e

SRR

19469

INTERNATIONAL FEDERATION
OF AUTOMATIC CONTROL

Problems on Automation
of Computer and System Design

Fourth Congress of the International

Federation of Automatic Control

Warszawa 16 —21 June 1969

|

Organized by
Naczelna Organizacja Techniczna w Polsce

PROBLEMS ON AUTOMATION OF COMPUTER AND
SYSTEM DESIGN

V.M. Glushkov, Yu.V. Kapitonova, A.A. Letichevsky

Achievements of cybernetics made it possible to construct
automated%ggﬁzfol systems. An important role in these systems is
played by all=-purpose computers. Designers of systems center their
attention at problems of constructing computers. : : ¢

Sophistication in computer structure and rapid changes in tech-
nology, together with solving problems of design proper put forward
probléms of automatiné'the computer design.

Investigators were interested in solving the automation prob-
lem of designing computers long ago. Historically its solution was
associated with an interesting example of using intellectual poten-
tialities of computers when solving noncomputational probleﬁs aris-
ing during creative activity of an engineer rather than with acce-
leration of designing computers.

A number of works devotgd to description of methods, algorithms -
and programs are known to solve.some problems of thé computer syn-
thesis.

On analysing those works one can arrive at two conclusions.

The first, positive ~,fhe problem solution of automation of design-
ing such‘complex objects as computers is feasible even now, since
all prerequisites for this are available..The second, negative =

it is impossible to obtain a positive practicalveffect by solving
individual problems of synthesizing computer schemes. Just because
of that the system approach has become prevalent in the works on
‘the design automation recently. Its essence consists in studying

and solving by means of computers the entire complex bf questions

SRl

and problems arising in design. This leads to the need for con-
structing automated systems of designing computers. In the sys-
tem approach a large totality of means ensuring fhe maximum emp-
loyment of a computer in the design process is developed insteéd
of discrete algorithms, programs or devices. These means involve
in the first place the hardware providing a speedy and convenient
designer-computer exchange of information, as well as the deve-
loped software ensuring a speedy and convenient arrangement of
complex programs (from standard programs), for solving particular
problems of design, and allowing a quick introduction of éhanses
into the project being worked out, and havihg a means for choos-
ing the optimal version of the project from the designer's stand-
point. :

As an illustration of such completed and operating systems
the IBK-350 technical design system developed by the USA IBM Cor—
poration, and the Small system of digital automata synthesis
worked out by the Institute of Cybernetics AS Ukr.SSR can be poin-
ted out.

The creation of automated systems for designing computers
is connected with overcoming a number of difficulties and solv- :
ing complex problems.

The first difficulty is due to unstability and complexity
of methods used in designing computeré- It is typical nowadays
to introduce new propertiesbinto the structure of computers and
systems, namely: introduction the time-sharing mode of operation
into a computer, cowplioatiqn of an input language, use of the
input language interpretation principle, introduction of rich
facilities of intercourse with uéers, etc.

The second set of questions is connected with the construc-—

-3 =

tion of specialized languages for formal description of a compu-
ter in the design process. ;

The third difficulty consists in the development of a special
mathematical tool for solving problems of formal transformations,
and for optimizing a project when the design process is underway.

The fourth complex of questions is associated with the general
organization of data files,- development of spepial means for the
user-gystem intercourse, specialized systems of programming automa-

tion inclusive. ; “

Design Technique
The object which any engineer aims at in designing implies

attainment of computer circuits with a minimum money consuming
hardware and a maximum speed. But the algorithm of achieving this
object for the entire computer being designed is extremely complex.
Therefore the general design problem is meant to be a sequence

of problems.

From the designer standpoint, information on a computer to be
constructed consists of at least two parts. The first part involves
the algorithm of function of a éomputer,under design, and the se-
cond - its structure. The execution algorithm specifies the cor—
respondence between sets of values of input and output signals.

The structure states a(computer representation as a cbmposition of
other simpler devices.

The design process can be described as follows. Having an idea
of the computer execution algorithm, an engineer designs its struc—
ture in a certain degree of detail. Analysing the obtained struc-
ture he either returns to the execution algorithm and introduces
-changes in it, or, using the structure and the execution algorithm

of structure components he obtains the structure with a new degree

of detail.

In view of this, the design process of a modern computer
consists of the following main stages : System, logical and
technical.

