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Leak detection and location play an important role in the management of a pipeline system. Some model-based methods,
such as those based on the extended Kalman filter (EKF) or based on the strong tracking filter (STF), have been presented
to solve this problem. But these methods need the nonlinear pipeline model to be linearized. Unfortunately, linearized
transformations are only reliable if error propagation can be well approximated by a linear function, and this condition does
not hold for a gas pipeline model. This will deteriorate the speed and accuracy of the detection and location. Particle filters
are sequential Monte Carlo methods based on point mass (or “particle”) representations of probability densities, which can
be applied to estimate states in nonlinear and non-Gaussian systems without linearization. Parameter estimation methods are
widely used in fault detection and diagnosis (FDD), and have been applied to pipeline leak detection and location. However,
the standard particle filter algorithm is not applicable to time-varying parameter estimation. To solve this problem, artificial
noise has to be added to the parameters, but its variance is difficult to determine. In this paper, we propose an adaptive
particle filter algorithm, in which the variance of the artificial noise can be adjusted adaptively. This method is applied to
leak detection and location of gas pipelines. Simulation results show that fast and accurate leak detection and location can
be achieved using this improved particle filter.
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1. Introduction

Pipelines are principal devices for natural gas transporta-
tion, and lots of large scale pipeline networks have been
constructed in many countries in the past 40 years. How-
ever, leaks, which are the main faults of gas pipelines,
can cause serious problems related not only to the envi-
ronment but also to economy. Therefore, many methods
and techniques for leak detection with various applicabil-
ity and restrictions have been proposed to prevent further
loss and danger (Muhlbauer, 2004). The primary meth-
ods include acoustic monitoring, optical monitoring, gas
sampling, soil monitoring, flow monitoring, magnetic flux
leakage, and dynamic model-based methods.

Acoustic monitoring techniques utilize acoustic de-
tectors to detect the wave of noise which will be gener-
ated as the gas escapes from the pipeline (Brodetsky and
Savic, 1993; Hough, 1988; Klein, 1993). This kind of
methods is simple and accurate, and can detect relatively
small leaks. However, a large number of acoustic sensors
along the pipeline are required, which will increase the
cost. If the leaks are too small to produce acoustic signals

at levels substantially higher than the background noise,
this technology will be useless (Sivathau, 2003).

Optical monitoring methods can be classified as ei-
ther passive or active (Reichardt et al., 1999). Active
methods involve the illumination of the area above the
pipeline with a radiation source, usually a laser or a broad
band source. Then the absorption or scattering caused by
gas molecules above the surface is monitored using an ar-
ray of sensors at specific wavelengths (Ikuta et al., 1999;
Iseki et al., 2000; Spaeth and O’Brien, 2003). In con-
trast to active methods, passive methods do not require a
source. They detect the radiation emitted by the natural
gas, or the background radiation serves directly. Optical
monitoring techniques can be used for moving vehicles,
aircraft, portable systems, or on site, and are able to mon-
itor the pipeline over an extended range. Moreover, they
have high spatial resolution and sensitivity under specific
conditions. But for most of these optical methods, the im-
plementation cost is high. A high false alarm rate is an-
other disadvantage.

Sampling methods are mostly used to detect hydro-
carbon gas leaks (Sperl, 1991). The sampling can be done
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by carrying a flame ionization detector along a pipeline or
using a sensor tube buried in parallel to the pipeline. Very
tiny leaks can be detected using these methods. But the
response time is usually from several hours to days, and
the cost of monitoring long pipelines is very high.

A small amount of a tracer chemical is injected into
the pipeline using soil monitoring methods. If a leak
occurs, this tracer chemical will seep out of the pipe,
which can be detected by dragging an instrument along
the surface above the pipeline (Tracer Research Corpora-
tion, 2003). The sensitivity of this method is high, while
the false alarm rate is very low. However, the method does
not function for exposed pipelines, and it is very expen-
sive because the trace chemical needs to be added to the
gas continuously.

