
INTERNATIONAL FEDERATION

OF AUTOMATIC CONTROL

Problems on Automation
of Computer and System ·Design

Fourth Congress of the International
Federation . of Automatic Control

Warszawa 16-21 June 1969

Organized by
Naczelna Organizacia Techniczna w Polsce

PROBLEMS ON AUTOIMTION OF COMPUTER AND
SYSTEM DESIGN

V.M. Glushkov, Yu.v. Kapitonova, A.A. Letichevsky

Achievements of cybernetics made it possible to construct

automated control syste~s. An important role in these sys tems is
~i2s~UCt£.

played by 9ll-purpose computers. Designers of systems center their

attention at problems of constructing computers.
/

Sophistication in computer structure and rapid changes in tech­

nology, together ~ith solving pr~blems of design proper put forward

problems of automating· the computer "design.

Investigators were interested in solving the automatiqn prob­

lem of designing c?mputers long ago. Historically its solution was

associated with -an interesting example of using intellectual poten­

tialities of computers when solving noncomputational problems aris­

ing during creative activity of an engineer rather than with acce­

leration of designing computers.

A number of works devoted to description of methods, algorithills

and .programs are known to solve some problems of the computer syn-

thesis.

On analysing those works one can arrive at two conclusions.

The first, positive - ;~he problem solution of au~omation of design­

ing such complex objects as computers is feasible even now, since

all prerequisites for this are available. The second, negative -

· it is ·impossible to obtain a positive practi·cal _effect by solving

individual problems of synthesizing computer schemes. Just because

of that the system approach. has become preva~ent in the works on

· the design automation recently. Its essence consists in studying

.and solving by means of computers the entire complex of questions

- 2-

and problems arising in design. This leads to the need for con­

structing automated systems of designing computers. In the sys­

tem approach a large totality o£ means ensuring the maximum emp­

loyment of a computer in the design process i.s developed instead

of discrete algorithms, programs or devices. These means involve

in the first place the hardware providing a speedy and convenient

designer-computer exchange of information, as well as the deve­

loped software ensuring .a speedy and convenient ~rrangement of

cocplex programs (from standard programs), for solving partic~ar

problems of design, and allowing a quick introduction of changes

into the project being worked out, and ·having a means for choos­

ing the optimal version of the project from the designer's stand­

point.

As an illustration of such completed and operating systems

the IBM-360 technical design system developed by the USA IBM Cor­

~oration, and the Small system of digital automata synthesis ·

worked out ~Y. the Institute of Cybernetics AS Ukr.SSR c.an be poin­

ted out.

The creation or automated systems for designing computers

is connected with overcoming a number of difficulties and solv­

ing complex problems.

The first difficulty is due to unstability and complexity

of methods used in designing computers. It is typical nowadays

to introduce new properties into the structure of computers and

systems, namely: introduction the time-sharing mode of operation

into a computer, complication of an input language, use of the

input language interpretation principle, introduction of rich

facilities of intercourse with users, etc.

The second set of questions is connected with the construe-

- 3-

tion of specialized languages for formal description of a compu­

ter in the design process.

The third difficulty consists in the development of a special

mathematical tool for solving problems of formal transformations,

and for optimizing a project when the design process is underway.

The fourth complex of questions is associated with the general

organization of data files,· development of special means for the

user-system intercourse, specialized systems of programming automa-

tion inclusive. /

Design Technique

The obj~et which any engineer aims at in designing implies

attainment of computer circuits with a minimum money consuming
. .

hardware and a maximum speed •. But the algorithm of achieving. this .

object for the entire computer being designed is extremely complex.

Therefore the ~eneral design problem is meant to be a sequence

of p:r;oble~s.

From the d~signer standpoint, information on a computer to be

constructed consists of at least two parts. The first part involves

the algorithm of function ·of a computer. under design, and the se­

cond - its structure. The execution algorithm specifies the cor­

respondence between sets of values of input and output signals.

The structure states a computer representation as a composition of

other simpler devices.

The design process can be . described as follows. Having an idea

· or the computer execution algorithm, an engineer designs its struc­

ture in a certain degree of detail. Analysing the obtained struc­

ture he either returns to the execution algorithm and introduces

. changes in it, or, using the structure and the execution algorithm

of structure co~ponents he obtains the structure with a new degree

- 4-

of detail.