During the system stage of design, a number of memory units
and other devices of a computer under construction is determined,
flows of requests in the computer calculation process are studied,
a calculation process organization is chosen s0 as to ensure the
maximum working capaclity of devices and of the entire computer,
basic algorithms are compiled characterizing operation of computer
individual devices. As a result of the system stage of design
a general computer block diagram and execution algorithms of
individual devices are obtained. ; :

During the lbgical stage of design, the functional circuits
of devices are obtained by the execution algorithms of individual
devices and the entire computer, and by the system of elements
chosen. During this stage the problems are solved of obtaininé
the computer structure in more detail, whose components are
elements of the selected system. The principal problems of fhis
stage are problems of coding states of devices, construction of
combination circuits controlling the switching of device states,
and various optimization problems of structures obtained.

The contents of the third stage of design - technical = are
problems of arrangement of obtained functional circuits in the
structure. Wiring diagrams and documents for manufécturers are
made during the technical stage of design. The main prgblems of
this stage afe various problems of layout, run, construction of
wiring, and preparation of documents.

From the viewpoint of developing automated design systems
all problems and accordingly algorithms of the technique can be

divided into three classes.

The first class contains algorithms-translators by means of
which a natural change-over from one representation of a designed
computer to the other is effected. The second class is composed
of algorithms—-transformers with the aid of which deep cptimizing
transformations on the level of one representation are carried
out. The third class of algorithms represents estimation and
simulation algorithms used for forecasting and evaluating characte-
ristics of various representations, as well ag for simulating the
representations with the purpose of obtaining such characteristics.

The computer design automated system developed at the Institute
of Cybernetics, Academy of Sciences, Ukr. S.S.R., is provided with :
the following basic design algorithms composing the technique :
Construction of the general Block diagram of a computer to be
designed on the basis of its simulation as a queueing system;
construction of the block diagram of a control device and an
operétional unit of the computer by the execution algorithm;
construction of computer functional (logical) circuits on the '
potential elementary base; consﬁruction.of wiring tables of layout
of the functional circuits in structures; stating of documents for

the projecte.

Languages for Declaration of Data in Design Process

Languages are needed for declaring a computer being designed
on various stages of design. A sufficient number of languages for
declaring the execution algorithms and structure of devices are cur—
rently available. On the system stage of design, the SOL (System
Oriented Language) may be used for representing the computer as a
‘queueing system. On the logical stage - the language of Boolean
functions, on the technical stage - the language of wiring tables

can be employed. No special language is necessary in the manual

-G

design. For the description of circuits an engineer usually
utilizes any means known to him,.

When building automated design systems the question éf
languages for declaring data in a system becomes of great impoitan-
ce, since this question is connected, on the one hand, with the
convenience of recording data on a device for a designer and, on
the other hand, with the complexity of processing these data in
the system. A language should reflect special prpperties of a
given stage of design and be adapted for executing the design
algorithmse. The main problem connected with languages consists
in creating algorithms = translators which allow to translate re—
cords from one language into the other. It is just algorithms -
translators which condition the complexity of data processing in
a system.

One more set of questions forms problems of an internal
representation and storage of data on a computer under design in
a system. The point is that data on a project grow when the design
is in progress, and may acquire a rather large volume. For
instance, the documentation of the MIR-I computer exceeded the
volume of the computer itself many times over, Taking into account
a comparatively small volume of memory of a medium—scale compu=
ters for which the automated design systems are developed,
storage questions and, what is especially impertant - data
changes in a prqject - becoﬁe very significant. A difficult
problem is presented by questions of organizing and coding the
internal reprgsentation of data. The internal representation
should be so chosen as to simplify the algorithm of transferring
to the internal representation of data and their processing
necessitated by needs for designe. Several languages for
describing a computer to be designed were developed at the ' -

-7 -

Institute of Cybernetics in Kiev.

During the system stage of design the SILANG language is
used for declaring a computer model as a special-purpose queueing
system. This language has special means for declaring flows of
demands of various processors which are delt with in designing,
as well as means for simulating the system time and for construct-
ing the diétribution of guantities obtained as a result of simu=-
1ation. Appendix 1 of this paper represents, for instance, the
declaration of a communication system model 6f off-line devices
with immediate-~access memory blocks.

