
Int. J. Appl. Math. Comput. Sci., 2010, Vol. 20, No. 2, 367–384
DOI: 10.2478/v10006-010-0027-1

DECOMPOSITION–BASED LOGIC SYNTHESIS FOR PAL–BASED CPLDS

ADAM OPARA ∗, DARIUSZ KANIA ∗∗

∗ Institute of Computer Science
Silesian University of Technology, ul. Akademicka 16, 44–100 Gliwice

e-mail: Adam.Opara@polsl.pl

∗∗Institute of Electronics
Silesian University of Technology, ul. Akademicka 16, 44–100 Gliwice

e-mail: Dariusz.Kania@polsl.pl

The paper presents one concept of decomposition methods dedicated to PAL-based CPLDs. The proposed approach is an
alternative to the classical one, which is based on two-level minimization of separate single-output functions. The key idea
of the algorithm is to search for free blocks that could be implemented in PAL-based logic blocks containing a limited
number of product terms. In order to better exploit the number of product terms, two-stage decomposition and BDD-based
decomposition are to be used. In BDD-based decomposition methods, functions are represented by Reduced Ordered Binary
Decision Diagrams (ROBDDs). The results of experiments prove that the proposed solution is more effective, in terms of
the usage of programmable device resources, compared with the classical ones.

Keywords: decomposition, technology mapping, logic optimization, BDD, CPLD.

1. Introduction

Nowadays, Programmable Logic Devices (PLDs) are ve-
ry extensively used in designing electronic digital circu-
its. Simple PLDs can be divided into several kinds: PAL
(Programmable Array Logic), PLA (Programmable Lo-
gic Array), and PLE (Programmable Logic Element). Ba-
sed on simple PLDs, there is a group of devices called
Complex Programmable Logic Devices (CPLDs). Logic
blocks available in CPLDs utilize a PAL-based structure
(Fig. 1). Other PLDs include FPGA (Field Programmable
Gate Array) devices. Due to the high complexity of these
systems, efficient CAD algorithms must be developed to
address their design challenges. Logic minimization and
technology mapping are two important elements in this
process.

The classical approach to the synthesis of PAL-based
CPLD structures, implemented in many computer aided
design tools, employs two-level minimization of separa-
te functions and technological fitting to the structure of
programmable logic blocks (Bolton, 1990). The Espres-
so algorithm is mainly used for two-level minimization
of Boolean functions (Brayton et al., 1984). The strate-
gies of synthesis implemented in commercial CAD tools
are designed mostly for a small group of devices produ-

ced by single manufacturers, but they do not provide ef-
fective solutions. The synthesis methods implemented in
Hardware Description Language (HDL) compilers, such
as the VHDL or Verilog, use a multi-level representation
of functions, while the synthesis process consists in fitting
a function to the technology library patterns. These me-
thods lead to inefficient use of the available product terms
in PAL-based logic.

The aim of the paper is to show a complete logic syn-
thesis method of a multi-output function based on a new
concept of decomposition adopted for a PAL-based archi-
tecture. This method is based on two-stage decomposition
(Kania, 2004).

In general, a single step of functional decomposition
consists of input variable partitioning into two disjoint

Fig. 1. Structure of a typical PAL-based CPLD block.

Adam.Opara@polsl.pl
Dariusz.Kania@polsl.pl

368 A. Opara and D. Kania

subsets (bound and free set), computing a symbolic func-
tion on bound set variables and input/output encoding that
determines predecessor and successor functions (Murgai
et al., 1994).

Conventional approaches to input encoding are ba-
sed on finding codes which satisfy input constraints re-
sulting from the use of symbolic minimization. Some me-
thods presented in (Saldanha et al., 1994; Yang and Cie-
sielski, 1991) are targeted at two-level minimization. Pro-
per encoding of the input and output problem is widely
discussed in connection with state encoding of FSMs in
(Ashar et al., 1992; De Micheli, 1994). Those problems
are connected with symbolic state encoding, dichotomy
theory, multi-value function minimization, and output do-
mination analysis.

For PAL-based CPLDs, more relevant are methods
optimizing multi-level implementation. One of the first
input encoding approaches to FPGA-based functional de-
composition was presented in (Murgai et al., 1994). Me-
thods using symbolic decomposition or symbolic factori-
zation perform encoding after decomposition. Sometimes,
these methods have been applied to classical decomposi-
tion, which is not efficient for LUT-based FPGAs. Similar
approaches were presented in (Burns et al., 1998; Muthu-
kumar, 2001; Muthukumar et al., 2000).

The main limitation of PAL-based logic blocks is
the number of multi-input product terms available in one
PAL-based logic block. This results in the observation
that the essence of decomposition dedicated to PAL-based
structures can be reduced to two major tasks:

• Minimising the number of PAL-based logic blocks
used;

• Adjusting the designed circuit to best fit the structu-
res of PAL-based blocks.

The proposed decomposition model concerns direc-
tly the second issue. The essence of the proposed model
consists in finding a design partitioning (function decom-
position) which enables us to implement the free block in
one PAL-based logic block containing a predefined num-
ber of product terms.

Functional decomposition backgrounds were worked
out by Ashenhurst (1957) and extended by Curtis (1962).
This model is the foundation of complex decomposition
algorithms dedicated for the LUT-based FPGA (Burns
et al., 1998; Lai et al., 1994; Lai et al., 1996; Nowic-
ka et al., 1997; Rawski et al., 2008; Scholl, 2001). The
essential parts of synthesis are the partitioning and map-
ping of a designed circuit into a configurable logic block.
There are several algorithms that utilize the decomposi-
tion in synthesis for PLA-based devices (Ciesielski and
Yang, 1992; Devadas et al., 1988).

A very interesting approach was presented in
(Anderson and Brown, 1998; Chen et al., 2002). The

synthesis process developed for FPGA devices was em-
ployed, but Look-Up Table (LUT) blocks were replaced
by Programmable Logic Array (PLA) cells. The optimal
structure of the cells was selected after carrying out se-
veral experiments presented in (Kouloheris and Gamal,
1992). The authors prove that using small PLA cells to
construct an FPGA device is more area efficient than using
the LUT cell approach (Kim et al., 2001; Yan, 2001).
On the other hand, synthesis methods dedicated to PLA
structures are well mastered and have been known for
a long time (Chen and Muroga, 1988; Ciesielski and
Yang, 1992; Devadas et al., 1988).

The high importance of decomposition in modern lo-
gic synthesis is obvious.Functional decomposition is wi-
dely researched in the context of logic synthesis for the
LUT-based FPGA and PLA-based architectures. We pro-
pose to use decomposition to minimize the area of a circuit
mapped into PAL-based CPLDs.

Is it profitable to use decomposition in the synthesis pro-
cess for a PAL-based CPLD?

This is the question this paper attempts to answer.
Only the devices with PAL-type logic blocks are con-

sidered. The novel ideas of decomposition presented he-
re were inspired by two-stage PAL-decomposition descri-
bed in (Kania, 2004; Kania et al., 2005). A novel non-
disjunctive PAL-decomposition based on the BDD was
introduced. This decomposition model is particularly pro-
mising in the case of hardly decomposable functions.

The obtained results of experiments are (among
others) compared with the classical method. This method
is briefly introduced in the next subsection.

1.1. Classical method. The classical method of logic
synthesis, dedicated to PAL-based CPLD, and implemen-
ted in the great majority of vendor tools, consists of two
steps. First, two-level minimization is applied separately
to every single-output function; next, the implementation
of the minimized functions in PAL-based blocks, conta-
ining a predefined number of product terms, is performed.
If the number of implicants Δf , representing a function
after minimization, is greater than the number of product
terms k, available in a logic block (Fig. 1), a greater num-
ber of logic blocks has to be utilised to implement the
function. The classical product term expansion method
consists in utilising feedback lines to build a multi-level
cascaded structure, which significantly increases propaga-
tion delays.

Implementing a minimized function f , which can be
represented as a sum of Δf implicants, requires Δf PAL-
based logic blocks containing k product terms

δf =
⌈

Δf − k

k − 1

⌉
+ 1. (1)

Decomposition-based logic synthesis for PAL-based CPLDs 369

Similarly, the classical implementation of a f : Bn →
Bm function requires δ1

f PAL-based logic blocks

δ1
f =

m∑
i=1

δfi =
m∑

i=1

(⌈
Δfi − k

k − 1

⌉
+ 1

)
. (2)

As an example, a classical implementation, utilising PAL
blocks containing three (k = 3) product terms of a func-
tion f : B4 → B3, is presented (Fig. 2).

.i 4

.o 3

.ilb a b c d

.ob f2 f1 f0

.p 15
10-0 100
1-11 100
-000 100
-101 100
01-0 100
-011 100
1-11 010
111- 010
-000 010
0-00 010
00-0 010
0110 001
-011 001
1-11 001
101- 001
.e

b

a

c

I/O

d

f1

f0

PAL

k=3

PAL

k=3

PAL

k=3

PAL

k=3

PAL

k=3

f2

PAL

k=3

PAL

k=3

71
11

1 ��
�
�

�
�
�
�

�
	

�
�
�

�

��
��

�

m

i

f
f k

ki�

Programmable
Interconnect Array

Fig. 2. Classical implementation of a function f : B4 → B3,
utilising PAL-based logic blocks containing three pro-
duct terms.

The purpose of this paper is to present more effec-
tive methods of function implementation in PAL-based
CPLD structures. The paper is structured as follows. Sec-
tion 2 presents the theoretical background and main ideas
of two-stage decomposition methods dedicated to CPLDs.
All steps of the proposed decomposition methods based
on the BDD are given in Section 3. Experimental results
are reported in Section 4. The paper closes with conclu-
sions in Section 5.

2. Two-stage decomposition dedicated to
PAL-based devices

The kernel of the most popular CPLDs is a PAL-based
structure, which consists of a determined (in most cases,
constant) number of terms connected to an output cell.

The terms with the output cell are called PAL-type logic
blocks.

Two-stage PAL decomposition offers more efficient
logic block use than the standard two-level minimization
and fitting. Adaptation to the number of terms in a PAL-
based logic block is a characteristic feature of two-stage
PAL decomposition. Similarly to the Ashenhurst-Curtis
decomposition, the partition of a variable set into free
and bound sets is of major importance (Fig. 2). The par-
tition is chosen so that a free block can be created in
one PAL-based logic block. The two-stage PAL decom-

g1(Xb)

B
ou

nd
 b

lo
ck

gp(Xb)

.

.

.

.

. f

Xb

Xf

Xb

Xf

f

X = Xf Xb

Xf � Xb=

P
I
A

PAL
k. .

 .

Free block

k

Programmable
Interconnect
Area

�

Fig. 3. Circuit partition after decomposition.

position algorithm uses a Karnaugh map as a representa-
tion of the logic function. The rows of the map are de-
scribed by the values of bound variables, whilst the co-
lumns are denoted by the values of free variables. In this
map, row patterns can be determined. For function f(X),
X = Xf ∪ Xb, Xf ∩ Xb = ∅, a row pattern is a row
described by the function g(Xb), which returns the value
1 for all cubes associated with the columns, for which the
function f(X) value is 1. In the case of the Karnaugh map
depicted in Fig. 4, the first row denoted by “g1(Xb)” is de-
scribed by the function

fx0=0,x1=0,x2=0

= g1(x3, x4, x5)
= x3 x4x5 + x3x4x5 + x3x4x5 + x3x4 x5.

There are three rows here described by this pattern:

fx0=0,x1=0,x2=0

= fx0=0,x1=1,x2=1

= fx0=1,x1=1,x2=0 = g1(x3, x4, x5).