In view of this, the design process of a modern. computer

consists of the following main stages : System, logical and

technical.

During the system stage of des'ign, a number of memory units

and other devices of a computer under construction is determi~ed,

flows of requests in the computer calculation proce-ss ·are studied,

a calculation .process organization is Chosen so as to ensure tbe

maximum working, capacity of devices and of the entire compute~,

basic algorithms are compiled characterizing operation of c~mput·~

individual devices. As a result of the system stage of _desigQ

a general computer block diagram and execution algorithms of :_

individual devices are obtained.

During the logical stage ·or -design, the functional circuits . .
of devices are obtained by the exehution algorithms of individual

devices and the entire compute~, and by the system of elements

chosen. During this stage the pro~lems are solved of obtaining

the computer structure in more detail, whose components are

elements of the selected system. The principal problems of this

stage a.re problems of coding states of devices, con'struction of

combination circuits controlling the switching of device states,

and various optimization problems of structures obtained.

~he contents of the third stage of design - technical - are

problems of arrangement of obtained functional circuits in the

structure. Wiring diagrams and documents for manufacturers are

made during the technical stage of design. The main problems of

this stage are various problems of layout, run, construction of

wiring, and preparation of documents.

·From t~e viewpoint of developing automated design systems

all problems and accordingly algorithms of the technique can be

- 5 -

divided into three classes.

The first class contains algorithms-transl~tors by means of

which a natural change-over from one representation of a des i gned

computer to the other is effected. The second class is composed

of algqrithms-transformers with the aid of wh~ch deep optimizing

transformations on the level of one representation are carried

out. The third class of algorithms represents estimation and

simulation algorithms used for forecasting and .evaluating characte­

ristics of various representations, as well a~ for simulating the

representations with the purpose of obtaining such characteristic s .

The computer design automated system developed at the Institut e

of Cybernetics, Academy of Sciences, Ukr. S.S.R., is provided with

the following basic design. algorithms composing the t~chniqu~· :

Construction of the general block 'diagram of a computer t9 be .

designed on the basis of its simulation as a queueing syst em;

construction of the block diagram of a control device and an

operational unit of the computer by the execution algorithm;

construction of computer functional (logical) circu~ts on the

potential elementary base; construction_ of wiring tables of layout

of the- functional circuits in structures; stating of docUments for

the project.

Languages for Declaration of Data in Design Process

Languages are needed for declaring a computer being designed

on various stages of design. A sufficient number of languages for

·declaring the execution algorithms and structure of devices are cur­

rently available. On the system stage of design, the SOL (System

Oriented Language) may be used for representing the computer . as a

·queueing system. On the logical stage - the language of Booleun

.functions, on the technical stage - the lan~age of wiring tables

can be employed. No special language is necessary in the manual

-6-

design. For the description of circuits an engineer usually

utilizes any means known to him.

When building automated design systems the question of

languages for declaring data in a system becomes of great importan­

ce, since this question is connected, on the one hand, with the

convenience of recording data on a device f~r a designer and, on

the other hand, with the c.omplexi ty of processing these data in

the system. A language should reflect special prop~rties of a

given stage of design and be adapted for executing the design

algorithms. The main problem connected with languages consists

in creating algorithms - .translators which allow to translate re­

cords from one language into the other. It is just .algorithms -

translators which condition the complexity of data processing in

a system.

One more set of questions forms problems of an internal

representation and storage of data on a computer under design ·in

a system. The point is that data on a project grow when the design

is in progress, and may acqUire a rather large volume. !Por

instance; the documentation of the Mm-I computer exceeded the

volume of the computer itself many times over. Taking into account

a comparatively small volume of memory of a medium-scale compu­

ters for which the automated design systems are developed,

storage questions and, what is especially important ·- data .

changes in a project . - become very significant. A difficult

problem is presented by questions of organizing and coding the

internal representation of data. The internal representation

should be so chosen as to simplify the algorithm of trans~erring

to the internal representation of data and their processing

necessitate~ by ·needs for design. Several languages for

describing a computer to be designed· were developed at the

- 7-

Institute of Cybernetics in Kiev.

