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ON THE CONTROLLABILITY OF NONLINEAR
SYSTEMS

H. Tokumaru and N. Adachi ; Kyoto Univ., Kyoto, Japan

1. Introduction

The concept of controllability of linear systems was intro-
duced by R. E. Kalman. It is admitted that the concept plays a
fundamental role in the modern control theory. Kalman's discu-
ssion is based on the linear algebra, and essentially restricted
to linear control systemsl’z.

A few authors studied the controllability of nonlinear
systems. E. Roxin studied the controllability of special types
of.nonlinear systemss. He introduced the concept of the reacha-
ble zone and discussed the relations between Optimal controls
and reachable zones4. L. Markus studied the local controlla-
bility of nonlinear systems, controllability in the neighborhood
of the critical point. He also showed that it is possible to
apply global stability theories to the controllability analysis
The generalization of the concept of controllability of linear
systems to nonlinear systems was also tried by H. Hermes7, He
reduced the problem of controllability to the problem of non-
integrability of some Pfaffian form, and discussed the relation
between controllability and singular problems which appear in
the theory of optimal control.

In this paper, we discuss the controllability of non-
linear systems with controls appearing linearly, by reducing
the controllability of the given system to that of the auxiliary
lower dimensional control system. We introduce the concept of
quasi-controllability, and show sufficient conditions for them.
Sufficient conditions for the controllability can be obtained
by connecting the conditions for quasi-controllgbility and local

5,6

controllability.

2. Definitions ,
The motion of the given control system is described by a

system of ordinary differential equations,

dxi

= = fi(xl’ Xppeens Xpp Ugy Upyunn, ur) (1)

(3L, 2.4, 1)



or in a vector form
dx
dt

= £(x,u), (2)

where x is a state vector and u is a control vector. The func-

tions
9f;(x,u) -
fi(x,u) ’ T (il s 2l )

are defined and continuous on the product space eort. In
general, the function f(x,u) is nonlinear with respect to both
x and u. In the case when the function f(x,u) is linear with
respect to control u, the system (2) is called a system with
controls appearing linearly and expressed as follows,

x = f(x) + G(x) u 3)

where G(x) is n x r matrix with elements gij(x). The functions

2f;(x) | 985, (x)

axj ’axj

are continuous functions of x.

In this paper we say that a control u(t) is admissible if
it is continuous for all t under consideration, with exception
of a finite number of t at which u(t) may have discontinuity of
the first kind. If a certain admissible control u(t) is given,
the equation (2) takes the form

ool e SRUETAS T T PR

- = £(x, u(t) (4)

For ary initial condition x(to)=x®, the solution of the equation
(4) is uniquely determined. This solution x(t) will be called
the solution of the system (2) corresponding to the control u=
u(t) for the initial condition x(tg)=x°. If the solution of the
system (2) corresponding to the control u(t) for the initial
condition x(tg)=x° satisties the condition x(t1)=x1 at time t=
t1, then we say that the admissible control u(t) transfers the
initial state x° to the final state x'. Since the systems under
consideration is time-invariant we can set always t = 0.

We define several concepts with respect to the given system.
Definition 1. For the two given state x° and x', if there



exists a finite time tl) 0 and an admissible-control which
transfers the initial state x° given at the time t=0, to the
stati x1 at time t=t,, we say that the state x° is "controllable"
To X5

Definition 2. The state x° is said to be ""quasi-controllable"

to xq, if in every neighborhood of x1 there is a state to which
x% is controllable.

Definition 3. If the properties mentioned in Definition 1 and
Definition 2 hold for all xoé R", the system is said to be
""controllable" to x1 or '"'quasi-controllable" to x1 respectively.
Definition 4. If there exists a neighborhood U of the origin of
R? and every x¢ U is controllable to the origin, the system is
said to be 1ocaliy controllable.

Remark 1. In all of the above definitions if x1 is the origin
we say only '"controllable" or "quasi-controllable" for simplicity.
Remark 2. A sufficient condition for local controllability is
obtained by L. Markus®. From these definitions, if the given
system is quasi-controllable and locally controllable, then the

system is controllable (to the origin).

3. Quasi-Controllability of Nonlinear Systems with Controls
Appearing Linearly
In this section we discuss the quasi-controllability of
control systems with controls appearing linearly. Such system
is described by the equation (3)

x = £(x) + G(x)u (3)

where f(x) and G(x) have properties mentioned in the preceeding
section. Moreover, we assume that the column vectors gl(x),...,
gr(x) of the matrix G(x) is linearly independent for all x¢€ R
Define the matrix D(x) as
D(x) = (8;;(x)) (i, j=1,2,...,'1),

then we assume, for simplicity, that D(x) is nonsingular for 511
xER ,

Now, we state a simple necessary condition for controlla-
bility of the system (3].
Theorem 1.

If the system (3) is controllable (to the origin), a system



of linear partial differential equations

2P ¢ e Rt £ (x) =

DX ax
2P ' > s,
S>X ""+3x gnj(x) =

has no solutions which are independent at the origin.
Proof. Assume that the equation (5) has m (m<£n-(r+l)) solu-
tions Pl""’ Pm, which are independent each other. Then the

transformation
Vi Pi(x) (inli, .iiy m)

* Xy (i=m+1,..., n)

is nonsingular at the origin. By this transformation the equa-

tion (3) becomes
y = F(y,u)
with an appropriate function F(y,u). Here, by definition of Yi

y;=0 (i=1,2,..., m). Q.E.D.
We show a lemma which is essentially due to E. Roxins.

Lemma 1.
If a state x° is controllable to x! with respect to the
system
x = G(X)u, (6)
1

then the state is quasi-controllable to x~ with respect to the

original system (3).

We shall now transform the equation (3) into a simple form.
Corresponding to the matrix G(x) consider the following system
of linear partial differential equations g

op 2P
?1' glj(x) + g_xz ( ).+ Xn ( ) = (7)

1 B SRBCERE

In general, the number of the independent solutions of this

equation is less than or equal to (m-r). Here, we regard the
system (7) as a complete system, so that the equation has (n-r)

independent solutions. Let the solutions be Pr+1(x),...Pn(x).



Now, a transformation from x to (y,z)

[ 7; = x5 (152500 (8)

¥ Pi(x) (?=r+1,..., n)
is defined and assumed to give a one-to-one correspondence on
the whole space. The equation (3) transformed by (8) is expre-

ssed as follows with suitable functions Sﬂ(y,z) and yb(y,z).

{y = ¥ (v,2) + Hly,2)u (9)
z = \[L(y,2),
where H(y,z) is anr x r matrix which is nonsingular by the
assumption on G(x).

Applying Lemma 1 to the rewritten system (9) we have the
following theorem.

Theorem 2.
0o _0y, ph . s i o Sl B
Let (y ',z )€é R" be a given initial state, then (y ,z ) is
quasi-controllable to the state (yl,zo) where ylé RT is an
arbitrary fixed point in RT.

Proof. Corresponding to the system, consider a control system

|

"Since the matrix H(y,z) is nonsingular, a initial state
(yQ,zo) is controllable to (yl,z°). Then, the assertion of the
theorem holds by Lemma 1. Q.E.D.

Corresponding to the syétem (9) we define a (n-r)- dimensio-
nal control system :

= H(y,z)u
=0

Ne g

z = V¥(v,2) (10)

where z ¢ R™T is an (n-r)- dimensional state vector, and V¢ R
is an r-dimensional control vector. Between controllability of
the system (3) and that of the system (10) there exist some
relations.

Theorem 3.

If the given system (3) is controllable, then the system
(10) is controllable. Conversely, if the system (10) is quasi-
controllable with continuously differentiable controls, then
the original system (3) is quasi-controllable.

Proof. Assuming that the original system (3) is controllable,



we shall show that the system (10) is controllable. Since the
system (3) and the system (9) is equivalent, the system (9) is
controllable. Hence, there exists an admissible control u®(t)
which transfers a given initial state (y°,:°) to the origin in
a finite time. Let (y(t;u®), z(t;u®)) be the solution of the
equation (9) corresponding to uf(t) with the initial state (y©°,
20). In the system (10) we take the function vO(t) = y(t;u©)
as a control function. Then vO(t) transfers the initial state
29 of the system (10) to the origin of R®™T. Since z° is
arbitrarily given, we conclude that the system is controllable.
Now, we assume that the system (10) is quasi-controllable with
continuously differentiable controls, and shall show that the
system (3) becomes quasi-controllable. From the assumption
there exists a continuously differentiable control vO(t) which
transfers the initial state z0 € R®™T to a given neighborhood of
the origin at some finite time t=t,. In the control system (9)
determine the control law by

wo(e) = Hlvoce), z(t;v°)){%"i-V(voct),z(t,v%)] :

then this control law transfers the initial state

X0 = (v°(0),2z° to the X! = (vO(t1),z(t1;v®)). By Theorem 2 it
will be shown that the given initial state x° = (y°,z°) is quasi-
controllable to x°, and x! is also quasi-controllable to the
state (0, z(t1;v®)). Since the solutions of the differential
equations continuously depend on initial conditions, it is
easily proved that (y©,z°) is quasi-controllable to the origin.

Remark : Under suitable conditions on the equation (9) we can
prove that a state is quasi-controllable with a continuously
differentiable control if the state is quasi-controllable with
an admissble control. So, in that case, we may assert that
quasi-conttollability of the system (10) is a necessary and
sufficient condition for quasi-controllability of the system-(3).

4. Quasi:Controllability of some Special Types of Nonlinear
Systems.
In this section we shall apply the general theory in the
preceeding section to some special types of nonlinear systems.



(A) Linear Systems
In the case c¢f a linear time-invariant system, a transforn-
ed system corresponding to the expression (9) is expressed as
follows.
oy

y s-E oy Fio2 + E 0

i 11 12 T (11)

Zu® Bga¥s #: Fonka
where Fij(i,j=1,2) are constant matrices with compatible dimen-
sions, and Er is an r x r dimentional unit matrix. Consider the
following (n-r)- dimensional control system ;

2= L ¥ PV, (12)
where z is an (n-r)- dimensional state vector, and v is an r-

dimensional control vector.

Theorem 4.

The linear time-invariant system (11) is controllable if
and only if the system (12) is controllable.
Proof. Define n x nr matrix M and (n-r) x (n-r)fmatrix N as

follows
¥ M xR, FH,..., F*"lq) 3
3, ni=p-d
N =[’F21, - JARRRE RS N B
where fpll, Flz} [Er]
F = jF F I H = Oii
FrivFeal. . 10 ]

Then, we shall show that the rank of the matrix M is n if and
only if the rank of the matrix N is n-r. With simple calcula-
tions, the matrix M is expressed as

l’ N
{Er P
M =| Rv
i IR |
Iz )
where P is a r x (n-1)r matrix and

R, n-2
N o= [ Fpps Fopfppseees Fpp F21]

and R is a {(n-1)r x (n-1)r nonsingular matrix. Since rankN =
rankN and R is nonsingular, rankM = n if and only if rankN=n-r.
(B) Systems witn (n-1) controls

The transformed system is described in this case as follows.
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[¥= P2 + Hy,2)u
l z = Y(y,2),

where z is one dimensional vector.

(13)

Theorem 5.
If there exists a continuously differentiable (n-1)-

dimensional vector function v(z) such that
z V(v(2),2) {0 for all z¢RY, z %0
then the original system is quasi-controllable.

Proof. With Theorem 3 and simple stability considerations it

is clear.

5. Examples

Example 1.

Consider the case when yL(y,z) in the system (9) is linear.
‘The system equation becomes

{ y =% ,2) + Hy,2)u (14)

Z = FiY.* B2z

Here, 5’(0,0)=0, H(0,0)=Er are assumed. Then, from theorem 3

and well-known controllability criterion2 for linear time invari-
ant system, this system is quasi-controllable if '

rank[Fl, Fally iy bs F‘z"r'lFl] = n-r. (15)
On the other hand, consider the linear time-invariant system
Y = Ay + Bz + Eru (16)
2. = By #:Fo2

Here the matrices A and B are defined by

22200 5, 200,0
QY 2z
If the system (16) is controllable, then the critical point of
the system (14) is locally controllab1e6. From Theorem 4 the-
linear system (16) is controllable if and only if the condition
(15) is satisfied. Here, if the condition (15) holds the given
system (14) is quasi-controllable and locally controllable, so
that the system is controllable.
Example 2.
Consider a higher order system



- alx‘“_‘) il AT B X mw, (17)
(n-1)

’ (1) | dix : : .
where x = —— and a. is a function of x, X,..., X
- et

(I¥L5db,0 00y RJs

If we set x = X, x = Xgyeros x(B3) o x,, then the system (17)
is equivalent to the system

[ x; = x

i i | 2

s e (18)

- 3 ;
\al(x)xn+a2\x)xn_l*...+an(x)x1) +' 0

\ *a
Since the linear system with control v

ix=x2
|

{
i

X Xz

[Nt

T g

is controllable clearly, the original system (17) is quasi-
controllable by Theorem 3. Moreover it is easily verified that

ct

he system (18) is locally controllable. Hence, the higher
order system (17). is controllable.

Example 3.

il = g1(xq, X5, X3) +u

Xy * g,(x,, X3) (19)
X3 = X; *+ g3(x3)
where g;(0) = 0 (i=1,2,3).

This system is quasi-controllable if the system

| X, = g(x5, Xg) + vV

{ .2 Ewg 3 (20)
| ¥5 ® Xt aglxy)

is quasi-controllable with continuously differentiable control.

This condition is satisfied since one dimensional system
. 1.
Xz = g3(x3) + W
is controllable with sufficiently smooth control.
Define matrices A and B as
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(1]

N
{ “11, %12, "13] |
A= 210 = 1 a Bawm f+ 5 Bz 304
| 22025 !
o x 0 1 0]
l a33J )
where a. .= —— , (i, i = 1,2,3). Since rank of

b 2 2 X3 :

(B, AB, A BJ = 73, the system (19) is locally controllable.
Since the system (19) is quasi-controllable and locally contro-
llable, the system is controllable.