Flow monitoring methods rely on pressure and/or
flow signals at different sections of a pipeline, mostly
only the extremes. When the pipeline operates normally,
there are some steady relationships among these signals.
Changes in these relationships will indicate the occur-
rence of leaks. Volume balance is the most straightfor-
ward flow monitoring method. A leak alarm will be gen-
erated when the difference between upstream and down-
stream flow measurements changes by more than an es-
tablished tolerance (Ellul, 1989; Furness, 1985). But be-
cause of the inherent flow dynamics and the superimposed
noise, only relatively large leaks, which exceed about 10%
for gas pipelines, can be detected. Fukuda and Mitsuoka
(1983), and Wang et al. (1993), respectively, formulated
the pressure gradients by using the autoregressive (AR)
model, and then they used the AIC and Kullback informa-
tion to detect leaks. Chernick and Wincelberg (1985) ap-
plied the autoregressive moving-average (ARMA) model
with the “variate difference method” to the pressure. Us-
ing this model, some improvement in the leak detection
capability could be achieved. Considering the fact that the
inlet flow rate measurements are unavailable and the con-
ventional mass balance techniques cannot be used, Dinis
et al. (1999) presented a statistical method to detect leaks
in subsea liquid pipelines. But this method has not been
tested in gas pipelines.

The magnetic flux leakage method periodically in-
spects the pipeline for damages using the device called
‘pig’, which is launched at the inlet and retrieved at the
outlet. The pig is a magnetizer-sensor assembly. It em-
ploys the magnetic flux leakage (MFL) technique for as-
sessing the condition of the pipe (Afzal and Udpa, 2002).
This method can detect pits as shallow as 5–10% of the
pipe wall thickness. The leak location is also very ac-
curate using this method. But it is functional only for a
seamless gas pipeline, and the pipeline cannot be detected
continuously. Moreover, because a pig is needed to put
into the pipeline, jams may occur.

Dynamic model-based methods attempt to mathe-
matically model the gas flow within a pipeline. Using this
model, flow parameters are calculated at different sections
of the pipeline, and these parameters are measured as well.
Then leaks can be detected by comparing the calculated
and measured parameters. Billmann and Isermann (1987)
used a nonlinear state observer and a special correlation
technique for leak detection and location. Shields et al.
(2001) further considered the disturbance (noise and mod-
eling errors) in a pipeline model. Based on this model, a
disturbance decoupled nonlinear fault detection observer
was proposed. By discretizing the pipeline model with
nonuniform regions along the line, Verde (2005) proposed
an accommodation scheme to tackle the multi-leak detec-
tion and location problem. But this method cannot esti-
mate the leak size. Benkherouf and Allidina (1988) pre-
sented a pipeline model with a leak, and used the EKF to
estimate the leak parameters as augmented state variables.
Based on the same model, Zhao and Zhou (2001) used an
STF (Zhou and Frank, 1996) to detect and locate leaks,
and the detection speed was faster. By considering a ther-
mal model, Tiang (1997) presented a more accurate leak
location method.

The particle filter (PF), based on a Monte-Carlo tech-
nique, was first proposed by Gordon (Gordon et al., 1993).
Thereafter, a number of alternative PF algorithms have
been proposed. The PF uses sequential Monte-Carlo
methods to approximate the optimal filtering by represent-
ing the probability density function (PDF) with a swarm
of particles. Because the PF is able to handle any func-
tional nonlinearity and system or measurement noise of
any probability distribution, it has attracted much atten-
tion in the nonlinear non-Gaussian state estimation field
(Bolviken et al., 2001; Doucet et al., 2000; Kitagawa,
1996).