During the system stage of design the SLANG language is

used for declaring a computer model as a special-purpose queueing

system. This language has special means for declaring flows of

demands of various processors which are delt with in designing,

as well as means for simulating the system time and for construct­

ing the distribution of guantities obtained as a result of simu­

lation. Appendix 1 of this paper represents, for instance, the
/

· declaration of a communication system model of ~ff-line devices

with immediate-access memoey blocks.·

During the logica~ stage ~f ·design the ALOS [21language is

· employed' 8Jld . the ianguage for . declaring a . 'computer s.tructure.

The ALOS language . !~ intended 'to declare a computer operation

~lg~rtthm or; to be more exact, .that part of a computer which

·consists of. a control unit and of ~ arithmetic unit. The language
' . . .

for declaring a _computer structure· contains facilities for

declaring it as a composition of other simpler devices. Appendix 2

· exemplifies the declaration in the ALOS of the execution :..

algorithm of the device _and its structure. The technical stage

of design deals with the known language of wiring tables~

Optimization in Design

Optimization· problems arise during all stages of design.
,·

Although the statement of problem of constructing the optimal

project in a general form is feasible, the problem solution with

·the present-day state of mathematical tool used is alm9st im­

possible. Therefore, in practice of design the general problem

of project global optimization is divided into a sequenqe of

problems allowing to solve optimization problems locally, within

one stage.

Let us briefly o~tline problems connected with finding

- .a -

criteria and ways of optimization. This is associated, first of all,

with the possibility of accomplishing formal transform~tions over

expressions in some algebra with preserving certain invariants but

with altering some parameters of expressions. Obviously, in its

tQrn, if on a certain stage ·a design problem is difficult and a

complete optimization is impossible, a partial optimization is done,

or a computer under design is simulated and man-simulating computer
'-

joint operation is or~anized permitting to quick~y evaluate a num­

ber of versions, to effect a formal transformation of the model and

to obtain better project features on the given stage.

It is known that the purpose of a computer as a device for

processing discrete information is to transform input sequences of

discrete signals, say, letters, into output sequences. A computer

maps a set of input sequences of signals into a set of output se­

quence·s of signals. This is a fUnction . analog. There exist, ordi­

narily, certain construction restrictions imposed on the function

realization •. A mapping taken at random is far from being easily

real ized in a computer immediately during one step. It i _s J?.ecessa­

ry to divide this raapping in order to have a composition of more

minute mappings. Selecting by some method more minut'e mappings as

sepaTate elements we can obtain different compositions.

During the system stage of design the invariant is a mapping.

This means that ·the mapping should not change. In transforming on

this stage the mapping realization is subject to alteration, i.e.

the way of its decomposition into elemen.tary constituent p-arts.

There are man~ such ways.

During the next stage the invariant is not only the mapping

itself (stated by a .computer) but also the way of its decomposi-
. .

tion into c·onsti tuent parts •. On this level the designer deals with

- 9-

automata. The main theoretical base in solving problems of this

stage is the automata theory. An automaton has a set of internal

states. These states change at discrete time instants. There

exists a system of output signals. The next state of automata -

a function of the previous state and of an input signal, an out­

put signal - a function of the same arguments. These functions are

said to be transition and output functions. They are very objects

for transformations on this stage of design.

In further ·:design the part tal automata having a single inner

state are treated. In this case the invariant is an output function

of a certain automaton. Formal transformations change the method

of realizing these functions. Finally, during the technical stage

of design on the level of hardware ·described simply by syst~ms of

numbers - coordinate~- (describing position of a ·point on a plane ·

- pos.i tion of nodes of : corresponding circuits) the invariants are.:

topol5>gy (graph) of connection of nodes first and·, second - dis­

tance between some nodes. · Transformations change coordinates of

nodes. One of cri~eria of efficiency may be the attainment of the

minimum length of all c_oupling wires. This criterium depends on

a type of elements chosen.

Optimizatio~ questions are complex on all the stages. In par-
. .

ticular, on the stage of technical design. They reduce to mathema-
,·

tical problems of finding a maximum and minimum -of functions of a

very large number of arguments and oftentimes are not 'confined

· si.mply to problems of linear programming. Parameters are numbered

in many tens or hundreds •. Therefore the solution of such problems

is difficult and requires rather extensive programs.