6. Conclusion

The concepts of controllability, quasi-controllability,
etc. for nonlinear control systems are introduced, and suffi-
cient conditions for them are obtained. A global discussion
of controllability for general nonlinear system is very diffi-
cult. A known technique for them is an application of stability
theory. But systems to which such a method is applicable are
restricted. In most cases we cannct discuss directly the
controlollability of general nonlinear systems. So, we treated
some special types of nonlinear systems ; systems which are
nonlinear with respect to x but linear with respect to control
u. In such a system, it is possible to reduce the discussion
for the original system to that of some corresponding lower
dimensional system.

In the case when the origin expresses the staticnary state
of the controlled object, the concept of local controllability
is important. Connecting quasi-controllability and local cont-
rollability conditions for controllability are obtained for
several types of nonlinear system.
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ANALYSIS OF RELAY SAMPLED-DATA SYSTEMS
WITH A NONLINEAR PLANT

H.L. Burmeister

Institut fir Regelungs~ und Steuerungstechnik der Deutschen
Akademie der Wissenschaften zu Berlin
Dresden / GIR

1. Introduction

Sampled-data systems containing a relay as the only nonline-
arity have been studied in detail during the past years, major
attention given to the determination of self-oscillations sus-
tained in the closed loop.
Besides the desoribing function method (harmonic balance) 1_9,
which gives approximate solutions and basically applies oniy
1o oscillations with a dominating harmonic, several analytiec
methods to exaotly determine the osocillations whose period is
an integer multiple of the sampling period have been suggested.
They are based more oxr less obviously on the principle of as-
suming the relay output by trial as a periodic sequence of
pulses, calculating the corresponding steady-state response of
the linear element and finally checking by means of the relay
egquation, whether the assumed pulse sequence is sustained in
the closed loop.
The methods differ by the description of the pulse sequence
(sequence of amplitﬁdes-1°’ 11, z-transform 0 12~1 y finite
Fourier series 8, 13, 16 or finite series of more general or-
thogonal functions 15) and the characteristios of the linear
part (pulse transfer function 87 -9 12y 13, trensmission ma-
trix 11, difference equation 14-16 . state equations 1O).
Second-order systems have also been studied in the phase plane
9 or a state plane 20, combined with analytic methods. A pro-
cedure of determining all the oscillations occurring in the
system on account of different initial conditions, by means of
a2 finite algorithm, has not been known %¥ill now. In trying to
find an upper bound for the period of 2ll oscillations, tacitly
simple oscillations were assumed 13, 16, 18.
As already emphasized in 21y 22, the state equations are the
natural mathematical tool for treating such systems. This
holds all the more for sy=mtems with additional nonlinearities,
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as e.ge extremum control systems, in which the plant has a
nonlinear steady-state characteristioc with an extremum and the
switching function of the relay may be nonlinear as well. Ap-
plying transform methods 23y 2% 4p this oase leads to hardly
manageable relations, whereas the method of harmonie balance 25
is subject to the limitations mentioned before.

In the following the state equations are taken as a basis for
analysing relay sampled-data systems with a nonlinear plant,
In this way exact results suitable for an easy computation are
successfully derived under rather general assumptions on the
plant structure, the pulse element and the switching function
of the relay,

2. The oomplete system equations

The block diagram of the system under consideration is shown
in Fig. 1. Its elements are subjeot to the following assumptions:

a) The nonlinear plant can be represented as a series-connection
of an r-th order linear element, & static nonlinearity with
parabolio characteristics

2

v = - ax (a > 0) )
and another s-th order linear element. The rational transfer
functions F(p) and G(p) of the linear elements have simple, nega-
tive poles p (k = 1, 2, eee g T) TEBDPs qy (1 =1, 2, .0 y-B)
and arbitrary zeros. After formally including the regulating
unit, a pure integrator, in the first linear element, the fol-
lowing partial fraction expansions hold (vith Py = 0):

_. 0 2
1) = Z p_pk 6(p) = Z_: @
b) For 1, k=0, 1, 2, eee 5 I3 1 a 1, 2’ ece 82

+ P ¥ q 3
This condition rules out a kind of resonance between the two

linear elements.

¢) The pulse element consisting of e sampler and a shaping unit
gensrates the control rate as a seq e of pulses of equal
shape and different signs ’ >
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o0

u(t) = ;__; uin; h(t-nT) 4)

e allezt e w®{EIBWEFPEFT o
The transfer funotion of the shaping unit
T
B(p) = S e"P% n(t) as (6)

is a regular analytic funetion in the finite p-plane.
As speoial cases are included herein:

L
H(p) = 1——32—- with 0 < TS ? : oconstant control rate,

H(p) = e PF with 0 < T < T : pure delay up to a sampling
period.

d) The relay switchirg funotion ¥[n] is a single-valued, oon-
tinuous funoction of the sampled values y(nT) = y[n] and y[n-1]
of the plant output:

Y(n] = ¥(ylal, yla-11) , (7
controlling, aooording to the svitching oondition
u[n+i] = u[n] sen Y(y[n+1], y(a]) , (8)

the sign changes of the control rate. x)

By introducing canonical state variables (normal coordinatzz)
20, 265 27  4ne gifferential equations of the linear slements
corresponding to. the transfer functions (2). are transforme
into systems of unooupled first order equations

ik(t) = Pk xk(t) + °k n(t)" 20k'S 051,22, ¢ v dor) 4n 19)

Y1<t) = ql yl(t) + dl v(t) 1= 192y oo y5) (10)
S g
x(t) = ;0 x () 5 ¥Ct) = 2o v (1)

12 Unlike the usual definition, the following one is assumed
for convenience:

1_for p o 0 )
33’1“{-1 m xS0
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Egqs. (1), (&), (8) - (11) desoribe the relay sempled-data
system for all t.

3. The difference equations of the system

The values of the system variables between the sampling
instants do not influence the relay switohings and consequently
not the system performanoce. Therefore one is led to describe
the essential features of the system behaviour by difference
equations for the samplei variables, while expressing the in-
termediate values, if necoessary, by the preceding sampled
values. !

For this purpose, Egs.(9) and (10) are integrated with initial
values xk[n] and yl[n]; this gives in nT = + S (n+1) Tt

x (+) = xk[n] i TNTE Py (-1 (12)
x(t) = ; xk[n] epk(t.ni) + utn] 7 (t-n®) (‘113)

% g r
with Ti(®) = o of epk( 2 h(z) ar ; p(t) = g NP

g g £55 (14)
and 7 yl(t) = yl[n] eql(t-ﬂ) -ad f eql(t_r)xa(t) daz
o (13)

After inserting (13) in (15), the integration ocan be oarried
out explicitly as in 28 for relay systems without samplinge. In
this way the state variables between the sampling instants are
expressed by their discrete values and known functions, defined
inoS ¢S,

Putting t+ = (n+1) T in (12) and (15) and using the notations

T
“‘k = epk with “ = 1 and O <«k < 1 (k = 1 2,...,1‘) (16)

Pl = e 1 with 0 < pl < 1 (1 = 1 2’¢co’5) (17)
7e(®) = o ety H(p) (18)
B .
(py + P = 9% - agoty =P
”lik"adlﬁlfei P 1dt=-ad1-§—l:—-p;1?-q-i'

0 (19)
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(P9, )tdt =

2 o
9&"23d1516f](t)0 (20)

£, o,y H(py) - H(él-pk) F(ay-py)
-2 afq 2T Ly ST

T S ,
6p=-8a py [F@ el at, (21)
205

the following system of linear and quadratic difference equa~
tions for the diperete values of the state variables is ob-

tained:

xk[n+1] = o xktn] ; T utn] (22)
yltn+i] =P, ylth] + }r: i ©g43 iitn] xkin] + ielk xktn]utn];sl
. 1=0 k=0 =0

In ocontrast with 29, where multidimensional z-transforms are

used for setting up the difference equations of an INIL-chailn,
the method presented here assumes that there is no additional
sampling between the linear elements. It applies Just as well
$0 nonlinearities with a polynomial echaracteristics.

4. Linearization of the guadratio difference equations -

Introducing new state variables zl[ﬁ] instead of yl[n] by the
substitution

. i - SR i
yi[n] = zl[n] + g:% g:% 0y4x xi[n] xk[n] + 81 (Limid4524vis'ey8)
: (23)

and inserting in (22), the quadratio terms and the absolute

term are eliminated, if
“adl

Ukt T H IR G i
: 1 r > - -
i S = T Cu - 2y 2ok a ) (23)

can be chosen. For this it is necessary and suffioient that
conditions (3) be fulfilled.
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Define . L
x[n], z[n] and J - the oolumn veotors with components
ze[n] u[n], s,[n] ana y, ,

A and B ~ the dizgonal matrices with elements x, and f,,
£ - the (8y r + 1) matrix with elements

H(a,-py) F(ay-p,)
mn-gn-zdk igo:'emyil—Za d]Pl 1pk41_pi_pk (26)
and u'[n] = uln] uln+d] . (27)

Then the linearized equations read:
z[nﬂ] = (A _;_:[n]_+ Z) u*[n]
_z[e+1] = B g(n] +0z(n] _
It is worth noting that this system of equations oan be written
down immediately knowing the transfer functions and their poles
without any necessity of setting up and transforming by (23)
the equations. (22). ]
The linear equations (28) are joined by the nonlinear switching
condition (8) as the condition .of oclosing the loop, whioch by
(11), (22), (23) and (27) beocomes

_ u*[n] = sgn ¥'(z[n], z[nD) (29)
BEqs. (28) and (29) give the desired simplified desoription of
the system performance by restriocting to.the sampled state
variables. They represent.a system of recurrence formulae,
whioch, given the initial values x[0], z[0] resp. xk[O], 11[0],
u[0], render possible an easy computation of transients, just
as well forming the basis for determining the steady-state

oscillations.

IR i

5. Steady-state oscillations

The method mentioned in the introduction gives the most
natural and general approach for calculating "ocommensurable"
osoillations. It consists in

a) determining, given a periodic sequence u[n] (n = 0,1,2,...)

with _ 135 )

uln] = u[n+¥] (NP - period of the oscillation),
(30)
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the initial values x[0], z[0] causing a transient-free, peri-
odie motion in the open-loop shain between u[n] and y[n],

b) ocaloulating by (28) the complete osoillation x[n], z[n]
and L

o) cheoking, whether the values of u*[n] caloculated from the
switching condition (29) correspond to the presupposed values
of u[n]

Together with u[n], u [n] is given by (27) as a periodio

sequence. After applying (28) N times the following conditions
for the initial values result from the periodiocity conditions

z[¥] = z[0], z([¥] = 5[01

z[0] = 4¥x[0] + u[o]; aliie ¥ 5% aly (31)
B e
z[0] = 5"z0] + Z %13 0 x(3] . (32)
Because of (17), Eq. (32) can be uniquely solved for z[o]
z[0] = (r, - 35" ?_;33 0 z[¥ - A s (33)

The matrix Ir+i - AN; however, is singular as o« = 1, henoce
(31) must be solved by components:
N=1 _

xc[0] = oqfr [0] 4 uli-t-ikily (K=04,2,..0,7)  (34)

These equations have a unique solution for k = 1,2,+.eyre They

are solvable for k = 0 if and only if
N-1 -

BRCELE 35)
=0 X ’

in this oase xo[o] remains. undetermined. From (35) can be con-
cluded that N = 2M is an even integer.
Hence (31) has a one—parameter family of solutions

z[o] =x [O] + Eu[O] (- 00 < €< ) (36)
with e; = (1, 0,0,...,0), the particular solution x [O] obtained
by passing to the 1imit . W 1:

x S[0] = u[o] lim (IN.I-AN) % ; u[N-1-1]A1 37
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Further follows from (28) and (36) .
xtn] = utn][ 1im- (I V'—AN)'1 N-1u[n-i-i]Aij;ee ] (35)
g2 o(o—>1 r+1 ; g =0
and by combining with (33):

£[0] - m; s Z:’juin- 31 ulzm-2-1-31 QC1);
=0 3= *

i 39
+ & (IS-BN) Z:_; u[¥-1-3] B3 e
and finally B
i MR e e 3
zlol = lm 2 ) uln-3-1] uln-1-3-2] Q1))
d°—>1‘ i=0 j=9 N—‘.l e (40)

; E(Is-Bx)"1 ZZ; utn—j-&] 331290 (n = 0,1,25..)

where the (s, r+1) matrix y ;
N (z, - 9™ Ba.QAi ¢ TR (1)

(1’3 = 0,1 2, see y N“1)
has the elements

(id)

k = 0,"I,2,_.,.,r
(1 b !E)(‘l £ pN) lk ( - B = %,Z,A esey B

Eqs. (38) and (40) give the most general expression for any
oscillation sustained in the open-loop chain by a periodie
excitation.

In spite of the double sum their numerical evaluation is not
too laborious, since all its coefficients are equal to + 1,
and the matrix elements (42) can be easily computed too. An
alternative way consists.in determining xz[0] and z[0] from
(34), (39) and then the complete oscillation by recurrence
from (28).