During the logical stage of design the ALOS[2]language is
employed and the language for declaring a computer structure.
The ALOS language is intended to declare a computer operétidh
algorithm or, to be more exact, that part of a computer which
‘consists of a control uni? and of an arithmetic unit. The language
for declaring a computer structure contains facilities for
decl&ring it as a composition of other simpler devices. Appendix 2
exemplifies the declaration in the ALOS of the execution
algorithm of the device and its structu;e. The technical stage
of design deals with the known language of wiring tables.

Optimization in Design

0ptimization~probl§ms arise during all stages of design.
Although the statementbof problem of constructiné the optimal
project in a general form is feasible, the problem solution with
‘the present-day state of mathematical tool used is almost im=-
possible. Therefore, in practice of design the general problem
of projectAglobal optimization is divided into a sequence of
problems allowing to solve optimization problems locally, within
one stagee.

Let us briefly outline problems connected with finding

= Vg

criteria and ways of optimization. This is associated, first of all,
with the possibility of accomplishing formal transformations over
expressions in some algebra with preserving éertain invariants but
with altering some parameters of expressions. Obviously, in ité
turn, if on a certain stage a design problem is difficult and a
complete optimization is impossible, a partial optimization is done,
or a computer under design if simulated and man-simulating computer
joint operation is organized permitting to quickly evaluate a num-
ber of versions, to effect a formal transformation of the model and
to obtain better project features on the given stage.

It is known that the purpose of a computer as a device for
processing discrete information is to transform input sequences of
discrete signals, éay, letters, into output sequences. A computer
maps a set of input sequences of signals into a set of output se-
quences of signals. This is a function analog. There exist, ordi=-
naerily, certain construction restrictions imposed on the function
realization. A mapping taken at random is far from being easily
realized in a computer immediately during one step. It is necessa-
ry to divide this mapping in order to have a composition of more
minute mappings. Selecting by some method more minute mappings as
separate elements we can obtain different compositions.

Dufing the system stage of design the invariant is a mapping.
This means that -the mapping should not change. In transforming on
this stage the mapping realization is subject to alteration, i;e.
the way of its decomposition into elementary constituent parts.
There are many such ways.

During the next stage the invariant is not only the mapping
itself (stated by a computer) but also the way of its decomposi-
tion into constituent parts. On this level the designer deals.with

A e

automata. The main theoretical base in solving problems of this
stage is the automata theory. An automaton has a set of internal
states. These states change at discrete time instants. There
exists a system of output signals. The next state of automata -

a function of the previous state and of an input signal, an out-
put signal - a function of the same arguments. These functions are
said to be transition and output functions. They are very objects
for transfqrmations on this stage of design.

In further design the partial automata baving a single inner
state are treated. In this case the invariant is an output function
of a certain automaton. Formal transformations change the method

of realizing these functions. Finally, during the technical stage
. of designvon the level of hardware described simply by systens of
numbers - coordinafea,(describing position of a point on a plane
- position of nodes Af_corresponding circuits) the invariants are:
topology (graph) of connection of nodes first and, second - dis-
tance between some nodes. Transformations éhange coordinates of
nodes. One of cfiteria of efficiency may be the attainment of the
minimum length of all coupling wires. This criterium depends on
S type of elements chosen.

Optimization questions are complex on all the stages. In par—
ticulaf, on the stage of technical design. They reduce to mathema-
tical problems of finding a maximum and minimumvaf functions of a
very large number of arguments and oftentimes are not confined
. simply to problems of linear programming. Parameters are numbered
in many tens or hundreds. Therefore the solution of such problems
is difficult and requires rather extensive programs.

Note that the tool for formal transformations on certain le-
vels has so far been developed not good enough. For instahce, no

formal transformations are immediately performed on the system

=710 -

stage of design. In part the problem of formal transformations is
solved within the theory of large-~scale systems. We czunot manage
to use known regularities of the queueing theory, since the gene~
ral problem cannot be solved by analytical methods and goes be?
yond the scope of the classical gueueing theory. The greatest dif=-
ficulty consists in that there is a feedback of a device for pro-
cessing data wiih an input flow of requests. The flow of requests
in ordinary classical queueing problems is not dgpendent on ser—
vicing system. In our case, however, characteristics of the flow
of requests are changed depending on the state of the data process~
ing system. In addition, in servicing, much more complex transfor-
mations of requests of the input flow are formed or simply inclu-
ded. The flows prober are non-uniform and requests bring a large
number of parameters which may influence a process of the subse=-
quent treatment. lieanwhile the design automation system can cover
a number of discrete problems allowing a theoretical solution. For
this purpose provision is made in the language to have a means for
declaring standard flows in queueing systems, and corresponding
mathematical transformations.

