-given coefficient.
In Reference 22 the 0.P.C. have been derived for many dynam-
ic optimized processes. For many cases they assume a simple an-

alytic form:

AaBp ee e !¢Zm= (k)q ’ q=0(+]3+...+0) (64)
where A,B,Y,Z,O, P ,...;k are positive numbers and w A A

negative numbers xx). Since the smaller is k the better the
properties of the optimized processes (e.g. in +the case of

(63): ATPT 2 = —:-2-
43

when k = ng is a small number), k can be called the qual-
a

and fixed T, Y the value of A is small

ity index. :

Assuming that the 0.P.C. of the sub-systems Ki incluqing
processes P . and local controllers Ci y 1 =1,2,000yn (see
Fig. 8) are given, Ai = fi(Bi, ceey zi), we can concentrate on
the derivetion of the 0.P.C. for the aggregated systenm K1n'-
which apart from the sub-systems Ki includes a supervisory
controller 01n and transmission lines L1, ceey Ln .

n

We shall take :E:ztxiAi as the objective function for an
i=1 i

aggregeted system and determine such values of Bi,...,zi which

minimize

n n .
E qi‘i = E aificBi, coey Zi) (65)'
i=1 i=1 ;

subject to the set of aggregated constraints

x) Process Evaluation and Review Technigue.

xx) The well known economic model of Cobb-Dougles is a spe-
cial case of the model described by (64).
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n

n
E piBi LBy sadais E wizi > 2 (66)
i=1 i=1

where “i’ﬁi’ eee 21, Wiy eee L1and B,y ecey Z are 5iven_
positive numbers.We have here a nonlinear programming problem.
We now assume that there exists a unique solution Bg, coey Zg,

i=12, ..., n, and that it is possible to compute the func-
tion

n
& =Z°‘ifi(Bg’ seey Zg) = £(B, eeey Z)
i=1

which will be called the 0.P.C. of the aggregated system.There
exist many industrial and economic systems which are aggregat-
ed and optimized according to (65), (66).

As an example we may consider the integrated electric power
system which consists of n power stations with given perform-
ance functions Fi = i’i(Pi), i=1,2y) ¢oey n, relating the
fuel cost Fi and the amount of power production P; . The

? n
global production :%:F& 4 (where nyg éare the so called pen-

alty factors, which represent power losses in transmission
lines) should be at least equal to the power demand P and the

n
global fuel costjg:: aifi(Pi) (where "oy represent fuel
i=1 '

losses during transport) should be minimized by proper dis-
patching of the power prodggtion Pi . :

It is possible to show that for certain types of 0.P.C.
the derivation of the aggregated 0.P.C. is relatively simple.
For example, in the case of processes with the O0.P.C. in the

& W
form Ag Bf ces By = (ki)q, i=1, ¢«.oy n, the aggregated O.

P.C. becomes A% BP ... 2%= ()%, where

1/q
Ew ¥ K Agy A =[a§ pE ixs w‘i’] (67)
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and Ag, B:. seey Zg can be determined from linear eguations.
A similar property is characteristic of the functions

Ai= pifl?i;Bj]*'ai’ (68)

i

where pi, 859 By - given numbers, and f is a monotonic dif-
ferentiated function having a unique inverse [£7]”7 %2.1t is
possible also to show that a continuous 0.P.C. can be piece-
wise approximated by functions (68) with the desired degree of
accuracy.

It should be observed that when the 0.P.C.-s are described
by a function of type (67) or (68), the aggregation and opti-
mization processes can be applied to multi-level structures
yielding at each stage the same form of O.P.C. with quality
indexes which can be derived from simple relations of the type
7.

In other words, the amount of variables or information
which is to be comsidered at each control level is strictly
limited.

It is also possible to evaluate qualities of different or-
ganizational structures. Let us assume,for example, that three
different processes, described by (64), with performance k1,
Ky k5 and three different organizations shown in Fig. 9, are
given. The corresponding quality indexes, derived by (67), be-
come

1,1 < oy | 1.1 69

k‘ . 7\-:1‘:'1 : 1:2kz +11A3]:311 1:3 : O)

BART A 20 At e
5 1

ko= Aqkg + Ay Ak + Ay ASky 71

where A1, A2, 53, A12. A25 represent loSse; introduced by

transmission lines which link the respective controllers.
Now we are able to compare different organizations what’
will be done in the next section.

5.2, Syntbesis and Optimum Control or Organizational Structures

As it follows from (67) (compare also (69) - (71)), the re-
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sulting quality index of an organization which consists of n
controlled processes with given performance indexes k1,k2... ’
ceey kK can be written in the form
n
kK = ki1, (72)
where li - loss indices depending on the organization struc-
ture. It is also obvious thet the smaller is k the better
the global system performance. '
The minimum value of k can be obtained by:
(a) assigning processes to the given fixed structure, i. e.
to the given, ordered set li}% H
11g 12\< cee \<ln

n

1 should be assigned in such a

the indexes v in the set {kv}

way that (72) is minimum;

(b) permitted reorganization’of the structure, by changing
the position of the controllers and transmission lines, which
decrease the value of (72).

As far as the assignment problem is concerned the following
two theorems may present certain interest.