Finally it must be checked by inserting in (29) whether the
oscillation continues to exist in the closed-loop system.
In special cases Eqs. (38) and (40) simplify.

a) Let u[n+M] = -u[n] (2M = N) (43)
for 211 n. Then Mt ] :
x[n] = u[n][{I 1+AM)'1 ;:; u[n-i-1] A;z + £

) (42)

(44)

———d

o
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M—-1 l—‘l

. 311 un-1-3-21 JADy ’
2[n] g %jéu[n J 1] u[n-1 :] 215 7 + P9

+ 5(1'4-13")’1 }"’: uln-3-11 890 o %
=0

with 04 L (1 -B“)"1 Bdnat (1, m“)"1

i a3
(1) . _rEl_r"‘k
"1k 1+ )(1 = B1) ‘1 (482

(
For £¢= 0Q the osoillation is symetrioa.l'

x, [ne] = - xk[n] ; sl[ml] -'ll[ln]

b) Let the oscillation be simple. :
1 for n=20, 1, 2, ..o u—1 .
u&]-{ 1 s 1y 2 ’ ) )
—1 " n = H, u'l"‘, ooy 2M-1
ca.rrying out the double summation, it is :tound that
x 0l =me- 57,5 x 0] = 0y ly (k= 1525000y7) 8)

1+§1 oy )-0Cpy)

-j; = T “nxk"f‘?(h)ﬁlé L Vplpiioegn)

z,[0] =

uth . 1 “M . . . m
g(x) = o 3 9(1) -“i,i:! px) = 5 (49)

6. Stability of steady-state oscillations

Using canonical state variables renders it possible to solve
the stability problem in an almost trivial way. The following
stability assez_"fiqz_x holds:

The steady-state oscillation x[n], z[n] is stable in
the sense of Lyapunov if for all n

e 2 %
Y'(z[nl, z[a]) % 0 ; (50)
it is unstable i.s.ﬁ., if for at least one n = nj

Yialn,), zln,1) = 0 and x[n+1] + 0 . (1)
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The stability proof is based on an extension of ideas in 20,
2
In the (r+s+1)-dimensional (x, z) state space of the discrete
system the points (x[n], z[n]) (n = 0,1,2,.+..,8-1) constitute
the discrete "trajectory" of the osoillation. Around each of
these phase points a neighbourhood

: |z, = %, [n] s A 4
K[n] s { ' T (52)

|2y - 2y[n]] & T}E ;0'”11:”1:

is defined; the union of these K[n] is a neighbourhood U of
the "trajeotory". If (50) holds, the constants J]: > 0 can be
chosen so small that for all points in K[n]

sen ¥(z, %) = sgn 'i’(;.[n], 0]

If (x', z') denotes the_ image of (x, Z) when mapping the state
space into itself by (28), the following estimation holds on
account of (28) and (52):

| xpx [0e1]] = ¢y xe-x, [0]] S lxk-;ik[n]l S 4
lzi-zltnﬂll By | zl-sl[n]l *Z,Iﬂlkllxk-xk[n]l

1-P Zl”u“ + Zl’lk“k _r Z‘“lkuk H

this means, that K[n] is mapped by (28) into K[n+1]. Each
"trajeotory" originating in U does not leave U. By this the
stability is proved since U can be made arbitrarily small by
reducing the ll':a.

If, however, (51) holds, any arbitrarily small neighbourhood
of (x[n 1, z[n 1) will contain points (x, z) with Y(x, z) > 0,
for whioh

lxk—xk[no-rﬂ[n Iaﬁc(xk-x.k[no]) - Zxk[n°+1 ]la 2lxk[n°+1 1| - o lAk .

For a2t least one k the right hand side does not tend to zero
for lk—>0. this proves the instability.

If for all n_, for which ]iﬂ(x[n 1y z[n 1) = 0, at the same
time holds :'.[n +1] = 0, the osoillation is stable indeed, but
it vecomes unstable when slightly varying the system parameters
(structural instability).
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7. Mean value of a_ steady-state oscillation
. The mean value of the plant output, in extremum control systems

the so-called hunting loss, defined by
- N=1

M(y) = ig ynl , (;3)

can be expressed by the system parameters without saloulating
the oscillation itself. The gppropriate tool is the Fourier

expansion of all periodie sequenoces 8, 15, 16
. N—-1 ! R 200 ?
u[n]-%_-__‘a,#,esn with "’,-%;u[n] E-:p guel (54)
} l—‘i g ]'_4'| N—1‘
. n &
xk[n] = Z fk,g Eg H yl[n] = ; 71§E§ H 1[n] -Z Zlg ¢

Sl (55)
From (35) follows v = 0. .
Combining (55) with (28) and equating the coefficients leads to

gkg 5 Eg—“k?k (¢ = 1! 2y eeey 1"1) (;5)
Spe =187, 8 1y 2 eee y.8) 5 B, = E (arbitrary)
' N-1
oy D) = Gy = = 2 lsfz el
T=Fa ¢ 5
From (55) and (56) is obtained
i N—1 b RN > c 71 7
(o [n [n] = g Ez+ S -lik i X
(3 > er el e e, RLIPIPE ey o
‘ (57)

With regard to

8 - ;
. e = -3 ,'—"-—'——_—"-I-BGCP'P )
P T e it
using the notations

“’k'Zi—_lﬁ§ §= .31

1=1
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sin 2%5 _
{1-2x 008 éﬁs +;?

oos%—g-x
1-2cc0s éﬁs ;;? y

the f£inzal solution reads:

V(<) = Wo(x) =

N-1 : .
W(y)= ~8c?6(0)-8) 19,2 57 S @pytm v, (4 v, )+
§‘1 1=0 k=0 (58)

- N-1 l r
o g v (0174 7 k*‘;[“}s lagvg Gy e

Special cases:

a) IN-chain; G(p) = 1. ; a ‘
By passing to the lmit qu> - , dg->o0, - =t >4, B0
or directly from ($7) with Oqy, = - & 1% is foind that

MGy) = - [ + i?l«%r*c S (59
;s - ou
where : 2
() - 3 L - 7 {1 2 5]
k=0 s

is the pulse transfer function of the linear ohain. Eq. (593)
can as well easily be obitalned by z-transforms.

b) NI-chain; F(p) = 1.
In this ocase Eq. (58) becomes with r = 0O

L : 2 : .
o 2,1 2 X 1%, 4 g
M(y) = -a6(0) [e%+ 7 yo 25 :;2—? lJ-pgo,y,+ ¢ (60)

8. Applicat;ons

The method outlined above was applied to several types of
extremum control systems using the switching condition (8) :

u[n+1] = u[n] sgn (y[o+1] - y[nD) - (81)

or slight modifications, which describe one of the simplest
extremum controllers. By specializing the general formlae,
smocth and well manageable results concerning steady-state
Oscillations and their existence regions as well as transient
Tresponses were found in the following oases:
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a) if S-:I,mpulsea, i.e. H(p) s ‘i, are assumed;

b) if simple osocillations, in particular of least non-trivial
period 4 Ty are oonsidered;

o) for systems with I N-plant 27» 30 ang NI -plant;

d.) for second- and third-order systems ':I.th JN~, L,N-,
L,§L;-, NL,- and NL,-plants respectively 27’ 20;

e) for second-order systems with rectangular pulses and pure
delay.

With certain modifications the method san be extended to
systems with the input or output of the nonlinearity drifting
with constant rate, a ocase important in practioce.
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Abstract

Anslysis of relay sampled-data systems with a nonlinear plant

H.L. Burmeister, Dresden / GDR

An exact method of amalysing a class of relay sampled-data
systems with additional nonlinearities, occurring e.g. in the
field of extremum control of plants with parabolic charac-
teristics, is suggested. It is simpler and applicable under
more general conditions than the existing methods and proves
to be practicable for numerical computation.

The method applies to plants that can be represented as

L NL_-chains, consisting of stable linear elements L, and L/ of
any order and a parabolic static nonlinearity N. The pulse shape
is arbitrary; rectangular pulses and pure delay are included as
special cases.

The sampled state variables (normal coordinates) satisfy a
system of nonlinear difference equations, which is linearized
by a suitable ncnlinear transformation of the state variables.
Transient responses may then be computed by merely performing
matrix multiplications and evaluating the switching condition,
which in general is nonlinear. Steady-state oscillations are
determined exactly, the switching condition playing the rdle of
a condition of existence. The mean value taken over a period,
e+g. the hunting loss in extremum control systems, is evaluated
without computing the oscillation itself.

The method was applied to several types of extremum control
systems, in particular to second- and third-order systems. The
results relate to steady-state oscillations and their existence
regions as well as to the boundedness or divergence of
transients.



29

SUBHARMONIC OSCILLATIONS IN COUPLED
RELAY CONTROL SYSTEMS

S. T. Nugent

Division of Engineering Physics
Dalhousie University

Halifax, Canada

R. J. Kavanagh

Department of Electrical Engineering
University of New Brunswick
Fredericton, Canada

1. Introduction

In single variable relay control systems, the phenomenon of sub-
harmonic oscillations, when the system is subjected to certain periodic
inputs, is well known. A number of investigators including Sakawal, Gille
and Paquet2 and Gille, Paquet and Pouliquen3 have given methods of predicting
this phenomenon using the approach of Tsypkiné and Hamel.

With the increasing importance of multivariable control systems,
and in particular, relay systems, it is necessary to study all aspects of the
behaviour of such systems so that designs may be optimized. It is therefore
the purpose of this paper to extend the use of Tsypkin's method of analysis
to the specific problem of predicting whether subharmonic oscillations may
occur in certain multivariable relay control systems. While the approach
is general as far as the number of variables is concerned, computational
complexities restrict the usefulness of the method to two-variable systems.

The specific class of systems to be considered is that shown in
Fig. 1 where the linear system transfer matrix has the typical element
wij(w)e " . It will be assumed that the frequency of oscillation is the
same in both parts of the system but there may be a time shift between the
oscillating waves. Only systems with symmetrical relays that have hysteresis
or are ideal (that is the dead band is zero) will be considered. It will
be assumed also that the relays have only two switches per subharmonic
period. Because the relays are symmetrical, only subharmonic oscillations
of odd orders can occur, ;

2. Forced Oscillations in Relay Systems with Hysteresis but without Dead
Band

The conditions for a forced oscillation at frequency we in this

system have been given by Nugent and Kavanaghs. Let the system inputs be
rl(t) = Alfl(wft + Bl - 61)

r,(t) = AEfZ(mft + 8 - s, - 0)

1
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where A1 and Az are the respective maximum values of r; (t) and rz(t),
81 is the angle by which the output ml(t) of relay 1 lags the error
el(t), 51 is the angle by which rl(t) lags el(t) and o is the angle by
which rz(t) lags rl(t). In order for the system to exhibit forced

oscillations, it was shown that the following conditions are necessary

Im {Rl(n + Bl - 61) + Al(wf)} = -h1/2

Re (Rl(ﬂ + By - 61) + Al(mf)} <0 o
and
Im {Rz(ﬂ + Bl - 62) G Az(wf)} = —h2/2 o
Re (Rz(n *B =5, Az(wf)} <0
where for w = we and t = 1r/wf

d c, (t
A (og) = = é—di(_) t=n/u, ~ 3 S Snfag)

Rl(ﬂ + Bl - 61) = Al[fl(ﬁ + 81 - 61) +3 fl(ﬂ + 81 - 61)]
and for t = 21r(1/2—r)/wf

1 @ cz(t)
Rylugd =i w, ~ dt

t-21l(1/2—r)/mf -1 c2(2ﬂ(1/2-1)/wf)

\J
Rz(n + Bl - 52) = AZ[fz(ﬂ + B1 - 62) + 3 fz(n + 81 - 62)]

where fi is the derivative of fi(mft + Bl - 51), i = 1,2 with respect to

£, 21rt/wf is the phase shift between ml(t) and mz(t), and 62 = 61+2wr+0.
Also, cl(t) and cz(t) are the system outputs which are given by

4 3 b
e (6) = = [ ) 7 MW, (w)sin(oet + ¢, (aw))

“f

n=1,3,...

+ Mzwlz(nw)sin(nwt + n2ntT + °12(“"’))” 3)

1
¢, (t) = _% [ Z-; (MW, (nw)sin(nwt + 95, ()

=13
+ Mzwzz(nw)sin(nwt + n2mt + ozz(nm))}] 4)

Simultaneous satisfaction of the two sets of conditions (1) and (2) for some

specified t and 81 - 61 indicates a possible forced oscillation. In addition,

the following conditions on the number of switches of the relays per period
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must be satisfied:

el(t) = rl(t) - cl(t) > -h1/2 0 <t < w/wf)
and
ez(t) = rz(t) - cz(t) > -h2/2 (—ZﬂT/mf <t«< 2ﬂ(1/2—1)/mf).

The Rl(n + Bl - 61) and Rz(ﬂ + 81 - 62) loci are closed curves
centered at the w = we points on the Al(w) and Az(w) loci respectively.
They are circles for the particular case of the sinusoidal inputs
rl(t) = Al sin(wft + 81 - 61) and rz(t) = A, sin(mft + Bl - 61
B there exists critical values of A1 and A2 (AlK
and AZK) since these values must be large enough to ensure that the
Rl(w + B1 - 61) and Rz(ﬂ + 81 - 62) loci intersect the -h1/2 and -h2/2
lines respectively. If the critical values AIK and AZK are plotted against
we for a specific value of 1, the curves will have the general shape shown
in Fig. 2. In Fig. 2(a), AL

1K
oscillation and w1 corresponds to the frequency at which the Al(m) locus
intersects the -h1/2 line when t=t1

- o).-

At frequency w

is the critical amplitude for fundamental

Similarly, in Fig. 2(b), A;R is the

correspords to the

1
critical amplitude for fundamental oscillation and W2
frequency at which the Az(w) locus intersects the -h2/2 line when =1,

These curves which are conveniently obtained from the A loci
divide the AlK’ we and the AZK’ ©

and A2 > AZK zones in which a forced oscillation is possible and the

A1 < A1K and A2 < AZK zones in which a forced oscillation cannot occur.

¢ planes into two zones: the Al > AlK

For the two-variable system being considered, there will be a pair of curves

similar to those of Fig. 2 for each value of T.