N~te that the tool for formal transformations on certain le­

vels has so far been developed not good enough. For instance, no

formal transformations are immediately performed on the system

- 10-

stage of design. In part the problem of formal transformations is

sol vea wi thin the theory of large-scale systems. VIe co. mot manage

to 1se known regularities of the queueing theory, since the gene­

ral pr oblem cannot be solved by analytical methods and goes be­

yond the s cope of the classical queileing theory. The greatest dif­

fi culty consists in that there is a feedback of a device for pro­

cessing data wi ~l'l an input flow of r 'equests. The flow of requests

i n or dinary classical queueing problems is not dependent on ser­

vicinG system. In our case, however, characteristics of the flow

of requests are changed depending on the state of the data process­

ing system. In addition, in servicing, much more complex transfor­

mations of requests of the input flow are formed or simply· inclu­

ded . The f lows proper are non-uniform and. requests brin~ a large

n~~ber of parameters which may influence a process of the subse­

quent ·treatment. i.i eanwhile the design automation system can cover

a number of discr ete problems allowing a theoretical solution. For

this purpose provision is made in the language to have a means for

declaring standard flows in q~eueing systems, and correspo~ding

mathematical transformations.

As to the logical stage of design, there was essentially no,

until re cently~ approach to solving complex problems of design

automation. Langua.ges have come into being but they almost have

not had formal transformations. The Yu.I. Yanov's paper has pro­

bably · been the first in this direction. He has constructed the

_theory of formal transformations of schemes of programs. At pre-

sent this pap~r is ·f airly popular among those who are concerned

with optimi~ation problems. However the paper has solved the prob­

lem of transforming . the algorithm scneme only, and not- the probl~m

of transforming the algorithm itself.

- 11 -

The difficulty of th~ last problem consists in that at the

very outset of the theory of algorithms the algorithmic unsolva­

bili ty o.f the problem of establishing the equivalence betv1een two

algorithms by means of formal· transformations was proved. This

circumstance scared away investigators from _construction of such

formal systems for transforming algorithms. Lately it became pos­

sible to solve the problem of building the mathematical tool for

transforming a special kind of algorithms - micropro rams which·
;

may be applied in· many practically important cases .

We shall now discuss in brief the hasic scientific concepts

utilized in this theory. Any algorithm essentially is a method of

stating the transformation- of a set. To co-nstruct transformations,

conditions are taken specified over this set. Using a set of tran~

sformations (op~rators) we can build a system of operations (si­

milarly to algebra) - multiplication of operators, ~ -disj~~ction

·and d -iteration.

Let M be a set of states of automaton P.> , at: M , OL -
set of operators acting on set M , JY - set of conditions de­

termined over set M • Operations of ri.. -disjunction and al. -i te­

ration are determined as follows: d -disjunction of.operators

c!> and Q is operator R which transforms element a.~M into

(1)(4.) if condi ti.on o{(.tl.) holds and ope·rator ~ is .app.li.cable

to 0. , and into Q(o..\ if condition d{£l) is f~lse and Q is

applicable to Q . In the rest of cases R is undetermined.

Operation of G(-iteratiqn is determined as follows: 0(-ite­

ration of operator <P is operator R which transforms element

Q.E- M· into element Cf'(tt) ~f conditions '~(0.) , ol(cd>(cJ.))

... ,ti(q>,..'(o.)) are not satisfied and ot(~(Cl)) is satisfied, other­

wise R is undetermined.

- 12 -

Such operations have already been employed earlier in various

logical la~guages. The . ew (in comparison with classical) opera­

tion of multiplying the operator by the logical condition is in­

troduced. The result of multiplying opera tor 4> by condition o{

is new condition r such that r(a.) holds iff o((q>{a.)) holds.

Selected in a set of operators are some operators named ele­

mentary ones or microoperations. Moreover some logical conditions

are fixed. These operators and conditions generat_e microprograms

algebra with the aid of which one can state algorithms realized by

units of a computer being designed. The distinction from the classi­

cal theory of algorithms _consists in that the algorithms are con­

sidered to be element~ of some algebra and relations of a certain

algebra may be used to transform the algorithms. Relations in the

algebra of ·microprograms are much more complex and their number is

much greater.

Appendix 3 of this paper illustrates the formal transformation

of a microp~ogram for multiplying two integers in a certain algeb-

ra.