The row pattern described by g1(Xb) is called the row
pattern complement. In the case of the Karnaugh map
illustrated in Fig. 4, there were determined two other spe-
cial cases of row patterns: a full row denoted by 1 and an
empty row denoted by 0.

The rows in the Karnaugh map can be broken down
into a few groups:

• empty rows,

• full rows,

• rows associated with the same row pattern or its com-
plement.

370 A. Opara and D. Kania

x3x4x5

x0x1x2 000 001 011 010 110 111 101 100
000 0 1 0 1 0 1 0 1 g1(Xb)g1(Xb)g1(Xb)
001 0 0 1 0 0 1 1 0 g2(Xb)g2(Xb)g2(Xb)
011 0 1 0 1 0 1 0 1 g1(Xb)g1(Xb)g1(Xb)
010 1 0 1 0 1 0 1 0 g1(Xb)g1(Xb)g1(Xb)
110 0 1 0 1 0 1 0 1 g1(Xb)g1(Xb)g1(Xb)
111 0 0 0 0 0 0 0 0 0
101 1 1 1 1 1 1 1 1 1
100 0 0 0 0 0 0 0 0 0

f

Xf = {x0, x1, x2}, Xb = {x3, x4, x5}
g1(Xb) = g1(x3, x4, x5) = x̄3x̄4x5 + x̄3x4x̄5

+ x3x4x5 + x3x̄4x̄5

g2(Xb) = g2(x3, x4, x5) = x4x5 + x3x5

Fig. 4. Karnaugh map with distinguished row patterns.

A row multiplicity of a partition matrix denoted by
μ(Xf |Xb) is defined as a number of different row groups,
except for the groups containing empty and full rows. It is
defined by the expression (3):

f(X), X = {x0, . . . , xn−1},
Xb = {xq, . . . , xn−1}, q < n,

Xb ∪ Xf = X, Xb ∩ Xf = ∅
A =

{
g(xq, . . . , xn−1) : g = fx0=β0,...,xq−1=βq−1 ,

βj ∈ {0, 1}, j = 0, . . . , q − 1
}
,

A—a row patterns set, B—a row groups set,

μ(Xf |Xb)
def=

∣∣∣∣∣B :
∧

gi,gj∈B,gi �=gj

gi, gj ∈ A,

gi �= gj , gi �= 0, gi �= 1

∣∣∣∣∣.

(3)

For the function presented in Fig. 4, the row multi-
plicity is μ(Xf |Xb) = 2; the first group of rows contains
row patterns g1(Xb) and g1(Xb), the second—row pattern
g2(Xb).

Each group of rows can be assigned a function defi-
ned as follows:

h0(Xf) =
{

1, for full rows,
0, for all other rows,

hi(Xf) =

⎧⎨
⎩

1, for rows, for which the row pattern is
described by the function gi(Xb),

0, for all other rows,

h′
i(Xf) =

⎧⎨
⎩

1, for rows, for which the row pattern is
described by the functiongi(Xb),

0, for all other rows ,
(4)

where i = 1, . . . , μ(Xf |Xb). Using these functions, and
assuming that the row multiplicity is p, the following equ-
ation is derived:

μ(Xf |Xb) = p ⇒ f(X) = h0(Xf)

+
p∑

i=1

[
hi(Xf) · gi(Xb) + h′

i(Xf) · gi(Xb)
]
.

(5)

In the case of the discussed example of a function with va-
riables partition Xf = {x0, x1, x2}, Xb = {x3, x4, x5},
the functions h are expressed as follows:

h0(Xf) = x0x1x2,

h1(Xf) = x0 x1x2 + x0x1x2 + x0x1x2,

h′
1(Xf) = x0x1x2,

h2(Xf) = x0x1x2, h′
2(Xf) = 0,

and, finally, the function f will be of the form

f(X) = x0x1x2 + (x0 x1x2 + x0x1x2

+ x0x1x2)g1(x3, x4, x5)

+ x0x1x2 g1(x3, x4, x5)
+ x0 x1x2 g2(x3, x4, x5).

(6)

Figure 5 depicts the implementation of the function
under consideration into a CPLD with six product terms in
one PAL-based block. As can be seen, three PAL-based lo-
gic blocks were employed here. To compare the obtained

g1(Xb)

f

Xf={x0, x1, x2}
Xb={x3, x4, x5}

P
I
A

PAL
k = 6

Free block

PAL
k = 6

g2(Xb)PAL
k = 6

x3 x4 x5

x3 x4 x5

x3 x4 x5

x3 x4 x5

x4 x5

x3 x5

x0

x1
x2

Fig. 5. Circuit after decomposition.

result with the classical one, the formula (1) is used. After
two-level minimization is done with the use of the Espres-
so algorithm, the function under consideration (Fig. 4)
can be represented as a sum of 21 products. The requ-
ired number of logic blocks δf utilized in the classical ap-
proach, determined by the expression (1), where k = 6
and Δf = 21 , is equal to 4. The classical approach
requires only four PAL-based logic blocks with six pro-
duct terms, i.e., one more block when compared with the
decomposition-based approach.

Decomposition-based logic synthesis for PAL-based CPLDs 371

The main idea of two-stage PAL decomposition is to
search for such variable partitions which could provide

(i) a free block realisation in one PAL-based logic block,
and

(ii) the smallest number of bound block outputs.

The number of bound block outputs is equal to the row
multiplicity. An effective computation of the row multi-
plicity for a given variable partition is a major problem in
two-stage PAL decomposition algorithms.

2.1. Method for row multiplicity evaluation. In this
chapter, an algorithm for determining the row multipli-
cities is presented. The algorithm uses a specific colo-
uring algorithm for the row incompatibility and comple-
ment graph. First, it is necessary to introduce some new
terms. A pair of cells (i, j) located in the same column of
a Karnaugh map will be called incompatible if the values
of the functions described by these cells are equal to (1,0)
or (0,1). If in the set of all cell pairs located in two specific
rows at least one pair of incompatible cells can be found,
such rows will also be called incompatible. If in the set of
all cell pairs located in two specific rows neither the (1,1)
nor the (0,0) pairs can be found, we will say that one of
the rows is a complement to the other. Let us now define a
graph G(Y,U), where Y is the set of nodes corresponding
to the Karnaugh map rows, and U is the set of edges. Let
U = UI ∪ UC , where

• UI is the set of edges connecting the nodes corre-
sponding to mutually incompatible row pairs, except
for empty rows, full rows, and mutually complemen-
ting row pairs;

• UC is the set of edges connecting the nodes cor-
responding to mutually complementing row pairs,
except for empty rows and full rows.

The edges belonging to the UI set will be drawn
using a solid line, and the edges belonging to the UC set—
with a dashed line. The graph G(Y,U), built according to
the procedure described above, will be referred to as the
row incompatibility and complement graph.

Example 1. Let us sketch the row incompatibility and
complement graph for the function f : B6 → B presen-
ted in Fig. 4. First, we have to locate empty rows and full
rows, which will be excluded from further operations. In
our case, we find two empty rows and one full row, mar-
ked in Fig. 4 with the 0 and the 1 symbol, respectively.

The analysis of subsequent row pairs leads to cre-
ating the row incompatibility and complement graph de-
picted in Fig. 6.
A method of the colouring of the row incompatibility
and complement graph, presented below, allows deter-
mining the row multiplicity μ(Xf |Xb) of the Karnaugh

000

0

0

x0,x1,x2 001

011

010

110111

101

100

1

Fig. 6. Row incompatibility and complement graph.

map. The row multiplicity will be equal to the number
of different colours, used to distinguish the nodes of the
graph. The concept of graph colouring consists in assi-
gning a minimum number of colours to graph nodes in
such a way that any two nodes connected by a solid line
will receive different colours. The node colouring algori-
thm is based on a sequential selection of nodes. A node
is assigned either a permitted colour (denoted by a capi-
tal letter) or a complementary colour (denoted by a slash
with capital letter). After assigning in step i a permitted or
complementary colour “A” to node N, all nodes connected
to N with a solid line are assigned the forbidden colour
“a” (forbidden colours are denoted by lower case letters),
and all nodes connected to N with dashed lines will rece-
ive the colour complementary to “A”.

The selection of the i-th node is performed according
to the following rules:

• A node with the maximum number of forbidden co-
lours is selected. It is assigned a permitted colour
(one of the colours that have already been used, if
possible).

• If some nodes have the same number of forbidden
colours, the one to which the maximum number of
edges are connected is selected.

• If some nodes have the same number of forbidden co-
lours and the same number of edges connected, the
one selected has the maximum number of comple-
mentary colours. If possible, a complementary colo-
ur is assigned to it.

• If some nodes have the same number of forbidden
colours, complementary colours, and edges, the one
to which the maximum number of solid line edges
are connected is selected.

In the first step, node 001 is selected (Fig. 7a). The assi-
gnment of colours is performed as follows:

• node 001: permitted colour denoted by the A letter;

372 A. Opara and D. Kania

000

0

0

x0,x1,x2 001

011

010

110111

101

100

1

000

0

0

x0,x1,x2 001

011

010

110111

101

100

1

a A

0a

a

a 0

0

x0,x1,x2 001

010

111

101

100

1

000/B A

011

B

110

/B

/B
(a) (b) (c)

Fig. 7. Step-by-step colouring of the row incompatibility and complement graph.

• nodes 000, 011, 010, 110: forbidden colour denoted
by the a letter.

After selecting a node and assigning permitted and for-
bidden colours to the respective other nodes, the graph is
reduced by eliminating the edges that connect the selected
node with other nodes of the graph. The result is presen-
ted in Fig. 7(b). Then, a new node is selected based on
the analysis of the reduced graph. The subsequent steps of
node colouring are depicted in Fig. 7.

As the result of the row incompatibility and comple-
ment graph colouring procedure described above, a row
multiplicity μ(Xf |Xb) = 2 is obtained. Certainly, colour
A corresponds to the row g2(Xb) in Fig. 4, and colour B
to the row g1(Xb).

A detailed description of two-stage decomposition
and the proposed graph colouring algorithm can be fo-
und in (Kania, 2004; Kania et al., 2005). The classical
graph colouring algorithms are presented in (Chartrand
and Zhang, 2008).

3. BDD application in decomposition

The binary decision diagram is a graph-based structure
used for a memory-efficient representation of logic func-
tions. BDDs were first proposed by Akers (1978), and po-
pularised by Bryant (1986) and Brace et al. (1990). Due to
their implicit power to represent Boolean functions, BDDs
are considered the most efficient Boolean representation
known so far. BDDs are widely used in decomposition al-
gorithms (Lai et al., 1996; Yang and Ciesielski, 2002).

A BDD is a directed acyclic graph (a tree) with
each node associated with a function variable. All nodes
(except for terminal ones) have two outgoing edges poin-
ting to two children nodes, one for variable value 0 and
one for 1. This binary tree contains two terminal nodes
termed 0-node and 1-node. The analysis of the paths con-
necting to the BDD terminal nodes determines the value
of the function according to the values of the variables.

Only Reduced Ordered Binary Decision Diagrams
(ROBDDs) have practical meaning. In an ordered BDD,

the variables in all paths have the same variable order, and
they occur, at most, once on every path. Reduced orde-
red BDDs have a minimal number of nodes for the given
variable order and are canonical forms of function repre-
sentation. The reduced form is obtained from an OBDD
by the reduction of the same sub-graphs and through re-
moving all redundant nodes.

There are some ROBDDs with special attributes ad-
ded to the edges for efficient memory use and faster com-
putations (Minato, 1996). A complement is one of the
most known attributes. If the edge is complemented, it
means that the sub-diagram pointed by this edge must be
interpreted as a negation of the formula represented by the
sub-diagram.