3. Conditions for the Existence of Subharmonic Oscillations

The conditions given in Section 2 can be generalized for the study
of subharmonic oscillations. A subharmonic oscillation of order u is a
periodic oscillation of the outputs cl(t) and c2(t), the frequency of which
is an exact submultiple 1/u of the input frequency we (assuming that both
inputs have the same frequency). That is, the period of the subharmonic
oscillation is 'I'u = qu = Zuﬂ/mf. The outputs of both relays are assumed
to have the same frequency of oscillation with a possible time shift of
2unt radians (with reference to the input period) between the oscillating
waveforms. The new conditions for periodicity are obtained from the
conditions given in Secti n 2 by replacing Tf by qu and we by wf/u. The

resulting conditions for periodicity are
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Im (R, (um + B) = 8;) + A;(w/w)} = -h,/2

Re (R (um + 8, = 8)) + A (w/w)} < 0 %
and

Im iRy (7 + By = 8,) + Ay(wc/u)} = -h,/2

Re {RZ(Uﬂ + 81 - 62) + Az(mf/u)} <0 ®)
where

8, = 8-+ 2urt + 0. (7

For a possible periodic solution, these conditions must be satisfied
simultaneously. In addition, there must be only two switches of the relays

per subharmonic period. That is, the following conditions must be satisfied:

el(t) > —h1/2 (0 <t < uﬂ/wf)
and (8)
ez(t) > -h2/2 (-ZUNT/mf <t< 2uw(l/2-r)/wf)

Conditions (5) and (6) lead to a consideration of the intersections, in the
left half plane, of the Rl(uﬂ - B1 - 61) and Rz(uﬂ + B1 - 62) loci with the
-h1/2 and -h2/2 lines respectively. The Rl(uw + B1 - 61) and Rz(un + Bl - 62)
loci are identical to the considered in the case of the fundamental
oscillation but are centered at the wu = wf/u points on the A loci (and not
at the we points as in the former case).

: U
At frequency mf/u there exists critical values of Al and A2 (A1K

and AY ) since these values must be large enough to ensure that the

2K
Rl(uw + 31 - 61) and Rz(uﬂ + 81 - 62) loci intersect the -h1/2 and -h2/2
lines respectively. These critical values can be plotted in the AlK’ we
and AZK’ We planes. The critical values for possible subharmonic oscillations

can be obtained from the Al and A1 curves by simple translation towards

1K 2K
the right by an appropriate amount. Typical curves are shown in Fig. 3 for
third and fifth order subharmonics. In general, a u~th order subharmonic
cannot occur if the values of A1 and A2, in the AlK’ we and AZK’ g planes,
lie below the A;K and A;K curves respectively. A subharmonic oscillation is

H u

possible if the values of Al and A2 are above the respective A1K and A2K
curves. Fig. 3 shows that there are regions in which only third order
subharmonics are possible, and regions where only fifth order subharmonics
are possible. There are also regions where both the fundamental and sub-
harmonics are possible. The conditions represented by Figs. 3(a) and (b)

must be satisfied simultaneously for an oscillation to occur. The
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oscillation that actually occurs will depend upon the specific problem being
considered. It should be noted that a pair of curves similar to those shown
in Fig. 3 will be obtained for each value of T considered.

The curves of Fig. 3 correspond to the conditions given by (5) and
(6). The conditions given by (8) must be satisfied also. If a system
exhibits a certain mode of oscillation, it will continue to do so unless one
‘of the necessary conditions for this mode to occur is violated. For example,
consider a two-variable system that can have a third order subharmonic
oscillation. Suppose the input frequency to the system is fixed at a certain
value close to 3mo, where W is the self-oscillating frequency of the two-
variable system. Fig. 4 shows the critical values of the inputs plotted

against w_ when T=T,- A pair of curves similar to the ones shown will result

for each ialue of t Eonsidered. Now suppose that the values of Ay and A,
are such that the system is oscillating at the frequency of the inputs. Upon
decreasing A1 and AZ’ the system will remain osci}lating at the input fre-
quency until one of the necessary conditions for this oscillation is
violated., The conditions represented in Figs. 4(a) and (b) must be satis-
fied simultaneously. Thus, if the inpuf amplitudes are decreaseé until
either Ay = A or A2 = AZKb’ then any further decrease results in a third
order subharmonic. If the input amplitudes are decreased until either
A1 < Ach or Az < A2Kc’ then the system cannot have a third order subharmonic.
For this case, the system exhibits almost periodic oscillationms.

If now the amplitudes are increased, third order subharmonics will
be obtained when both A1 and A2 are within the shaded areas shown in
Figs. 4(a) and (b). These subharmonic oscillations will exist as long as
the necessary conditions given by (5), (6) and (8) are fulfilled. This could

result in an area in the A and A planes where both fundamental

T s 2x? P
and subharmonics can occur. The critical necessary conditions are the ones

given by (8). That is, when either

min [e, (£)] = -h, /2 (0 < t < 3n/uw)
or 9)
min [ez(t)] = —h2/2 (-Gﬂr/af < t < 6m(l/2 - T)/wf)

the system will go from the third order subharmonic to the fundamental

oscillation (see Fiz. 5). The boundaries represented by (9) are shown by

the dashed lines in Fig. 4. Thus, if the input amplitudes are increased

until either A, > A or A, > A , then the system will go from the third

1 1Ka 2Ka
order subharmonic to the fundamental oscillation.

The boundaries represented by (9) can be found by first obtaining
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the output waveforms of cl(t) and cz(t), as given by (3) and (4), for some
specified value of w, and 1. The inputs rl(t) and tz(t) have known frequency
(in this case three times the output frequency) and shape. Thus, el(t) and
ez(t) can be found since el(t) = tl(t) - cl(t) and e2(t) = rz(t) - cz(t).

In addition, if a u-th order subharmonic exists, the following conditions at
t=0, -2uﬂr/mf, un/wf and 2u1r(1/2--r)/mf are true:

el(O) = h1/2 o él(O) >0

ez(-ZuNT/wf) = h,/2 3 éz(-zuwr/mf) >0 (10)
e, (ur/wg) = -h, /2 . &um/y) <0

e2(2uw(1/2-t)/wf) = -h2/2 b é2(2un(1/2-r)/mf) <0

Points on the dashed boundaries in Fig. 4 are obtained by changing the ampli-
tude of ri(t) until ei(t) = -hi/2, i=1,2 at some point within the half
period. This procedure is repeated for different values of frequency over
the desired range. Since Fig. 4 shows the conditions for only one value of
T, the whole procedure must be repeated for a number of values of 1 over its
range. This means that a considerable amount of computation is involved.
However, the whole procedure may be conveniently carried out by using a
digital computer.

Once a family of curves similar to those of Fig. 4 are obtained for
a number of values of T over its range, a plot of the critical values of the
input amplitudes versus 1 can be made for a specified we e That is, for each
pair of curves similar to the ones shown in Fig. 4, the values corresponding
to Alxa’ Ale and Ach are plotted as functions of T, and those corresponding
to A2Ka’ A2Kb and A2Kc are plotted on the same plane. The common areas give
the values of Al’ A, and 1t for which third order subharmonics are possible
(see Fig. 6). Fig. 6 shows a number of possibilities. If the values of Al
and A2 fall within the shaded area, the system can have third order sub-
harmonics with T somewhere between T4 and T If now the amplitudes are
increased, the system will continu= to have third order subharmonics until
one of the values of the amplitude goes outside the area a b c f 2 d a. The
system will then go over to the fundamental oscillation. Once the system
starts oscillating at fundamental frequency, the parameter 1 assumes the
value necessary to allow the oscillation to occur. That is,the parameter
T is not subject to direct external control. If the amplitudes of the inputs
are decreased, the system will continue to oscillate at the fundamental
frequency until the amplitudes approach the c¢c d, d e lines of Fig. 6.

Because the parameter T is changing in some unknown manner, it is difficult to
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say where the system will start oscillating with a frequency of one third
the input frequency.

For each point on the boundaries shown in Fig. 6, there is a
value of 61 - 81 and 62 - 81. The values of 51 - 31 and 62 - 81 for the
AKa boundaries are obtained from (10) with ¥ = 3, while the values for the
AKb and AKc boundaries are obtained from the intersections of the
R1(3ﬂ + Bl - 61) and R2(3ﬂ + 81 - 62) loci with the —h1/2 and -h2/2 lines
respectively. Then,using (7) with # = 3, a plot of 61 - 81 versus T can be
made. For each intersection of the R1(3ﬂ + Sl - 61) and RZ(.?n'IT + 8
loci with the -h1/2 and —h2/2 lines, two values of ¢

S &
= §. -8
: e gty Mk
may be obtained. However, only one value of each need be considered as it

has been showna’6

that only the values which result from the intersections
to the left of Re Alkwf/ﬁ) and Re Az(wf/u) are stable. In order for a third
order subharmonic to exist the value of 0 must be such that the range of
possible T so obtained must correspond, at least in part, to the range of
possible T shown in Fig. 6.

Upon examining Fig. 6, it can be concluded that in order to avoid
the possibility of third order subharmonics occurring, the amplitudes of .
the inputs should be larger than Aa' On the other hand, if the amplitudes
of the inputs are smaller than A, the value of 61 - 31, 62 - 31 and T
for the possible subharmonic oscillation can be determined as follows.
From the intersectioﬁs of the R1(3w + 81 - 61) and R2(3n + 81 - 62) loci
(which are centered at the w = mf/3 points on the Al(w) and Az(w) loci
respectively) with the -h1/2 and -h2/2 lines;obtain the values of 61 - B
and 62 - Bl' Next, using (7), plot 51 - 81 versus 1. Two values of

1
61 - 81 and 1 are possible but as was shown by Nugent and Kavanaghs, only

one value will correspond to a stable oscillation. The example being dis-
cussed deals only with the determination of possible third order subharmonics.
In a similar manner, possible fifth, seventh or higher order subharmonics

can be predicted.

4. TIllustrative Example

Consider the system shown in Fig. 1 where Hll(s) = sz(s) =
10/(1+s)2, wlz(s) = - W21(s) = -10a/(1+s)2 and with relay parameters
Ml = M2 =1, hl = h2 = 2 and Al = A2 = 0. Let the system inputs be given
by rl(t) = Al sin(3.7t + Bl - 61) and rz(t) = A2 sin(3.7t + Bl - 61 - 0)
where rz(t) leads rl(t) by 0.524 radians (300) and the cross coupling gain

a=4.0.

The A, and A

1 2 loci are plotted in Fig. 7 for a number of values
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of 1. From these curves, the critical amplitudes AlK and AZK are obtained
for different values of frequency. Typical plots of these critical ampli-
tudes versus we are shown in Fig. 8 for t = 0.16 and 0.34. The AiK and A;K
loci are obtained by moving the AiK and A;K loci to the right as shown. The
boundaries where the system goes from the third order subharmonic to the
fundamental oscillation (shown by the dashed lines in Fig. 8) are obtained
by the method given in Section 3. When we = 3.7 rad/sec, the AlKa’ Ale’
Alxc’ AZKa’ Asz, A2Kc loci, as obtained from a series of plots of the type
given in Fig. 8, are shown in Fig. 9. Fig. 9 shows that third order sub-
harmonics are possible inside the area abcd e f gha. Inside the area

g h f g only third order subharmonics can occur whereas, inside area a b ¢

d e f h a either third order subharmonics or the fundamental oscillation can
occur, depending on the initial conditions of the system. Fig. 1C shows

the critical boundaries in the 51 - 81, T plane. ‘For the value ofv o 3
specified,third order subharmonics are possible inside the areas a bc d e

f gaand pqr p. Note that the range of t in Fig. 10 is included in the
range of T given by Fig. 9. Since the inputs to the system are sinusoidal,
thg 61 - Bl(Ale)’ 51 - BI(AIKC)’ 62 - BI(AZKb)’ 62 - Bl(AZKc) boundaries
where found by using the relationship

Ay (1=1,2). 1)

-1
61 < 81 =sin " A
The 61 - BI(AIKa)’ 62 - 81(A2Ka) boundaries were found by using (10).
That is
§, - B, = -sin”} (———CI(O) > hl/2)
1 1 A
and
-1 c2(-6wr/mf) + h2/2\
62 - Bl = -gin (¢ Az ) .

-~

Before plotting the 62 - 81 values, 67t + 0 must be subtracted from each
value as required by (7). Only the boundaries of the possible stable

oscillations are plotted.

It can be concluded that since the parameter T cannot be directly
controlled externally, it would be necessary to keep either Al or A2
greater than 22.0 (see Fig. 9) in order to be certain that third order
subharmonics do not occur when we = 3.7 rad/sec. However, this may not be
possible and if third order subharmonics are undesirable, then some other
frequency may have to be used or perhaps the linear transfer matrix may

have to be changed in some manner so that the possibility of third order
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subharmonics occurring at this frequency would be reduced.

Now suppose that Al = 3.0 and AZ = 2.0. With these values of
input amplitudes, the system would be expected to exhibit third order sub-
harmonics (see Fig. 9). It is of interest to determine the values of

5y ey

85 = 81 and T must lie within the area a b he £ g a. This reduces the

amount of computation considerably. The procedure is to obtain the
.a a a a a

8y = fqi = fgfvdm et Bo'l
These curves were obtained by using (11) and (7) where the values of A

- Bl + o and 1. From Fig. 10, it is seen that the value of

f;(r) - 67T - 0 curves and look for intersections.
1K
and A2K were obtained from Fig. 9. The result is shown in Fig. 11. In
this figure, 6; - 8; corresponds to the stable oscillation. It is seen
that the system could have a subharmonic oscillation with frequency 1.23
rad/sec when 61 - 81's 1.39 radians and T = 0.267. The value of 61 - 81 + o,
which is the time shift of rz(t) referred to the time origin, is 0.866
radians.

When the inputs rl(t) = 3 sin(3.7t + 81 - 61) and
rz(t) = 2 sin(3.7t + Bl - 61 - o) were applied to an analogue simulation
with @ = 4.0 and ¢ = -0.524 radians, the system was observed to oscillate
at a frequency of 1.23 rad/sec. Measured and predicted results are compared
in Table 1.