As to the logical stage of design, there was eésentially no,
until recently, approach to solving complex problems of design
automation. Languages have come into being but they almost have
not had formal tfansformations. The Yu.I. Yanov's paper has pro-
bably been the first in this direction. He has constructed the
theory of formal transformations of schemes of programs. At pre-
sent this paper is fairly popular among those who are concerned
with optimization problems. However the paper has solved the prob-—
lem of transforming the algorithm scheme only, and not the problem

of transforming the algorithm itself.

-1 -

The difficulty of the last problem consists in that at the
very outset of the theory of algorithms thé algorithmic unsolva-
bility of the problem of establishing the equivalence between two
algorithms by means of formal transformations was proved. This
circumsvtance scared away investigators from construction of such
formal systems for transforming algorithms. Lately it became pos—
sible to solve the problem of building the mathematical tool for
transforming a special kind of algorithms - microprog;fams which
may be applied in many practically important‘: cases:

We shall now discuss in brief the hasic scientific concepts
utilized in this theory. Any algorithm essentially is a method of
stating the transformation of a set. To construct transformations,
conditions are taken specified over this set. Using a set of tran-
sformations (operators) we can build a system of operations (si-
milarly to algebra) = multiplication of operators, & =-disjunction
and o -iteration.

Let M bve a set of states of automaton B, ae M , O -
set of operatoré acting on set M ’ £’ - set of conditions de-
termined over set M . Operations of d'-disjunction and of ~ite-
ration are determined as follows: & =disjunction of .operators

4’ and Q is operator R which transforms element O.CM into
@((L) if condition (@) holds and operator @ is applicable
to & , and into (&) if condition of(@) is false and is
applicable to A . In the rest of cases R is undetermined.

Operation of ¢ -iteration is determined as follows: ¢ =-ite-
ration of operator @ is operator R which transforms element
3 M into element q)“(a) if conditions ot(0) , o(@a)) |, ..

’d(qJ""(a)) are not satisfied and d(?n(a)) is satisfied, other-

wise R is undetermined.

-0 =

Such operations have already been employed earlier in various
logical languages. The new (in comparison with classical) opera-
tion of multiplying the operator by the logical condition is in-
troduced. The result of multiplying operator @ by condition ci
is new condition P such that f(a.) holds iff o((P(@) holds.

Selected in a set of operators are some operators named ele-
mentary ones or microoperations. Moreover some iogical conditions
are fixed. These operators and conditions generatg microprograms
algebra with the aid of which one can state algorithms realized by
units of a computer being designed. The distinction from the classi-
cal theory of algorithms consists in that the algorithmé are con-
sidered to be elements of some algebra and relations of a certain
algebra mey be used to transform the algorithms. Relations in the
algebra of microprograms are much more complex and their number is
much greater.

Appendix 3 of this paper illustrates the formal transformation
of a microprogram for multiplying two integers in a certain algeb-
ra. .

The experience of uéing the idea of transforming algorithms
as expressions in microprogram algebras testifies that this means
is rather effective and allows to formalize the transformation of
structure of a computer to be designed on the whole during the lo-

gical stage.

Orzanization of Automated Design System

The following problems are to be solved in organizing an
automated design system:
- Automatic storage of information on the project during the

all stages of design.

- 13 -

- Organization of a joint designer-system operation.

- Availability of means to introduce changes in the project
and system.

We shall now briefly describe the organization of the automa-
ted design system which is being developed at the Institute of Cy-
bernetics in Kiev. This system has means for:

- Declaring information of a computer under design during va-
rious design stages.

- Solving all design problems during the logical and techni-
cal stages of design.

- Solving a number of optimization problems in the process
of design.

- Completing documents on a computer being deSigned..

- Declaring and includiﬁg into a system new algorithms for
transforming information of a computer under desigu.

- Ensuring an immediate introduction of changes into the pro-
Ject.