The classical two-stage PAL decomposition employs
a partition matrix as a representation of the logic function.
There is a possibility to develop an algorithm using redu-
ced ordered binary decision diagrams as an effective re-
presentation, followed by non-disjunctive decomposition,
whilst the application of the negation attribute can addi-
tionally increase the algorithm’s efficiency.

3.1. Counting the number of paths. As far as the syn-
thesis of digital circuits in programmable structures with
PAL-based blocks is concerned, the key problem is to de-
termine the minimal number of products in the sum of pro-
ducts representation. In the classical approach, the Espres-
so algorithm may be used for this purpose. When the
ROBDD is used for logic function representation, another
concept can be exploited. Each path in the diagram obta-
ined from a root to a leaf 1 corresponds to one product.
The total number of paths can vary with different variable
orderings in the diagram. Changing the variable order is
a way to minimize the path number. Often, the smallest
number of paths is greater than the number of products
after minimization, although decomposition with path co-
unting can provide better results than the classical appro-
ach with the two-level Espresso minimization. The main
advantage of the method used to determine the number of
products through counting the paths is the low computa-

Decomposition-based logic synthesis for PAL-based CPLDs 373

x1

x2x2

b c d a

x2

x1x1

c b d a

x1

x2x2

b d a

x2

x1

b d
(a) (b)

Fig. 9. Example of variable swapping in BDD ordering.

0 1

f1

x0
5

x1
2

x1
3

x2
2

x2
1

x3
1

x3
1

xi
�1=�2+�3

xj
�3

xj
�2

v2
v3

v1

w

(a) (b)

Fig. 8. Counting the number of paths.

tion complexity. The number of paths can be counted by
a recursive procedure. The number of paths Δ1 connec-
ting the given node v1 to the leaf node 1 is equal to the
sum of the number of paths connecting the children node
(high(v1), low(v1)) to the leaf node 1 (Fig. 8a). Similar-
ly to the standard procedure bdd_apply() (Bryant, 1986),
a computed table is used to store the intermediate and final
results of each algorithm iteration. A result in this context
means the number of paths for a given node, which is the
root of a sub-graph representing a function. Due to the use
of cached intermediate results, the path counting procedu-
re will be performed only once for each node. For instance
(see Fig. 8(b)), for a node denoted by w, the number of pa-
ths will be computed only once, although two edges point
to this node and during a depth first traversal across the
diagram this node will be visited twice. The computation
complexity of the procedure counting the number of paths
is O(n), where n is the number of nodes in the diagram.

The number of paths in the diagram highly de-
pends on the variable order. It is possible to use heuri-
stic algorithms similar to those aiming at minimizing the
number of nodes for the number of paths minimization

(Ebendt et al., 2005). For this purpose, a sifting algorithm
(Rudell, 1993) can be used, but the optimality criterion
must be changed. Each variable is moved up and down in
the variable order and the position that produces the smal-
lest OBDD size is maintained. At each position, the resul-
ting ROBDD size is recorded and, finally, the variable is
moved to the best position. The ordering change is per-
formed by swaps of variables, which are adjacent in the
variable ordering. The variable swapping affects the BDD
structure of only two levels involved in the swap, whilst
the whole part of the ROBDD above and below these le-
vels remains unchanged. All modifications have a local
scope and concern two levels of nodes. This local-level of
the swap operation is responsible for the efficiency of the
sifting algorithm. Figure 9 illustrates some portions of the
ROBDDs before and after the swap operation on two le-
vels with assigned variables x1 and x2. The number of no-
des and paths after swapping is unchanged (see Fig. 9(a))
and changed (see Fig. 9(b)), respectively. In the second
case, there is a need to recompute the total number of no-
des in the diagram. Since only two levels are altered, only
the number of nodes in two levels must be recounted, and
the difference between the nodes number before and after
swapping is added to the previous total number of nodes in
the diagram. In order to compute the new number of paths
in the diagram, the results of the previous calculation can
also be employed. Exchanging two adjacent levels has no
influence on the number of paths below these levels. The
number of paths for all nodes in the upper part of the dia-
gram must be updated. In this case, only the processing
time of the lower part of the diagram is saved.

3.2. PAL-oriented BDD-based decomposition. The
core of PAL-oriented decomposition is to search for a par-
tition of function variables assuring free block implemen-
tation in one PAL-based block with a constrained number
of product terms. Furthermore, the partition found must
provide a structure with the smallest possible number of
outputs of the bound block. The partitioning of the va-
riables in a partition matrix is equivalent to the cut in the
ROBDD representing the logic function. The variables as-
sociated with the nodes above the cut line form a free set
Xf , and below the cut line—a bound set Xb (contrary to

374 A. Opara and D. Kania

the Ashenhurst-Curtis decomposition using ROBDD re-
presentation).

Figure 10 depicts the ROBDD corresponding to the
Karnaugh map of the function under consideration in
Fig. 4. All nodes pointed by edges crossed by the cut li-
ne will be termed the cut nodes. As can be seen, each cut
node is associated with one row pattern. The row multipli-
city μ(Xf |Xb) is the number of row groups. A row group
is formed by a row pattern or its complement. All nodes in
an ROBDD with edge complement attributes correspond
to one row group. The row multiplicity can be efficien-
tly computed by counting the number of cut nodes in a
ROBDD with edge complement attributes. Different par-
titions are obtained by changing the variable ordering in
the ROBDD and fixing the level of the cut line diagram.

g1g2

10
0 1

f

x0
19

x1
5

x1
14

x2
4

x2
1

x2
8

x2
6

x3
4

x4
2

x4
2

x5
1

x5
1

x3
4

x3
2

x4
1

g1

g1 → g1(x3, x4, x5)
g2 → g2(x3, x4, x5)
f = x0x̄1x2

+x̄0x̄1x̄2 g1

+x̄0x1x2 g1

+x0x1x̄2 g1

+x̄0x1x̄2 ḡ1

+x̄0x̄1x2 g2

Fig. 10. Diagram with the number of paths of the function under
consideration.

The decomposition algorithm consists of some pha-
ses. During each phase, there is established the number
of free set variables which corresponds to the cut level. A
variable partition is searched, which allows us to obtain a
free block in one PAL-based logic block and the smallest
number of the bound block outputs. If in a given phase the
solution is found, the cut level is incremented.

The main idea of the decomposition algorithm is pre-
sented in Fig. 11. During each phase of the algorithm the
cut level is fixed. Searching for an appropriate partition is
started with the cut level equal to log2(k), where k is the
number of terms in a PAL-based block. For such a cut le-
vel, a partition can always be found, so it is a good starting
point. Furthermore, the cut level is incremented until the

Given: function f to decompose

cut_level= floor_log2(k)

Find a partition for
given cut level

Found?

cut_level= cut_level+1

Y

N

For previously found partition
decompose functions

represented by each cut node

Has the classical
realization smaller number

of PAL blocks?

Y

N

Get the classical solution

A decomposed function

Fig. 11. Simplified schema of PAL decomposition with BDD
application.

partition can be found. For the last found partition a set of
cut nodes is remembered and functions represented by cut
nodes are further recursively decomposed. The last step
of the algorithm is a comparison with the classical realisa-
tion. If the classical realisation gives a smaller number of
PAL-based blocks, then the classical solution is used.

More detailed listing of the decomposition algorithm
is presented in Fig. 12. The minimal number of products
in the sum of products form is determined by path coun-
ting (line 4) in the ROBDD. There, the number of paths to
the leaf 1 and 0 is counted. Since the relation of row com-
plementing is symmetrical, there is a possibility to assign
a function or its complement to the rows, and to obtain
the solution with a smaller number of paths (products).
In the case of using PAL-based logic blocks, without the
possibility to program the output polarities when the de-
composition procedure is initially employed, only positive
polarisation should be accepted.

The algorithm contains a few improvements by just
eliminating certain situations which otherwise would be
further processed, e.g., if a function after minimization is
described by less than 2k implicants (line 5) (where k is
the number of product terms in PAL-based logic block),
then the decomposition will not reduce the number of

Decomposition-based logic synthesis for PAL-based CPLDs 375

1. void decBDD(bdd f, //decomposed function diagram
2. int &blocks, // # of PAL blocks
3. int k){ //product term # in PAL block

4. int min_prod=prod_bdd(&f);//minimal # of paths (products) to leaf 0 or 1
5. if(min_prod < 2*k){

//---------better classical realisation--------------
6. return classical realisation;
7. }else{

//=========decomposition=============================
8. int cut_level= floor_log2(k) + 1;
9. //searching for best partition with fixed cut level
10. if(find_part(&f, cut_level)){ //if found
11. do{
12. cut_level++; //searching for better solutions
13. }while(find_part(&f, cut_level));
14. cut_level--;
15. }else{
16. cut_level= floor_log2(k); // log2 k +1 not found
17. find_part(&f, cut_level);
18. }

//for comparison classical algorithm results
19. int blocks_class= blocks_classical(min_prod,k);
20. if(blocks_class <= number_of_cut_nodes+1){

//------better classical realisation-------------
21. return classical realisation;
22. }else{

//-------cut nodes decomposition------------------
23. int tmp_blocks; //temporary var.
24. for(ftmp d’ż˝ cut_nodes_set){
25. decBDD(ftmp, &tmp_blocks, k);
26. blocks += tmp_blocks;
27. }
28. blocks+=1; //free block
29. if(blocks >= blocks_class)
30. //---better classical realisation-------------
31. return classical realisation;
32. }
33. }//======end decomposition==============================
34.}

Fig. 12. Algorithm of PAL decomposition with BDD application.

blocks because one PAL-based logic block is needed for
the free block and at least one block for the bound block,
respectively. After this condition is not met, a partition is
searched (lines 8–18).

A free block is ensured in one PAL-based logic block
for all partitions for which 2|Xf | < k, |Xf | � 	log2 k
,
holds hence to save computation time the search process
will start with |Xf | = |log2 k|+ 1 (line 8). If the partition
is found for a given cut level, the cut level is incremented
(line 12). If the partition is not found for the cut level equal
to |log2 k|+ 1, then the partition is computed with the cut
level equal to |log2 k|.

Additionally, the number of blocks in the classical
approach (Formula 1) is computed in the line 19.

After a partition is found, a check will be done to see
if the partition could reduce the number of PAL-based lo-
gic blocks compared to the classical approach (line 20).
The minimal number of PAL-based logic blocks requ-
ired to implement a circuit after partitioning is equal to
μ(Xf |Xb)+1, so the condition necessary to eliminate so-
me partitions from further processing is given as

μ(Xf |Xb) < δf =
⌈

Δf − k

k − 1

⌉
+ 1. (7)

If the above condition is not true, further processing is
to be continued and the functions represented by cut no-
des will be decomposed (lines 24–26). At the end, the
last check is made (line 29) if the decomposed function

376 A. Opara and D. Kania

truly gives a smaller number of blocks than the classical
approach.

3.3. Algorithm refinements. The number of paths in
an ROBDD connecting the root to the leaf 1 in some cases
can significantly differ than the number of product terms
of two-level minimized logic function, e.g., a function
with two products f0 = x0x1x2 + x3x4x5 has four pa-
ths with variable ordering x0, x1, x2, x3, x4, x5 (Fig. 13).
Using these paths, this function can be represented as
a sum of four products f0 = x0x1x2 + x0x3x4x5 +
x0x1x3x4x5 + x0x1x2x3x4x5. Although this represen-
tation is not optimal (as the experiments on benchmarks
prove), path counting decomposition gives good results
(Table 1). For further enhancement of the algorithm, the
Espresso algorithm was used instead of path counting. Lo-
oking at the algorithm in Fig. 12, the only difference is in
line 4, where a two-level minimization algorithm is em-
ployed as an alternative.

01

f0

x0

x1

x3

x2

x4

x5

Fig. 13. Diagram with bold paths to leaf “1”.