TABLE 1. Measured and Predicted Results

Measured Values

w3(radlsec) o(rad) - 61 - Bl(tad) %

1.23 -0.524 1.4 0.27

Predicted Values

w3(rad/sec) o(rad) 8 - Bl(rad) T

1.23 -0.524 1,39 0.267

5. Conclusions

Tsypkin's method has been used to predict the existence of sub-
harmonic oscillations in two-variable relay control systems. The validity
of the approach has been confirmed by experimental investigations. The
proposed method will lead to a better understanding of the behaviour of
multivariable relay control systems amd is of potential value in the design



of multivariable oscillators.
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FIGURE 1. Block diagram of a two-variable relay control system
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FIGURE 4. Third order subharmonic oscillations
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OCHOBH TEOPWY HEJWUHENHHX CUCTEM YIPABIEHIA
C YACTOTHO{ M IMPOTHOL MMOYIBCHO! MOIYIALMELN

B.M.Kyanesuy, D.H.9exoso#t, MHCTUTYT KuGepEEeTMRE AH YCCP,
r.Kues,CCCP.

B nocrezHEMe TOZH 33aMETHO BO3POC MHTEPEC K MMIYILCHHM CUC
TeMaM ynpaBIeHus ¢ uvacToTHo#f (YUM) u muporHoil (M) mumyaBC
HO# uonynﬂnneﬁl'ls.c OpPaKTAYECKOl TOUKM 3PEHUs 3TOT UHTEpEC
ONpaBZad TEeM, YTO [0 I[POCTOTE TEXHUUYECKON peanmusanuy Taxue
CUCTEMH IDOYTM HE yCTYNANT pelciHO-MMIYIBCHHM CHCTEeMaM, HO
3HQUATENBHO OPEBOCXOZAT WX IO CBOMM AVHAMUYECKNM CBO# -
crsal 12101 .C TOUKM 3pEHNA TEODHY PACCMATPUBAEMHE CHCTEMH
UHTEDECHH TeM, YTO B HAX MMEDT MECTO BEChMa CBOSOGDA3HHE HEe-
nuHelinne 3Q0eKTH, CBA33HHHE C M3MEHEHWEM CKBAXHOCTH WMMIYJIHC-
HO#l MOCNeZOBATENBHOCTN ¥ HE WMENIWe asaloroB B TEOPUK HEmpe-
PHBHHEX 7 aMIUIATYZHO-UMIYIBCHHX cUCTeM. [lociefHee oOCTOATENb-
CTBO NMO3BOJAAET OGOOCHUTH NOCTAHOBKY HEKOTODHX KIACCHUECKAX
3a7ay TEOpUZ aBTOMATHUYECKOTO DeryAUpOBaHHA (HAmpuMep, 3azauu
06 aGCOANTHON yCTOHUYUBOCTU) ¥ OOCOT'alaeT HX HOBHM COZEPRAHUEM.

I. YpaBHEHUs JBUECHAA

PaccuMoTpUM HEMTMHEAHYD WMIYIBECHYD CHCTEMY aBTOMATHIECKOTO
peryauposanua (puc.I), COCTOANYD U3 HempepuBHOH AMHEHHO# wac-
@ (HI9),D0CHeZ0BaTEeNBFHOr0 KOpPpeKTUpybuero guaprpa (K®) m He-
IMHEHHOTO HMMIYABCHOTO MOZyaAaTopa I-ro poza (UM).

HIY cocTouT 43 HEINMHE|HHX CTAauMOHApHHX 3BEHBEB C COCpEZO-
TOYCHHHMM NTapaMeTpaMi ¥ MMEeT ZAPOCHO-DanWOHaNbHY®D NepezaTod -
HyD QyHKIMD

4
B(s) 2&s
= (= ¥ [<m 3 (I.I)
W() /q (S) 5m+§4a.5£ [ : )

=0
KO npezctasndeT co00i AMHEHHH xoppexrnpynmﬂﬁ fnasTp,
ONUCHBAaEGMHIl ypaBHEHHEM

= C(U-X), (L.2)

! (m~49
rae }( = (5:,33,”.,1? - BEKTOp-CcTOAOEl (a30BHX KOODAMHAT

s (m-1,
CUCTEMH, U=(u,,u,’,,_,, ””))) W - 3azapmee Bo3azeficTsue;
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Cada e~ ip ) -ancnosoft Bexrop-cronden; ;=0
upu (>4 (f<k<m-{); cuMmBoI "T" 0GO3HAuaeT OMEPAIMD TPAHCIOHU-
DOBaHHA. !

CTPYKTYpHHE CXEMH BO3MORHHX BapuaHToB UM (ocymecTBISNLMX
pPasIWIHHe BUAH MMIYIBCHO! MOZYIAIMYU) M300DaXEHH HA DUC.2.
3zecs U3 - MAGaNBHHIA MMIYIBCHHE SMEeMEHT (aMIIUTYAHO-UMIYIBC-
Huil MOAYZATOP); "3BE370UKOH" cOO3HaUYEHa omepamys KBajTOBaHUA
00 BPEMEHH, OCYNECTBIAeMan UMIYIbCHHM 3IEMEHTOM: oé%qé‘ﬁf-th ),-

-enmEWUHAE O -QyEKmEs; Z,=) 7, -MOMEHT MOABNGHUS 2-TO
mumyzsca  ( t°=0),~ T -uarepsal MeELy R-M U (R+{-M maIyIB-
camm; q:ﬂ@oa(tm- g) ; & - duxcarop myresoro mopszxa (c me-
PEMEeHHHM HIM IIOCTOSHHHM WHTepBajoM (Qukcamun); P3-peneiinuii aze-
wesr; f u F -Bpems-3ajanmme aMeMeHTH, yIpaBIADUUE QUKCATOpa-
My O ¥ MMOYIBCHHME .3IAeMeHTaMd 9. Hzeamsruil 9acTOTHO-UMIYIBC—
HHil MOZyAATOpP (PHC.2,a) MOAYIMpYeT IO YacToTe ¥ 3HAKy IOCHe-
IOBAaTeTBHOCTS 2 (¢) emummuEnx O -AMOyIBCOB. PeanpHHl Jac-
TOTHO-MMIYABCHHE MOZyAATOpP (pUC.2,0) MOAYAMPYET IO YACTOTE M
3HAKy MOCAeZOBATEABHOCTH 5{'é)npﬂuoyronsnux UMIYTBCOB, KOTOPHE
AMepT MOCTOAHHYD ANUTENBHOCTS T H EAUHAUHYD AMIIUTYZRY .0ua-
POTHO-UMIOYALCHHA MOZyZATOpP (pUC.2,B) MOZAYIUDYET IO 3HAKYy
AIATENIBHOCTH MOCIAEZ0BATENABHOCTH /f IPAMOYTONBHHX MMIYIH -
COB,CIEeAYDIMX C MOCTOAHHON YaCTOTOi f/’[' . Haxonel,9acToTHO~
MAPOTHHA MMIYABCHHE MOZyIATOp (pHUC.2,I') OCYWECTBIAET MOZAYNA-
040 T0CAEeZ0BATEIBHOCTH g/z‘ o0 3HaKy, 4acToTe ¥ AMUTEABHOC-
TH. :

Jna Bcex BapuaHTOB [IM MOAyIAIMA OO 3HaKy onpezeiseTcd pe-
neitnoft yarmueil (xapakrepucTuroit P3)

sign 6. mpu [6.]>4; =
z =2(0,)= { Jo ™ % il (I1,3)
- mpr [0, /< 4;
MOZYNAUMA DO YacTDTE OnpeZendeTcs 3axoHoM YJIM
T.=F(s,) (I.4)
A MOZYAAUMA OO AMATEABHOCTH - 3aKoHOM [IIM

‘ <7, mpr [0, /<4, ; (1.5)
0= T =f(°-)={= T=const upn J[0;]> 4, .

3necs ' [6) u f(6) -uéTHHe omHO3HAuHWe QyEKmu, ONpexe -
TeHHHe Opu BCeX 6 ; F(67)>0, f/«r);o, npuuen F(6) wmomeT 06—
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pamaTsCAd B HYABP TOJBKO OpH /0‘ / <4; 4,>4 -NOpOT HacHme -
Husa [ .PasHOCTHHE ypaBHEHUA JIBUEECHNHA gaccuarpnnaeuux cucTeM
NpUBOZATCA K CIEZYDIEMy anxyIO’H’I?’ 8:

Xlul " Hn. (Xn+ Kh); <I.6j
rae X, = (x, z.,.,2Y); ac,'f’; &‘mox"’/{,;e),- H, = H[F(s,)]- exp AF (S, )-

Ry)“RI*
nepexozanas Marpuua HIY; A  -COMpOBOEZanmas MaTpHIa Xapak-
TepucTHYecKoro mommuoma HIN; K, = K/#(6,)]z(5,) -Bekrop
cueHH cocronmmii HIY.PyEkmma K ( :f) 33BUCUT OT XapaxTepa
uMIyIbCHOR Mozymsium. [Ipu uzeansso#t YUM (puc.2,a)

K== (3,99 3%-3°0; g1)=L (W5 BN

npu peansHoit YUM (pmc.2,0)
Klf)=HERE);  Ric)- (), w0, " %z)); (1.8)
)~ X (FWE)]

HaKoHen ,npy M (puc.z,nj 7 Opy ZBOMHON MMNMyIAbCHON MOZYyIALUM
(Y4 u IVM,pmc.2,T)

K (5)= HEw )R (z,) = HI-$ () [R[F(5.)]. (1.9)

MlarpnuHoe ypasHenWe (I.6) OMMCHBAET ABUKEHEE CHCTEMH

(puc.I) B ecrecTBeHHOM )a30BOM NpocTpaHCTBE £ = [X,L ] .lloxa-
xeMm,4y70 or (I.6) Bcerja MORHO mepefiTm K ypaBHEHMD

N

X4l 33 /;,:l. [‘\X/n+ /%:l-) (I.IO)

n

B Da3HOCTHOM ($a30BOM NPOCTDAHCTBE 22{)(,}, X= [2‘,,1,,,,,..., Imm).
CocTaBnM CIEAYDUYD CHCTEMY ypannenuﬁm’n:

-H, I 0 .0 0 IS H, K.
O -Hna I oo 0 o 0 xnol Hnof Km! (I .II)
0 0 'H'”e see 0 " 0 4 e X,,,z = HIMZ KMZA )
LN} LEN LR X ] LE N J LA X ] LR N n‘m-’ L
O 0 O sece ~HMI’I-I I Xn4m H’”m_f K"“”_/

rae ] -eauswusas marpuna. Cucrema (I.II) uMeeT NPAMOYTOXB-
HyD MaTpALYy pasuepa m-xm(m+f) u pagra m* ,[03TOMy MOXHO,
MOJIOXNB MEPEMEHHHE X, ; /z=0,¥,...,m-/) N3BECTHHMU , PA3PEHMUTH
(I.II) OTHOCHTENBHO Z,,, + OTOT DEe3yAbTaT,lpeiCTABICHHH! B
uaTpuuHOit dopue, RaeT ypamHerne (I.I0).
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B nanpreiimeM MH GyZeM OONH30BATHCA YDABHEEUAMY ABUEEHUA
roxsk0 B fopue (I.6),TaKk Kak OHA OpONE CBf3aHa C IapaMeTpaMi
cACTEeMH U yZOOHEee AJNA MCCISZ0BAHMHA.

2. YJcTolUMBOCTE PABHOBECHHX COCTOAHMI

Bocrnonp3yeMca AWCKPETHHMY aEajJoTamMy TEOpeM IDAMOT0 MEeTO-
Aa JIxuyHoaaH’I9’ .PaccuoTpuy OCHOBHO#A cayuaft,xorza HIY cuc-
TeMH ycroifumsa, M. mpocTeimmit xpurmye ckuit cuyvait,xcrza  HIY
sefirpansHa, [aA TOTO 4TOGH cucTeMa (puc.l) uMeNa paBHOBECHOE
cocTofHme, MONOEMM L = const

OcHOBHO#f cayuail. CorzacEo (I.6) Bexrop-cmondenxw Koop =
ZMHAT DABHOBECHO!# TOUKM ZOAXEH YAOBIETBODPATH DABEHCTBY

-1 -1 6 b
e =k i) 21
rae H, v K_ - warpuma A, u sexrop K, mpu X, =X_.
lpu /€ d/c, (c,>0 -anemenT Bexropa C ) ypaBHeHue (2.I)
nMeer Hyaesoe pemenme X_ =0, T.e.cucremMa MMeeT DaBEOBECHYD
TOYKY B Havalle KOODAKHAT.JTOT QaxT NEerKo NMpOBEepAeTCH HpocToil
nozicTaHoBKo#. Opu Ju/> 4/c, pemenue XwaéO ,IpAYeN B 00LeM CIy-
7ae pemeHuil MOXeT OHTH HECKOINBKO ™,
C nowousn moxcrasosks X =£ +X_ mepewecruu mavaro xoop-
AuAaT $a30BOTO MPOCTPAHCTBA £ 7 B PAaBHOBECHYD TOYKY CHCTEMH.
B HOBHX KoopAuHaTrax BMecTo (I.6) momyumu

E., =H, (ES+K.), (2.2)

e
K= (1-H)X +K,; s=ClEE): E=UX.. (2.3

dynxuup JADyHOBA BHOEpeM B BUZE MONOXUTENBHO ONpEeleHHO
KBazZpaTuuHoOil GopMH

v, =(E))PE.,  P>0. (2.4)
llepBaa pasHoCTs QyHKIUY (2.4) B CUIY (2.25 paBEa
o= ~(E)1P-M)E 2B M+ ()M, K,

M,,=H,,TPH,,.

