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Challenging design problems arise regularly in modern fault diagnosis systems. Unfortunately, the classical analytical
techniques often cannot provide acceptable solutions to such difficult tasks. This explains why soft computing techniques
such as evolutionary algorithms and neural networks become more and more popular in industrial applications of fault
diagnosis. The main objective of this paper is to present recent developments regarding the application of evolutionary
algorithms and neural networks to fault diagnosis. In particular, a brief introduction to these computational intelligence
paradigms is presented, and then a review of their fault detection and isolation applications is performed. Close attention is
paid to techniques that integrate the classical and soft computing methods. A selected group of them is carefully described
in the paper. The performance of the presented approaches is illustrated with the use of the DAMADICS fault detection
benchmark that deals with a valve actuator.
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1. Introduction

A continuous increase in the complexity, efficiency, and
reliability of modern industrial systems necessities a con-
tinuous development of the control and fault diagno-
sis theory and practice (Blanke et al., 2003; Korbicz et
al., 2004). These requirements extend beyond normally
accepted safety-critical systems of nuclear reactors and
chemical plants or aircrafts to new systems such as au-
tonomous vehicles or fast rail systems. Early detection
and maintenance of faults can help avoid the system shut-
down, breakdown and even catastrophes involving human
fatalities and material damage. A modern control system
that is able to tackle such a challenging problem is pre-
sented in Fig. 1.
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Fig. 1. Modern control system.

As can be observed, the controlled system is the main part

of the scheme, and it is composed of actuators, process dy-
namics and sensors. Each of these parts is affected by the
so-called unknown inputs that can be perceived as process
and measurement noise as well as external disturbances
acting on the system. When model-based control and di-
agnosis are utilized (Blanke et al., 2003; Korbicz et al.,
2004), then the unknown input can also be extended by
model uncertainty, i.e., the mismatch between a model and
the system being considered. The system may also be af-
fected by faults, which can be divided into three groups,
i.e., actuator faults, component (or process) faults, and
sensor faults. The role of the fault diagnosis part is to
monitor the behaviour of the system and to provide all
possible information regarding the abnormal functioning
of its components. As a result, the overall task of fault
diagnosis consists of three subtasks: fault detection, fault
isolation, and fault identification (Chen and Patton, 1999).
However, from a practical viewpoint, to pursue a complete
fault diagnosis, the following three steps have to be real-
ized (Frank and Köppen-Seliger, 1997):

Residual generation: generation of the signals that re-
flect the fault. Typically, the residual is defined as
a difference between the system and model outputs.

Residual evaluation: logical decision making at the time
of the occurrence and location of faults.

Fault identification: determination of the type of a fault,
its size and cause.
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Knowledge resulting from these steps is then pro-
vided to the controller re-design part, which is responsible
for changing the control law in such a way as to maintain a
required system performance. Thus, the scheme presented
in Fig. 1 can be perceived as a fault-tolerant one.

Fault-Tolerant Control (FTC) (Blanke et al., 2003)
is one of the most important research directions underly-
ing contemporary control engineering. FTC can also be
perceived as an optimized integration of advanced fault
diagnosis (Korbicz et al., 2004; Witczak, 2003) and con-
trol (Blanke et al., 2003) techniques. There is no doubt
that the theory (and practice, as a consequence) of fault di-
agnosis and control is well-developed and mature for lin-
ear systems only (Chen and Patton, 1999; Korbicz et al.,
2004). There are also a number of different approaches
that can be employed to settle the robustness problems re-
garding model uncertainty (Chen and Patton, 1999; Ko-
rbicz et al., 2004). Such robustness is especially impor-
tant in practical implementations where various sources
of uncertainty may be present, e.g., differences between
different copies of a given component, time-varying prop-
erties, noise, external disturbances, etc. Another kind of
solutions that may increase the performance of the FTC
scheme is based on appropriate scheduling of control test
signals in such a way as to gain as much information as
possible about the system being supervised (Delebecque
et al., 2003). Unfortunately, this technique can be used
for linear systems only. In the light of the above discus-
sion, it is clear that the development of new approaches
for non-linear systems is justified. From this discussion,
it is also clear that fault diagnosis has become an impor-
tant issue in the theory and practice of modern automatic
control. This justifies the objectives of this paper, which
aims at presenting the latest developments in fault diagno-
sis with evolutionary algorithms and neural networks.

In spite of the fact that a large spectrum of analytical
techniques for Fault Detection and Isolation (FDI) of
non-linear systems can be found in the literature (Blanke
et al., 2003; Chen and Patton, 1999; Korbicz et al., 2004),
they usually all suffer from the lack of an appropriate
mathematical description of the system being considered.
If there are no sufficiently accurate analytical models,
then the one feasible way is to use the so-called soft com-
puting techniques (Korbicz et al., 2004). A large amount
of knowledge on using these techniques for model-
based fault diagnosis has been accumulated through the
literature since the beginning of the 1990s (see, e.g.,
(Chen and Patton, 1999; Frank and Köppen-Seliger,
1997; Korbicz et al., 2004; Ruano, 2005; Witczak, 2003)
and the references therein). One objective of this paper is
to show the benefits that can be gained while using these
techniques in practice. Another objective is to show that
the integration of soft computing and classical techniques

results in hybrid fault diagnosis techniques that are supe-
rior to the classical ones.

The paper is organised as follows: Section 2 is de-
voted to the application of evolutionary algorithms to fault
diagnosis, while in Section 3 the problem of fault di-
agnosis is settled with neural networks. Both sections
present examples of integrating soft computing and an-
alytical techniques. The presented approaches are illus-
trated with results concerning the DAMADICS bench-
mark (DAMADICS, 2004). Finally, the closing section
concludes the paper.