3.4. Non-disjunctive PAL decomposition. In order to
reduce the number of logic levels, non-disjunctive par-
titions can be employed (Opara, 2009; Opara and Ka-
nia, 2009). Non-disjunctive decomposition is that of the
function under consideration (Fig. 14) implemented with
PAL-based blocks containing three product terms. The
first stage of non-disjunctive decomposition is to find a go-
od disjunctive partition. For a given variable order, only
x0 can be included into the free set. In this case, a free
block described as f = x0 · g2(x1, x2, x3, x4) + x0 ·
g1(x1, x2, x3, x4) is implemented by two product terms.
Function g2 describes a diagram rooted by node v2, and
g1 by v1. Due to the inclusion of one more variable (x1) to

the disjunctive free set, four product terms are needed, so
the limit of three terms in a PAL block is exceeded. Func-
tion g1 is created in one PAL block and g2 in two blocks,
respectively. Finally, using disjunctive decomposition, a
circuit can be implemented with four blocks situated in
three levels.

Through the introduction of non-disjunctive decom-
position, the variable x1 is included into the free and
bound set. The free block is described by the formula
f = x0 ·x1 ·g0 +x0 ·x1 ·g0 +x0 ·g1 and utilizes three pro-
duct terms. The whole circuit is built of three PAL-based
logic blocks in two levels (Fig. 15).

The algorithm presented in Fig. 12 is modified, so
after a proper disjunctive partition is found (lines 23–34)
a procedure is employed to try to add one child of a cut
node to the cut node set. In the example considered, v0

is chosen as a child of v1. The node is accepted if the
resulting implementation of the free block fits one PAL-
based logic block.

1

f

x0

x1 x1

x2 x2x2

x3 x3

x4

x3

v0

v1v2

1

f

x0

x1 g1

g0

1

g1

x1

x2 x2x2

x3 x3

x4

x3

v0

v1

g0

Fig. 14. Diagram cut corresponding to non-disjoint decomposi-
tion.

PAL

k=3

g0

P
I
A

x
2
x
3
x

4

PAL

k=3

g1

PAL

k=3

fx0x1g0

x0g1

PIA – Programable
 Interconnect Area

x0x1g0

x
2
x
3
x

4

x
2
x
3

x
1
x
2
x
3
x

4

x
1
x
2
x
3
x

4

x1x2x3x4

Fig. 15. Circuit structure after non-disjunctive decomposition.

Decomposition-based logic synthesis for PAL-based CPLDs 377

4. Experimental results

The developed BDD-based synthesis methods were com-
pared with

(i) the classical method,

(ii) a two-stage decomposition, and

(iii) a synthesis implemented in firmware tools (Quartus).

In order to compare these methods, a synthesis of
benchmarks was carried out for PAL-based logic blocks
containing k number of terms. All experiments we-
re performed on a PC with a Pentium Centrino 1,6
GHz processor and 1 GB RAM, under the Win-
dows XP operating system. To carry out the experi-
ments, a dekBDD prototype tool was developed, abo-
ut which some additional information can be found at:
db.zmitac.aei.polsl.pl/AO/dekBDD.html.

2 4 6 8 10 12 14 16
1,1

1,2

1,3

1,4

x - dekBDD
x -dekBDD+E

� blocks classical
� blocks decBDD

k

Fig. 16. Comparison of two algorithms with the classical me-
thod with respect to the number of logic blocks (see the
text).

2 4 6 8 10 12 14 16
1

1,05

1,1

1,15

x -dekBDD
x -dekBDD+E

k

� levels decBDD
� levels classical

Fig. 17. Comparison of two algorithms with the classical me-
thod with respect to the number of logic levels (see the
text).

4.1. Comparison with the classical method. A me-
thod of implementing a function in PAL-based structures

incorporating the BDD presented in this paper (dekBDD)
was compared with the classical approach with respect to
the number of logic blocks used and the number of logic
levels. The comparison was made for an algorithm in two
versions: simple, denoted by dekBDD, and enhanced, de-
noted by dekBDD+E in Table 1. For multi-output bench-
marks, this algorithm was applied separately to the out-
puts. The left part of the table shows the results of the
synthesis performed on the benchmarks using the clas-
sical approach. The column marked with “Esp” lists the
number of function products after the Espresso minimi-
zation, “Bdd” lists the number of paths in the ROBDD
representing the function, the letter “B” list the numbers
of k-product PAL-based blocks, and the columns marked
with the letter “L” list the numbers of logic levels.

The second part of the table, denoted with the he-
ading “dekBDD”, contains the results obtained using the
new method. In the set of about 2600 cases compared, the
proposed dekBDD algorithm allowed 168 solutions to be
found, whilst the dekBDD+E algorithm allowed 263 so-
lutions to be found, which required a smaller number of
logic blocks than in the classical method. For some bench-
marks, the reduction of the logic block count was signifi-
cant, e.g., for rd84 f1, rd73 f1, cordic f1, misex3 f2, f7,
5xp1 f2. Significant differences can be noticed not only
for small values of k. Unfortunately, the number of logic
levels does not follow the reduction of the number of logic
blocks. Among the examined benchmarks, only a few per-
cent of the solutions demanded a smaller number of logic
levels.

The results of the experiments are presented in a syn-
thetic way in Figs. 16 and 17. The values represented on
the axis of ordinates in Fig. 16 were calculated from the
rational formula shown in the graph. Σblocks classical and
Σblocks dekBDD denote the relevant total sums of block
counts obtained using the corresponding synthesis me-
thods and are presented in Table 1. The values represented
in Fig. 17 were calculated in a similar manner. The analy-
sis of the benchmarks allows us to state that, in most cases,
the reduction of logic block counts by using this new algo-
rithm is obtained at the expense of a certain expansion of
logic levels. The proposed method is particularly efficient
if k = 4, 8, and 16. A significant reduction in block counts
was observed, while preserving a comparable number of
logic levels.

4.2. Comparison with two-stage decomposition. In
the development of BDD-based decomposition algori-
thms, two-stage decomposition was a certain reference.
This method was presented in Section 2. Decomposition
based on the classical Ashenhurst-Curtis model is very ef-
fective. Unfortunately, the computation complexity prec-
ludes the synthesis of large designs. Two-stage decompo-
sition implemented in a PALDec system (Kania, 2004)
allows the synthesis of functions with at most 16 argu-

db.zmitac.aei.polsl.pl/AO/dekBDD.html

378 A. Opara and D. Kania

ments. A logic synthesis based on a BDD (a simple one,
denoted by dekBDD, and the enhanced one, denoted by
dekBDD+E) was compared with two-stage decomposi-
tion implemented in a PALDec system with respect to
the number of logic blocks used and the number of lo-
gic levels. The results are presented in Table 2. The rows

-20

-15

-10

-5

0

5

3 4 5 6 7 8 9 10 11 12 13 14 15 16

k

[%]

DekBDD
DecBDD+E
PALDec

Fig. 18. Comparison of decomposition algorithms with respect
to the number of logic blocks (see the text).

-10

0

10

20

3 4 5 6 7 8 9 10 11 12 13 14 15 16
k

[%]

DekBDD
DekBDD+E
PALDec

Fig. 19. Comparison of decomposition algorithms with respect
to the number of logic levels (see the text).

show the results of synthesis performed on the bench-
marks using the classical approach (rows marked “Clas-
sic”), logic synthesis based on the BDD (rows marked
“dekBDD” and “dekBDD+E”) and logic synthesis based
on two-stage decomposition (rows marked “PALDec”).
The columns marked with the letter “B” list the num-
bers of k-product PAL-based blocks used, and the columns
marked with the letter “L”—the numbers of logic levels.

The relevant total sums of block and level counts ob-
tained using the corresponding synthesis methods are pre-
sented in the four lowest rows of Table 2.

When comparing a set of 128 cases, two-stage de-
composition (PALDec) gave 20 solutions (15%) requiring
a smaller number of logic blocks than BDD-based decom-
position methods. For certain benchmarks, the reduction
of logic block count was significant, e.g., for f51m, z5xp.
Crucial differences can be noticed only for k = 3. In the
majority of cases, the numbers of logic blocks and levels
obtained for both methods were identical.

The results of the comparison of all decomposition
methods are presented in a synthetic form in Figs. 18

and 19. The values represented on the axis of ordinates
in Fig. 18 and Fig. 19 were calculated from the formula
shown on the graph. Σblocks and Σlevels denote the re-
levant total sums of block counts obtained with the use of
the corresponding synthesis methods.

The analysis of the benchmarks allows us to state
that, in most cases, the reduction of logic block counts
by using the new algorithm is obtained at the expense of a
certain expansion of logic levels. All decomposition me-
thods are particularly efficient if k = 4 or k = 8. In this
case, a significant reduction of block counts, while prese-
rving comparable (sometimes the lowest) number of logic
levels, was observed.

These experiments show the following:

• The decomposition method is better, with respect
to the number of logic blocks, than the classical
approach.

• The decomposition method can be useful in cases
for which the reduction of the chip area is of the
utmost concern, without significantly degrading the
chip dynamic properties.

• BDD based decomposition algorithms (DekBDD,
DekBDD+E) have significantly lower computation
complexity than two-stage decomposition based
algorithms.

• Two-stage decomposition sometimes produces better
solutions than BDD-based techniques.

• If the reduction of the number of logic levels is an im-
portant factor in the synthesis, the proposed decom-
position algorithm is particularly effective for struc-
tures consisting of PAL-based blocks containing 2i

(a power of 2) product terms.

4.3. Way to describe circuits to use decomposition re-
sults for commercial applications. The main problem
in porting a proposed method to a vendor-specific system
is to find an appropriate intermediate format for the de-
sign data exchange. Commercial vendor-independent sys-
tems (e.g., Synplify, Leonardo Spectrum) use low level
netlists for this purpose. This approach is secure becau-
se there is a little chance that the low level structure will
be interfered with by implementation tools. The method
is, however, not universal because low level netlists con-
tain much vendor-specific and architecture-specific infor-
mation. Using this approach requires thus equipping the
synthesis software with procedures or plugins responsible
for converting formats, and preparing data specific for the
implementation tools. This is acceptable for commercial
companies but difficult for academic experiments. It was,
therefore, desirable to find alternative formats for the da-
ta exchange, possibly more universal, and to use a higher
level of abstraction.

Decomposition-based logic synthesis for PAL-based CPLDs 379

Here using a Hardware Description Language (HDL)
seems to be the most obvious choice. Choosing the ri-
ght abstraction level for the intermediate format is an im-
portant task because vendor implementation software can
change and “destroy” logical structures generated by syn-
thesis tools. Behavioral HDL description seems presently
to be the design specification format most preferred for
design entry. Because of its high abstraction level, it al-
lows the designer to concentrate on proper description of
the desired functionality. As a textual format, following
the standard of the chosen language, it is universal and
portable between technologies and software tools.

A number of experiments were carried out to exami-
ne various synthesis tools and, in particular, the effects of
selecting different data exchange formats on the quality
of results. The tools were tested using the standard bench-
marks. The benchmarks were implemented in PAL-based
CPLDs.

It was found that, if behavioural description was used
as the entry format, the quality of the solutions was not go-
od. A high abstraction level in behavioural modelling gi-
ves much freedom to the software. Logical structures can
be easily “spoiled” by vendor implementation programs.
During the experiments it appeared that it is possible to
propose as the intermediate format a style of Verilog de-
scription lying at a lower level of abstraction than beha-
vioural modelling, but still portable between software to-
ols and comprehendible to a human.