Cucrena (2.2) acuuITOTHYECKM yCTOilYMBA B 1IENOM,ECHYU IIpH
o . -
BCEX En #{ Qyaxuna (2.5) OTPNHATENBHA,T.E. ©CIU BHIOA-

(2.5)
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neny mepasencrsalli12+20, &
Ry M,., gt (246)
(E)(P-M )E - 2(ETM K. > (KM, K. (2.7)

Moxa3aHo,4To &m M[F(e,.)]-0,n03m0My cymeorsyeT Kaace Ao~
CTATOYHO GONBUUX @yﬂxunﬁ (I.4), npu KOTODHX ycaoBue (2.6) BH-
rmJnmeTcﬂ2 JJomycruy,uro (I.4) OpUBAANEXUT 3TOMY IIQKA eme He-
U3BECTHOMy HaM KIaccy, ¥ o6paTuMcH K yciaoBun (2. 7)

PaccMoTpuM ypaBHEHWE MOBEPXHOCTH, HA KOTOpPO# QyHkmasa (2. 5)
o6pamaeTCHd B HYAb:

E)(P-m)ES-2(ET MK = (KM K. (2.8)

Ycnosue (2.7) OyZeT BHIOJNHEHO,ECAW OPA BCEX E: #0 3ra mo-
BEPXHOCTH He cymecTsyeT. [ozcraBuM B (2.8) BMECTO 0, ,0mpese-
nseuoro us (2.3),supamenme O_- 6 ,rme 6_=C'E  a O -mpous-
BONBHEK BemecTBeHHHH mapameTp,He saBucammi or £° @

n

(E2)(P-ME’- 2 (€] MK= kI MK M= ﬁ? 20 (2.9)
.YpasreHne (2. 9) ONMCHBAET ceuencno’ r;f;epgmssmncon-

Z0B, 33BUCAMUX OT napanerpa 6 , OpuueM moBepxHOCTH (2.8) He
CymecTBYeT NpH E, *0 €CIM.Npu BCAKOM O # 0 amncou
(2.9) He coupmcacaewca ¢ maockocTsp ( ’E =6 (pmc.3 a) 1420,
[locTpouM OIOCKOCTH

C'E, =ple), (2.10)
RacaTenbHyD K 3NIAncouzy (2. 9) Torza yciosue (2 7) TpaHC -
fopMupyercs B HEpaBeHCTBO

/6”/>/}o(0‘)/, 6%#0, [0]<a,. (2;'115

Ina onpezenesnsa QYyHEKOUU f(ff) 3anumeM oomee ypaBHEHUE
IJIOCKOCTH, KacaTelApHO! K 3AnuIcouzy (2.9) B HEKOTOpOi#l TOUke

ﬂ 21—23. ‘
ES(P-MER)-[E2+ En)] MK =K MK, (2.12)
rae £°(A) ~pammyc-sexrop Touku kacamus (pncgs,a)‘. 1ocKOCTH
(2.10) u (2.I2) coBnaganT, eciu npn Hexoropou o« >( LR
(P-ME(R)- MK°= & C; (2.13)

(kMK + [EW MK = oL p(S). (2.1%)
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CoBMECTHOE pelmeHue (2.95,(2.13) 1 (2.14) zlaerel’zzz
L
| P(s-)={(K9'[M+M(P.M)'%]K'C’(P-M)"CJZS‘?“°" + C(P-M) ", (2.15)

3amMeTHM, YTO B TeX CIydadx, KOrza les "/c, ,0yEKINA (2.I5)
ofpamaeTcsi B HyZB mpM [0'/€A u HepameHcTBO (2.II) ZMOCTaTOU-
H0 NpOBEpDUTH NHEG npu [67/>2.,

Jcnosue (2.II) u dopuyna (2.I5) HOAyUEeHH B OPEAMONOXEHUM,
uyTo npE Bcex 6#( uMeeT MeCTO (2.6),0AHAKO OPOBEPATH BHIOA-
HEHMe 3TOr'0 YCIOBAA Ha BCEH OCH 6° HET HEOGXOAMMOCTU.B caMoM
Aene ,AOMYCTHEM, YTO OpM 6=0, HepaBeHCTBO (2.6) BHIONHEHO,a NpHU
6= 6, # 0, HapymeHo; TOrza odaaarenmo HailizeTesa Takoe S, e( )
Ip# KOTOPOM MaTpyna 0’-/‘1) BHpOXZeHa ¥ Qymxkumsa (2.I5) nperepne-
BaeT paspHB HENPEPHBHOCTH. JTO O03HavaeT, YTO HPOBEDPKY (2.6)
ZOCTATOYHO OPOM3BECTH BCET0 B OZHO# (AmOO#) TOUKe KamAOIO MH-
TepBana HempepuBHOCTH QyEkmau (2.I5). Temeps OKOHUATEABHHI
pe3yasTaT MOXHO CPOPMYyIMpPOBATEH CIEAYRIAM 00P330M: B OCHOBHOM
clIy4yae paBHOBECHOE cocroanneX‘_, cucreMy (I.6) acCHMITOTUYECKH
ycrofiumBo B meNOM, €CIHM BHMONHEHO ycaosue (2.II) ¥ BHYTDH
KaxZoro WHTEepBaNa HempepHBHOCTY OyEKOWM (2.I5) MOEHO ykasarTh
x0T OH OZHO 3HaueHWe © ,IpW KOTOPOM BHIONHAETCH HEpaBeH -
CTBO (2.6). '

lpocreiiunii kpuTuyeckuii cayduai. B mpocreiimeM KpuUTHIECKOM
cIyyae OAWHE KOPEHb XapaKTePHCTUYECKOTO ypaBHEHu: A, f5)=0
paBeH HYAD (ao’ 0}, uarpuna A BHpOEZEHA U uMeeT paEr m-7.
lpeoGpasyen ypasHeHne (I.6), YMHORMB €ro cileBa Ha MaTDHUIY

_& 2m.q 1
Lo Wysee W W
0 I dee o o 5 ' ;
(2,16)
R-‘-? eee e e see ece -

0 Dusinas 71 0
0 0.5vanizl I

[locne HecmoxHHX npeoCpas3oBanuil mOXyqUM:
g;y - H~n (E:r°+ kj‘) e T Er[U-X"_)n = CTE‘;” (2.17)
e bo=X,-U; X =RX,; K=RK.; C=(R)7C; H < RH R'=

=d4§9{’; [”n),,, } - @/u)“ - Marpuma nopazka m-1 ,molydueHRas
¥3 H, BHYepkuBaHWeM I-# cTpoxs u I-ro croaGua. JpaBHEHND
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(2.17) cooTBeTCTBYyET MHOXECTBO € nonoxenuit paBHOBECHs, Ha
KOTODOM

&) =(x)=0; le-Z, |-la-z]c§=2 . (2.10)

3zxecs (X) -Bex'rop-cwonden.nonyqeunﬂﬁ us X _BHUEDPKUBAHUEM
I-ro aneuenma,:z: u &, -pNeMEeHTH BEKTOPOB X 8 Lo

OyHKIMD Jlﬂnynona Budepen B BUZE

- E)PEL, (2.19)
n0TPeGOBaB AONONEMTENBHO OT MaTpuuy A~ ,uTo0H F- d(aj [ 1( P},, 2,
(P),>0. Torza
av, = - (B (P-F.) (E)+ 2(6) Fk+ KTFLE, ;
M= KIPEH, .
B cooTBETCTBUN C AWCKPETHHM aHanoroM TeopeMmu EK.la-Camns

uroxecrso (& pammOBecHHX cocrosmEmit cucrems (2.I7) acuMmTOTH-
YEeCKHM YCTOUUYMBO B HENOM, ECIH

av,=0, §°e(§- a7y, <0, §°¢€ (2.21)

3 (2.20),(2. I7) B onpezeneHus ¢ caexyer, 4TO OepBOe M3
IByx ycaoBuit (2.2I) Bcerga BHIONHAETCH. [[poBepKa BTOPDIO yCIO-
Big (2.21) aHaNOTWYHO .NpEeZHAYUEMY OPUBOAWT HAC K IeoMeTpaAuec-—
KOif 3azaye: HaiiT¥ yCIOBUA, IPU KOTODHX m.-nepuuﬁ napaGoonz

(g.zo)

E:)(P-F) (B:)-2(E)) k= Kk ; T=F o (2.22)
41 K—/(/ £ ol

He CONpUKacaeTeyg C lmocxocnn ¢ E' =6 (pmc.3, 6) .Kak u panee,
peuncHne 3To#f 3azauM NpUBOAMT K HepaBeHCTBY (2.II). Omyckas
IPOMCRYTOYHHE BHKIAZKM (A@HANOTUYHHE BHICIHEHHHM B OCHOBHOM
cryuae), 3anpmeM BHpaweHUEe AAA QYHKIUH f(é‘)

feus “L{ & (R) [, (B), (p-7) (), JR), + 2208
& (C)(P-), ’(c)} C)(p-F)] (A (R) ,

by () k -aneuear BeKTopa A .
<I>ymcxma (2.23) oGpamaeTca B Hy:b Hpu /6 /<4 ,moaTOMy B
npocTeiimeM KpMTUYECKOM ciayyae (HE3aBHCHMO OT BEJIUUMHH L )
HepaseHCcTB0 (2.II) ZOCTATOYHO MPOBEPUTH AUMB NpH [6 [>a.
JononsuTensnoe yclnosue (2.6) B NpocTeiimeM KpUTUIECKOM
CIyyae NOPUHUMAET BUZ
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(P-#),, > 0. (2.24)
C yuéToM NOCIEZHMX 3aMedaHuil cHopuMyIMpyeM OKOHUATEHABHHI
pe3yIpTaT: B mpocTeitmeM Kpuruueckou ciyuae maozecrso & pas-
HOBECHHX cocTosfHMil cucreMy (I.6) aCUMOTOTHYECK. YCTOUUYNBO B
LeJI0M, €CI¥ MIpH lo"|>4 BumomHeno ycnosue (2.II) ¥ BHYTDM Kax-
ZOTO MHTepBajla HempepuBHOCTH (yHKmUM (2.23) MOXHO yKasaTh XO-
TA OH OZHO 3HaueEWe © ,IpM KOTOPOM BHIONHAETCH HEPaBEHCTBO
(2.24).

Kpurnueckuil koa@duimenT nepezasm HIY.lpexcrasuu (I. I) B

Buge Wp)= k W,(s), rme mocrosHEAas k (HasoBeM ee Ko3(OuIMEH -
Tou nmepexauu HIY) pasma &m W(s) B ocHoBHON H &m sWe6) B

npocTeiimeM KpuTHIECKOM cnyqaﬂx Torza nepaseﬂcmno (2. II) npu=-
BOZUTCH K BUAY

E—/ > /f )], (2.26)

rze f(5) axomurcs mo @opuynau (2.I5) wm (2.23) ,ecmu Buecto
(I.I) mozcTaBUTH Mf(Q) .3 (2.26) cnexyeT,uTO0 KpUTAYECKUi
Ko3GdumuenT mepexaus,(T.e.HanMeHBUEE k ,OpH KOTODPOM HE COGID-
ZEHO yCIOBHE YCTOMUMBOCTH) COOTBETCTBYET HAWGONBNEMY UHCHY k ,
mpu koropou Pyuxumus f,(0) comepautcs B cexTope [0,;’] (puC.4).

AlconpTHas yCTOHYMBOCTE DABHOBECHHX COCcTOsHMil. Cucrema,
cocToAWaA W3 HeauHedHOTO 3aneMmenTa (HI) u ammelino#t wacru (I4),
Ha3HBaeTCA alCONNTHO YCTOIUMBOHA, €CIU OHAa acMMOTOTHIECKM yC -
TO{YWBA B NENOM IIpY BCEX XapakTepucTurax HI, DpuHazlzexamux He-
KOTOpOMY xnacc324’ .B nccnezyemoit cucreme (puc.l) mHemuneit -
HHM 3IeMEeHTOM fABAfeTCa [M,cBoficTBa KOTOPOT'O HOIHQCTHN ONpeZe-
nspTcA TpeMsa xapakrepuctuxauu: (I.3),(Il.4) n (I.5). doaTomy
3azayy 00 aGCONWTHOX yCTOWUMBOCTH 37ECH MOXHO PACCMATPUBATH
B TpPeX DA3IMYHHX NMOCTaHOBKax: I)uwaBecTHH (I.4) um (I.5),Tpe-.
Oyerca Hailtm xaacc zomycTumbx Jysxmait (I.3);2)masectrn (I.3)
n (I.5),TpedyeTca HaiiTé KTacc AOMYCTHMEX 3aKoHOB YIM (I.4);
3)ussectHd (I.3) 7 (I.4), TpeSyeTcs HATH KIacC AOIYCTMMEHX
3axoHoB MM (I.5)

Jna yopomeHMs 3a3zadd IIONOXUM B OCHOBHOM ciayduae =0
Torza yci1oBAe yCTOHUMBOCTA B LENOM IDUMET BUZ: :

/(r/>/f(0')/, a<[s]<4,. (2.27)

I-a mocTaHoBKa 3a7auX 00 aGCOAWTHO! yCTONUMBOCTH TPUBU-
IMpHA W NONHOCTBN pemaeTcd ycaosueM (2.27). B caumou zerne,ec-
Jn pM HEKOTODOM A=4 ycrozue (2.27) BHIOMHEHO,TO OHO Oy -
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ZET BHIONHEHO ¥ OpM BCEX 4>4, .llocreaHee HEPaBEHCTBO MONHO-
CTHD pemaeT 3aZayy, T.K. OHO ONpeZenfeT MCKOMHH Kiacc QyHKmmi
(103)0

JIns pemeHWs 3afa4yMm BO 2-if ¥ 3-ii MOCTAHOBKAX MpPEACTaBUM
OyEEIED j)(cs') mpy 6>0 B caexynme#t dopue:

o) = 9,[FE)$C)] - 1, (F1), 620 (2,28

lpg F> o0 ®m npm f—-o nccileayeMas cucTeMa pasMHKaeTcs.llo
ycnosup HIY ycroifuusa (Uau npezenbHO ycrommnaz ), no3TOoMY
ZomycTuMuii Kmacc dyskmu#t F(c) orpaHMueH CHH3Y,a f(c) =-cBepxy.
PaccMOTPHAM ypaBHEHUE

L pARg) . e (2.29)
COOTBETCTByLNEE TI'paHULE 0GIACTH yCTONYMBOCTH,00ecneunBaeMoii
HepaBeHCTBOM (2.27).Ecnu yexoua (I.5) 3agaHa,To ypaBHEHUE
(2.29) HeaBHO 33zaeT QyHROUD

&= fpu(F), &=o. (2.30)
dyHruyg (2.30) ompeZeleHa ¥ MHOMOXUTENABHA HA MHTEpBale
Fe [‘Z,v) ,oAe K >0 -HamGombmee 3HAueHHe A ,IpH KOTOPOM
HapymapTca ycaoBua (2.6) mmm (2.24). oaTOMy CymecTBYeT HOMO-
EMTeNBHAR o6parHas Gymkmaa K (c)= ﬁ,; (c), ¢ momompn KoTOpPOH
ycrosue (2.27) MOXHO OPHBECTH K BHAY:

Fls)> k()= p (5], o<(42] (2.31)

lloryuenEOe HEDPaBEHCTBO OnpeZedseT MCKOMHE Kiacc PyBKuuit
(I.4).Asanorugso kxacc gomycrumux @yexumit (I1.5) onpezensercs
HEePaBEeHCTBOM

f(f)< zfﬁ.) =f;4‘ [G)’ 6< (4,4,]. (2.325

O6paTHHE (QYHKIUM f.,:, [5) u ﬁ,} (6‘) B ofueM cIyyae He yAaeT-
cA HallTm B aHaINTUYECKO# Qopue,0fHAKO OHA JETKO HAXOAATCH
I'pacpx/mecmfr26 .