Leak detection and location are a significant indus-
trial application of FDD (Kowalczuk and Gunawickrama,
2004), and have been an active research area over the last
two decades (Gertler, 1998; Korbicz et al., 2004; Patton et
al., 2000). Analytical model based FDD is a class of the
most important approaches. In these approaches, filters
are widely used, such as the Kalman Filter (KF), the EKF,
and the STF. Based on the state estimation ability of the
PF, Kadirkamanathan et al. (2000) first used it in FDD.
In order to estimate a fault, they introduced random walk
noise to the fault parameters treated as augmented states.
But because the noise signals are not adaptive, the estima-
tion is not very accurate. Then Li and Kadirkamanathan
(2001) proposed a PF based likelihood ratio approach to
fault diagnosis. This approach can detect faults in time,
and identify them correctly. However, it cannot estimate
their sizes.

In this paper, a new model based approach to leak
detection and location of gas pipelines with the use of an
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adaptive particle filter (APF) is proposed. For the nonlin-
earity of a gas pipeline system, the PF is more efficient
than the EKF. In order to estimate the leakage, the state
augmentation technique is used, and artificial dynamics
of the leak parameters are introduced to track the leak dy-
namics. Then if the augmented system is observable, the
parameter estimation problem has a solution. However,
the variances of the artificial dynamic disturbances will
closely relate to the detection speed and accuracy, and
a satisfying estimation result cannot be obtained by us-
ing invariant variances. Thus, a variance-adaptive method
based PF is proposed to achieve fast and accurate leak de-
tection and location. Computer simulation results illus-
trate the effectiveness of the proposed approach.

2. Mathematical Model of a Gas Pipeline

Neglecting viscous and turbulent effects of the flow, and
assuming that the temperature changes within the gas
and heat exchanges with the surroundings of the pipeline
are negligible, a one-dimensional isothermal gas pipeline
model can be derived as follows (Billmann, 1982):

∂p

∂t
+

c2

A

∂q

∂x
= 0, (1)

∂q

∂t
+ A

∂p

∂x
+

λc2

2DA

q |q|
p

= 0, (2)

where p [Pascal] is the pressure, q [Kg/s] is the mass flow
rate, p and q are functions of time t [s] and distance
x [m], c [m/s] is the isothermal speed of sound in gases,
A [m2] is the pipeline cross-section, D [m] is the pipeline
diameter, λ [–] is the friction coefficient.

This model is composed of two differential equa-
tions, and they form a nonlinear distributed parameter sys-
tem of the hyperbolic type. Suitable boundary and initial
conditions of this system can be chosen as follows:⎧⎨

⎩
p (0, t) = fp (t),

q (L, t) = fq (t),
(3)

and ⎧⎨
⎩

p (x, 0) = p0 (x),

q (x, 0) = q0 (x),
(4)

where L [m] is the pipe length. If a leak K [kg/s] occurs
at x = xK , Eqns. (1) and (2) are still valid for all x ∈
[0, xK) ∪ (xK , L]. Owing to mass conservation, we can
get the following equation at x = xK :

q
(
x−

K , t
)− q

(
x+

K , t
)

= K. (5)

We assume that the leak introduces a negligible mo-
mentum in the x direction, so that Eqn. (2) is unaffected

for x = xK . Hence, Eqn. (1) for x �= xk, and Eqns. (2)–
(5) represent an approximate model for the leaking gas
pipeline (Benkherouf and Allidina, 1988).

3. Adaptive Particle Filter Based Leak
Detection and Location Scheme

3.1. Adaptive Particle Filter

Consider a class of discrete-time nonlinear systems of the
form

xk+1 = f (xk, uk, θk) + wk, (6)

yk+1 = h (xk+1) + vk+1, (7)

where xk ∈ R
n is the state, uk ∈ R

p stands for the in-
put, yk ∈ R

m means the output, θk ∈ R
l signifies the

fault parameter vector, f : R
p × R

n → R
n is the state

transition function, and h : R
n → R

m is the measure-
ment function. The process noise wk ∈ R

n is zero mean,
and independent of past and current states. The measure-
ment noise vk ∈ R

m is zero mean and independent of the
past and current states and the process noise. Here θk is
the unknown fault parameter vector to be estimated. Us-
ing the state augmentation technique, a new state vector
can be defined:

zk :=

[
xk

θk

]
.