- Providiné a convenient user—system intercourse. &

From the user's viewpoint the system is imagined to be consi-

sting of the following components: Main information file or a data

file on a computer to be designed, standard block file or standard
file, standard program flle, direction file, and system control.
In the process of intercourse with the system the user should
know languages for declaring information on a computer under de-
sign, the language of intercourse with the system, and the design

methods used in the system.

Data File

In the system the data file is intended for storing informatio:

on a computer being designed. The following languages are taken in

A N

the system for declaring the object of design: Language "Algorithm"
(ALOS) containing facilities required to declare execution algo-
rithms of devices, language "Structure" serving to declare struc-
tures of devices, and language "Construction" allowing to declére
arrangements of devices. :

The data file consists of objects each of which has a head-
ing. Objects may be simple and composite. The heading contains ob-
ject name, type and constituent parts if the object is composite.
The heading of a simple object has its name and type.

A simple object is a declaration of construction in languages
suitable for representing information on a computer to be designed.
There corresponds to each object in the data file fhe data
file address indicéting the place in the data file from which the

object heading is originated.

The correspondence between the data file address and the ob-
ject name is the contents of the data file table.

Project information inserted into the system, or obtained in
the process of designing, arrives at the data file via a special
program - data file monitor which also controls information deli-

very from the data file.

Standard File

In the file system of standard blocks the standard file is
intended to store information on standard devices used in the pro-
cess of design. In particular, the standard file stores informa-
tion on a system of components employed to design a computer.

The declaration of standard devices obey the same laws as the
declaration of a device under design. Information in the standard

file is organized similarly to the case of the data file. A dis-

tinctive feature of the standard file with respect to the data file

=G

is constancy in the process of designing.
The standard file has the standard file table and any access

to the standard file is gained through its monitor.

The program file in the system is aimed at storing declarations
Pf programs to design and maintain the systen.
; Use is made in the system of three levels of the language in
which programs are declared. The first level - instruction langwvage
of a computer which the system is realised on. The second level -~
basic language of an autocode typé for a certain computer. The
third level - operator part of the language of the user-system
intercourse. The user may utilize any of these languages and has to
Imow the third level without fail. '

All the programs in the program file fall intoc three parts
according to the languages. The first part of the program file
contains declarations of programs in computer codes. A declaration
of each program begins with the program heading containing prog-
ram name, type and formal parémeﬁers. :

Access to standard programs of the'first part of the program
file in the intercourse language is completed in' the form of simple
instructions.

The second pért of the program file contains declarations of
programs in the basic language. ; _

The third part of the program file provides declarations of
complex instructions of the intercourse language, and represents
a table for deciphering complex instructions through simple ones.

Access to programs of the second part of the program file is
‘gained in the intercourse language via the instruction of making

access to the programming automation system the declaration of
SN
') TN

- 16 -

which is stored in the first part of the program file. \
Access to programs of the third part of the progran file is
gained through a system managér.
All loading to and extracting from the program file are effec-
ted via the program file monitor through use of the program file

table.

Instruction File

The instruction file is used to store sequences of particular
external instructions with the aid of which the user will conduct
the design process in the system.

Access to the instruction file is gained via the system
manager.

A declaration of each instruction in the instruction file
consists of an instruction and a list of actual pérgmeters of

the instruction.
System_Control

The system control is employed to execute user's instructions
in designing.

The system control consists of the system manager and service
information for the system manager.

The instruction file is source information for the system
manager.

A time step of the system operation consists of executing
one external instruction from the instruction file.

The execution of an external instruction by the manager
consists of two parts : Preparation for execution an instruction
and its execution itseif.

When preparing the execution of a simple instruction thé

system manager operates as an interpative system which uses

- 17 =

auxiliary information and represents a given external instruction
as a sequence of internal instructions.

Programs of the first part of the program file correspond
to internal instructions.

The execution of the external instruction consists in
execution of each internal instruction of a given sequence.

To execute the internal instruction the manager should call
to the system operating board the program cprresponding to a -

given internal instruction and transfer the control to it.

Information on the device to be designed arrives at the
system in the form of texts in languages specially inténdéd for'
the purpose ("Algorithm" (ALOS) and "Structure") and is written
in the data file as-a-list as a list structure. Its character
and coding has been developed. Information in the standard block
file is represented similarly to the case of the data file.

The general organization of files has been worked out based
on the three-level division of memory (drums, tapes) and
questions using the principle of page and book organiqation have
been considered to exchange and distribute the computer memory
in the system.