The experience of using the idea of transforming algorithms

as expressions in microprogram algebras testifies that this means

is rather effective and allows to formalize the transformation of

structure of a computer to be designed on the whole during the lo­

gical stage.

Organization of -Automated Design System

The following problems are to be solved in organizing an

automated design system:

- Automatic storage of information on the project during the

all stages _of design.

- 13 -

- Or~anization of a joint designer-system operation.

-Availability of means to in~roduce chan~es in the project

and system.

We shall now briefly describe the organization of the automa­

ted design system which is being developed at the Institute of Cy­

bernetics in Kiev. This system has means for:

Declaring information of a computer under design during va­

rious design stages.

- Solving all design problems during the logical and techni­

cal stages of design.

~ Solving a number of optimization problems in the process

of design.

- Completing documents on a computer being designed.

- Declaring and including into a system new algorithms for

transforming information of a computer under design.

- Ensuring an immediate introduction of changes into the pro-

ject.

Providing a convenient user-system intercourse.

From the user's viewpoint the system is imagin~d to be consi­

sting of the following components: Main information file or a data

file on a computer to be designed, standard block file or standard

file, standard program file, direction file, and system _control ~

In the process of. intercourse with the system the user should

know languages for declaring information on a computer under de-

· sign, the language of intercourse with the system, and the design

methods used in the syste~.

D~t~ Ei!e

In the system the data file is intended for storing informatioz

.on a computer being designed. The f ollowing languages are taken in

- 14 -

the system for declaring the object of de3i{91: Language "Algorithm"

(ALOS) containing facilities required to declare execution algo­

rithms of devices, language "Structure" serving to ~eclare struc­

tures of devices, and language "Construction" allowing to declare

arrangements of· devices.

The data file consists of objects each of which has a liead- ·

ing. Objects may be simple and composite. The heading contains ob­

ject name, type and constituent parts if the object is composite.

The heading of a simple object has its name and type.

A simple object is a declaration of ·c9nstruction in languages

sui table for repi·esenting information on a computer to be designed.

There corresponds to each object in the data file the data

file addres~ indicating the place in the data file from which the

object heading is originated.

The correspondence be~veen the data file address and the ob­

ject name is the contents of the data file table.

Project information inserted into the system, or obtained in

the process of designing, arrives at the data file via a special

program - data file monitor which also controls information deli­

very from the data file.

§t§.n~a!:d_F.!,l~

In the file system ·of s~ndard blocks the standard file is

intended to store information on standard devices used in the pro­

cess of design. In particula~, the standard file stores informa­

tion on a system of components employed to design a computer.

The declaration of standard devices obey the same laws as the

declaration of a device under des.ign. Information in the standard

file is organized simi larly to the case of the data file. A d~s­

tinctive feature of the standard file with respect to the data file

- 15 -

is constancy i n the process of designing.

The standard file has the standard fil e table and any access

to t he standar d f ile i s e~i~ed through its monitor.

'I'he program file in the system is aimed at storing decla·ra tions

of programs to de sig·n and maintain the system.

Use is made in the system of three levels of the language ~n

which programs are declared. The first lev~l - instruction language

of a computer which the system is realised on. The second level -

basic _language of an autocode type for a certain computer. The

third level - operator part of the language of the user-system

intercourse. The user may utilize any of these languages and has to
.·

lmow the third level without fail.

All the programs in the program file fall into three parts

according to the languages. The first part of the program file

contains declara tions of programs in comput'er codes. A declaration

of each program ·begins with the program heading containing prog­

ram name, type and formal pa~ame~ers.

Access to standard programs of the'first part of the program

file in the intercourse language is completed in ' the form of si~ple

instructions.

The second part of. the program file contains declarations of

programs in the basic language.

The third part of the program file provides declarations of

complex instructions of the intercourse language, and represents

a table for deciphering complex instructions through simple ones.

Access to . programs of the second part of the program file is

·gained in the intercourse language via the instruction of making

·access to the programming automation system the declaration of

- 16 -

which is stored in the first part'of the program file.

Access to programs of the third part of the program file is

gained through a system manager.

All loading to and extracting from the program file ar~ effec­

ted via the program file monitor through use of the program file

table.