2. Evolutionary Algorithms in FDI

Evolutionary Algorithms (EAs) are a broad class of sto-
chastic optimization algorithms inspired by some biolog-
ical processes, which allow populations of organisms to
adapt to their surrounding environment. Such algorithms
have been influenced by Darwin’s theory of natural se-
lection, or the survival of the fittest (published in 1859).
The idea behind it is that only certain organisms can sur-
vive, i.e., only those which can adapt to the environment
and win the competition for food and shelter. Almost at
the same time that Darwin’s theory was presented (1865),
Mendel published a short monograph about experiments
with plant hybridisation. He observed how traits of differ-
ent parents are combined into offspring by sexual repro-
duction. Darwinian evolutionary theory and Mendel’s in-
vestigations of heredity in plants became the foundations
of evolutionary search methods and led to the creation of
the neo-Darwinian paradigm (Fogel, 1995).

Evolutionary algorithms have been the subject of an
uncountable number of papers (Bäck et al., 1997). Gen-
erally, there is a large number of different kinds of EAs
and the most popular of them are: genetic algorithms
(GAs) (Holland, 1975), genetic programming (GP) (Gray
et al., 1998; Koza, 1992), evolutionary programming (Fo-
gel et al., 1999), evolutionary strategies (Michalewicz,
1996), and evolutionary search with soft selection (Galar,
1989).

Although the origins of evolutionary algorithms can
be traced back to the late 1950s (see Bäck et al., 1997 for a
comprehensive introduction and survey on EAs), the first
works on evolutionary algorithms in control engineering
were published at the beginning of the 1990s. In 2002,
Fleming and Purshouse (Fleming and Purshouse, 2002)
tackled a challenging task of preparing a comprehensive
survey on the application of evolutionary algorithms to
control engineering. As is indicated in (Fleming and Pur-
shouse, 2002), there are relatively scarce publications on
applications of evolutionary algorithms to the design of
FDI systems.
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This paper, rather than providing an exhaustive sur-
vey on evolutionary algorithms in fault diagnosis, is aimed
at providing a comprehensive account of the published
work that exploits the special nature of EAs. This means
that the works dealing with EAs applied as alternative op-
timisers, e.g., for training neural and/or fuzzy systems are
not included here. In other words, the main objective is
to extend the material of (Fleming and Purshouse, 2002)
by introducing the latest advances in fault diagnosis with
evolutionary algorithms.

Irrespective of the identification method selected
for designing the model, there always exists the prob-
lem of model uncertainty, i.e., the model-reality mis-
match. To overcome this problem, many approaches have
been proposed (Chen and Patton, 1999; Korbicz et al.,
2004). Undoubtedly, the most common approach is to
use robust observers, such as the Unknown Input Ob-
server (UIO) (Chen and Patton, 1999; Korbicz et al.,
2004; Witczak, 2003), which can tolerate a degree of
model uncertainty and hence increase the reliability of
fault diagnosis. In such an approach, the model-reality
mismatch can be represented by the so-called unknown
input. Hence the state estimate and, consequently, the out-
put estimate are obtained taking into account model uncer-
tainty. Unfortunately, when the direction of faults is sim-
ilar to that of an unknown input, then the unknown input
decoupling procedure may considerably impair fault sen-
sitivity. In order to settle this problem, Chen et al. (1996)
(see also Chen and Patton, 1999) formulated observer-
based FDI as a multiobjective optimisation problem, in
which the task was to maximise the effect of faults on the
residual, whilst minimising the effect of an unknown in-
put. The approach was applied to the detection of sensor
faults in a flight control system. A similar approach was
proposed by Kowalczuk et al. (1999), where the observer
design is founded on a Pareto-based approach, in which
the ranking of an individual solution is based on the num-
ber of solutions by which it is dominated. These two so-
lutions can be applied to linear systems only.

In spite of the fact that a large amount of knowledge
on designing observers for non-linear systems has been
accumulated through the literature since the beginning of
the 1970s, a customary approach is to linearize the non-
linear model around the current state estimate, and then
to apply techniques for linear systems, as is the case for
the extended Kalman filter (Korbicz et al., 2004). Unfor-
tunately, this strategy works well only when linearization
does not cause a large mismatch between the linear model
and non-linear behaviuor. To improve the effectiveness of
state estimation, it is necessary to restrict the class of non-
linear systems while designing observers. Unfortunately,
the analytical design procedures resulting from such an
approach are usually very complex, even for simple labo-
ratory systems (Zolghardi et al., 1996). To overcome this

problem, Porter and Passino proposed the so-called ge-
netic adaptive observer (Porter and Passino, 1995). They
showed how to construct such an observer, where a ge-
netic algorithm evolves the gain matrix of the observer
in real time so that the output error is minimized. Apart
from the relatively simple design procedure, the authors
did not provide convergence conditions of the observer.
They did not consider the robustness issues with respect to
model uncertainty either. A solution that does not posses
such drawbacks was proposed by Witczak et al. (2002).
In particular, the authors showed the convergence con-
dition of the observer, and proposed a technique for in-
creasing its convergence rate with genetic programming.
This approach will be detailed in Section 2.2. It should
be strongly underlined that the application of observers
is limited by the need for non-linear state-space models
of the system being considered, which is usually a seri-
ous problem in complex industrial systems. This explains
why most of the examples considered in the literature are
devoted to simulated or laboratory systems, e.g., the cele-
brated two- (three- or even four-) tank system, an inverted
pendulum, a travelling crane, etc. To tackle this prob-
lem, a genetic programming-based approach for designing
state-space models from input-output data was developed
in (Witczak et al., 2002; Witczak, 2003). This approach
will be detailed in Section 2.1. A further development
of this technique related to input-output models was pro-
posed in (Metenidis et al., 2004).

Evolutionary algorithms have also been applied to
FDI methods that are not based on the concept of resid-
uals. Marcu (1997) formulated FDI design as a fea-
ture selection and classifier design problem. EA has
also been applied to the generalised task of determining
the fault from a collection of symptoms (Miller, 1993).
The method relied upon the availability of a-priori prob-
abilities that a particular fault caused a particular symp-
tom. In (Chen et al., 2003), the authors employed
genetic algorithms-based evolutionary strategy for fault
diagnosis-related classification problems, which includes
two aspects: evolutionary selection of training samples
and input features, and evolutionary construction of the
neural network classifier. Finally, Sun et al. (2004) used
the bootstrap technique to preprocess operational data ac-
quired from a running diesel engine, and the genetic pro-
gramming approach to find the best compound feature that
can discriminate between the four kinds of commonly op-
erating modes of the engine.