: All the decisions on organization, representatioh and coding
of information on data and on the system have been made taking
into account features of the computer M-220.

j= 18 =

Appendix I

Model of System Communicating Autonomous
[

Devices with Immediate-Access Memory Blocks

With the use of the SLANG-language a declaiation is given of
operation of the system consisting of file BANK éof k blocks
of immediatz-access memory and of M autonomous devices. Bach
device sends inquiries with its particular period pERIODEM] to.
the immediate—access memory, the inguiries being answered through
- common buses BUS. Quantities TB)TWR and T0 characterize opera-
tion time of the common buses, time of making access to memory and
memory cycle time. V

The process REGHAN describes generation of inquiries of
autonomous devices. At first, in the cycle between tag FN: ana
operator @_IQ FN , M initial inquiries are formed: one from
each autonomous device, and one from memory blocks (randomly)
selected with the aid of CHQLC E(I,th). Then, in the cycle between
tag EA: and operator NEW T_p_ F1 , the devices generate inqui-
ries to other memory blocks, and go through (each with its'period)
numbers of blocks in the direction of a modulo k increase by 1.
The generation of an inquiry is mapped by operator NEW BANKS(bN ,‘?R)
the actual parameters of which mean the number of interrogated
block and the number of priority of an interrogating device, res-
pectively.

Quantity COUNT is a counter of the general number of inqui-
ries to the memory, and the simulation is ended when it reaches
value BOUND '(multiplied by k)} stated at the input.

Process BANKS describes answering the inquiries to the me-

mory through the common buses and memory blocks.

—— 49 =

Model of System Communicating Autonomous

Immediate—~Access Memory Blocks

M TEGER w ¥

acg!l ;
paciLiry Bancluy,

5T;Tiwuif Babe

i : FERIO0 M)

e LB G ST

HeTP, YWR, TG, B0UND, FERIAD)

4

e 34 ;

AE s, i
ot JER

CNS = ;
rimeaey ’

‘:7? F80 - THEN NEy Reclhan 19 £
ey NEW RAKNG(Zx 20y T2 G

AT PrLpionirn . : 2
gNS= IF RNSK YHEy Bevd EL5%)

1F CGUNT=K=P’”N° THEN 8508

coupET:=CoylTs1]

cOYO £y i

eHG. 2

PPACESS BANKS (B L) INTEGER B.L;
RECGIM "INTEGCER ‘v ;

cCAuCeEL
sTeaVIME PR IORIYY (mbs

0 wALTVETIL Byg 4nTDUSY

IF BANKIR] 3USy TeEN : s
gEciit walTewTy, SankK({B] wovEUsy

i ausy Tuysn 62T wmyg
SEr2F AUS L

SE12F pauRlel]

Wwrpr tec

RECESSE AUSy

wAaAr T Tae

vRp UL 3TF TIoFoy.cS 1M ATAR(LYS

Devices with

SXD0 1

As soon as an inquiry arrives, an instant is marked of the be~
ginning of waiting for an answer. Upon completion of answering
(i.e. access time to memory), an increment of answering time is
calculated in comparison with a least wait which equals 55 uniﬁs.

The value of this increment is entered the table formed for
each device (ATAB{L] , where L*1,2,.- yM).

Before an inquiry is loaded into the buses and memory block
(by operators Selpe BUS 5 sz BANK L8]) the analysis is pex
formed whether or not the buses and interrogated memory block are
occupied with the priority number of the interrogating device ta-
ken account of. This analysis is performed through use of opera=-
tors @‘M& and _lf: - M on the section between tag M4 :
and operator %’i‘g MA where all waiting inquiries circulate. .

Each inquiry satisfying the conditions occupies the common
buses for time T (specified by operator 'll_@_li T#) and the me-
mory block for time TA+TWR+TQ , the time of answering the in-

quiry satisfying the conditions beingTb fTWQ.