!n~t£U£t!og !i!e_

The instruction file is used to store sequences of particular

external instructions with the aid of which the user vnll conduct

the design process in the system.

Access to the instrUction file is gain~d via the system

manager.

A declaration of each instruction in the instruction file

consists of an instruction and a list of actual par~~ters of

the instruction.

§y~t~m_Cgn~r2~-

The system control is employed to execute user's inst~ctions

in designing.

The system control consists of the system manager and service

information for the system manager.

The instruction file is source information for the system

manager.

A time step of _the system operation consists of executing

one external instruction from the instruction file.

The execution ·or an external instruction by the manager

consists of two parts : Preparation for execution an ·instructioh

and its execution itself.

\Vhcn preparing the execution of a simple instruction the

system manager operates as an interpative system which uses

- 17 -

auxiliary information and represents a given external instruction

as a sequence of internal instructions.

Programs of the first part of the program file correspond

to internal instructions.

The execution of the external instruction consists in

execution of each internal instruction of a given sequence.

To execute the internal instruction the manager should call

to the system operating board the program corresponding to a ~
/

given internal instruction and transfer the control to it.

Information on the device to be designed arrives at the

system in the form of texts in languages specially ·intended for

the purpose ("Algorithm" (AI.OS) and "Structure") and is written

in the data file ~-li~ as a list structure. Its character

and coding has been developed. Information in the standard block

file is represented similarly to the case of the data file.

The generai organization of files ··has been worked out b!ised

on the three-level division of memory (drums, tapes) and

questions using the principle of page and book organi~ation have

been considered to exchange and ·distribute the computer memory

in the system.

All the decisions on organization, represent ·ati on and coding

of information on data and on the syste have been made taking

into account features of the computer M-220.

18-

Appendix I

Model of System C~mmunica,~ing Autonomous
•

Devices with Immedi~te-Access Memory Blocks

With the use of the SLANG-language a declaration is given o~

operation of the eystem consisting of file BANK t of f<.. blocks

of i~ediat0-access memory and of M autonomous devices. Each

device sends. inquiries with its particular period PERIO~(M] to.

the immediate-access memory, the inquiries being answered through .

. corunon buses SOS. Quanti ties TSJIWR. and TO ch.aracte~ize opera­

tion time of the common buses, time of making access to memor,y and·

memory ·cycle time.

The process .Rt6HAN describes generation of. inquiries of

autonomous devices. At first, in the c~_cl~ be~een tag .FN: ·and

operator .§[!:Q FN , M initial inquiries are :formed: one frc>m

each autonomous device, and one from memo·r,y blocks -(randomly)

selected with the 9:id of C~OlC E(I,..ft) . The~~ in the ·cycle between

tag E ~ : a~d operator NEW ··. !! Ff , the d,evi.ces generate inqui­

ries to other memory blocks, and go through (each with its period)

numbers of block~ in the dir~ction of a modulo ." -k. increase by 1 _.

The generation of an inquiry is mapped by operator NEW. BANKS(eN J<JR)
the actual parameters of which mean the number of interrogated

Qlock and the number of priority of an interrogating device, res­

pectively.

Quanti t;y COON T is a coun~er of the general number of inqui­

ries to the memory,. and the simulation is ended when it reaches

value -SOUMD (multiplied by~) stated at the input.

Process ~ANK<; describes answering the inquiries to the me­

mory through the common buses and memory blocks.

Model of System Communicating Autonomous Devices with

Immediate-Access Me~ory Blocks

~ t i; l t-1 ' f t•i .)' t (; ('' . 1 ;,\
1

! ~<, .- 1 \~ j'j I)' ' , J : !' t1 -: I 1 ... I · • ' i: t •

~n c 1L' 7 v a~~~[~J. ~~ s·;
:; T ;. T f :) f ! f: ~ 1l i I ;• . ;

! '~ y ~:GC: R !- ;: .! ! (.r~ i M) ;
~ ;} ~ L :: ~ ·· ~ K ~ ~-' l t r~ S ~- t ::: S tt ·.; · ~ l ~ .~ t\) ·;

'· ~ ~~~-~ ~ ~ } ·. :~~~~ ~~-:~, ~.; • t; ~I t
;. ~ ~~; i: ~~ -~!i;l ~' ;~; ·;~. :~.~~ : ~ ') ' r_: F . : , ';)

i F' ;:- :: C 1' ~~ f~ X N_ F:; :1 (•: ,; \J :': ~J Y t) F f·' :

C' 1 :. . . N ~ \\ fl 11 !--: 1; S (3 N . P C:) • ·r n <'.i. ; .