To this end, a way to describe the circuit under de-
sign was developed using a set of equations. The advan-
tage of this solution is that the decomposed circuit retains
its structure. The proposed circuit description ensures the
transferability of results to different hardware platforms.
The designed circuit described by the sum of products
(Fig. 20(a)) is then decomposed using the prototype tool,
to obtain the description in the form of a set of equations
in the Verilog language (Fig. 20(b)). Adding certain at-
tribute signals (* KEEP *) prevents a specific given signal
from being reduced by the firmware synthesis tool. In con-
sequence, the decomposed circuit will retain its specific
structure. Apart from the transferability, such a descrip-
tion has another advantage—it does not limit the possibi-
lity of using specific resources of programmable structu-
res, such as, e.g., shared expanders. Thus, further impro-
vement of the obtained results is possible and experiments
confirmed the effectiveness of the proposed approach. In
order to verify the practical usefulness of the proposed de-
scription and decomposition methods for standard bench-
marks, the Quartus II v8.0 software from Altera and the
MAX 7000B, EPM 7512 BFC256-5 programmable lo-
gic were used. Each benchmark was synthesised using the
Quartus software. Moreover, a description of the circuit
was produced for comparison purposes, using dekBDD,
and then the synthesis was continued using the firmare
system.

5xp1.pla
module benchm (
input x0,x1,x2,x3,x4,x5,x6,
output
f0,f1,f2,f3,f4,f5,f6,f7,f8,f9
);
...
assign f2 =
(x0&˜x4&x5&˜x6)
|(˜x0&˜x4&˜x5&x6)
|(˜x1&˜x2&˜x4&˜x5&x6)
|(x0&x1&x2&˜x4&˜x6)
|(x0&x1&x3&˜x4&˜x6)
|(˜x0&x4&˜x5&˜x6)
|(˜x1&x4&˜x5&˜x6)
|(˜x2&˜x3&x4&˜x5&˜x6)
|(x1&x2&x3&˜x4&x5&˜x6)
|(˜x0&˜x1&˜x3&˜x4&x6)
|(˜x0&˜x1&˜x2&˜x4&x6)
|(x0&x4&x5&x6)
|(x1&x4&x5&x6)
|(˜x0&˜x1&x2&x3&x4&x5)
|(˜x0&˜x3&x4&˜x6)
|(˜x0&˜x2&x4&˜x6)
|(x0&x1&x4&x6)
|(x0&x2&x4&x6);
...
endmodule

5xp1.pla
module benchm (
input x0,x1,x2,x3,x4,x5,x6,
output
f0,f1,f2,f3,f4,f5,f6,f7,f8,f9
);
...
(* KEEP *) wire g20 = ˜(
(x1&˜x6&x2&x3)
|(˜x1&x6&˜x0&˜x3)
|(˜x1&x6&˜x0&˜x2)
|(˜x6&x0));

(* KEEP *) wire g21 =
˜((x1&˜x6&x0&x3)
|(x1&˜x6&x0&x2)
|(˜x1&x6&˜x2)
|(x6&˜x0));

assign f2 =
(˜x4&x5&˜g20)
|(x4&x5&g20)
|(˜x4&˜x5&˜g21)
|(x4&˜x5&g21);

...
endmodule

(a) (b)

Fig. 20. Description of the function f2 5xp1 in the Verilog
language: classical representation (a), representation
created with the prototype tool (allowing the use of the
decomposition results (b).

The results of the experiments are presented in Ta-
ble 3. The first column header contains the name of the
benchmark, the next two columns contain the number of
the blocks of type PAL (k = 5) obtained using the clas-
sical method and the dekBDD + E method. The next two
groups of column headers contain “MAX 7000B Quartus
II area opt.” and “MAX 7000B dekBDD + E + Quartus
II”, and they are related to the results of the synthesis of
the circuits developed in the MAX 7000B programmable
structure using two methods:

1. “MAX 7000B Quartus II area opt.”—synthesis em-
ploying Quartus, focused on area minimization;

2. “MAX 7000B dekBDD + E + Quartus II”—
decomposition using the dekBDD + E method en-
ding with the description in the Verilog language, fol-
lowed by post-synthesis using Quartus.

Here, “MC” is the number of the macrocells, “Exp”
is the number of the shared expanders used, and “tp” is the
propagation time through the longest path. The penultima-
te column contains the standardized number of macrocells

380 A. Opara and D. Kania

Table 1. Detailed comparison between the classical method referred to decompositions that employ the BDD.
Classic

k=3 k=4 k=5 k=6 k=7 k=8 k=12 k=16 k=3 k=4 k=5 k=6 k=7 k=8 k=12 k=16 k=3 k=4 k=5 k=6 k=7 k=8 k=12 k=16
B L B L

f2: 18 19 9 3 6 3 5 2 4 2 3 2 3 2 2 2 2 2 6 4 5 3 3 2 4 2 3 2 3 2 2 2 2 2 5 3 3 2 3 2 4 2 3 2 3 2 2 2 2 2
f3: 14 15 7 3 5 2 4 2 3 2 3 2 2 2 2 2 1 1 4 3 3 2 3 2 3 2 3 2 2 2 2 2 1 1 4 3 3 2 3 2 3 2 3 2 2 2 2 2 1 1
f4: 10 10 5 3 3 2 3 2 2 2 2 2 2 2 1 1 1 1 3 3 3 2 3 2 2 2 2 2 2 2 1 1 1 1 3 3 3 2 3 2 2 2 2 2 2 2 1 1 1 1
5xp1.pla 35 3 26 3 22 2 18 2 16 2 15 2 12 2 11 2 27 4 23 3 19 2 18 2 16 2 15 2 12 2 11 2 14 26 3 21 2 19 2 18 2 16 2 15 2 12 2 11 2 17
9sym.pl 86 148 43 5 29 4 22 3 17 3 15 3 13 3 8 2 6 2 37 5 20 4 17 3 14 3 12 3 7 3 7 3 5 2 34 37 5 20 4 17 3 14 3 12 3 7 3 7 3 5 2 34
f0: 21 22 10 3 7 3 5 2 4 2 4 2 3 2 2 2 2 2 9 3 7 3 5 2 4 2 4 2 3 2 2 2 2 2 9 3 7 3 5 2 4 2 4 2 3 2 2 2 2 2
f2: 42 54 21 4 14 3 11 3 9 3 7 2 6 2 4 2 3 2 21 4 13 3 11 3 9 3 7 2 6 2 4 2 3 2 21 4 13 3 11 3 9 3 7 2 6 2 4 2 3 2
f3: 34 43 17 4 11 3 9 3 7 2 6 2 5 2 3 2 3 2 17 4 9 3 9 3 7 2 6 2 5 2 3 2 3 2 15 4 9 3 9 3 7 2 6 2 5 2 3 2 3 2
f4: 20 21 10 3 7 3 5 2 4 2 4 2 3 2 2 2 2 2 6 3 5 3 5 2 4 2 4 2 3 2 2 2 2 2 6 3 5 3 5 2 4 2 4 2 3 2 2 2 2 2