Because {θk} is not ergodic, θk cannot be tracked in the
PF algorithm. Therefore, in order to track the dynamics
of θk, an artificial dynamic noise vector is added to the
model of the unknown parameter θk:

θk+1 = θk + wθ
k, (8)

where wθ
k is the parameter noise. Then the augmented

system and measurement functions are respectively de-
fined as

zk+1 = fe (zk, uk) + w̃k,

yk+1 = he (zk+1) + vk+1,

where w̃k = [wT
k (wθ

k)T ]T . Because wθ
k is artificial, its

statistical properties need to be determined. In this pa-
per, we assume that wθ

k is a zero-mean Gaussian white
noise process, so only its variance needs to be determined.
Obviously, if the variance of wθ

k is too large, the estima-
tion of θk will be inaccurate; if the variance is too small,
abrupt parameter changes cannot be tracked (this is illus-
trated by a simulation in Section 4). So we have to have
the variance determined adaptively. Zhou et al. (1991)
presented a strong tracking filter (STF) by adaptively ad-
justing the predicted state error covariance according to



M. Liu et al.544

the covariance of residuals. Similarly, we propose an
adaptive approach to determine the variance of wθ

k ac-
cording to the covariance of residuals, ensuring that both
the estimation accuracy and the parameter tracking speed
are improved.

First, a vector of artificial zero-mean Gaussian white
noise signals wθ

k is selected, whose variances are small
and invariant. If we replace wθ

k in (8) by λkwθ
k , then only

λk has to be determined. In the STF, a suboptimal fading
factor is introduced to track the time-varying states or pa-
rameters. This factor is adjusted according to the covari-
ance of residuals. When the accuracy of state prediction
is reduced, the factor will become larger. This property is
just what we want for λk. So, similarly, we adjust λk as
follows:

λ0 =
tr [Vk+1]
tr [Mk+1]

, (9)

λk =

{
λ0 if λ0 > 1,

1 if λ0 ≤ 1,
(10)

where Vk+1 is the covariance of the actual residual, and
Mk+1 is the covariance of the theoretical residual. Vk+1

is unknown. However, it can be roughly approximated by

Vk+1 = E
[
γi

k+1(γ
i
k+1)

T
]

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
Ns

Ns∑
j=1

γj
1(γ

j
1)

T if k = 0,

[
ρVk + 1

Ns

∑Ns

j=1 γj
k+1(γ

j
k+1)

T
]

1 + ρ
if k ≥ 1,

(11)

γi
k+1 = yk+1 − yi

k+1|k, (12)

where Ns is the number of particles, the superscripts i or
j denote respectively the i-th or j-th particles, γk+1 is
the residual vector, yk+1|k is the predicted output vector,
yk+1 is the real output vector, and 0 ≤ ρ ≤ 1 is a forget-
ting factor. Here ρ = 0 implies that Vk+1 has nothing to
do with Vk . One often selects ρ = 0.95. We can use the
residual data in faultless conditions to get the experiental
residual covariance as Mk+1. If we have S steps of the
faultless regime, Mk+1 can be determined via

Mk+1 = M0

=
1

SNs

S−1∑
j=0

Ns∑
i=1

(̄
yj+1|j−yi

j+1|j
)(̄

yj+1|j−yi
j+1|j
)T

,

(13)

ȳj+1|j =
1

Ns

Ns∑
j=1

yi
j+1|j , (14)

where ȳj+1|j is the mean value of the predicted output
vector. If the augmented measurement function is linear,
i.e., yk+1 = Hezk+1 + vk+1, He ∈ R

m×n, and the mea-
surement noise is Gaussian with the covariance R, Mk+1

can be calculated using the following formulae:

Mk+1 = HePk+1|kHT
e + R, (15)

Pk+1|k =
1

Ns

Ns∑
i=1

(
zi

k+1|k−z̄k+1|k
)(

zi
k+1|k−z̄k+1|k

)T

, (16)

z̄k+1|k =
1

Ns

Ns∑
i=1

zi
k+1|k, (17)

where Pk+1|k is the covariance of the state prediction er-
ror, zk+1|k is the predicted state vector, z̄k+1|k is the
mean value of the predicted state vector.