2.1. System Identification for FDI

Let us consider the following class of non-linear discrete-
time systems:

xk+1 = g (xk, uk, p) + wk, (1)
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yk+1 = Ck+1xk+1 + vk, (2)

where p ∈ R
np is the parameter vector, xk ∈ R

n is the
state vector, uk ∈ R

r is the input vector, yk ∈ R
m is the

output vector, g (·) is a non-linear function, wk ∈ R
n

and vk ∈ R
m are the process and measurement noise, re-

spectively. With a slight abuse of notation, the parameter
vector will be neglected in model equations. Assume that
the function g(·) has the form

g(xk, uk) = A(xk)xk + h(uk), (3)

where h(·) is a non-linear function, and A(·) is a matrix
of functions.

The state-space model of the system (1)–(2) can be
expressed as

x̂k+1 = A(x̂k)x̂k + h(uk), (4)

ŷk+1 = Ck+1x̂k+1, (5)

where x̂k+1 ∈ R
n and ŷk+1 ∈ R

m stand for the state
and output estimates, respectively. The problem is to de-
termine A(·), Ck+1 and h(·), given a set of input-output
measurements {(uk, yk)}nt−1

k=0 . Moreover, it is assumed
that the true state vector xk is, in particular, unknown.
Without loss of generality, it is possible to assume that

A(x̂k) = diag[a1,1(x̂k), . . . , an,n(x̂k)]. (6)

Thus, the problem reduces to identifying a i,i(x̂k),
hi(uk), i = 1, . . . , n, and Ck+1, i.e., to obtaining A(·)
and h(·). Assuming that |ai,i(x̂k)| < 1, i = 1, . . . , n,
it can be shown (Witczak et al., 2002) that the model
(4)–(5) is globally asymptotically stable (Witczak et al.,
2002). This implies that ai,i(x̂k) should have the follow-
ing structure:

ai,i(x̂k) = tanh(si,i(x̂k)), i = 1, . . . , n, (7)

where tanh(·) is the hyperbolic tangent function, and
si,i(x̂k) is a function to be determined.

Undoubtedly, many tools can be employed to ob-
tain (4)–(5), e.g., neural networks or Genetic Program-
ming (GP) (Koza, 1992). GP is an extension of genetic
algorithms (Michalewicz, 1996), which are a broad class
of stochastic optimization algorithms inspired by some
biological processes, which allow populations of organ-
isms to adapt to their surrounding environment. The main
difference between these two approaches is that in GP
the evolving individuals are parse trees rather than fixed-
length binary strings. The main advantage of GP over
neural networks is that the models resulting from this ap-
proach are less sophisticated (from the point of view of
the number of parameters).

Since si,i(x̂k), hi(uk), i = 1, . . . , n, are assumed
to be (in general) non-linear functions, they can easily be

x̂1,kx̂1,kx̂1,kx̂1,k x̂2,kx̂2,kx̂2,kx̂2,k
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Fig. 2. Exemplary tree representing si,i(x̂k).

represented as trees, cf. Fig. 2. The language of trees in
GP is formed by user-defined sets of functions F and ter-
minals T, which form the nodes of the trees (cf. Fig. 2).
The functions should be chosen so as to be a-priori use-
ful in solving the problem, i.e., any knowledge concern-
ing the system under consideration should be included in
the function set. This function set is very important and
should be universal enough to be capable of representing
a wide range of non-linear systems. In the case of a pa-
rameterized tree, as shown in Fig. 2, the terminal set is
composed of variables only. Such a parameterization has
proven to be especially useful for model designing pur-
poses (Witczak et al., 2002; Witczak, 2003; Witczak and
Korbicz, 2004). On the other hand, it leads to the problem
of non-linear parameter estimation, which has to be solved
by some non-linear programming tools, e.g., the Adaptive
Random Search (ARS) algorithm (Walter and Pronzato,
1997).

As a result of applying the above approach to the
identification of (1)–(2), each entry of A( x̂k) and h(uk)
can be obtained with a population of trees evolved by the
GP algorithm. It should be pointed out that for that par-
ticular purpose two sets of terminals can be distinguished,
i.e., one for A(x̂k) (T = {x̂k}) and the other for h(uk)
(T = {uk}).

As can be observed, parameter estimation involves
the computation of Ck, which is necessary to obtain the
output error εk and, consequently, the value of the fitness
function. To tackle this problem, for each trial point p
it is necessary to first set an initial state estimate x̂0, and
then to obtain the state estimate x̂k, k = 1, . . . , nt −
1. Knowing the state estimate and using the least-squares
method, it is possible to obtain Ck (assuming Ck = C)
by solving the equation

C

nt−1∑
k=0

x̂kx̂T
k =

nt−1∑
k=0

ykx̂T
k . (8)

It should also be pointed out that the order n of the
model is in general unknown and hence should be deter-
mined through experiments.
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2.2. Observer Design with Genetic Programming

Let us consider the class of non-linear systems described
by the following equations:

xk+1 = g (xk) + h(uk + L1,kfk) + Ekdk, (9)

yk+1 = Ck+1xk+1 + L2,k+1fk+1, (10)

where g (xk) is assumed to be continuously differen-
tiable with respect to xk, fk ∈ R

s stands for the fault
signal, dk ∈ R

q is the unknown input, and L1,k, L2,k,
Ek are their distribution matrices. Similarly to the Ex-
tended Kalman Filter (Korbicz et al., 2004), the UIO pre-
sented in (Chen and Patton, 1999, pp.98-108) can be ex-
tended to the class of non-linear systems (9)–(10). This
leads to the following structure of the Extended UIO
(EUIO):

x̂k+1/k = g (x̂k) + h(uk), (11)

x̂k+1 = x̂k+1/k + Hk+1εk+1/k + K1,k+1εk, (12)

and

εk+1/k = yk −Ck+1x̂k+1/k, εk = yk −Ckx̂k, (13)

where the way of calculating the gain K1,k+1 and un-
known input decoupling Hk+1 matrices is given in
(Witczak et al., 2002; Witczak, 2003; Witczak and Kor-
bicz, 2004).