. w~rr P~ · n r~otrP~: · ·
8 ?!; :-~ I F" r. ' -i C:: I< r H ;~ !·t ~; N ·: 1 ~- L) ' .· ' .

l F r. D u N i ~ i{ w: !-' (: fj ··~ [: 1 ! ·! E ~' '::; I 0 i) ;

~ 0 t! I~ -r ~ ~; C (! U i.JT·.,_ ~ ;
cl-TO ~~
CEf-lt:

p p i) c f. s s p, IHJf< s (6 ' \,) : ~ 1-.1 n-: ~ •: ~f t\ I t. ;
SEGH! ·twrf.cE~ r ;
C'P I! C f 1.. :

a:r:~rtM f ;'~rrR . tr ~ : =~;
1.• 1: ·HI• 1 TI' :·!T! L Gr;5 : .;~,T ~\U S Y

TF' &/lt~l'(l)) 3lf.31,; 'l' HF.N
ctcr ~ ~~l!u~~~ ~ f ~N~[S) NOY G U S ~
er-r e M, ·.

! ·· H' ~ · 1< i.1 :.i Y T !-F !--! (; 0 T 0 f./. 1 .:
;-; r , z :; L'. ~ :

3Frz ~· t ' ·"'-ti~\(6~: .
\'I!' i "('f f, :

P ~ :. [~ S E 'J t.! ~ :·

1·: -"; ·; T ;t!': .

•• "" !? 1J L .J r ..- r : I • F - r _ ~ s 1 ~~ ,A r A e. r l.. : . ,
· t ~ '! 'f : :

~ :. -: ~. :. J ·., :,- (r .' ' • • ., ~
.. ~ ,. -. .
:-· r·

- 20-

As soon as an inquiry arrives, an instant is marked of the b~

ginning of waiting for an answer. Upon completion of answering

(i.e. access time to memory), an increment of answering time is

calculated in comparison with a least wait w~ich equals 55 units.

The value of this increment is entered the table formed for

each device (ATAB(L), where L•1)1,) ... ,M).

Before an inquiry is loaded into the buses and memory block

(by operators.~ P->US) WlrJ., ~ANK [81) the analysis is per

formed whether or not the buses and interrogated memory block are

occupied with the priority number of the interrogating device ta­

l~cn a ccount of. This analysis is performed thro~gh use of opera­

tors ~ ~ .and il: ·- th,u, on the sectio~ between tag M~
and operator ~ · M 1 where all waiting inquiries circulate.

Each inquiry satisfying the conditions occupies the common

bi..i.ses ·for tirr. e TeJ (specified by operator ~ Te>) and ~he me­

mory block for time TS +TWR-t TQ., the time of answering the · in­

':luiry satisfying the conditions being Th -t-TW~.

Appendix 2

Example of Declaration of Algorithm for Device Operation

in ALOS-Language

D e v i <r e A

variables

input l! j \d ;

internal r; ~; t j

output l) q, ;
functions .

~(a,b); q(o.) ·, A(a.) 1 fb(o.)) ~(o.>b),

•

- 21-

subpl~ogram .3 (4,4)

