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1. Introduction

Continuous nonconvex nonsmooth optimization prob-
lems involving linear restrictions arise in practical situ-
ations stemming from many fields such as optimal con-
trol (Kryazhimskii, 2001; Malanowski, 2004; Makela
and Neittaanmaki, 1992), integer nonlinear programming
problems (Kowalczuk, 2006; Zhang, 2009), minimax es-
timation (El Mouatasim and Al-Hossain, 2009; Petersen,
2006), and the clustering problem (Bagirov and Year-
wood, 2006). A typical situation is the determination of
a column vector x� ∈ E = R

n such that

x� = arg min
S

f , S =
{

x ∈ E | Ax ≤ b
}
, (1)

where the function f : E −→ R does not satisfy convex-
ity assumptions and may be nondifferentiable on a finite
or countable subset of E—this is the case when, for in-
stance, f is not assumed to be convex differentiable but
only locally Lipschitz continuous. A is an m× n matrix,
b is an m × 1 matrix and S is assumed to be bounded:

there are two vectors � ∈ E and u ∈ E such that

S ⊂ [�, u] =
{

x ∈ E | � ≤ x ≤ u
}
. (2)

The numerical solution to the model problem (1)
is usually sought with descent methods, which start at
an initial guess x0 and generate a sequence of points
{ xk }k ≥ 0 ⊂ E : at each iteration number k ≥ 0, both a
descent direction dk ∈ E and a step ωk ∈ R (ωk ≥ 0) are
determined in order to define

x0 ∈ S given, ∀ k ≥ 0 : xk+1 = xk + ωkdk. (3)

The descent direction is often determined by using the in-
formation furnished by the previous points xk, xk−1, . . . ,
x0. For instance, the classical steepest descent uses the
information provided by the gradient gk = ∇f (xk) of the
objective function at the point xk and sets dk = −gk.
In variable metric methods, the determination of the de-
scent direction usually involves the information provided
by xk and xk−1. For instance, the Davidon–Fletcher–
Powell approach (Davidon, 1991) uses dk = −Bkgk,

aelmouatasim@jazanu.edu.sa
ellaia@emi.ac.ma
souza@insa-rouen.fr


318 A. El Mouatasim et al.

where { Bk }k ≥ 0 is a sequence of n × n matrices such
that B0 = I (the n× n identity matrix) and

Bk = Bk−1 +
(xk − xk−1) (xk − xk−1)

t

(xk − xk−1)
t (gk − gk−1)

− Bk−1 (gk − gk−1) (gk − gk−1)
t Bk−1

(gk − gk−1)tBk−1(gk − gk−1)
.

In the sequel, we consider descent vectors corre-
sponding to a general variable metric method given by a
function uk : E × E → E:

dk = uk (xk,xk−1) . (4)

The determination of the step ωk ≥ 0 often involves a one
dimensional search and a previously established maximal
step ω. For instance, the optimal step is

ωk = arg min
W

f (xk + ωdk) ,

W =
{
ω | xk + ωdk ∈ S, 0 ≤ ω ≤ ω

}
.

Consequently, the step is given by a functionω : E×E →
E such that

ωk = ω (xk, dk) , 0 ≤ ω (xk, dk) ≤ ω. (5)

When solving the general problem stated in Eqn. (1),
there are three essential difficulties with using the itera-
tions defined in Eqns. (3)–(5). First, the determination
of the descent direction dk usually involves the determi-
nation of the gradient gk = ∇f (xk) of the objective
function at the point xk , which is not defined everywhere,
since f is not anywhere differentiable. Second, the itera-
tions must ensure that { xk}k ≥ 0 ⊂ S, i.e., that the points
generated remain feasible. Third, under the lack of both
the convexity and the differentiability of f , the conver-
gence to a global minimum x� is not ensured.

The first of these difficulties is usually settled in con-
vex optimization by using subgradient information: when-
ever a subgradient may be defined, it carries information
about the growth of the objective function. Variants of the
subgradient approach are bundle or level methods. Both
these variants try to obtain more information about the be-
havior of f by gathering the information provided by the
subgradients obtained in the preceding iterations. This in-
formation is contained in the set of affine functions asso-
ciated with these subgradients and the bundle which fur-
nishes a local affine approximation of f . In convex sit-
uations, the descent direction can be determined by us-
ing the single information furnished by the bundle, which
leads to cutting-plane methods (Kelley, 1960), or by solv-
ing a quadratic direction finding problem (Makela and
Neittaanmaki, 1992). The convergence of subgradient or
bundle methods may be established for convex situations

(Hiriart-Urruty and Lemaréchal, 1993). In the case of bun-
dle methods with a limited number of stored subgradients,
the convergence can be guaranteed by using a subgradient
aggregation strategy (Kiwiel, 1985), which accumulates
information from the previous iterations (Lemaréchal
et al., 1981; Schramm and Zowe, 1992). For a nonconvex
f , subgradients are not in general anywhere defined. Al-
ternative methods of construction of a local affine approx-
imation of f must be supplied in order to get the adequate
information about the local growth of f . For instance,
we may introduce other generalized gradient definitions,
such as Clarke’s generalized gradients, or simply the gra-
dient of an affine lower estimate. The standard gradient
or an ε-subgradient may be used, whenever one of these
quantities is defined (see Section 2).