It should also be pointed out that the matrix Ak used
in the designing procedure is now defined by

Ak =
∂g (xk)

∂xk

∣∣∣∣
xk=x̂k

. (14)

The main objective of this section is to show that the con-
vergence of the EUIO strongly depends on an appropriate
choice of the instrumental matrices Rk and Qk (mea-
surement and process noise covariance matrices, respec-
tively, in the stochastic setting). Moreover, the fault-free
mode is assumed, i.e., fk = 0.

For notational convenience, let us define the a-priori
state estimation error

ek+1/k = xk+1 − x̂k+1/k. (15)

As usual, to perform further derivations, it is neces-
sary to linearize the model around the current state esti-
mate x̂k. This leads directly to the classical approxima-
tion

ek+1/k ≈ Akek + Ekdk. (16)

In order to avoid the above approximation, the di-
agonal matrix αk = diag(α1,k, . . . , αn,k) can be intro-
duced (Witczak et al., 2002), which makes it possible to
establish the following exact equality:

ek+1/k = αkAkek + Ekdk. (17)

The problem is to obtain an appropriate form of the in-
strumental matrices Qk−1 and Rk in such a way as to
ensure the convergence of the observer or to adequately
maximize the bounds of the diagonal elements of the ma-
trix αk.

For that purpose, Witczak et al. (2002) performed
a comprehensive convergence analysis with the Lyapunov
method. As a result, they obtained the following condi-
tions:

σ̄ (αk) ≤ γ1 =
σ (Ak)
σ̄ (Ak)

⎛⎝ (1 − ζ)σ (Pk)

σ̄
(
A1,kP ′

kAT
1,k

)
⎞⎠

1
2

,

and

σ̄ (αk − I) ≤ γ2 =
σ (Ak)
σ̄ (Ak)

×
(

σ
(
CT

k

)
σ (Ck)

σ̄
(
CT

k

)
σ̄ (Ck)

σ (Rk)
σ̄
(
CkPkCT

k + Rk

)) 1
2

.

Bearing in mind the fact that αk is a diagonal ma-
trix, the above inequalities can be expressed as

max
i=1,...,n

|αi,k| ≤ γ1, max
i=1,...,n

|αi,k − 1| ≤ γ2. (18)

Since (cf. Chen and Patton, 1999, pp. 98–108):

Pk = A1,kP ′
kAT

1,k + TkQk−1T
T
k + HkRkHT

k , (19)

it is clear that an appropriate selection of the instrumental
matrices Qk−1 and Rk may enlarge the bounds γ1 and
γ2 and, consequently, the domain of attraction. Indeed,
if the conditions (18) are satisfied, then x̂k converges to
xk.

Unfortunately, analytical derivation of the matrices
Qk−1 and Rk seems to be an extremely difficult prob-
lem. However, it is possible to set the above matrices
as follows: Qk−1 = β1I, Rk = β1I, with β1 and
β1 large enough. On the other hand, it is well known
that the convergence rate of such an EKF-like approach
can be increased by an appropriate selection of the covari-
ance matrices Qk−1 and Rk, i.e., the more accurate (near
“true” values) the covariance matrices, the better the con-
vergence rate. This means that in the deterministic case
(k̃ = 0 and vk = 0), both matrices should be zero.
Unfortunately, such an approach usually leads to the di-
vergence of the observer as well as other computational
problems. To tackle this issue, a compromise between
the convergence and the convergence rate should be estab-
lished. This can easily be done by setting the instrumental
matrices as

Qk−1 = β1ε
T
k−1εk−1I + δ1I, (20)

Rk = β2ε
T
k εkI + δ2I, (21)
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Fig. 3. Actuator and its scheme.

with β1, β2 large enough, and δ1, δ2 small enough. Al-
though this approach is very simple, it is possible to fur-
ther increase the convergence rate. Indeed, the instrumen-
tal matrices can be set as

Qk−1 = q2(εk−1)I + δ1I,

Rk = r2(εk)I + δ2I, (22)

where q(εk−1) and r(εk) are non-linear functions of the
output error εk (the squares are used to ensure the pos-
itive definiteness of Qk−1 and Rk). Thus, the problem
reduces to identifying the above functions. In particular,
in (Witczak et al., 2002) it is shown how to reduce the task
of the designing of Qk−1 and Rk to the multi-objective
and global structure optimization problem of q(εk−1)
and r(εk). Genetic programming is utilized (Witczak et
al., 2002; Witczak, 2003; Witczak and Korbicz, 2004) to
tackle this problem.

2.3. An Illustrative Example – the DAMADICS
Benchmark

DAMADICS (Development and Application of Methods
for Actuator Diagnosis in Industrial Control Systems)
was a research project focused on drawing together wide-
ranging techniques and fault diagnosis within the frame-
work of a real application to on-line diagnosis of a 5-stage
evaporisation plant of a sugar factory in Lublin, Poland.
The project was focused on the diagnosis of valve (cf.
Fig. 3) plant actuators and looked towards real implemen-
tation methods for new actuator systems. The sugar fac-
tory was a subcontractor (under the Warsaw University of
Technology) providing real process data and the evalua-
tion of trials of fault diagnosis methods.

The control valve constitutes the means used to pre-
vent, permit and/or limit the flow of sugar juice through
the control system (a detailed description of this actuator
can be found in (DAMADICS, 2004)). As can be seen in
Fig. 3, the following process variables can be measured:
CV is the control signal, P1 is the pressure at the inlet
of the valve, P2 is the pressure at the outlet of the valve,
T 1 is the juice temperature at the inlet of the valve, X
is the servomotor rod displacement, F is the juice flow at
the outlet of the valve. In Fig. 3, three additional bypass
valves (denoted by z1, z2, and z3) can be seen. The state
of these valves can be controlled manually by the oper-
ator. They are introduced for manual process operation,
actuator maintenance and safety purposes. The data gath-
ered from the real plant are available on the DAMADICS
website (DAMADICS, 2004). Although a large amount
of real data are available, they do not cover all faulty situ-
ations.