S~! if B(«) then a,~-:'X. else go to 31
if c (ct,-4) then e ::.{tr,~) else (a~-:~'~) ~go to 31 }

~~~ T{~) 
end of subprogram . ~ 
subprogram T 
'11 : if ~( ~) then (t ~": ~ ( f,\},stop)- else 1'! ~ a (et) 

.· · · ( ~ : = ~(AJ) go to T 1 ) / 
end of subprogram. . T . . · 
begin 

1'~ ·. if A (~) . then ( ft-: ~ :; . $l~ t)')els~ · 

. ( r~O::~) go to §>;), . 
~J.~ T~.go to ~~, . 

) 

tj;: lf ~ ~) then ( ~~" ~) Tl-r)) go to 'J -1) else 

· (~~:x • Q(t .,.} go to 1'.t), 
. )Y I ' . l 

~~.,if . CCr,~) then(~~-=~<x,~)·, go tc:> ~~)else 
. ("':' s(r)J go to. ~.1) . 

end. 

Example of Declaration of Device ~ Structure 

D e v i c e A 

variables 

input . Xj ~· 

output ;t·, ~. 

components 

p. variables input 
~ 

outpu:b 

'a-, Y'; 'W\ w. 
'-A..~. ' . : 

\ 



-· 22-

s ·,variables input r, t, 1Y; w ~ 
output 1J \ ij. ·> W. 

~\ · variables input -x· "' ('' '1) 
1
• '\T 

l 'o \ I > ' 

output U · W ' \)v< 
l . I 

r ', variables input 

output 

- . -, 
-x·,~; lA ')&(f ~' 

f, 

~; variables input X;~) u; u. 
output ; . 

*·,variables immt x·r·o. u'·u " ) ) ')) I • 

output -t. 
Q · vari ables input 

' 
- I 

, ~·,r)U;U. 

output cy : 
J: varia bles input Xi))lAj~ . 

l 

output %.. 

CoiT'.me tary 

Device A the operation algorithm ·of which is declared in the 

ALOS-language is re~resented in a form of an 8-component structure. 

g> ~ T - control blocks 
) ) 

rl;)t -operation blocks 

Q)z - functional blocks 

The lan~uage employed for declaring the structures has a tool 

fo r the explicit recording of connections among the components. In 

the given example this is made implicitly through notation of in-

put ana output variables of the components. 

Appendix 3 

Example of Processings of Microprograms 

Let ( l., 
1 

•• ~, X,~) be a set of binary registers the states of 

which are rational numbers written in the binary scale of notatio.n. 



- 23-

Consider · some microoperations and conditions used in record-

ing the algor.itbm of a computer being designed 

l~ ·, ~~ ~- t~, { i=-t/lJ ... 1n) 

r. : f. :- 4-:x!. ( l"-: ~ 1 >···, "') 
L &. ... " , 

g~j : ~ :- ~~ .. t )( ~ ( ~r .. , l) .. . , t\' 
P.:: ~i:•l\ti . (L~~,2, ... ,1l) 

p- 1 ~ ~.:·~·-J (L~1;t) .. -Jn) 
L L 1.1'1 

o, . :~~:-o / 

~ - · identical transformation • 
C( • .: ~~ ,~\= 0 (~·1/:a, ... ,n) 

~ 1.~ .~•o . 

1 
t;.n..a. ,:L.~ •2.K I k-t·: 

c. .f*otherwise . 

_,. . o(_ 
where p-C(~ V ~ - <i.i: and Yoli = 'l.()i = ~ 

where. 4>£- Ot, t' f ~ j )) •{ q>
1 ~ f 

cv,o, z c 1). ,c,z. 2rt! z·~ · r 
the multiplication algorithm of two inte-

• 

. gers. Let · :t'
1 1~:.,. ,'l, be integers. The initial ' record of this algo­

rithm corresponds to the -definition of the multiplication algo­

rithm as a co~secutive addition. It turns out to be possible to 

. transform ~his record into such one which corresponds to the mul­

tiplication algorit~~ usually realized in a computer. 



- 24 -

a~ : l: :'=' ~ "x · ~ :=o ·. X?. 3 '. =o z. . 1 1>J 1 

1 • Yal yni chenko , ·L. A . ( 1967) : SLANG- Experimental Programming 

LanguaGe Fa ced ~escription and Simulation of Computers and 

S:yscems, Col. "Teoriya Avt omatov", No.1, Kiev. 

2. Glushkov , V. M., Letichevs!cy, A.A. (1967): Language for Desc­

ribing Al gorithmi.c Structures of Computers and Systems, Col. 

7, 
:J • 

"Teori~1e Avtomatov", No .2, Kiev. 

Glushkov, V.M. (1967): Prospects of Computer Design Automaton, 

"Vestnik Akademi i Nauk SSSR, No.4, Moscow. 

4. Glushkov , V. t: ., Kapi tonova, Yu.V., Letichevslcy (1967): Toward 

Autor1ation of Computer Design, . Journ. "Kibernetica", No.5. 

/ 