 73 4 49 3 38 3 30 3 26 2 22 2 14 2 12 2 68 4 44 3 38 3 30 3 26 2 22 2 14 2 12 2 10 66 4 44 3 38 3 30 3 26 2 22 2 14 2 12 2 12
f0: 23 23 11 3 8 3 6 2 5 2 4 2 4 2 2 2 2 2 11 3 5 3 4 3 3 2 3 2 4 2 2 2 2 2 11 3 5 3 4 3 3 2 3 2 4 2 2 2 2 2
f1: 18 19 9 3 6 3 5 2 4 2 3 2 3 2 2 2 2 2 9 3 3 2 3 2 3 2 3 2 3 2 2 2 2 2 9 3 3 2 3 2 3 2 3 2 3 2 2 2 2 2
f2: 14 15 7 3 5 2 4 2 3 2 3 2 2 2 2 2 1 1 7 3 3 2 3 2 3 2 3 2 2 2 2 2 1 1 7 3 3 2 3 2 3 2 3 2 2 2 2 2 1 1
f51m.pla 37 3 27 3 22 2 18 2 16 2 15 2 11 2 10 2 37 3 19 3 17 3 15 2 15 2 15 2 11 2 10 2 17 37 3 19 3 17 3 15 2 15 2 15 2 11 2 10 2 17
f1: 16 16 8 3 5 2 4 2 3 2 3 2 3 2 2 2 1 1 4 4 2 2 2 2 2 2 2 2 2 2 2 2 1 1 4 4 2 2 2 2 2 2 2 2 2 2 2 2 1 1
f2: 10 14 5 3 3 2 3 2 2 2 2 2 2 2 1 1 1 1 5 3 3 2 3 2 2 2 2 2 2 2 1 1 1 1 5 3 3 2 3 2 2 2 2 2 2 2 1 1 1 1
rd53.pla 15 3 10 2 8 2 6 2 6 2 6 2 4 2 3 1 11 4 7 2 6 2 5 2 5 2 5 2 4 2 3 1 12 11 4 7 2 6 2 5 2 5 2 5 2 4 2 3 1 12
f0: 42 48 21 4 14 3 11 3 9 3 7 2 6 2 4 2 3 2 21 4 7 3 7 3 6 3 5 3 3 2 3 2 3 2 21 4 7 3 7 3 5 3 5 3 3 2 3 2 3 2
f1: 64 64 32 4 21 3 16 3 13 3 11 3 9 2 6 2 5 2 6 6 3 3 3 3 3 3 3 3 2 2 2 2 2 2 6 6 3 3 3 3 3 3 3 3 2 2 2 2 2 2
f2: 35 35 17 4 12 3 9 3 7 2 6 2 5 2 4 2 3 2 15 4 8 3 6 3 5 3 5 3 5 2 4 2 3 2 15 4 8 3 6 3 5 3 5 3 5 2 4 2 3 2
rd73.pla 70 4 47 3 36 3 29 3 24 3 20 2 14 2 11 2 42 6 18 3 16 3 14 3 13 3 10 2 9 2 8 2 121 42 6 18 3 16 3 13 3 13 3 10 2 9 2 8 2 122
f0: 84 92 42 5 28 4 21 3 17 3 14 3 12 3 8 2 6 2 42 5 11 4 7 3 7 3 7 3 5 3 3 2 3 2 40 5 11 4 7 3 7 3 7 3 5 3 3 2 3 2
f1: 128 128 64 5 43 4 32 4 26 3 22 3 19 3 12 2 9 2 7 7 4 4 4 4 4 4 4 4 3 3 3 3 2 2 7 7 4 4 4 4 4 4 4 4 3 3 3 3 2 2
f3: 70 73 35 4 23 4 18 3 14 3 12 3 10 3 7 2 5 2 27 5 11 3 11 3 9 3 8 3 6 3 5 2 5 2 27 5 11 3 11 3 9 3 8 3 6 3 5 2 5 2
rd84.pla 142 5 95 4 72 4 58 3 49 3 42 3 28 2 21 2 77 7 27 4 23 4 21 4 20 4 15 3 12 3 11 2 301 75 7 27 4 23 4 21 4 20 4 15 3 12 3 11 2 303
f2: 22 31 11 3 7 3 6 2 5 2 4 2 3 2 2 2 2 2 8 4 6 3 5 2 5 2 4 2 3 2 2 2 2 2 6 3 4 3 5 2 5 2 4 2 3 2 2 2 2 2
f3: 21 33 10 3 7 3 5 2 4 2 4 2 3 2 2 2 2 2 6 3 7 3 5 2 4 2 4 2 3 2 2 2 2 2 5 3 6 3 5 2 4 2 4 2 3 2 2 2 2 2
sao2.pla 36 3 24 3 19 2 15 2 14 2 11 2 7 2 7 2 29 4 23 3 18 2 15 2 14 2 11 2 7 2 7 2 9 26 3 20 3 18 2 15 2 14 2 11 2 7 2 7 2 15
xor5.pla 16 16 8 3 5 2 4 2 3 2 3 2 3 2 2 2 1 1 4 4 2 2 2 2 2 2 2 2 2 2 2 2 1 1 12 4 4 2 2 2 2 2 2 2 2 2 2 2 2 1 1 12
f3: 18 19 9 3 6 3 5 2 4 2 3 2 3 2 2 2 2 2 9 3 3 2 3 2 3 2 3 2 3 2 2 2 2 2 9 3 3 2 3 2 3 2 3 2 3 2 2 2 2 2
f4: 14 15 7 3 5 2 4 2 3 2 3 2 2 2 2 2 1 1 7 3 3 2 3 2 3 2 3 2 2 2 2 2 1 1 7 3 3 2 3 2 3 2 3 2 2 2 2 2 1 1
z5xp1.p 35 3 26 3 22 2 18 2 16 2 15 2 12 2 11 2 35 3 21 2 19 2 17 2 16 2 15 2 12 2 11 2 9 35 3 21 2 19 2 17 2 16 2 15 2 12 2 11 2 9
z9sym.p 86 148 43 5 29 4 22 3 17 3 15 3 13 3 8 2 6 2 37 5 20 4 17 3 14 3 12 3 7 3 7 3 5 2 34 37 5 20 4 17 3 14 3 12 3 7 3 7 3 5 2 34
f3: 67 83 33 4 22 4 17 3 14 3 11 3 10 3 6 2 5 2 33 4 22 4 17 3 14 3 11 3 10 3 6 2 5 2 32 4 22 4 17 3 14 3 11 3 10 3 6 2 5 2
f4: 65 82 32 4 22 4 16 3 13 3 11 3 10 3 6 2 5 2 32 4 22 4 16 3 13 3 11 3 10 3 6 2 5 2 29 4 21 4 16 3 13 3 11 3 10 3 6 2 5 2
f5: 73 89 36 4 24 4 18 3 15 3 12 3 11 3 7 2 5 2 36 4 24 4 18 3 15 3 12 3 11 3 7 2 5 2 36 4 24 4 18 3 15 3 12 3 11 3 7 2 5 2
f6: 77 92 38 4 26 4 19 3 16 3 13 3 11 3 7 2 6 2 38 4 26 4 19 3 16 3 13 3 11 3 7 2 6 2 38 4 26 4 19 3 16 3 13 3 11 3 7 2 6 2
f7: 85 102 42 5 28 4 21 3 17 3 14 3 12 3 8 2 6 2 42 5 28 4 21 3 17 3 14 3 12 3 8 2 6 2 41 5 28 4 21 3 17 3 14 3 12 3 8 2 6 2
apex3.p 312 5 222 4 175 3 151 3 128 3 119 3 89 2 79 2 312 5 222 4 175 3 151 3 128 3 119 3 89 2 79 2 0 307 5 221 4 175 3 151 3 128 3 119 3 89 2 79 2 6
f0: 278 2648 139 6 93 5 70 4 56 4 47 3 40 3 26 3 19 3 139 6 93 5 70 4 56 4 47 3 40 3 26 3 19 3 139 6 93 5 70 4 56 4 47 3 40 3 21 3 19 3
f1: 264 1227 132 6 88 5 66 4 53 4 44 3 38 3 24 3 18 3 132 6 88 5 66 4 53 4 44 3 38 3 24 3 18 3 119 6 77 5 66 4 53 4 30 4 25 3 24 3 18 3
f2: 523 1763 261 6 174 5 131 4 105 4 87 4 75 4 48 3 35 3 261 6 174 5 131 4 105 4 87 4 75 4 48 3 35 3 131 6 74 5 57 4 46 4 38 4 23 4 22 3 17 3
apex2.p 532 6 355 5 267 4 214 4 178 4 153 4 98 3 72 3 532 6 355 5 267 4 214 4 178 4 153 4 98 3 72 3 0 389 6 244 5 193 4 155 4 115 4 88 4 67 3 54 3 564
f6: 36 46 18 4 12 3 9 3 7 2 6 2 5 2 4 2 3 2 18 4 12 3 8 3 7 2 6 2 5 2 4 2 3 2 18 4 12 3 8 3 7 2 6 2 5 2 4 2 3 2
f7: 199 297 99 5 66 4 50 4 40 3 33 3 29 3 18 3 14 2 99 5 66 4 50 4 40 3 33 3 29 3 18 3 14 2 55 5 46 4 34 4 28 4 24 3 28 3 18 3 14 2
alu4.pla 323 5 216 4 163 4 131 3 109 3 94 3 62 3 46 2 323 5 216 4 162 4 131 3 109 3 94 3 62 3 46 2 1 279 5 196 4 146 4 119 4 100 3 93 3 62 3 46 2 103
f0: 143 6809 71 5 48 4 36 4 29 3 24 3 21 3 13 2 10 2 71 5 48 4 36 4 29 3 24 3 21 3 10 5 8 4 71 5 48 4 33 5 29 3 17 3 20 4 6 3 4 3
f1: 771 3563 385 7 257 5 193 5 154 4 129 4 110 4 70 3 52 3 385 7 198 8 119 8 34 7 30 7 48 6 32 5 14 5 132 7 94 5 69 5 22 6 22 6 32 5 20 4 11 4

456 7 305 5 229 5 183 4 153 4 131 4 83 3 62 3 456 7 246 8 155 8 63 7 54 7 69 6 42 5 22 5 495 203 7 142 5 102 5 51 6 39 6 52 5 26 4 15 4 972
f1: 8 8 4 2 3 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1
f64: 27 30 13 3 9 3 7 3 6 2 5 2 4 2 3 2 2 2 13 3 9 3 7 3 5 3 5 2 4 2 3 2 2 2 11 5 8 4 6 3 5 3 4 2 4 2 3 2 2 2
f65: 27 30 13 3 9 3 7 3 6 2 5 2 4 2 3 2 2 2 13 3 9 3 7 3 5 3 5 2 4 2 3 2 2 2 11 5 8 4 6 3 5 3 4 2 4 2 3 2 2 2
f68: 27 30 13 3 9 3 7 3 6 2 5 2 4 2 3 2 2 2 13 3 9 3 7 3 5 3 5 2 4 2 3 2 2 2 11 5 8 4 6 3 5 3 4 2 4 2 3 2 2 2
f69: 27 30 13 3 9 3 7 3 6 2 5 2 4 2 3 2 2 2 13 3 9 3 7 3 5 3 5 2 4 2 3 2 2 2 11 5 8 4 6 3 5 3 4 2 4 2 3 2 2 2
f70: 27 30 13 3 9 3 7 3 6 2 5 2 4 2 3 2 2 2 13 3 9 3 7 3 5 3 5 2 4 2 3 2 2 2 11 5 8 4 6 3 5 3 4 2 4 2 3 2 2 2
f72: 23 23 11 3 8 3 6 2 5 2 4 2 4 2 2 2 2 2 8 3 4 3 3 2 3 2 3 2 3 2 2 2 2 2 8 3 4 3 3 2 3 2 3 2 3 2 2 2 2 2
f76: 28 29 14 4 9 3 7 3 6 2 5 2 4 2 3 2 2 2 13 4 9 3 7 3 6 2 5 2 4 2 3 2 2 2 11 4 9 3 7 3 6 2 5 2 4 2 3 2 2 2
f80: 32 39 16 4 11 3 8 3 7 2 6 2 5 2 3 2 3 2 12 6 11 3 8 3 6 4 6 2 5 2 3 2 3 2 12 6 11 3 8 3 6 4 6 2 5 2 3 2 3 2
f84: 36 37 18 4 12 3 9 3 7 2 6 2 5 2 4 2 3 2 12 6 9 5 9 3 7 2 6 2 5 2 4 2 3 2 12 6 9 5 9 3 7 2 6 2 5 2 4 2 3 2
apex5.p 578 4 391 3 308 3 253 2 230 2 215 2 138 2 110 2 562 6 383 5 305 3 245 4 229 2 214 2 138 2 110 2 37 550 6 378 5 300 3 245 4 224 2 214 2 138 2 110 2 64
t481.pla 481 841 240 6 160 5 120 4 96 4 80 4 69 3 44 3 32 3 45 8 41 7 32 7 49 5 47 5 46 5 21 4 14 3 546 43 8 39 7 31 7 47 5 45 5 45 5 21 4 14 3 556
f0: 87 99 43 5 29 4 22 3 18 3 15 3 13 3 8 2 6 2 43 5 27 4 22 3 15 4 15 3 13 3 8 2 5 2 15 4 14 3 13 3 11 3 10 3 10 3 8 2 5 2
f1: 102 120 51 5 34 4 26 3 21 3 17 3 15 3 10 2 7 2 51 5 28 5 26 3 21 3 17 3 15 3 10 2 6 2 25 4 16 3 15 3 17 3 14 3 12 3 8 2 6 2
f2: 120 169 60 5 40 4 30 3 24 3 20 3 17 3 11 2 8 2 60 5 39 5 30 3 23 4 20 3 17 3 11 2 8 2 18 4 17 3 16 3 12 3 12 3 9 3 11 2 8 2
f3: 132 193 66 5 44 4 33 4 27 3 22 3 19 3 12 2 9 2 66 5 44 4 33 4 27 3 22 3 19 3 12 2 9 2 20 4 15 3 12 3 14 3 13 3 12 3 12 2 9 2
f4: 111 173 55 5 37 4 28 3 22 3 19 3 16 3 10 2 8 2 55 5 37 4 28 3 21 4 17 4 16 3 10 2 8 2 22 4 23 4 17 3 11 3 11 3 8 3 10 2 8 2
f5: 78 102 39 4 26 4 20 3 16 3 13 3 11 3 7 2 6 2 39 4 26 4 18 3 12 3 10 3 11 3 7 2 6 2 20 4 14 3 13 3 10 3 9 3 8 3 7 2 6 2
f6: 111 173 55 5 37 4 28 3 22 3 19 3 16 3 10 2 8 2 55 5 37 4 28 3 21 4 19 3 16 3 10 2 5 2 24 4 26 4 20 3 12 3 11 3 8 3 10 2 5 2
f7: 141 198 70 5 47 4 35 4 28 3 24 3 20 3 13 2 10 2 70 5 47 4 35 4 28 3 24 3 20 3 13 2 10 2 17 4 16 3 14 3 13 3 11 3 10 3 11 2 10 2
f8: 70 99 35 4 23 4 18 3 14 3 12 3 10 3 7 2 5 2 35 4 23 4 14 4 12 4 10 3 10 3 4 2 4 2 14 4 10 3 11 3 8 3 8 3 8 3 4 2 4 2
f9: 113 159 56 5 38 4 28 3 23 3 19 3 16 3 11 2 8 2 56 5 38 4 28 3 23 3 19 3 16 3 11 2 8 2 29 5 21 4 16 4 15 3 12 3 16 3 10 3 8 2
misex3.pla 612 5 410 4 309 4 249 3 208 3 178 3 117 2 87 2 612 5 401 5 303 4 237 4 201 4 178 3 114 2 81 2 43 286 5 227 4 188 4 157 3 139 3 126 3 109 3 81 2 857

3590 2426 1858 1506 1286 1134 751 587 3246 2088 1591 1255 1097 997 661 508 2453 1666 1327 1089 941 861 609 483
75 75 61 52 48 47 45 38 85 85 66 59 54 53 49 44 83 83 61 56 53 51 48 44

 DekBDD Gain DekBDD+E Gain

Esp Bdd

clip.pla

cordic.p

representing the gain (gain ZMC = MCQuartus / MCdekBDDE).
This number shows how many times the number of blocks
was reduced due to the use of the dekBDD + E algorithm.
The last column presents the time of propagation (gain
Ztp = tpQuartus/tpdekBDDE). The last row of the table conta-
ins the totals of the values of the individual columns.