The objective of this section is to design the state-
space model of the actuator being considered (cf. Fig. 3)
according to the approach described in Section 2.1. The
parameters used during the identification process were
nm = 200, nd = 10, ns = 10, F = {+, ∗, /}. For
the sake of comparison, the linear state-space model was
obtained with the use of the MATLAB System Identifi-
cation Toolbox. In both the linear and non-linear cases,
the order of the model was tested between n = 2, . . . , 8.
Unfortunately, the relation between the input uk =
(CV, P1, P2, T 1) and the juice flow y1,k (yk = (F, X))
cannot be modelled by a linear state-space model. Indeed,
the modelling error was approximately 35%, thus mak-
ing the linear model unacceptable. On the other hand, the
relation between the input uk and the rod displacement
y2,k can be modelled, with very good results, by the linear
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state-space model. Bearing this in mind, the identification
process was decomposed into two phases, i.e.,

1. Derivation of a relation between the rod displace-
ment and the input with a linear state-space model.

2. Derivation of a relation between the juice flow and
the input with a non-linear state-space model de-
signed by GP.

Experimental results showed that the best-suited linear
model is of the order n = 2. After 50 runs of the GP
algorithm performed for each model order, it was found
that the order of the model which provides the best ap-
proximation quality is n = 2. The mean-squared output
error for the obtained model was 0.0079 (the model struc-
ture can be found in (Witczak and Korbicz, 2004)). The
response of the model obtained for the validation data set
is given in Fig. 4.
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Fig. 4. System (dotted line) and model (solid line)
outputs (juice flow (a), rod displacement
(b)) for the validation data set.

The main differences between the behaviour of the
model and the system were observed for the non-linear
model (juice flow) during system saturation. This inaccu-
racy constitutes the main part of modelling uncertainty.

Since the state-space model is given, it is possible
to design the EUIO presented in Section 2.2. To tackle
the determination of the unknown input distribution ma-
trix Ek, the approach proposed in (Witczak and Korbicz,
2004) was employed, and then the approach of Section 2.2
along with the threshold selector described in (Witczak
and Korbicz, 2004) were used for fault detection. This
threshold selector is based on a polynomial describing the
relation between the control signal and the residual. In
particular, adaptive residual bounds are provided based on
the parameter confidence region of the above polynomial.

Since the method of designing an appropriate thresh-
old is known, it is possible to check fault detection ca-
pabilities of the presented observer-based fault detection
scheme. Figure 5 presents the results of fault detection for
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Fig. 5. Residuals for the flow sensor fault and its bounds
(juice flow – (a), rod displacement – (b)).
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the flow sensor fault (with a small magnitude). As can be
observed, the fault can be detected with the use of the juice
flow residual. A complete report regarding fault diagnosis
of the DAMADICS benchmark can be found in (Witczak
and Korbicz, 2004).

3. Neural Networks in FDI

Generally, neural networks (Gupta et al., 2003) can be per-
ceived as a conveniently parameterized set of non-linear
maps. In the last fifteen years, neural networks have been
successfully used in solving complex problems in mod-
elling and pattern recognition (see Gupta et al., 2003 and
the references therein). In the case of pattern recognition,
a finite set of input-output pairs is given, where the inputs
represents the objects to be recognised while the outputs
stand for the pattern classes to which they belong. Thus,
the role of a neural network is to approximate the map
between these two spaces. In the case of modelling, it is
assumed that the input-output relation is formed by a non-
linear system, and the role of a neural network is to ap-
proximate the behaviour of this system. In both cases, the
application of neural networks is justified by the assump-
tion that there exists a non-linear input-output map. A
key theoretical result behind both applications is the fact
that neural networks are universal approximators (Gupta
et al., 2003). There are, of course, many different prop-
erties (see, e.g. (Chandra and Sing, 2004)), which make
neural networks attractive for practical applications.

At the beginning of the 1990s, neural networks were
proposed for identification and control (see, e.g., (Naren-
dra, 1990)). A rapid development concerning applications
of neural networks to control engineering resulted in a
large number of publications related to this subject. Hunt
et al. (1992) confirmed the fast development of this re-
search area by publishing a survey on neural networks in
control engineering. In 1995, a similar work was pub-
lished by Sjoberg et al. (1995) in the context of system
identification with neural networks. Nowadays, the num-
ber of applications has increased significantly. Fault diag-
nosis constitutes one of the thrusts of the research effort
on neural networks for control (Korbicz et al., 2004).

The main objective of the subsequent part of this pa-
per is to present the development of this particular re-
search area. Rather than providing an exhaustive survey
on neural networks in fault diagnosis, the aim is to pro-
vide a comprehensive account of the published works that
exploit the special nature of neural networks. Indeed, it is
impossible to count all publications on fault diagnosis in
which neural networks are used as models of the systems
being diagnosed. The strategy underlying such an ap-
proach boils down to generating the residual with the sys-
tem and neural network outputs, respectively. Examples

of using such an approach with the classical multi-layer
perceptron are: leakage detection in an electro-hydraulic
cylinder drive in a fluid power system (Watton and Pham,
1997), the diagnosis of non-catastrophic faults in a nuclear
plant (Weerasinghe et al., 1998), and process valve actu-
ator fault diagnosis (Karpenko et al., 2003). Similar ex-
amples relating to dynamic neural networks are: the diag-
nosis of a chemical plant (Fuente and Saludes, 2000), the
diagnosis of a valve actuator (Korbicz et al., 2004; Patan
and Parisini, 2005), and the diagnosis of a steam evapora-
tor (Janczak, 2005).

