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A nonlinear equilibrium equation of Mises truss was derived in the paper. It was 

differential equation with respect to time due to the fact that the material from which the 

rods were made was viscoelastic. The six parameter rheological model was used for this 

material. These parameters were identified in creep bending test. The identified 

parameters were used in numerical example inserted in the paper. In this example the 

critical times for various levels of load were calculated. The differential equation was 

solved by means of numerical procedure NDSolve from the Mathematica™ packet. 
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1. INTRODUCTION 
 

In the stability analysis of structural elements viscoelastic properties of the 

material are usually neglected. In the case of many materials it is correct because 

actually their properites do not depend on the time. Metals and their alloys do 

not exhibit rhelological properties in the room temperature. The creep in such 

conditions are not observed. Some materials encountered in the engineering 

practice creep and this fact has to be taken into account in the static analysis of 

structures and particularly in the stability analysis. Plastics are examples of such 

materials. The creep of structural elements made of such materials is so 

significant that it must be taken into account in structural calculations. It has 

great significance in stability analysis of shallow trusses, arcs and shells loaded 

laterally. Some examples of such structures are shown in Fig. 1. In this structures 

the critical load depends on the rise in the power of three. The creep causes drop 

of the rise and this leads to the significant lowering of the critical value of the 

load. The buckling is just the matter of time. It has to happen. If the load level 
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was reduced in advance the problem of determination of the critical time 

appears. It is the time which elapses between the moment of loading and the 

moment of buckling. 

The problem of stability of the Mises truss fabricated from the material 

manifesting rheological properties was solved in the paper analytically. It was 

shown how to obtain the critical time for the given load level. The whole 

procedure was illustarted on the example of the Mises truss fabricated from the 

polimethacrylate of methyl. The procedure of identification of material 

parameters was presented in the paper as well. 

 

 

2. STABILITY OF MISES TRUSS MADE OF ELASTIC 

MATERIAL 
 

Let us consider deformations of the two rods, plane truss known as the Mises 

truss. It was shown in Fig. 2. The shortening of rods as a result of the linear 

axial deformation may be determined from the relationship 
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All notations are indicated in the figure. 

If one assumes that the truss rise is small then the foregoing relationship 

adopts the simplified form 
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Fig. 1. Shallow space trusses, arches and shells 
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From the equilibrium condition written for the current configuration described 

by )(tH  the following relationship is obtained 
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when the small rise was assumed. 

In these relations T(H) means the value of external load for the current 

rise H(t), and N is the axial force within the rod. The force N can be calculated 

on the basis of the constitutive law as follows 
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From the equation (2) one obtains 
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This relationship was illustrated in the form of plot and shown in Fig. 3. 

It is just the nonlinear equilibrium path for the whole range of the load T 

and the rise H. The critical load corresponding to the limit point can be easy 

obtained from the condition 

H0H

l l

T

T(H)

NN

N N

ϕ0

ϕ

 
 

Fig. 2. The Mises truss 
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Substituting this result to the expression (4) one can obtain the final result for 

the critical value of load  
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It is the particular value of the load for which the truss suddenly jumps adopting 

the inverted configuration. It is just the classical snap-through. 

The formulae for T(H), Hcr, Tcr are far simpler if one assumes during 

derivations that the rise is small. In this case 
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The solution in this form presents Kliusznikov [1]. 
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Fig. 3. The elastic solution of the Mises truss  



STABILITY OF THE VISCOELASTIC MISES TRUSS 213 

 

3. THE MISES TRUSS FABRICATED FROM THE SIX 

PARAMETER RHEOLOGICAL MATERIAL 
 

The constitutive law for a viscoelastic material can be written in integral or 

differential form (comp. Findley et al. [2]). The differential form will be used in 

this work. For the material model of which is shown in Fig. 4 the constitutive 

law can be derived without any particular difficulties. It adopts the following 

form  

 εεεσσσσ &&&&&&&&&&&&
3213210 qqqpppp ++=+++ , (8) 

where: 
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and Ei are Yung module of spring elements, ηk – coefficients of viscous 

damping of Newton elements. The notation 
dt

d )(
)
.

( =  means differentiation with 

respect to time. 
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Fig. 4. The six parameter mechanical model of the material and the static scheme for 

the creep bending test 
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The equation (8) can be multiplied by the cross-sectional area A. 

Remembering that N=σ A one obtains  

 ( )εεε &&&&&&&&&&&&
3213210 qqqANpNpNpNp ++=+++ . (10) 

The relation (1a) has been obtained from geometrical considerations and now 

from this relation one can calculate 
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From the relation (2a) one obtains 
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where: T0 – the specified magnitude of the external load. 

Substituting expressions (11) and (12) to the equation (10) one can obtain 

the final form of the equation  
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where: 

 
3

1

3

00

1

3

0
33

2
,,

33 l

AEH
T

T

T
EHa

D

crD

cr

=== α
α

. (14) 

D

cr
T  is the instantaneous critical load, the load which will cause buckling 

immediately after applying it to the truss. The specified value of the load 

0T must be smaller then D

cr
T  from the obvious reason. It means that α 

coefficient must be smaller than 1. 

The equation (13) must be supplemented by the following initial 

conditions 
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p
H  is the instantaneous elastic deflection of the truss made of Hooke’s material 

of Young modulus E1. The value of 
p

H  one obtains equating the force 
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E should be replaced by E1. One obtains 
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and finally the equation of third order on Hp for given value of α 
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As far as the remaining initial conditions are concerned, it was assumed 

that the load was applied very slowly (quasi-static way of loading), hence  

0)0(,0)0( == HH &&& . 

The equation (13) is the nonlinear differential equation of the third order. 