Among 23 benchmarks considered, in 15 cases the-
re was observed a reduction in the number of macro-

cells. In the majority of cases, such a reduction was as
high as several dozen percent. A surprisingly good re-
sult was reached in some cases. The best result was obta-
ined for the spla circuit, where the number of macrocells
dropped from 927 to 89 (above a tenfold decrease in the
number of blocks). Similar results were obtained for pdc,
f51m and rd84 benchmarks. After the Quartus II synthe-
sis, it was impossible to develop the pdc and spla bench-

Decomposition-based logic synthesis for PAL-based CPLDs 381

Table 2. Comparison between decompositions that employ the BDD (DekBBD, DekBBD+E) and two-stage decomposition (PALDec)
referred to the classical method.

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 12 k = 16
Benchmark Method B L B L B L B L B L B L B L B L
5xp1 Classic 35 3 26 3 22 2 18 2 16 2 15 2 12 2 11 2

DekBDD 27 4 23 3 19 2 18 2 16 2 15 2 12 2 11 2
DekBDD+E 26 3 21 2 19 2 18 2 16 2 15 2 12 2 11 2
PALDec 26 3 21 2 18 2 17 2 16 2 14 2 12 2 11 2

9sym Classic 43 5 29 4 22 3 17 3 15 3 13 3 8 2 6 2
DekBDD 37 5 20 4 17 3 14 3 12 3 7 3 7 3 5 2
DekBDD+E 37 5 20 4 17 3 14 3 12 3 7 3 7 3 5 2
PALDec 37 5 20 4 17 3 14 3 12 3 7 3 7 3 5 2

bw Classic 52 2 40 2 33 2 28 1 28 1 28 1 28 1 28 1
DekBDD 52 2 40 2 33 2 28 1 28 1 28 1 28 1 28 1
DekBDD+E 52 2 40 2 33 2 28 1 28 1 28 1 28 1 28 1
PALDec 52 2 40 2 33 2 28 1 28 1 28 1 28 1 28 1

clip Classic 73 4 49 3 38 3 30 3 26 2 22 2 14 2 12 2
DekBDD 68 4 44 3 38 3 30 3 26 2 22 2 14 2 12 2
DekBDD+E 66 4 44 3 38 3 30 3 26 2 22 2 14 2 12 2
PALDec 65 4 44 3 34 3 28 3 24 3 21 2 14 2 12 2

f51m Classic 37 3 27 3 22 2 18 2 16 2 15 2 11 2 10 2
DekBDD 37 3 19 3 17 3 15 2 15 2 15 2 11 2 10 2
DekBDD+E 37 3 19 3 17 3 15 2 15 2 15 2 11 2 10 2
PALDec 23 4 19 3 16 3 14 2 14 2 14 2 11 2 10 2

rd53 Classic 15 3 10 2 8 2 6 2 6 2 6 2 4 2 3 1
DekBDD 11 4 7 2 6 2 5 2 5 2 5 2 4 2 3 1
DekBDD+E 11 4 7 2 6 2 5 2 5 2 5 2 4 2 3 1
PALDec 11 4 7 2 6 2 5 2 5 2 5 2 4 2 3 1

rd73 Classic 70 4 47 3 36 3 29 3 24 3 20 2 14 2 11 2
DekBDD 42 6 18 3 16 3 14 3 13 3 10 2 9 2 8 2
DekBDD+E 42 6 18 3 16 3 13 3 13 3 10 2 9 2 8 2
PALDec 42 5 18 3 16 3 13 3 13 3 10 2 9 2 8 2

rd84 Classic 142 5 95 4 72 4 58 3 49 3 42 3 28 2 21 2
DekBDD 77 7 27 4 23 4 21 4 20 4 15 3 12 3 11 2
DekBDD+E 75 7 27 4 23 4 21 4 20 4 15 3 12 3 11 2
PALDec 75 7 27 4 23 3 23 3 22 3 15 3 12 3 10 2

sao2 Classic 36 3 24 3 19 2 15 2 14 2 11 2 7 2 7 2
DekBDD 29 4 23 3 18 2 15 2 14 2 11 2 7 2 7 2
DekBDD+E 26 3 20 3 18 2 15 2 14 2 11 2 7 2 7 2
PALDec 26 4 19 3 17 3 13 2 13 2 11 2 7 2 7 2

xor5 Classic 8 3 5 2 4 2 3 2 3 2 3 2 2 2 1 1
DekBDD 4 4 2 2 2 2 2 2 2 2 2 2 2 2 1 1
DekBDD+E 4 4 2 2 2 2 2 2 2 2 2 2 2 2 1 1
PALDec 4 4 2 2 2 2 2 2 2 2 2 2 2 2 1 1

Misex1 Classic 14 2 12 2 8 2 7 1 7 1 7 1 7 1 7 1
DekBDD 14 2 12 2 8 2 7 1 7 1 7 1 7 1 7 1
DekBDD+E 14 2 12 2 8 2 7 1 7 1 7 1 7 1 7 1
PALDec 14 2 12 2 8 2 7 1 7 1 7 1 7 1 7 1

Misex2 Classic 19 2 19 2 18 1 18 1 18 1 18 1 18 1 18 1
DekBDD 19 2 19 2 18 1 18 1 18 1 18 1 18 1 18 1
DekBDD+E 19 2 19 2 18 1 18 1 18 1 18 1 18 1 18 1
PALDec 19 2 19 2 18 1 18 1 18 1 18 1 18 1 18 1

apex4 Classic 494 4 333 4 249 3 204 3 170 3 148 3 97 2 73 2
DekBDD 494 4 333 4 249 3 204 3 170 3 148 3 97 2 73 2
DekBDD+E 493 5 333 4 249 3 204 3 170 3 148 3 97 2 73 2
PALDec 494 4 333 4 249 3 203 3 170 3 148 3 97 2 73 2

squar 5 Classic 14 2 11 2 9 2 9 2 9 2 8 1 8 1 8 1
DekBDD 14 2 11 2 9 2 9 2 9 2 8 1 8 1 8 1
DekBDD+E 13 2 11 2 9 2 9 2 9 2 8 1 8 1 8 1
PALDec 13 2 11 2 9 2 9 2 9 2 8 1 8 1 8 1

z5xp1 Classic 35 3 26 3 22 2 18 2 16 2 15 2 12 2 11 2
DekBDD 35 3 21 2 19 2 17 2 16 2 15 2 12 2 11 2
DekBDD+E 35 3 21 2 19 2 17 2 16 2 15 2 12 2 11 2
PALDec 26 3 21 2 18 2 17 2 16 2 14 2 12 2 11 2

z9sym Classic 43 5 29 4 22 3 17 3 15 3 13 3 8 2 6 2
DekBDD 37 5 20 4 17 3 14 3 12 3 7 3 7 3 5 2
DekBDD+E 37 5 20 4 17 3 14 3 12 3 7 3 7 3 5 2
PALDec 37 5 20 4 17 3 14 3 12 3 7 3 7 3 5 2
Classic 1130 53 782 46 604 38 495 35 432 34 384 32 278 28 233 26
DekBDD 997 61 639 45 509 39 431 36 383 35 333 32 255 31 218 26
DekBDD+E 987 60 634 44 509 39 430 36 383 35 333 32 255 31 218 26
PALDec 964 60 633 44 501 39 425 35 381 35 329 32 255 31 217 26

382 A. Opara and D. Kania

Table 3. Comparison between the number of macrocells (MAX 7000B) after synthesis using Quartus II and dekBDD+E.
PAL blocks k=5 MAX 7000B MAX 7000B

Classic BDD+E Quartus II: area opt. dekBDD + E+Quartus II Gain Gain
Benchmark B B MC Exp tp [ns] MC Exp tp [ns] ZMC Ztp

5xp1.pla 22 19 17 8 11,5 16 6 11,5 1,06 1,00
9sym.pla 18 17 19 3 15,8 15 13 18,4 1,27 0,86
clip.pla 38 38 24 11 16 27 10 14,5 0,89 1,10
f51m.pla 22 17 96 56 15,6 15 3 11,3 6,40 1,38
rd53.pla 8 6 7 2 11,3 4 10 9,8 1,75 1,15
rd73.pla 36 16 23 12 20,1 12 11 15,6 1,92 1,29
rd84.pla 67 21 53 18 16 15 12 18,4 3,53 0,87
sao2.pla 14 14 15 3 14,1 12 4 14,1 1,25 1,00
xor5.pla 4 2 4 0 9,8 2 0 9,8 2,00 1,00
z5xp1.pla 22 19 18 10 14,3 16 6 11,5 1,13 1,24
z9sym.pla 18 17 19 13 18,6 15 13 18,4 1,27 1,01
alu4.pla 126 125 159 48 27,3 102 31 22,6 1,56 1,21
cordic.pla 73 42 13 6 18,6 28 10 31,6 0,46 0,59
Apex5.pla 299 289 132 107 18,2 141 124 18,9 0,94 0,96
t481.pla 90 32 4 13 11,3 23 4 28,5 0,17 0,40
misex3.pla 122 122 169 75 26,1 101 35 20,7 1,67 1,26
bw.pla 33 33 28 5 7,5 28 6 7,5 1,00 1,00
misex1.pla 8 8 8 0 10 7 1 7,2 1,14 1,39
misex2.pla 18 18 18 0 5,8 18 0 5,8 1,00 1,00
squar5.pla 9 9 8 4 7,2 9 0 10 0,89 0,72
Apex4.pla 246 246 244 124 20,6 246 63 22,1 0,99 0,93
pdc.pla 124 121 871 802 - 92 51 16,6 9,47
spla.pla 125 122 927 1056 - 89 54 16,7 10,42

Sum 1542 1353 2876 2376 315,7 1033 467 328,2 2,8 0,96

marks using even MAX7000B with the highest number of
macrocells.

The benchmark t481, for which the considerable
growth of the number of macrocells was observed, is a
special case (from four to 23). This benchmark requires
a different strategy of decomposition. Quartus II allows
the description of a circuit to be created, where several
outputs of macrocells can be connected to one product-
term. The reason for a large difference in the number of
blocks for t481 is because the dekBDD + E algorithm al-
lows, at most, to connect one macrocell output to one pro-
duct. A suitable modification of the dekBDD + E algori-
thm, which also takes into account such cases, will be the
subject of further studies.

Despite the unfavourable result for one benchmark,
the total number of macrocells for all benchmarks was re-
duced almost three times (2.8 times). Also, in the majority
of cases, the number of shared expanders was reduced pro-
portionally to the reduction in the number of macrocells. It
is worth noticing that the proposed description in the Veri-
log language does not exclude the use of expanders in the
firmware synthesis tool. For example, in the case of the
5xp1 benchmark, the dekBDD + E method enables one to
create the description using 19 PAL-based blocks (k = 5).
Once the final stage of the synthesis using the firmware
tool is made, 16 MAX 7000B macrocells are created ba-

sed on the description of 19 blocks (developed around the
PAL-type core) and six expanders. Thus, the use of the
firmware tool enabled us to take advantage of the specific
features of the architecture of a programmable structure
and to further improve the decomposition results as well.

In the majority of cases, no increase in the propa-
gation time was observed while reducing the number of
blocks (16 of 23 benchmarks). The average gain of pro-
pagation time remained almost unchanged (difference of
4%). However, this average value does not take into acco-
unt the fact that the number of macrocells used in the firm-
ware tool was higher than the maximum available number
of macrocells in the circuits of the MAX7000B for two
benchmarks. On the other hand, the use of the dekBDD +
E algorithm enabled us to build the same circuits and to
obtain propagation times as low as 17 ns. This confirms
the practical effectiveness of the proposed methods and of
their description in HDLs.