Let Dk denote the available measurement informa-
tion at the time k:

Dk = {yi|i = 1, . . . , k} .

The APF algorithm is detailed as follows:

Step 1: Initialization

Augment the state vector with the unknown fault parame-
ters:

zk :=

[
xk

θk

]
.

The system and measurement functions of the augmented
system are fe and he, respectively. Sample Ns particles{
zi
0, i = 1, . . . , Ns

}
from the supposed PDF p (z0).

Step 2: Prediction

Sample Ns values
{
wi

k, i = 1, . . . , Ns

}
and{

wθi
k , i = 1, . . . , Ns

}
from the PDFs of wk and

wθ
k , respectively. Here wθ

k is an artificial zero-mean
Gaussian white noise process, the variance of which is set
to be invariant and small. Then compute

xi
k+1|k = f

(
xi

k, uk

)
+ wi

k,

θi
k+1|k = θi

k + wθi
k ,

yi
k+1|k = he

(
zi

k+1|k
)

.

Step 3: Update

If the measurement function is nonlinear, Mk+1 can be
calculated via (13) and (14). If the measurement function
is linear and the measurement noise is Gaussian with the
covariance R, we can get Mk+1 by (15)–(17).
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Fig. 1. Nodal representation of a pipeline.

Obtain λk by (9)–(12), and determine

θ̃i
k+1|k = θi

k + λkwθi
k ,

z̃i
k+1|k =

⎡
⎣ xi

k+1|k

θ̃i
k+1|k

⎤
⎦ ,

ωi =
p(yk+1|z̃i

k+1|k)∑Ns

j=1 p(yk+1|z̃j
k+1|k)

=
pv(yk+1 − he(z̃i

k+1|k))∑Ns

j=1 pv(yk+1 − he(z̃
j
k+1|k))

.

We have

p̃ (zk+1|Dk+1) =
Ns∑
i=1

ωiδ
(
zk+1 − z̃i

k+1|k
)
,

where δ is the Dirac-delta function.

Step 4: Resampling

Resample independently Ns times from the
above discrete distribution. The resulting particles
{zi

k+1, i = 1, . . . , Ns} satisfy Pr{zi
k+1 = z̃j

k+1|k} =
ωj, j = 1, . . . , Ns. Then the PDF becomes

p (zk+1|Dk+1) =
1

Ns

Ns∑
i=1

δ
(
zk+1 − zi

k+1

)
.

Then compute

ẑk+1 = E[zi
k+1] =

1
Ns

Ns∑
i=1

zi
k+1.

Step 5: The prediction, update and resample steps form a
single iteration and are recursively applied at each time k.

3.2. Leak Detection and Location Scheme

The pipeline model described in Section 2 is a Distributed
Parameter System (DPS). In order to use the APF to es-
timate the leakage K and its location xK , a discrete-
time/discrete-space (DTDS) model of the pipeline is re-
quired. Consequently, the pipeline is first divided into N

sections with N + 1 nodes as shown in Fig. 1. Then the
DTDS model can be obtained using the method of charac-
teristics (Wylie and Streeter, 1993):

(pi,j − pi−1,j−1) +
c

A
(q−i,j − q+

i−1,j−1)

+
λc3Δt

4DA2

(
q−i,j |q−i,j |

pi,j
+

q+
i−1,j−1|q+

i−1,j−1|
pi−1,j−1

)
= 0,

(18)