There are a number of works concerning observer de-
sign with neural networks (Alessandri et al., 1997; Guo
and Zhu, 2002). Thus, if non-linear state-space models are
available, then these approaches can be utilized for resid-
ual generation and fault diagnosis. Moreover, robustness
with respect to model uncertainty can also be achieved by
using the concept of an unknown input. Unfortunately,
when the direction of faults is similar to that of an un-
known input, then the unknown input decoupling proce-
dure may considerably impair the fault sensitivity. If the
above-mentioned approach fails, then describing model
uncertainty in a different way seems to be a good rem-
edy. One of possible approaches is to use statistical tech-
niques (Atkinson and Donev, 1992; Walter and Pronzato,
1997) (for an example regarding different approaches, the
reader is referred to (Delebecque et al., 2003)) to obtain
parameter uncertainty of the model and, consequently,
model output uncertainty. Such parameter uncertainty is
defined as the parameter confidence region (Atkinson and
Donev, 1992; Walter and Pronzato, 1997) containing a set
of admissible parameters that are consistent with the mea-
sured data. Thus it is evident that parameter uncertainty
depends on measurement uncertainty, i.e., noise, distur-
bances, etc.

Knowledge about parameter uncertainty makes it
possible to design the so-called adaptive threshold (Frank
et al., 1999). The adaptive threshold, contrary to the fixed
one (cf. Fig. 6), bounds the residual at a level that is de-
pendent on model uncertainty, and hence it provides more
reliable fault detection. Contrary to the typical indus-
trial applications of neural networks that are presented
in the literature (Chen and Patton, 1999; Karpenko et
al., 2003; Korbicz et al., 2004), Witczak et al. (2006)
defined the task of designing a neural network in such
a way as to obtain a model with possibly small uncer-
tainty. Indeed, the approaches presented in the litera-
ture try to obtain a model that is best suited to a par-
ticular data set. This may result in a model with rela-
tively large uncertainty. Degraded performance of fault
diagnosis constitutes a direct consequence of using such
models. To tackle this challenging problem, the GMDH
(Group Method of Data Handling) approach was adapted
and modified (Ivakhnenko and Mueller, 1995; Korbicz et
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al., 2004). They proposed a complete design procedure
concerning the application of GMDH neural networks to
robust fault detection. Starting from a set of input-output
measurements of the system, it is shown how to estimate
the parameters and the corresponding uncertainty of a
neuron using the so-called bounded-error approach (Mi-
lanese et al., 1996; Walter and Pronzato, 1997). As a re-
sult, a tool that is able to generate an adaptive threshold
was obtained. The methodology developed for parameter
and uncertainty estimation of a neuron makes it possible
to formulate an algorithm that allows obtaining a neural
network with relatively small modelling uncertainty. All
the hard computations regarding the design of the GMDH
neural network are performed off-line and hence the prob-
lem regarding the time consuming calculations is not of
paramount importance. The approach can also be ex-
tended for dynamic systems by using the dynamic neuron
structure (Mrugalski and Witczak, 2002).

It is well known that the reliability of such fault di-
agnosis schemes is strongly dependent on model uncer-
tainty, i.e., the mismatch between a neural network and
the system being considered. Thus, it is natural to mini-
mize model uncertainty as far as possible. This can be re-
alized with the application of Optimum Experimental De-
sign (OED) theory (Atkinson and Donev, 1992; Uci ński,
2005; Walter and Pronzato, 1997). Some authors have
conducted active investigations in this important research
area. White (1989), MacKay (1992), and Cohn (1994)
showed the attractiveness of the application of OED to
neural networks. Fukumizu (1996; 2000) developed the
so-called statistical active learning technique, which is
based on the general theory of OED. Recently, Witczak
and Prętki (2005) developed a D-optimum experimental
design strategy that can be used for training single-output
neural networks. They also showed how to use the ob-
tained network for robust fault detection with an adaptive
threshold. In (Witczak, 2006), the author showed how to
extend this technique to multi-input multi-output neural

networks. He also proposed a sequential experimental de-
sign algorithm that allows obtaining a one-step-ahead D-
optimum input. This algorithm can be perceived as a hy-
brid one since it can be used for both training and data
development. Section 3.1 presents selected parts of the
above-described design methodology.

Finally, there are also a large number of approaches
that use neural networks as pattern classifiers (Korbicz
et al., 2004) to tackle the FDI problem. Instead of us-
ing neural networks as models of the systems being di-
agnosed, the networks are trained to recognise different
modes of the system, i.e., both faulty and non-faulty ones.
Examples of using such an approach are: FDI in hydraulic
fluid power systems (Le et al., 1997; Le et al., 1998), FDI
in machine dynamics and vibration problems (Yen and
Lin, 2000), sensor fault diagnosis (Zhang et al., 2000),
fault diagnosis of chemical processes (Zhao et al., 1998),
and fault diagnosis of a two-tank system (Korbicz et al.,
2004).

3.1. Experimental Design for Neural Networks

Consider a feed-forward neural network given by the fol-
lowing equation (Witczak, 2006):

ym,k = P (l)g
(
P (n)uk

)
, (23)

where ym,k ∈ R
m stands for the model output, g(·) =

[g1(·), . . . , gnh
(·), 1]T , where gi(·) = g(·) is a non-linear

differentiable activation function,

P (l) =

⎡⎢⎢⎣
p(l)(1)T

...

p(l)(m)T

⎤⎥⎥⎦ , P (n) =

⎡⎢⎢⎣
p(n)(1)T

...

p(n)(nh)T

⎤⎥⎥⎦ ,

(24)
are matrices representing the parameters (weights) of the
model, nh is the number of neurons in the hidden layer.
Moreover, uk ∈ R

nr+1, uk = [u1,k, . . . , unr,k, 1]T

where ui,k, i = 1, . . . , nr are system inputs. For the
sake of notational simplicity, define the following para-
meter vector:

p =
[
p(l)(1)T , . . . , p(l)(m)T ,

p(n)(1)T , . . . , p(n)(nh)T
]T

,

where p ∈ R
np , np = m(nh + 1) + nh(nr + 1). Conse-

quently, (23) can be written in a more compact form:

ym,k = f (p, uk) , (25)

where f (·) is a non-linear function representing the
structure of the neural network.
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∂f (p, uk)
∂p

=

⎡⎢⎢⎣
g
(
P (n)uk

)T
0T

(m−1)(nh+1) pl
1(1)g′

(
uT

k pn(1)
)
uT

k . . . pl
nh

(1)g′
(
uT

k pn(nh)
)
uT

k

...
...