It has been solved for given values of parameters by means of the procedure 

NDSolve from the Mathematica packet [3]. As the result of the solution the 

function H(t) in the numerical form has been obtained. When the H(t) attains the 

critical rise 
3

0H
, the procedure of the numerical solution becomes singular. The 

lack of the solution in the vicinity of this particular point was the reason of this 

singularity. The next point of the solution occurs at the distance 02H  in the 

inverted configuration. This particular value of the time for which the 

singularity occurs is the critical value of time which was looked for. 

 

 

4. IDENTIFICATION OF RHEOLOGICAL PARAMETERS OF 

THE MATERIAL 
 

The Mises truss was fabricated from the polymethacrylate of methyl. It was 

necessary to identify rheological parameters of this material. The six parameter 

model shown in Fig. 4 was chosen as the mechanical model of the material. The 

constitutive law of this model is described by the relation (8). In this equation 

Parameters pi and qi being the combination of Young module Ek and coefficients 

of viscosity ηk (compare relations (9)). 

In order to determine numerical values of these parameters the creep 

bending test was performed. The specimen in the shape of single span beam is 
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sown in Fig. 4. The beam was loaded by two concentrated forces 15 N each. The 

test duration was 24 hours. During the experiment, the beam central deflection 

was measured by means of inductive displacement transducer. Measurement 

were done automatically by the apparatus composed of the voltage signal 

amplifier, the analog-digital card, the computer and computer program written 

deliberately for this experiment. Results of the test were shown in form of the 

solid black curve shown in Fig. 5.  

There exist relationship between visco-elastic deflection w(x, t, K) and 

elastic deflection of the beam fabricated from the Hooke’s material with Young 

modulus E. The relation was derived in [2] and takes the form 

 ),()(),,(),,( 0 KKK tJExwtxwtxf
e== , (18) 

where: 

)(xw
e  – the bending of the beam made of elastic material of Young modulus E0, 

known for the given static scheme, ),( KtJ  – the creep function of the 

viscoelastic material, K – the vector of material parameters Ei and ηi. 

This relation follows directly from the so called Alfrey’s analogy (cf. 

Findley et al. [2]). 

For the static scheme shown in Fig. 4, the deflection of the middle point 

of the elastic beam can be obtained from the formula 
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The creep function for the six parameter model can be obtained in 

standard way (cf. Findley et al. [2]) from the constitutive law (8). It takes the 

following form 
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Fig. 5. Identification of rheological parameters of the material  
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All six parameters were determined by means of the numerical procedure 

purpose of which was minimization of discrepancies between measured and 

calculated deflections according to the relation (18). In this stage of the analysis 

procedures NonlinearFit and NonlinearRegression from the Mathematica 

packet were exploited. As the result the following numerical values for the six 

material parameters were obtained 
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The comparison between deflections measured in the creep bending test 

and the prediction following from the right hand side of the relation (18) with 

material parameters given above is shown in Fig. 5. 
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Fig. 6. Stability of the viscoelstic Mises truss  
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5. NUMERICAL EXAMPLE 
 

Knowing the actual parameters of the material and geometrical parameters of 

the truss shown in Fig. 6 the problem of the truss stability has been solved for 

various values of α parameter. As a result the family of curves was obtained. 

Some of them were shown in Fig. 6. Calculations were performed by means of 

Mathematica™ packet [3] (the procedure NDSolve were exploited). The 

procedure has became singular every time when H(t) attained 

mm80,19
3

== o
cr

H
H  indicating in this way the location of the critical time. The 

critical times for particular values of α parameter were presented in the table 

inserted in Fig. 6. According to the relation given above and for the particular 

data 
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where α  definies the actual level of loading. 

 

 

6. FINAL REMARKS 
 

The differential equation derived in the paper describes large deformations of 

the viscoelastic Mises truss and can be the basis for calculation of the critical 

time. The equation was very complicated and it was the reason that it was 

solved numerically by NDSolve procedure from the Mathematica™ packet. The 

family of solutions in the form of functions H(t) for various values of α 

parameter was the basis for determination of the critical time. The knowledge of 

it has great significance from the practical point of view. The critical time is the 

time durnig which the structure is able to sustain savely the external load of 

given value. When this time elapses the structure snaps suddenly adopting the 

inverted configuration.  

The analog procedure can be adopted for more complicated mechanical 

models of viscoelastic material. The identification of material parameters could 

be performed in similar way as it was done in this work. 
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STATECZNOŚĆ LEPKOSPRĘŻYSTEJ KRATOWNICY MISESA 

 
S t r e s z c z e n i e 

 
W referacie przedstawiono analityczne rozwiązanie problemu stateczności kraty 

Misesa wykonanej z materiału liniowo sprężystego. Na wstępie przedstawiono 

rozwiązanie problemu stateczności tej kratownicy wykonanej z materiału liniowo 

sprężystego. Rozwiązanie to w sposób istotny wykorzystano w dalszym postępowaniu. 

Następnie rozważono problem stateczności tej kratownicy przy założeniu, że pręty 

wykonano z  materiału opisanego sześcioparametrowym modelem reologicznym. 

Wyprowadzono nieliniowe równanie, którego rozwiązanie pozwala ustalić czas 

krytyczny, będący przedmiotem dociekań. Równanie to rozwiązywano numerycznie 

wykorzystując przy tym pakiet Mathematica. Parametry reologiczne materiału, z 

którego wykonano pręty kratownicy Misesa (był to polimetakrylan metylu) 

zidentyfikowano w zgięciowej próbie pełzania. Szczegóły procedury identyfikacji 

parametrów materiałowych wraz z opisem stanowiska badawczego zamieszczono w 

pracy. 

 

 

 

 