Appendix 2

Eixample of Declaration of Algorithm for Device Operation

in AILOS-Language

Deviceaad
variables
input XY
internal T, %;t;
output 1,4 ;

functions

B(a,b);g(0) 5 Al0); B(B)y C(a,b),

- 21-

subprogram 3(“,2)
84: if B(a) then -z else go to 32
4P C(ﬂ.l-) then e:-.-{(r.;)else(a:=4s(3) , 80 to S’l)

Sa: T(y)
end of subprogram
subprogram T
T"' if 6(“) then (--‘; = !(r.g);stop) else := g(a)

(% r= %(q)‘) 8o to T4)

end of subprogram

begin
P41t Aly) then(y:=x: Qg(g,{.»else
(\‘ -3)50 to 93)
?«l T@'SO to @‘1 :
?% if 6(5) then(%‘z T(f) go to ?{) else
(8: "‘)3(" ,.),go to P2).
P4 se C(r3) then(2 &xa), go to 1) else
' (i{ 8(7‘) go to. @1)

end.

Example of Declaration of Device A Structure

Device A

variables
input Z) 3
output 24,9 -
components

?’ variables input Y, v‘; W‘) w.
outpub w -,

L e

]
S'. variavles input P“&’.),U,W :
¥
output 'U— - W) W
- ; ; |
\ ¢ variables input g\ ¢} U L
output W) Wi
)
r variables input Ay, u ')'E', u',

output ¢,

9)\ variables input 7(‘,3') U s
))

output %.
{; variables input X;T%, G'; u.
output ‘E .
= : skl
Q : variables input 4y Ty U U
output ‘{/

3-‘ variaoles input X, % u; %,
output 2

Commnentary
Uevice A the operation algorithm of which is declared in the
ALOS-language is represented in a form of an 8-component structure.
9 3 :r - control blocks
r‘)&)": - operation blocks
Q)g - functional blocks
The language employed for declaring the structures has a tool
for the explicit recording of connections among the components. In
the given example this is made implicitly through notation of in-

put and output variables of the components.

Appendix 3

Example of Processings of Microprograms

Let (1”,,_‘ Xu) be a set of binary registers the statés of

which are rational numbers written in the binary scale of notation.

-2% -

Consider some microoperations and conditions used in record-

ing the algorithm of a computer being designed

£ m A, (i070)
"c“"a 's—ae (T24,2,0 ™)
gcj-. Y (iph2) ,h)
p. + a; = 4 (C=12,)
B p i 00ish (124,2550)
O, :%2;:=0 (t=4,2,. M)

€ - identical transformation »
o %% \p':‘:o ((.1,1,...,11\) :
i ORd

i e X2k, K - integer (i:472,. M)
9 S%otherwise

We shall examplify relationsl
(g t=4 y2y-M)

& 0) ..J »(i i xoi=f(x)) » £24,2,-0)

ARt O |
eto(ru -o((M% n) , s B
Gz = (gt 2 B, 1)

«

{(“P“ZP} P where t& =K VP d and ljo(. =Zai 70(: ([:112,.,){
W, @ PUF wmoxe Pell, ke % ;v {@ I p
{@%1-2’#0} oo’ §Q 260 912 s Zipep

Transformation of the multiplication algorithm of two inte-~
gers. Let 1'1 ’It-‘)'I, be integers. The initial record of this algo-
rithm corresponds to the .definition of the multiplication algo-
rithm as a consecutive addition. It turns out to be possible to
. transform this record into such one which éorresponds to the mul-

tiplication algorithm usually realized in a computer.

- 24 - |
Qs 00> Bex, | ©:=0- 0,20

Q- 0. {%MP"HCOO

0. {snP '30r,00,-

' 0(9» r")i i3 e, 0

0. %ev)p {@“P;‘%o,o,=
0, ((evéuP)?r)" i%,zP 00,0, -
0, i(@y%‘zf’;)L,)7;00

References

[

“

Kalynichenko, L.A. (1967): SLANG- Experimental Programming
Language Faced Description and Simulation of Computers and

Systems, Col. "Teoriya Avtomatov", No.1, Kiev.

Glushkov, V.li., Letichevsky, A.A. (1967): Language for Desc-
ribing Algorithmic Structures of Computers and Systems, Col.

"Teoriys Avtomatov", No.2, Kiev.

Glushkov, V.M. (1967): Prospects of Computer Design Automaton,
"Vestnik Akademii Vauk SSSR, No.4, Moscow.

Glushkov, V.l., Kapitonova, Yu.V., Letichevsky (1967): Toward

Autonation of Computer Design, Journ. "Kibernetica'", No.5.

VS 7\
] I -~ W ”

@)
\2 J\u‘vw“k’ ,/
\'®

\\é r Nz?‘ \v/