00nacTs acMuITOTHYECHOA ycToiiuusocTu.Ecau ycaoBue (2.27)
sapyuwaercqA mpu 6=4,& (s,4,] ,T0 uccmexyeuas cucremMa He OOIa-
I2eT acUMITOTHYECKOH yCTOHYUBOCTED B ILEeNOM, HO OHA MMEET 00—
aacts (B npocrpascrse £7 ) acuumroTnyeckoil ycroiiumsocTy.Omer-
Kol aTDii o6nacTy ABAASTCA HauOONbIAf U3 OTKPHTHX o6JacTeil,or-—
DaHNYEHHHX NOBEDXHOCTSMU V= B3=consl ¥ yZOBAETBODANINX HEpa =
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BEHCTBY /o /< 4, JHeTpyZHO MOKasaTh, 4TO B OCHOBHOM ¥ NIpOC -
. TeiimeM KpPUTHYECKOM CIydagX, COOTBETCTBEHHO, BEINYMHA p Dpas-
HAETC

wssatlon; o 2,33
Pzre’ P Eee (2,33)

3aMeuanue OTHOCHTENBHO BHOOpa (Qynxnum JanyHosa.ls msmo -

EeHHOTO CIeZyeT, 4TO HepaBercTBa (2.3I) ¥ (2.32) olecnedunBa—
pT 06IAaCTH YCTOHUMBOCTH IpU ANOHX P>0 « (@fﬂ,coornewcrnenao.
Hemnoxme pesylsTaTH ¥ CYNECTBEHHOE YIPONMEHWE BHKIAZOK MOZHO
OOXYy4YXATH, €CHM BHOPATH

P<5*S, P=S5'95, (P),=38'S nw B)=525, (2.34)

rme S -uarpunma, npeoSpasymmas warpuny A miu (/)}“ ,C00T -
BETCTBEHHO,K HOpMAXBHOHl XopAaHOBO# Gopme; S -MaTpuua,3pMu-
TOBO CONDHAXEHHAA ¢ S ; 2 -AWArOHAIBHAA MATDALA C NONOXH —
TeIBHHMHA 3Jieuen!aunII 17,18,20-22,26

3. JCTO#IUBOCTH cmmonapxoro BHHYXZICHHOT'O DERUMA

PaccMoTpUM CHCTEMY (I,sj B NnpocTeilmeM KPUTHUYECKOM CIy -
4yae npu u/l‘)=w,t (pexuM CIeXeHWs 3a JMUHEHHO HapacTanIuM
3aZanmuM CUTHamoM). C momomsp mozcraHoBku X = U -£, mpn -
Bezen (I.6) K caezyomeMy BHUZAY:

~1

E. =H(&+L,), L=H'U

n n+t

~U, - Kn. (3.1)

MOEHO NMOKa3aTh,uTo Npnm « (%)= <> 310 ypaBHeHWEe He 3a-
BUCUT ABHO OT [, ¥ ANA HErO CymECTByeT OPEAENBHOE DaBEHCTBO

&m £, = & rae £ -uncmosoit BexTOD 7 .Cornacto (3.1I)
BEKTOD £, zmnxen yZOBIETBODPATE DABEHCTBY :
-1 3 g
H-DE <L, , L =tlml,. (3.2)

MoXHO MOKa3aTh,uTO BCETAA CYLECTBYET UHTEPBAIl We [« w,)
( @, > ‘0120) 2 npu KOTOPOM ypaBHeHMe (3.2) uMeeT 0 Kpaiineit
uepe OZHO pemenne’, [IyTeM MOACTAHOBKA £ = E;E,: nepexecTuM
HayaJ0 KOOpPAWHAT $a30BOT'0 MPOCTPAHCTBA B TOYKY, COOTBETCTBY-
DIOYD UCCAEAJEMOMY CTANMOHADHOMY DEXUMY.B HOBHX KOOPAWHATAX
BMeCTO (3,I) momyqum:

ESmH (ELL) Lo (R)E 1 Gn CE-ES),  (333)
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AHaANOTHYHO NpeAHAymeMy npeolpasyeM ypaBHEHHE (3.35, yu-
HOEMB €ro clieBa Ha marpuuy (2.I6):

£ =l (B+L), 6,=C(E-E)~.-CE, (3.4)

rIe L’ RL, ErRE_ (ocrambEne 0G03HAYeHMs COOTBETCTBYDT IDH -

HATHM paHee). YpaBHoHME (3.4) aHATOTHUYHO ypaBHEHUD (2.I7),07-

Hako BuMecTo MHOXecTBa (¥ paBEOBECHHX COCTORHMIA cucrTeMa (3.4)

UMeeT OZHYy PaBHOBECHYD TOYKY £T==0 . [lpu BuGOpe GyExmau Ja-

myHosa B Bufe (2.I9) ycmosue ycroifuuBoCcTH (aHANOTWYHO OPEAHAY-
meMy) moxyuum B Buze (2.I1I), rze

o) =g @ (L AU« 09
“” 7 (c)(p-Ai (@) + (€] (p- (A, (5,

~
~

7o ° MM 2
anecEOL 'Ln/o;s e M'Mw/o;so'_-o':' {  -smement
BexkTopa L° .

4.ugegensnaa OTDAHAYEHHOCTH (EEGCHHaTHBHOCTB)

B Tex cryyasx,KoTZa yCIOBME acCHMATOTHYECKOH ycToifuusoc-
TH B [EJOM He BHIONHAETCH, B CHCTeMe (2.2) BO3MOKHO CymECTBO-
BaHUE CTAUWOHADHHX NEePHOZNYECKUX PEENMOB., TOouHaf M NPUOIUERGH-
Hasgd METOZMKA aHalau3a TaKWX PEeXNMOB Ha NDaKTUKE Mamo adfexTHB-
Ha, TaK Kax OHA I'POMO3ZKA M TpeOyeT anpUOpPHHX CBeZeHu# o dop-
Me OepUOZUYEeCKOTro mpomecca (YHMCIO MMIYyAHCOB Ha MOXYNEPHOZ,NO-
PAZOK.MX UEepeZOBaHUA W T.H.) WIA Nepedopa BCEX BO3MOXHHX Ba -
pnaHTOBIO’I '28.qumne pes3yaAsTaTH ZaEeT MeTOZMKA MCCIEeZOoBaHMsA
IpezieNpHO! OI'DAHUYEHHOCTH (AMCCUIATUBHOCTA) ABTOMATHYECKHX
cucrex. k. *

Cucrema (2.2) HasHBAeTCH OPEAENBHO OTpaHMUEHHOM (ZUCCH -
naTuBHOR) B mENMOM, €CHM CYMECTBYET TaKOe KOMIAKTHOE MHOEe -
ctB0 & (AQCHMITOTWYECKM yCTONUMBOE MHORECTBO), UTO IDH IR -
O:X HaUANBHHX YCHAOBUAX Xn—’ (1 npn n-»o ,Ha OCHOBaHHM
INCKPETHOTO aHamora Teopemn T.lomusaBw cucrema (2.2) OpeZens-
HO OrpaHyYeHa, eCA¥ O’DAHUYEHO MHOXESCTBO ptg ,Ha KOTODOM
Gysxoua (2.5) neompnua'rensaalI 29;Oneaxoﬁ aCHMITOTHUECKH yC-
ToflunBoTO MEOEeCTBa &  #BIgeTCA 3aMKHYTas 06TacTh orpaan -
YeHHa# NOBEPXHOCTED U, =/ [ 0< pr=conl), onncnxanmenﬂ? Vg
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llpexcraBuM Marpuny F xnagpamnuﬂoﬁ dopuH (2.4) B BuneFéCﬂQ
¥ npeoGpa3yeM ypaBHeHue (2.2),yMHOEUB ero ciesa Ha Q:

Kﬁ‘?”ﬂ"[ﬂ*QKu‘), Y=Q&: D

m
B mpocTpaHCTBE Eo’ [ K} MOBEPXHOCTH U,= /! IPEACTABNALT
coGoit cepy u,creroBaTeNIBHO, IpaHUUel acMMOITOTUYECKA yCTOMH-
YUBOT'0 MHOEECTBA ABAsgerca cPepa,onncaHHafg BOKPYI MHO-
11,29,30 ! i
XecTBa 9} QI8 cucTeM 2-ro mOpsaAKa 3TOT BHBOA IIpH
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ANALYSIS OF NONLINEAR A.C. CONTROL
SYSTEMS
W. Fieguth and D. P. Atherton

Department of Electrical Engineering
University of New Brunswick
Fredericton, N. B., Canada
1. Introduction

A.c. carrier control systems may be classified as linear systems,
nonlinear systems with nonlinearity in the low frequency portion of the
system, or nonlinear systems with nonlinearity in the high frequency
portion of the system.

Linear a.c. systems have been widely studied and are well under-
stood. A large bibliography is given by‘ Iveyl. The use of envelope
transfer fum:t:i.ous2 allows any linear a.c. system with sinusoidal carrier
signals to be transformed into an equivalent d.c. system to which any of
the numerous methods of linear analysis can be applied.

If nonlinearity is restricted to the low frequency portions of an
a.c. system, envelope transfer functions can still be found for the
linear high frequency links. The equivalent d.c. system in this case
is nonlinear.

Systems with nonlinearity in the a.c. link, simply called nonlinear
a.c. systems hereafter, are not immediately reducible to equivalent d.c.
systems. They occur frequently in practice, since modulators and demcd-
ulators may be inherently nonlinear and a.c. amplifiers are subject to
saturation. A good understanding of and suitable methods of analysis
for such systems are therefore of practical importance. However, very
little work on this problem has been reported.

Krasovskii gives the only known treatment of a.c. systems with non-
linearity in the a.c. link‘a’u- His describing function method for this
case consists of dropping frequency gomponents of the order of 20 and
higher at the output of the nonlinearity, where Q is the carrier
frequency. Unlike the ordinary describing function method, this method
is cleimed to become exact in the limit as Q —=.

This method is walid for a special class of self-oscillations in
two-loop systems having a common nonlinear a.c. link to which Krasovskii
restricts himself. However, for two-loop systems with more general
inputs and for any single loop system Krasovskii's method, although
remini;ag exact for high carrier frequencies, is not a quasilinear

method and becomes extremely difficult to implement.
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In this paper a general guasilinear method is presented for the
analysis of nonlinear a.c. systems, and some special properties of the
linearized system are discussed and illustrated by means of examples.

Some special modes of operation unique to nonlinear a.c. systems are
also discussed and illustrated with tests on a small a.c. position control

system.

2. Quasilinear Analysis of a Nonlinear a.c. Process
2.1 Reduction of the General Nonlinear a.c. Process

A completely general nonlinear a.c. carrier process is shown in Fig.
1, where Gf(s) is a filter removing frequency components of the order of
{) and higher. In corder to simplify the analysis of systems incorporating
such processes it is desirable to replace Gl(s) and Gz(s) by equivelent
linear blocks G:'L(sm) and Gé(sm) outside the a.c. path, as shown in Fig. 2.

The following conditions obtained by setting a(t) = a'(t) and y(t) =
y'(t) in Figs. 1 and 2, govern the transformation and shifting of the
linear blocks:

(a) Either My
outside the range of frequencies (/2 < w < 3{/2, where i = 1, 2.

=0 for all k # 1 or G;(jw) is essentially zero

~(b) Over the range of frequencies Q) - (wm)na.x <w<Q+ (wm)m,
Gi(jw) has either con_sta.nt gain and linear phase characteristics or even
symmetric gain and odd symmetric phase characteristics about w = Q.
It has been assumed that the input frequency is restricted to the
range 0 £ w < (wm)m < /2. The parameters of the transformed system
in Fig. 2 are easily shown to be5

My = 8 My (1)
Gi(sm) = Gi(sm + 30) %if |Gi(jw)l is even symmetric (2)
8, =0

ik

Gi(sm) r iy exp(msm) if |Gi(;jw)| is constant (3)

85k = by a¥8 G, (i)

The above conditions governing the shifting of linear blocks out of
the a.c. path are not excessively restrictive because most a.c. networks
do have the required symmetry about Q. + is useful, therefore, to
consider the basic nonlinesr a.c. process shown in Fig. 3, where for
generality my and w, are not restricted to be sinusoidal.