...
...

...

0T
(m−1)(nh+1) g

(
P (n)uk

)T
pl
1(m)g′

(
uT

k pn(1)
)
uT

k . . . pl
nh

(m)g′
(
uT

k pn(nh)
)
uT

k

⎤⎥⎥⎦. (30)

Assume that the system output satisfies

yk = ym,k + εk = f (p, uk) + εk, (26)

where the noise ε is zero-mean, Gaussian, and uncorre-
lated in k, i.e., its statistics are

E(εk) = 0, E(εiε
T
k ) = δi,kC, (27)

where C ∈ R
m×m is a known positive-definite matrix

of the form C = σ2Im, and σ2 and δi,k stand for the
variance and Kronecker’s delta symbol, respectively. Un-
der such an assumption, the theory of experimental de-
sign (Atkinson and Donev, 1992; Walter and Pronzato,
1997) can be exploited to develop a suitable training data
set that allows obtaining a neural network with consid-
erably smaller uncertainty than those designed without it.
First, let us define the so-called Fisher information matrix,
which constitutes a measure of parametric uncertainty of
(23):

P−1 =
nt∑

k=1

RkRT
k , (28)

Rk =
(

∂f (p, uk)
∂p

)T

p=p̂

, (29)

and the Jacobi matrix is defined by Eqn. (30), where
g′(t) = dg(t)/dt, p̂ is the least-squares estimate of p,
and nt stands for the number of input-output measure-
ments. It is easy to observe that the FIM (28) depends
on the experimental conditions ξ = [u1, . . . , unt ]. Thus,
optimal experimental conditions can be found by choos-
ing uk, k = 1, . . . , nt, so as to minimize some scalar
function of (28). Such a function can be defined in vari-
ous ways (Fukumizu, 2000; Uciński, 2005), and here are
the most popular of them:

• D-optimality criterion:

Φ(ξ) = detP , (31)

• G-optimality criterion:

Φ(ξ) = max
uk∈U

φ(ξ, uk). (32)

where U stands for the set of admissible uk that
can be used for the system being considered (design

space), and

φ(ξ, uk) = trace
(
RT

k PRk

)
=

m∑
i=1

ri,kPrT
i,k,

(33)

where ri,k stands for the i-th row of RT
k .

A valuable property of the FIM is that its inverse
constitutes an approximation of the covariance matrix for
p̂ (Goodwin and Payne, 1977). Thus, D-optimum design
minimizes the volume of the confidence ellipsoid approxi-
mating the feasible parameter set of (23) (see, e.g., (Atkin-
son and Donev, 1992, Sec. 6.2) for further explanations).
G-optimum design minimizes the variance of the esti-
mated response of (23). The D-optimality criterion has
been employed by many authors in the development of
computer algorithms for calculating optimal experimental
designs. Another important property is that D-optimum
designs are invariant with respect to non-degenerate lin-
ear transformations of the model. It is also important
to underline that, from the practical point of view, D-
optimum designs often perform well according to other
criteria (see (Atkinson and Donev, 1992) and the refer-
ences therein for more details). For further explanations
regarding D-optimality criteria, the reader is referred to
the excellent textbooks (Atkinson and Donev, 1992; Fe-
dorov and Hackl, 1997; Uciński, 2005; Walter and Pron-
zato, 1997).

Since fault diagnosis applications are the primary
purpose, the main objective is to use a design criterion
which makes it possible to obtain accurate bounds of the
system output (cf. Fig. 7). Indeed, it is rather pointless
to assume that it is possible to develop a neural network
with arbitrarily small uncertainty, i.e., to obtain a perfect
model of the system. A more realistic task is to design
a model that will provide reliable knowledge about the
bounds of the system output that reflect the expected sys-
tem behaviour. The design methodology of such robust
techniques rests on the paradigm that fault diagnosis and
control schemes should perform reliably for all kinds of
system behaviour that are consistent with output bounds.
This is in contradiction with the conventional approaches,
where fault diagnosis and control schemes are designed to
be optimal for one single model.
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Fig. 7. i-th output of the system and its bounds
obtained with a neural network.

The bounds presented in Fig. 7 can be described as
follows:

yN
i,k ≤ yi,k ≤ yM

i,k, i = 1, . . . , m. (34)

In (Chryssolouris et al., 1996), the authors developed an
approach that can be used for determining (34) (that forms
the 100(1−α) confidence interval of yi,k) for single out-
put (m = 1) neural networks. In (Witczak, 2006), the
approach of (Chryssolouris et al., 1996) was extended to
multi-output models, i.e., it can be shown that yN

i,k and
yM

i,k (that form the 100(1−α) confidence interval of y i,k)
can be approximated as follows:

yN
i,k = ŷi,k − t

α/2
nt−np

σ̂
(
1 + ri,kPrT

i,k

)1/2
, (35)

yM
i,k = ŷi,k + t

α/2
nt−np

σ̂
(
1 + ri,kPrT

i,k

)1/2
, (36)

i = 1, . . . , m, where t
α/2
nt−np

is the t-Student distribution
quantile, and σ̂ is the standard deviation estimate. Bear-
ing in mind the fact that the primary purpose of this work
is to develop reliable bounds of the system output, it is
clear from (34), (35), and (36) that the G-optimality crite-
rion should be selected.

When some experiments are repeated, the number
ne of distinct uks is smaller than the total number of ob-
servations nt. The design resulting from this approach
is called the continuous experimental design and can be
described as follows:

ξ =

{
u1 u2 . . . une

μ1 μ2 . . . μne

}
, (37)

where uks are said to be the support points, and
μ1, . . . , μne , μk ∈ [0, 1] are their weights, which satisfy∑ne

k=1 μk = 1.