(pi,j − pi+1,j−1) − c

A
(q+

i,j − q−i+1,j−1)

− λc3Δt

4DA2

(
q+
i,j |q+

i,j |
pi,j

+
q−i+1,j−1|q−i+1,j−1|

pi+1,j−1

)
= 0,

(19)

q−i,j − q+
i,j = Ki,j , (20)

where pi,j = p(xi, tj), q−i,j = q(x−
i , tj), q+

i,j =
q(x+

i , tj), Ki,j = K (xi, tj), xi = (i−1)Δx, tj = jΔt.
Here Δx is the length of one section and Δt is the sam-
pling interval, satisfying Δx/Δt = c. The upstream
boundary condition is p1,j = fp(tj), and the downstream
boundary condition has the form qN,j = fq(tj). More-
over, Ki,j are modelled leaks, which are assumed to be
constant, so that the model is augmented by

Ki,j = Ki,j−1. (21)

The relationship between the actual leak
(K(j), xK(j)) at the time step j and the modelled
leaks (Ki,j , xi) are as follows (Benkherouf and Allidina,
1988):

K (j) =
N−1∑
i=2

Ki,j, (22)

xK (j) =
N−1∑
i=2

Ki,jxi

K (j)
. (23)
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To apply the APF, we select the state variables as follows:

xj =
[
p2,j , p3,j, · · · , pN,j, q

+
1,j , q

+
2,j ,

· · · , q+
N−1,j, K2,j, K3,j, · · · , KN−1,j

]T
.

This state vector has been augmented by Ki,j . Adding
process and measurement noise vectors to Eqns. (18)–
(21), we get

g (xj+1, xj , uj, wj) = 0, (24)

yj+1 = Hexj+1 + vj+1, (25)

where

uj = [fp (j) fq (j)]T = [fp (tj) fq (tj)]
T

,

and He is a matrix with elements being 0 or 1, to pro-
vide the available measurements (in the simulation study
in Section 4 we assume that pressure measurements at m
discrete points along the pipeline are available). Note that
the dimension of the state vector is n = 3N−4, and g (·)
consists of 3N − 4 equations. Furthermore,

wj = [w1,j , w2,j , · · · ,w3N−4,j ]
T

is the process noise vector, and

vj+1 = [v1,j+1, v2,j+1, · · · , vm,j+1]
T

is the measurement noise vector. Then, based on (24)
and (25), we can use the APF to estimate xj , and ac-
cording to (22) the leak size can be estimated. Select a
threshold ε for fault detection. When the leak estimate
K̂ (j) > ε, calculate the leak location via (23).

3.3. Evaluation of Leak Location Capability

A space discretization is introduced in the leak detection
and location schemes mentioned above. Since all methods
with a space discretization have a leak position error, the
sensitivity of our method has to be evaluated.

Since there are only two modelled leaks (K1, xK1)
and (K2, xK2), the following equations can be derived in
a steady state (Benkherouf and Allidina, 1988):

K = K1 + K2, (26)

2
KxK

fq
+
(

K

fq

)2

xK

= 2
K1xK1 + K2xK2

fq
+
(

K1

fq

)2

xK1

+
(

K2

fq

)2

xK2 + 2
K1K2

f2
q

xK1 , (27)

where fq is the outlet mass flow rate. The leak is usually
small compared with fq, and therefore the second-order
terms (K/fq)

2, (K1/fq)
2, (K2/fq)

2, (K1K2/fq)
2 are

small compared with K/fq and (K1xK1 + K2xK2)/fq.
From (27) it follows that

KxK ≈ K1xK1 + K2xK2 . (28)

Equation (23) can be derived from (28) (Benkherouf and
Allidina, 1988). Consequently, we can evaluate the loca-
tion capability of this method by discussing the location
accuracy of (28). If x̂K is the located leak position us-
ing (28), then we have the following result:

Theorem 1. If there are two modelled leaks (K1, xK1)
and (K2, xK2), the upper bound of the location error is

1
8

(
K

fq

)
|xK2 − xK1 | .