2.2 Linearization of the Basic Nonlinear s.c. Process

The process in Fig. 3 may be regerded as a multi-input nonlinearity
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y=a(x, m, my) = m, f(xm) (%)
This nonlinearity can be characterized by its equivalent gain to the input

signal, x, which is given by
— 2 —— 2
K = xy/ x° = xu, f(xml) / x (5)
where the bars denote time averaging. Writing (5) as an ensemble average,
Sl rPP
i J]u xm,, f(xml) p(x, o, m2) dx dm, dm, (6)
and making the reasonable assumption that the input, x, is unrelated to

the carrier signals, gives

K= 00 [ _xNx) p(x) ax (7
where
N(x) = fuf _mp £(xm) p(my, my) dmy du, (8)

N(x) is a modified nonlinearity equivalent to the entire process in
Fig. 3 and allows any nonlinear a.c. system to be reducéd to an equiva-
lent nonlinear d.c. system.

Although this completes the formulation in principle of a method of
analysis of nonlinear a.c. systems, it is interesting to consider such
systems in greater depth. They possess a number of properties not found

in ordinary nonlinear systems, which may be of practical importance.

3. The Modified Nonlinearity

In this section some of the propertieé of the modified nonlinearity,
given by (8), are considered.

Although it is possible to formulate expressions for the joint
probability density, p(ml, m2), of common carrier signals and toc use
these to evaluate N(x) from (8), it is often simpler to obtain N(x) using

the time average equivalent of (8),

N(x) = m, f(xm15 ? (9)
where x is considered fixed during the averaging process.
Fairly simple expressions for N(x) in terms of the original non-
linearity or its equivalent gains result for common carrier signals.

For example, if the carriers are square waves,
mi(t) =M, sgnlcos(Qt + wi)] (10)
averaging (9) over one cycle of the carrier gives

N(x) = MZ[(W + o - 2®2)/2W][f(M1x) - £(- Mx)] (11)
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If the nonlinearity is odd and ® = s (11) becomes
N(x) = M, £(Mx) (12)

That is, the form of the original nonlinearity has remained unchanged,
but it has been scaled along its input and output axes.

In the much more common case of sinusoidal carriers
m (t) = M; cos(ft +@,) (13)

(9) becomes

N(x)

M, <:os(qo2 - "4)1) cos {Qt f(le cos Qt)

- M, sin(CP2 = CPI) sin (t f(le cos i)
M Mx- [cos(w2 = Cpl) Re K(le) + sin(t',‘o2 - Cpl) Im K(le)]/Z
(14)

where Re K(A) and Im K(A) are the in-phase and quadrature portions of the
equivalent gain of the nonlinearity f(a) to an input a = A cos wt.

Equations (11) and (14) make the determination of N(x) trivial for
sinusoidal or square wave carrier signals. Two very general properties
of N(x) are discussed and illustrated below.

3.1 Qdd Symmetry

The modified nonlinearity is almost always an odd function. This is
seen by inspection from (11) and (14) for square wave or sinusoidal
carrier signals, but can be shown to be true more generally. From (8)

Nex) = [ [ m, £(- xm) p(m;, m,) am dm, (15)
Setting M = - o gives
Nx) =] [ my £G) B(- uy my) A(-w) dm, (16)

Comparison of (16) and (8) shows that N(x) is an odd function, that is,
N(-x) = - N(x), if

fm2 p(my, m2) dm, = f m, p(-m; m2) dm, (17)
Since o, and m, are periodic signals with the same tEi.me period, the
point (ml, m2) traces out a closed trajectory in the w -m, plane. The
condition given by (17) is equivalent to requiring this trajectory-to be
symmetric through the origin or about the o, axis. This follows because
p(ml, m2) is a line density of probability along the trajectory.
It is easily shown that a sufficient, but not necessary, condition
for (17) to hold is that the Fourier series of o and o, contain no even

terms. Most carrier signals satisfy this condition, resulting in odd
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symmetry for N(x) regardless of the nature of the nonlinearity f(a) in
Fig. 3.

This symmetry of N(x) affects the type of subharmonic oscillation
which is likely to occur in a nonlinear a.c. system. Although there is
no rigid rule relating nonlinearity symmetry to possible orders of sub-
harmonic oscillations in a nonlinear d.c. system, there are strong
tendencies. A system with an odd symmetric nonlinearity tends to have
odd order subharmonics, and a system with a strongly asymmetric nonlinear-
ity tends to have even order subharmonics. As a qualitative test of the
symmetry of nonlinear a.c. systems an analogue computer simulation was
carried out of the system shown in Fig. 4 in both its a.c. and d.c.
versions, that is, with and without modulators. The d.c. system exhibits
very strong, spontaneously starting second order subharmonic oscillations
over a wide range of input frequencies and amplitudes. For the a.c.
system no second order subharmonic could be found for any operating

conditions.

3.2 Single-Valuedness

If the modulator input is sufficiently slowly varying with respect
to the carrier, the modified nonlinearity, N(x), is single-valued. This
is fairly obvious. A double valued nonlinearity with a modulated carrier
input will impart a phase shift to the carrier, not to its slowly varying .
amplitude.

In analogy to (6) the quadrature portion of the equivalent gain of
<he basic nonlinear a.c. process in Fig. 3 is given by

®
&, = 032 [[[ % my £(xm)) p(%, m, m)) a% dm dum, = 0;° J_#8G) p(h) @
; (18)
if x is independent of m, and .

For sinusoidal and square wave carrier signals N(x) is given by (11)
and (14), and is independent of %x. Therefore K; = 0. The same result
holds for other carrier signals.

Although the only condition on x in deriving (7) and (18) was that
x be independent of m and m2, it is also necessary, in the case of
doucle valued nonlinearities, to restrict x to be slowly varying. Other-
wise f{xml) in (11) cannot be described analytically, and it is improper
to consider x fixed during the averaging process in (9).

In order to determine how larg: the ratio of carrier to modulator
uency must be to ensure a purely real equivalent gain of a

basic a.c. process having a double valued nonlinearity, a series of
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direct analogue computer measurements was carried out for the case of a
relay with hysteresis. The results of these measurements are shown in
Fig. 5. It is seen that a frequency ratio g— of the order of 30 is
necessary to reduce the gain angle to around"10.

The theoretical equivalent gain expression for this relay computed
from (7) using N(x) given by (14) is

K_ = 8[E'(1/x) - K*(1/0))/r (19)

where E' and K' are complete elliptic integrals. This curve is also
plotted in Fig. 5 and agrees well with the measured magnitudes for

9)
—
£0)74

™ It can be shown that the sinusoidal equivalent‘ gain of an a.c.
process with sinusoidal carriers and a piecewise linear nonlinearity can
always be expressed as a finite series of elliptic integrals. However no
such closed form solution appears possible for Gaussian input signals.

The fact that the high frequency multiplicative carrier signals
modify the nonlinearity so as to make the low frequency input see only a
single-valued characteristic is an interesting general property, analogous
to an identical effect for additive high and low frequency inputs to a
double valued nonlinearity.6

L. Closed Loop Behaviour of Nonlinear a.c. Systems

Predictions of the behaviour of nonlinear a.c. systems can confidently
be made using the equivalent nonlinear d.c. system described above provided
one can assume that the modulating signal is relatively slowly varying
with respect to, and is independent of, the carrier signals.

However, as in the case of nonlinear d.c. systems, which may exhibit
effects such as subharmonic oscillations, which are not predicted in a
simple describing function analysis, nonlinear a.c. systems may have
modes of behaviour not predicted by a quasilinear analysis of the equiva-
lent nonlinear d.c. system if either of the above assumptions is not
valid. Two such special effects which are unique to a.c. systems having
nonlinearity in the a.c. link are discussed and illustrated below with
tests on a small a.c. position control system.

4.1 gelf-QOscillations at Submultiples of the Carrier Frequency
If the modulator input in a nonlinear a.c. system has the form
x(t) = X cos[(@/s)t + 8] (20)

then for a sinusoidal carrier the modulator output, which is the non-
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linearity input, is given by

a(t) = M X cosg[(s +1)/s] Ot + eg

+ M X cosE[(s -1)/s] Ot - 9; (e1)

Thus the nonlinearity has two sinusoidal inputs whose frequencies are
related by the ratio (s - 1)/(s + 1). In general, therefore, the non-
linearity output components at the frequencies (s + 1) /s and (s - 1) /s
are not in phase with the corresponding input terms. For the relevant
large values of s these phase angles are small, but they do cause self
oscillations to occur at submultiples of the carrier frequency where the
phase shift through the iinear elements is slightly different from 180°.
Since this deviation is small the error involved in finding the frequency
and amplitude of oscillation assuming unsynchronized behaviour is slight.
These carrier-synchronized oscillations have been observed in analogue
computer simulations with values of s as high as 40. They are similar to
the ripple-instability oscillations which have been observed in pulse

7

modulation systems' , but are of much higher order.

4.2 Low Frequenc utput Response Produced b i -equency Inputs

In a linear a.c. system with no dynamic elements in the a.c. path
the modulation and demodulation together are equivalent to a multiplicative

sampling signal
s(t) = ml(t) mz(t) = Mle[cos @ + cos(2ft + 9)]/2 (22)

where the carrier signals are given by (13) with QDl = 0 and CPZ =®. In
analcgy to a sampled data system a low frequency output signal is
obtained for inputs w near 2Q. :

This effect extends to lower input frequencies in a nonlinear a.c.
system due to the production by the nonlinearity of harmonics and inter-
modulation frequencies. In particular if x(t) and ml(t) are assumed
sinusoidal the nonlinearity input is the sum of two sinusoids and its
output b(t) can be expressed in & series form. Inspection of the series
reveals that b(t) contains output frequencies near {1, which yield low
frequency terms on demodulation, for input frequencies

a, ~[EE852| (23)
where o'sk is the output coefficient for the nonlinearity. To clarify
the above, suppose a hHypothetical nonlinearity is such that 013 = O'Ol =1
and 011 is the only other non-zero output coefficient. Then putting
s =k =1 in (23) gives wm'z Q/2. That is, input frequencies near (/2
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to an a.c. system containing the above nonlinearity will give rise tc low
frequency outputs with amplitude dependent on 011- Figure 6 shows a
sketch of the form of the frequency response magnitude of such & system
with an arbitrary linear plant.

The above effect has been clearly demonstrated by analogue computer
simulations. For common hard spring nonlinearities low fregquency outputs
are prevalent for input frequencies ® near 20/(2n + 1) and Q/2n for

integers n up to 4 or 5.

5. Tests on an Acutal a.c. System

A block diagram of the small a.c. position control system is shown
in Fig. 7. The angles denote the phases of the carrier signals, whilst
the nonlinear element and the parameters Q and kT were open to choice.
The transfer function G(s) was added to provide an additional time
constant sc that self oscillations occurred for low values of k.. No
attempt was made to determine a sophisticated nonlinear model fér the
servomotor as most of the tests performed were of a qualitative nature.
The linear transfer function given for the motor in Fig. 7 was determined
irom a frequency response test in which a control phase voltage comparable
to that occurring in the self oscillation experiment was used. A simp-
1ified block diagram of the system,with a saturation nonlinearity as
used in all the tests, is shown in Fig. 8.

.1 Step Response with an Asymmetrical Nonlinearity
The response of the system of Fig. 8, with parameters of bl Shil o5,

i

b2 = 0.5 and K = 5 for the asymmetrical saturation and a = 50, kT =350
for the linear elements, is given in Fig. 9 for step inputs of approxi-
mately 80° in either direction. This symmetrical output may be compared
with the step response in Fig. 10 of an approximately eguivalent non-

linear d.c. system obtained by analogue simulation.

5.2 Self Oscillstions

The system was set up with the parameters bl = b2 =.,0.03, K = 200,
a = 24 and k= 0. The resulting self oscillation was found to have an
amplitude of 3h° at a frequency of 3.0 Hz, and was shown to be phase
locked to the carrier at & frequency £/20. This compares with a theoret-
ical solution of 28° at 3.34 Hz obtained using the theory presented
earlier which assumes the self oscillation and carrier are unrelated.
As the conditions for shifting given in section 2.1 are satisfied by

G(s) in this example it was replaced by its equivalent transfer function
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s +Q
m

Cotag) = (25)

preceding the modulator, whilst the equivalent gain of the resulting non-
linear a.c. process was calculated from (14) and (7).

The parameter a was varied in order to study the locking phenomenon
in more detail. It was found that the oscillation remained at the fre-
quency /20 for & in the range 22.9 to 24.9, which corresponds to a
change in phase of about 2.5° for a signal of frequency 0/20 through the
linear transfer function of the system. As a first approximation this
can be taken to be the maximum possible angle of the describing function
for s = 20.

The relatively large discrepancy between the predicted and measured
frequencies of oscillation given above is probably due to inaccuracies
in the transfer functions used to model the system components. This is
supported by analogue computer studies where differences between measured
and computed values are found to be compatible with a describing function

angle of 2 or 3 degrees.
5.3 equency Re nses to Frequency Inputs

To demonstrate the behaviour discussed in section 4.2 an electrical
demodulator and modulator were added to the system imnédiately preceding
the saturation nonlinearity. A narrow band Gaussian noise near 40 Hz, that
is 2Q/(2n + 1) with n = 1, was applied to the input of the electrical
modulator. Figs. 11 and 12 show the measured low frequency random out-
puts of the system with parameters bl = b2 =2,K=1L4 a=100 and kT =1
for different noise levels.

For low levels of noise there is little or no output. This is
expected for a system with a saturation characteristic because the effect
is nonlinear and an input large enough to cause strong saturation is re-
quired to generate the harmonics and intermodulation components which

cause the low frequency output.
6. Conclusions

A method has been presented for the analysis of a.c. systems with
nonlinearity in the a.c. link. Dynamic elements in the a.c. link are
transformed and shifted to the low frequency part of the system. The
remaining nonlinear a.c. process is equivalent to a single nonlinearity.
Thus a nonlinear a.c. system can be reduced to a nonlinear d.c. system,
allowing exact or quasilinear analyses by known methods.

A number of unique properties of nonlinear a.c. systems have been
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discussed and illustrated. These include inherent symmetry of the system,

a tendency of self oscillations to synchronize with the carrier, and the

low frequency response of such a system to high frequency inputs, which

can render it less immune to noise than expected.
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