Thus, the Fisher information matrix can now be de-
fined as follows:

P−1 =
ne∑

k=1

μkRkRT
k . (38)

The fundamental property of continuous experimental de-
sign is the fact that optimum designs resulting from the
D- and G-optimality criteria are the same (the Kiefer-
Wolfowitz equivalence theorem Atkinson and Donev,
1992; Walter and Pronzato, 1997; Uciński, 2005). Finally,
in the light of this theorem, the design (37) is D-optimum
when

φ(ξ, uk) = trace
(
RT

k PRk

) ≤ np, (39)

where the equality holds for measurements described by
(37).

Generally, it is impossible to obtain the design (37) in
an analytical way. To tackle this problem, in (Witczak and
Prȩtki, 2005) the authors employed the Wynn-Fedorov al-
gorithm (Uciński, 2005; Walter and Pronzato, 1997) to
obtain a D-optimum design for a single-output neural net-
work, while in (Witczak, 2006) it is shown how to use
it for a general multi-output multi-input neural network.
The subsequent section presents an illustrative example of
using the above approach for fault detection of a valve ac-
tuator (DAMADICS benchmark).

3.2. Experimental Results

Let us reconsider an example presented in Section 2.3.
The main objective of the subsequent part of this section
is to develop a neural network that can be used for fault
detection of an industrial valve actuator. The above task
was divided into the following steps (Witczak, 2006):

Step 1: Training of a network based on the nominal data
set.

Step 2: Design of the experiment with the Wynn-
Fedorov algorithm described in (Witczak, 2006)
based on the network obtained in Step 1.

Step 3: Training of a network based on the data obtained
with optimal experimental design.

Based on the experience with an industrial valve actu-
ator, it was observed that the following subset of mea-
sured variables is sufficient for fault detection purposes:
u = (CV, P1, 1), y = F .

In Step 1, a number of experiments (the training
of a neural network with the Levenberg-Marquardt algo-
rithm (Walter and Pronzato, 1997)) were performed in or-
der to find a suitable number of hidden neurons nh (cf.
(23)). For that purpose, nt = 100 data points were gen-
erated, for which inputs were uniformly spread within
the design region U, where 0.25 < u1 < 0.75 and
0.6625 < u2 < 0.8375. As a result, a neural model con-
sisting of nh = 5 hidden neurons was obtained. The
main objective of Step 2 was to utilize the above model
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Fig. 8. Variance function and the corresponding
support points.

and the Wynn-Fedorov algorithm in order to obtain D-
optimum experimental conditions. First, an initial exper-
iment was generated in such a way as to equally divide
the design space of u. Finally, the Wynn-Fedorov al-
gorithm was applied. Figure 8 shows the support points
(ne = 45) and the variance function (33) for the obtained
D-optimum design. As can be observed, the D-optimality
condition (39) is satisfied. Based on the obtained contin-
uous design, a set consisting of nt = 100 points was ob-
tained and used for data generation. The number of repeti-
tions of each optimal input uk was calculated by suitably
rounding the numbers μknt, k = 1, . . . , ne (Atkinson
and Donev, 1992; Walter and Pronzato, 1997). It should
be strongly stressed that the data were collected in a steady
state because the utilized model (23) was static. Finally,
the new data set was used for training the network with
the Levenberg-Marquardt algorithm. Figure 9 presents
the residual signal obtained with a network trained with
the D-optimum data set as well as an adaptive thresh-
old provided by this network (2-nd network). This figure
also presents an adaptive threshold provided by a network
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Fig. 9. Residual and adaptive thresholds
for the valve clogging fault.

(1-st network) trained with the data set generated by
evenly dividing the design space. It can be observed that
the neural network obtained with the use of D-optimum
experimental design makes it possible to obtain more ac-
curate bounds than those obtained with a neural network
trained in a different manner. Indeed, as can be seen in
Fig. 9, the valve clogging fault (which, in the light of its
nature, is hard to detect) can be detected with the help of
the second network while it is impossible to detect it with
the use of the first one. It should be strongly underlined
that the situation is even worse when the first network is
used for residual generation, i.e., in the presented exam-
ple it was used for adaptive threshold generation only. Fi-
nally, Fig. 10 presents exemplary residuals for flow sensor
faults (cf. the results of Section 2.3). A complete report
regarding fault diagnosis of the DAMADICS benchmark
can be found in (Witczak, 2006).

4. Concluding Remarks

The rapid development of modern fault diagnosis exposes
the disadvantages of the classical model-based techniques,



Advances in model-based fault diagnosis. . . 97

100 200 300 400
−0.1

−0.05

0

0.05

0.1

discrete time

re
si

du
al

s

residual signal
bounds

Fig. 10. Residual and adaptive thresholds
for the flow sensor fault.

which can be perceived from various angles. In spite
of the fact that a large spectrum of analytical techniques
for FDI of non-linear systems can be found in the liter-
ature, they usually all suffer from the lack of an appro-
priate mathematical description of the system being con-
sidered. Another difficulty is the fact that the classical
solutions to the robustness problem may impair the effi-
ciency and quality of fault diagnosis, e.g., when the direc-
tion of faults is similar to that of an unknown input. As
was shown in the paper, to settle such a challenging prob-
lem, it is possible to employ evolutionary algorithms and
neural networks. Indeed, a large amount of knowledge
on using these techniques for model-based fault diagnosis
has been accumulated through the literature since the be-
ginning of the 1990s. One objective of this paper was to
summarize the advances in this interesting research area.
Rather than providing an exhaustive survey on evolution-
ary algorithms and neural networks in fault diagnosis, the
paper was aimed at providing a comprehensive account
of the published works that exploit the special nature of
these techniques. Special attention was paid to techniques
that integrate the classical and soft computing approaches
in such a way as to tackle inevitable non-linearity and ro-
bustness problems. In particular, it was shown that the
integration of genetic programming and unknown input
observers results in a hybrid fault diagnosis technique that
is superior over the classical one. Another example con-
cerned the problem of robust fault detection using neural
networks. It was shown that the application of the classi-
cal experimental design theory makes it possible to obtain
a neural network with considerably smaller uncertainty
than the one designed without it. The author hopes that the
material presented in this paper will encourage engineers
to use the discussed techniques in industrial practice.
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