Proof. From (27) we see that

xK =
2K1fqxK1 + 2K2fqxK2 + K2

1xK1

2Kfq + K2

+
K2

2xK2 + 2K1K2xK1

2Kfq + K2
. (29)

From (28) it follows that

x̂K =
K1xK1 + K2xK2

K
. (30)

Then, from (29) and (30) we have

|xK − x̂K | =
K2

1xK1 + K2
2xK2 + 2K1K2xK1

2Kfq + K2

− K1KxK1 − K2KxK2

2Kfq + K2
.

Applying (26) in the numerator, we obtain

|xK − x̂K | =
K1K2

2Kfq + K2
|xK1 − xK2 | .

Because K1K2 ≤ (K1 + K2)
2
/4 = K2/4, we get

|xK − x̂K | ≤ K2

8Kfq + 4K2
|xK1 − xK2 |

<
1
8

(
K

fq

)
|xK1 − xK2 | , (31)

which is the desired claim.

Remark 1. Theorem 1 shows that the upper bound of
the location error is affected by two factors, K/fq and
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|xK1 − xK2 |. As they become smaller, so does the upper
bound, and the location becomes more accurate. The con-
clusion is reasonable. First, the smallness of K/fq con-
stitutes the basis for deriving (28), and for a leak which is
not too large, this assumption is reasonable. Secondly,
|xK1 − xK2 | is the distance between two neighboring
sensors. Obviously, the closer the sensors, the smaller the
leak location error. Moreover, this conclusion can be eas-
ily extended to n modelled leaks, that is, the leak loca-
tion will be more accurate as K/fq is smaller or there are
more sensors.

4. Simulation Results

A pipeline simulator is used to model a noise-corrupted
gas flow in a pipeline whose specification is (Benkherouf
and Allidina, 1988)

L = 90 km, D = 0.875 m, c = 300 m/s, λ = 0.02.

Because the leak size estimate (22) and the leak location
equation (23) are for the fluid in a steady state, we do not
change the operation conditions. However, when the fluid
is in a transient state, the method can also detect the leak,
while its size and location cannot be estimated.

The data used in the measurement simulator are as
follows:

Δx = 10 km,

i.e., the pipe is divided into nine sections, boundary con-
ditions being constant,

P (0, t) = 100 bar = 107 Pa, Q (L, t) = 200 kg/s.

The data used in the APF are as follows:

Δx = 30 km,

i.e., the pipe is divided into three sections,

Δt = x/c = 100 s,

xj =
[
p2,j , p3,j, p4,j , q

+
1,j , q

+
2,j, q

+
3,j , K2,j, K3,j

]T
,

i.e., there are two modelled leaks, k2,j and k3,j , at 30
and 60 km, respectively.

Three pressure measurements at 30, 60, 90 km are
generated for the filter (i.e., m = 3). Then the measure-
ment function is linear,

He =

⎡
⎢⎣ 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

⎤
⎥⎦ .

The boundary conditions are assumed to be known exactly
(100 bar and 200 kg/s).

The initial conditions are

x̂0 =
[
p̂2,0, p̂3,0, p̂4,0, q̂1,0, q̂2,0, q̂3,0, k̂2,0, k̂3,0

]T
,

p̂2,0 = 94 bar, p̂3,0 = 87 bar, p̂4,0 = 80 bar,

q̂1,0 = q̂2,0 = q̂3,0 = 200 kg/s, k̂1,0 = k̂2,0 = 0 kg/s.

The initial artificial noise is wθ
j = [wθ

j1, wθ
j2]

T ,
wθ

j1 ∼ N(0, 0.052), wθ
j2 ∼ N(0, 0.052). The forgetting

factor is ρ = 0.95. The threshold for leak detection is
ε = 0.5 kg/s.