Theorem 1. Let two sets {lv}l,|1 ’ {kj}:' of positive numbers

n
be given. The set of K = Z kili cori'esponding to any pos-
1 ’

sible assignment of indexes v , j, is contained in the inter-
val :
21k

, -, 1k (73)
Vik/ix + Vik/ix

where n 21/2 n 1/2

= = 2

l= 11 s & = Zki

i=1 i=1
l=min1l k = min L =max 1 K = max 5
; 17 e g R
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The upper limit (1 k) is reached if and only if k;, =« 1
i=1,) eeey n, x = const. The lower limit in (73) is reached

L/1 .
if and only if p S 1S is an integer and
L/1 + K/k

k; =k k
i i'—'1, 2, esey Py i

i = p+1, s ey n

The proof of this theorem is based on the knpwn Cauchy and
G. Polya and C. Szego inequalities 27 .
Theorem 2. Let two sets {1}1:'1 ’ {k}f‘1 of positive  numbers

be given. The value of K

n
Z 1,k; is minimum, if
1

A

Ky <X <o <y

if _
e VUL S U o, WP RN (75)

14 215 200 21 o

or

These conditions become also necessary in the case of
strict inequalities in (74), (75).

The validity of this theorem for n =2 is obvious. For
n>2 it can be proved by inductiocn 23 . 3

Exsmple. Let us consider two organizations shown in Fig. 9b
and 9¢ and assume that A1 = A2= A5= 7\12= A23= 2)1.
In the case of the system 9b we have 11 = AL 12 = A and
1, = 13 - A%, Then, according to theorem 2 this organization
is optimum if k, > k, >k3 . For the same reason the organiza-
tion shown in Fig. 9c¢ becomes optimum if k,  k; { k3 . These
structures become equivalent when A = 1.

The last example indicates that in order to get best re-
sults it is necessary, apart from optimum control of the pro-
cesses, to reorganize the structure when the quality indexes -
of the sub-systems chenge with time.In other words, the higher
level controllers should reorganize +the system structure if
necessary.

Theorem 2 can be used also for synthesis of nultilevel
structures. As an example we assume that n controllers ci,
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i=1,2, «asy n, and N processes, equiped with local con-
trollers so that they can be completely described by the in-
dexes

KK Byl oenn KXy

are given. Transmission losses are assumed to be the same for
each interconnection and A > 1. The maximum amount of pro-
cesses which can be controlled by controllers C; 1is m, is=
=1, 2, s+4sy n, respectively, and

n
B By Koo KBy ) my = E
i=1

Besides, we assume that each controller can also optim :e
one sub-gystem of controllers and processes. The problem " on=-
sists in determining the best organization of the controllers
and processes.

Let us observe that the numbers

Ki’é k;j’ m£=mi_1+1,i=1,2,...,n
J=my

satisfy the condition: K, K,  «.o L K, and the po;sible
organizationswill give loss coefficients of the form A™, k =
z Ty 25 Fasey N

Then, using theorem 2, we can obtain the structure shown in
Fig. 10, with the quality index :

n *
K=Y Kl . (76)
’ i=1

where 1; = An-1+1’ and 1,> 1,> «.e> 1> 1.

This organization is optimum in the sense that no allowed
reorganization (consisting in exchanging processes and sub-sys-
tems) exists which would decrease the values of K given by

(76).
Other examples of synthesis of organizations and some ex-

tenssions are given in Ref. 23 .For example,one can assume that
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the numbers of processes m; are not fixed and the loss coef-
ficients 'Ki are increasing functions of m . In that case
the optimum number of control-levels depends, generally speak-
ing, on the global number of processes N .

As an e le we can assume K; = k, 'Ki 2 Ay 12125000y
eseey Ny N = m° = const., and compare the resulting losses for
the single-level (lI) and two-level (1II) organizations of the
type shown in Fig. 9.

We obtain ,

1 = B2A@®), 1y =n° [A (m)]2

When m increases there exists, generally speaking, such a
number m = m, that 1, 4 1I . Let us assume <for instance
A(m) =1+ &m, then

1y(m) = m2(1 + éma) -t lII(m) = mz[". + ém:!e

when m >2/(1 - &§).

So far it has been assumed that the systems under considera-
tion were deterministic and stationary in time.However,in many
systems the coefficients of 0.P.C. as well as the loss coef-
ficients may change at random with time as a result of environ-
ment changes, hoise, etc. Optimum control of the systems of
this type becomes more complicated. First of all it is neces-
sary to consider all the performance functionals as expected
values. Then it is expedient to observse the optimized pro-
cesses 1in the past, and utilize the information about the
process-parameters obtained in this way, for a betier control-
-action in the future. It is well known thet the systems act -
ing in this fashion are called adaptive. Since during the ob-
servations (or in other words - identification of +the pro-
ceszes) one cannot control the process effectively, the obser-
vation time should be as short as possible. On the other hand .
the accuracy of identification is an increasing function of ob-
servation time. It is therefore necessary to coordinate the
identification and control action in such & way that the re-
sulting performance is optimum. This can be done by applying
the general theory of statistical decision functions.
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It should be also observed that in the adaptive hierarchic
systems the cptimization process should be,generally speaking,
accompanied by a process of reorganization of system structure.
The convergence of these processes and the stabilization of
the structure represent difficult theoretical problems.

Beside the random variation of processes and structures, in
many large~scale cybernetic systems one can discover processes
¢f structural evolution. In the industrizl and management sys-
tems these processes depend on the scientific and technologic-
2l progress, which creates new production branches. It depends .
alse on the capital investments. Evolutionary processes may be
accompanied, in turn, by the reorganization processes. If, for
example, it is necessary in the given branch of industry to
create a new techneclogical process, the management may decide
tic change the existing orgsnization by forming new departments
and appoint new directors.

One should observe that the simple model of organization
which was described in the previous sections may be also used
for investigation of the processes in adaptive and evolution-
ary systems. However, due to limited space we shall not pursue
these interesting considerations.
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