Focus should also be put on the working speed of
the proposed algorithms and the influence that processing
of the circuit description files has on the duration of the
synthesis with the use of firmware tools. The average syn-
thesis duration was 10 and 12 minutes, respectively, for
pdc and spla using Quartus II. In the case of the propo-
sed dekBDD+E module, the synthesis of the same circu-
its using Quartus II took 30 seconds. Thus, as high as a

Decomposition-based logic synthesis for PAL-based CPLDs 383

20-fold speed-up of the whole synthesis process was ob-
tained.

5. Conclusions

The paper presents a logic synthesis method dedicated to
PAL-based CPLDs. The aim of that method was to utilize
non-standard decomposition in order to minimize the area
of the implemented circuit and the reduction of necessa-
ry logic blocks in the programmable structure. These me-
thods provide an alternative to the classical approach ba-
sed on two-level minimization of individual single-output
functions.

The paper presents three variants of PAL-oriented de-
composition dedicated to PAL-based CPLDs. First, two-
stage PAL-oriented decomposition is presented. This me-
thod is an extension of the classical Ashenhurst-Curtis de-
composition. Decomposition based on a two-stage mo-
del is very effective. Unfortunately, the algorithms con-
tain very demanding procedures. The computation com-
plexity precludes the synthesis of large designs. Other
PAL-oriented decomposition models use reduced orde-
red binary decision diagrams. The binary decision dia-
gram was taken into consideration in order to increase
computation performance/efficiency. The experience ga-
ined in the implementation of two-stage decomposition
allows us to implement efficient partitioning procedures
for the BDD. Decomposition results for BDD methods are
slightly worse as referenced to previous approaches. The
synthesis process is computation efficient and allows us to
decompose complex logic circuits in a reasonable amount
of time. The exploration of BDD decomposition methods
shows their undiscovered potential; a potential which can
still be developed, especially for the decomposition of a
function consisting of a few hundred input and output va-
riables.

The essence of all the methods is to incorporate de-
composition into the synthesis process dedicated to CPLD
structures. The algorithm consists in a sequential search
for decomposition which provides the feasibility of im-
plementation of a free block in one PAL-based logic block
containing a predefined number of product terms.

The proposed methods were practically proved. For
all synthesis methods, the results of the experiments pre-
sented in the paper become close to one another with gro-
wing k. The conclusion is that for large k it is better to
use the dekBDD+E approach, which works fast and gives
comparable results.

Through the adjustment of the decomposition ele-
ments to the logical resources characteristic for a PAL-
based logic block, a significant improvement of the syn-
thesis effectiveness in relation to the classical approach
could be obtained. Unfortunately, a reduction in the area
is not always associated with a reduction in logic levels.

Although satisfactory results were achieved, the pre-

sented methods will still be improved. In our opinion, the
quality of results could be enhanced, e.g., by extending
the decomposition model to allow creating the description
of a circuit, where several outputs of macrocells can be
connected to one product-term. Considering perspectives
for further research, comparisons with other tools and in-
tegration with commercial tools will be taken into consi-
deration.

References
Akers, S.B. (1978). Functional testing with binary decision

diagrams, Proceedings of the 8-th Annual Conference on
Fault-Tolerant Computing, pp. 75–82.

Anderson, J.H. and Brown, S.D. (1998). Technology mapping
for large complex PLDs, DAC ’98: Proceedings of the
35th Annual Design Automation Conference, New York,
NY, USA, pp. 698–703.

Ashar, P., Devadas, S. and Newton, A.R. (1992). Sequential Lo-
gic Synthesis, Kluwer Academic Publishers, Norwell, MA.

Ashenhurst, R. (1957). The decomposition of switching func-
tions, Proceedings of an International Symposium on the
Theory of Switching, pp. 74–116.

Bolton, M. (1990). Digital Systems Design with Programma-
ble Logic, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA.

Brace, K.S., Rudell, R.L. and Bryant, R.E. (1990). Efficient im-
plementation of a bdd package, DAC ’90: Proceedings of
the 27th ACM/IEEE Design Automation Conference, New
York, NY, USA, pp. 40–45.

Brayton, R.K., Sangiovanni-Vincentelli, A.L., McMullen, C.T.
and Hachtel, G. D. (1984). Logic Minimization Algorithms
for VLSI Synthesis, Kluwer Academic Publishers, Norwell,
MA.

Bryant, R.E. (1986). Graph-based algorithms for Boolean
function manipulation, IEEE Transactions on Computers
35(8): 677–691.

Burns, M., Perkowski, M., Jóźwiak, L. and Grygiel, S. (1998).
An efficient and effective approach to column-based in-
put/output encoding in functional decomposition, Proce-
edings of the 3rd International Workshop on Boolean Pro-
blems, Freiberg, Germany, pp. 19–29.

Chartrand, G. and Zhang, P. (2008). Chromatic Graph Theory,
Chapman & Hall/CRC, Boca Raton, FL.

Chen, K. and Muroga, S. (1988). Input assignment algorithm
for decoded-PLAs with multi-input decoders, IEEE Inter-
national Conference on Computer-Aided Design. ICCAD-
88. Digest of Technical Papers, Santa Clara, CA, USA,
pp. 474–477.

Chen, S., Hwang, T. and Liu, C. (2002). A technology map-
ping algorithm for CPLD architectures, 2002 IEEE Inter-
national Conference on Field-Programmable Technology,
pp. 204–210.

Ciesielski, M. and Yang, S. (1992). PLADE: A two-stage PLA
decomposition, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 11(8): 943–954.

384 A. Opara and D. Kania

Curtis, H. (1962). A New Approach to the Design of Switching
Circuits, Van Nostrand, Princeton, NJ.

De Micheli, G. (1994). Synthesis and Optimization of Digital
Circuits, McGraw-Hill Higher Education, New York, NY.

Devadas, S., Wang, A., Newton, A. and Sangiovanni-Vincentelli,
A. (1988). Boolean decomposition of programmable logic
arrays, Proceedings of the IEEE Custom Integrated Circuit
Conference, Rochester, NY, USA, Vol. 2, pp. 2.5.1–2.5.5.

Ebendt, R., Fey, G. and Drechsler, R. (2005). Advanced BDD
Optimization, Springer-Verlag, Berlin/Heidelberg.

Kania, D. (2004). Logic Synthesis for PAL-based Complex Pro-
grammable Logic Devices, Zeszyty Naukowe: Elektronika,
Vol. 14, pp. 5–212, (in Polish).

Kania, D., Kulisz, J. and Milik, A. (2005). A novel method of
two-stage decomposition dedicated for PAL-based CPLDs,
Proceedings of the 8th Euromicro Conference on Digital
System Design, Porto, Portugal, pp. 114–121.

Kim, J., Kim, H. and Lin, C. (2001). A new technology map-
ping for CPLD under the time constraint, Proceedings of
the Asia and South Pacific Design Automation Conference,
Yokohama, Japan, pp. 235–238.

Kouloheris, J. and Gamal, A. (1992). PLA-based FPGA area
versus cell C+ granularity, Proceedings of the Custom In-
tegrated Circuits Conference, Boston, MA, USA, Vol. 4,
pp. 4.3.1–4.3.4.

Lai, Y., Pan, K. and Pedram, M. (1994). FPGA synthesis
using function decomposition, ICCS ’94: Proceedings of
the 1994 IEEE International Conference on Computer De-
sign: VLSI in Computer & Processors, Washington, DC,
USA, pp. 30–35.

Lai, Y., Pan, K. and Pedram, M. (1996). OBDD-based func-
tion decomposition: Algorithms and implementation, IE-
EE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 15(8): 977–990.

Minato, S. (1996). Binary Decision Diagrams and Applica-
tions for VLSI CAD, Kluwer Academic Publishers, Nor-
well, MA.

Murgai, R., Brayton, R. and Sangiovanni-Vincentelli, A. (1994).
Optimum functional decomposition using encoding, Pro-
ceedings of the 31st Annual Conference on Design Auto-
mation, New York, NY, USA, pp. 408–414.

Muthukumar, V. (2001). An improved input-output encoding
approach for functional decomposition, DSD ’01: Proce-
edings of the Euromicro Symposium on Digital Systems
Design, Washington, DC, USA, pp. 144–147.

Muthukumar, V., Bignall, R. and Selvaraj, H. (2000). An input-
output encoding approach for serial decomposition, SBC-
CI’00: Proceedings of the 13th Symposium on Integra-
ted Circuits and Systems Design, Washington, DC, USA,
pp. 61–68.

Nowicka, M., Łuba, T. and Selvaraj, H. (1997). Multilevel de-
composition strategies in decomposition-based algorithms
and tools, International Workshop on Logic and Architec-
ture Synthesis, Grenoble, France, pp. 129–136.

Opara, A. (2009). Decompositional Synthesis Methods of Com-
binatorial Circuits with Binary Decision Diagrams Appli-
cation, Ph.D. thesis, Silesian University of Technology,
Gliwice, (in Polish).

Opara, A. and Kania, D. (2009). A novel non-disjunctive method
for decomposition of CPLDs, Electronics and Telecommu-
nications Quarterly 55(1): 95–111.

Rawski, M., Łuba, T. and Falkowski, B. (2008). Logic synthesis
method for FPGAs with embedded memory blocks, IEEE
International Symposium on Circuits and Systems, Seattle,
WA, USA, pp. 2014–2017.

Rudell, R. (1993). Dynamic variable ordering for ordered bina-
ry decision diagrams, Proceedings of the 1993 IEEE/ACM
International Conference on Computer-Aided Design, Los
Alamitos, CA, USA, pp. 42–47.

Saldanha, A., Villa, T., Brayton, R. and Sangiovanni-Vincentelli,
A. (1994). Satisfaction of input and output encoding con-
straints, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 13(5): 589–602.

Scholl, C. (2001). Functional Decomposition with Application
to FPGA Synthesis, Kluwer Academic Publishers, Nor-
well, MA.

Yan, K. (2001). Practical logic synthesis for CPLDs and FPGAs
with PLA-style logic blocks, Proceedings of the 2001 Con-
ference on Asia South Pacific Design Automation, ACM
New York, NY, USA, pp. 231–234.

Yang, C. and Ciesielski, M. (2002). BDS: A BDD-
based logic optimization system, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
21(7): 866–876.

Yang, S. and Ciesielski, M.J. (1991). Optimum and suboptimum
algorithms for input encoding and its relationship to logic
minimization, IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 10(1): 4–12.

Adam Opara received the M.Sc. degree in computer science in 2002
from the Silesian University of Technology, Gliwice, Poland, and the
Ph.D. degree in 2009. Since 2009 he has been an assistant professor at
the Institute of Computer Science of the Silesian University of Techno-
logy. His research interest include hardware description languages, logic
synthesis, programmable digital circuits and systems.

Dariusz Kania received the M.Sc. and Ph.D. degrees from the Silesian
University of Technology, Gliwice, Poland, in 1989 and 1995, respecti-
vely. He has worked as an assistant lecturer (1989–1995) and an assistant
professor (1995–2004). Since 2006 he has been a professor at the Sile-
sian University of Technology, Gliwice. His main interests and research
areas include programmable devices and systems, logic synthesis and
optimization dedicated to a wide range of programmable logic devices
(CPLD, FPGA) and implementation of digital circuits.

Received: 13 July 2009
Revised: 16 January 2010

	Introduction
	Classical method

	Two-stage decomposition dedicated to PAL-based devices
	Method for row multiplicity evaluation

	BDD application in decomposition
	Counting the number of paths
	PAL-oriented BDD-based decomposition
	Algorithm refinements
	Non-disjunctive PAL decomposition

	 Experimental results
	Comparison with the classical method
	Comparison with two-stage decomposition
	Way to describe circuits to use decomposition results for commercial applications

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