Case 1. The measurement and process noise signals are
both set to be Gaussian with covariance matrices

R = σ2
mI3, Q̃ =

[
σ2

pI3 0
0 σ2

qI3

]
,

where σ2
m = 106 Pa2, σ2

p = 104 Pa2, σ2
q = 1 (kg/s)2.

At the time t = 100 min a leakage of 3% (6 kg/s)
at 50 km from the upstream end of the pipeline is sud-
denly introduced. The leak size and location are calcu-
lated using (22) and (23), respectively. Simulation results
with the APF are presented in Fig. 2. For comparison, we
also present simulation results with the EKF in Fig. 3, and
with a general PF in Fig. 4.
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Fig. 2. Simulation results with the APF in Case 1:
(a) real leak size and its estimate, (b) real
leak location and its estimate.

From Figs. 2 and 3, it is obvious that the tracking
of the APF is much faster than that of the EKF. The leak
is detected by the APF at 110 min, only 10 minutes after
the leak occurs. The average estimated leak location us-
ing the APF is x = 49.7936 km with a relative error of
0.41%. Obviously, using the EKF, the detection time is
much longer, and the location error is much larger.
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Fig. 3. Simulation results with the EKF in Case 1:
(a) real leak size and its estimate, (b) real
leak location and its estimate.
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Fig. 4. Real leak size and its estimates with the PF in
Case 1: (a) the variance of the artificial zero-mean
Gaussian white noise is 0.22, (b) the variance of the
artificial zero-mean Gaussian white noise is 0.42.

Figure 4 shows leak size estimates with a general PF,
in which the artificial noise signals are not adaptive. The
variances of the artificial zero-mean Gaussian white noise
processes are set to be 0.22 and 0.42, respectively. We
can see that when the variance is relatively small, the PF
cannot track the abrupt change quickly. When the vari-
ance is relatively large, the estimation accuracy deterio-
rates. Because the variance can be adjusted adaptively,
the APF has good performance in both estimation speed
and accuracy.

Case 2. In this case, the simulation is performed with
the non-Gaussian system noise wj and the non-Gaussian
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Fig. 5. Simulation results in Case 2: (a) real leak size and its
estimate, (b) real leak location and its estimate.
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Fig. 6. Simulation results in Case 3: (a) real leak size and its
estimate, (b) real leak location and its estimate.

measurement noise vj , which have the following PDFs:

fwj (x) = 0.5
[

e−|x/80| e−|x/80| e−|x/80|

e−|x/0.8| e−|x/0.8| e−|x/0.8|
]T

,

fvj = 0.5
[

e−|x/800| e−|x/800| e−|x/800|
]T

.

The other parameters are the same as in Case 1. The sim-
ulation results with the APF are shown in Fig. 5. They
illustrate that the APF method is still valid in the presence
of non-Gaussian noise.

Case 3. A leakage of size 1% (2 kg/s) is generated in
this case. Other simulation parameters are the same as in
Case 1. The simulation results are illustrated in Fig. 6,
from which we see that for a small leak it will take more
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time to detect it, and the estimates of the leak size and
location are not accurate. Anyhow, the results are still
satisfactory.

5. Conclusions

The speed and accuracy are very important performance
factors of an FDD method. For a gas pipeline, fast leak
detection and accurate location can reduce the loss of leak-
age. This work presents an adaptive particle filter to tackle
the leak detection and location problem in gas pipelines.
Because there is no need to linearize the nonlinear pipeline
model in the APF algorithm, its performance for param-
eter estimation is good. Additionally, the location capa-
bility of this method is evaluated, and the upper bound of
the location error is derived. The main advantages of our
algorithm are as follows: (i) the leak size and location can
be estimated accurately and quickly, (ii) it is applicable to
both Gaussian or non-Gaussian noise processes, and (iii) it
can detect and locate relatively small leaks. Future work
is to extend the proposed approach to leak detection and
location in transient states.
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