The second difficulty is usually settled by projec-
tion, whenever an operator of projection onto S is avail-
able. This is just the case of the problem (1). There
are usually two possibilities for the introduction of the
projection operator according to its use in order to deter-
mine feasible points or feasible directions. For instance,
one approach consists in introducing a projection operator
projS : E → S and determining the descent direction
and the step as follows:

tk+1 = xk + ηkvk,

dk = projS(tk+1) − xk,

ωk = 1,

where vk and ηk are a descent direction and a step, re-
spectively. Both vk and ηk are generated by a standard
method which does not take the restrictions, i.e., S, into
account (such as, for instance, the standard gradient de-
scent method). The point tk+1 is called a trial point and
we have xk+1 = projS(tk+1). In this approach, the pro-
jection operator is used to get a feasible point xk+1 from
the eventually infeasible trial point tk+1. For instance,
this is the case of bundle or level methods involving prox-
imal projection.

Another approach consists in using

dk = projT (S,xk)(vk),

0 ≤ ωk ≤ ωmax = max
{
ω | A(xk + ωdk) ≤ b

}
,

where T (S, xk) is the tangent cone to S at xk,
projT (S,xk) : E → T (S, xk) is the orthogonal projec-
tion onto T (S, xk), vk is generated by a standard method
which does not take the restrictions into account. In this
method, the descent direction dk is projected to get a de-
scent direction containing feasible points. This is the case
of the popular projected subgradient method (Correa and
Lemaréchal, 1993; Kiwiel, 1985; Larsson et al., 1996),
which is used in this work. For linearly constrained
problems, an interesting variant is offered by ε-active set
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methods, which have the reputation of avoiding zigzag
(Panier, 1987), and generalized pattern search methods
(Bogani et al., 2009).

The third difficulty yields that, as previously ob-
served, a sophisticated approach may become necessary
in order to get information about the local growth of
the objective function. Moreover, the convergence of
the sequence { xk }k ≥ 0 to a point of global minimum
x� is not ensured under the lack of convexity: we in-
troduce a controlled random search based on stochastic
perturbations of the descent method (3) (Dorea, 1990;
El Mouatasim et al., 2006; Pogu and Souza de Cursi,
1994; Souza de Cursi et al., 2003). In this approach,
{ xk }k ≥ 0, { dk }k ≥ 0, { ωk }k ≥ 0 become random vec-
tors { Xk }k ≥ 0, { Dk }k ≥ 0 , { Ωk }k ≥ 0 and the de-
scent iterations are modified as follows:

X0 = x0 ∈ S given, (6)

∀ k ≥ 0: Xk+1 = Xk + ΩkDk + Pk, (7)

Dk = uk (Xk,Xk−1) , (8)

Ωk = ω (Xk, Dk) , 0 ≤ ω (Xk, Dk) ≤ ω, (9)

where Pk is a suitable random vector the stochastic per-
turbation. A convenient choice of {Pk}k ≥ 0 ensures the
convergence of this sequence to x� (see Section 4).

In the sequel, we consider the projected variable met-
ric method applied to the problem (1). After introducing
the notation (Section 2), the method is introduced in Sec-
tion 3. In Section 4, we introduce the stochastic perturba-
tions and we establish the convergence results. The results
of numerical experiments are given in Section 5.

2. Notation and assumptions

As previously introduced, E = R
n is the standard

n-dimensional Euclidean space formed by n-tuples of real
numbers. The elements of E are denoted using bold low-
ercase: for instance, x = ( x1, . . . , xn )t, where the
symbol t denotes the transpose. The usual inner prod-
uct in E is denoted by (·, ·) , and the associated Euclidean
norm is denoted by ‖ · ‖:

(x, y) = xty =
n∑

i=1

xi yi ,

‖x‖ =
√

(x, x) =
√

xtx.

We denote by ‖ · ‖ the matrix norm induced by this
norm: if C = (Cij), (1 ≤ i ≤ m, 1 ≤ j ≤ n) is a m×n
matrix (0 < m < n) formed by real numbers, we have
‖ Cx ‖ ≤ ‖ C ‖ ‖ x ‖ and

‖ C‖ = sup
{
‖Cx ‖ : ‖ x ‖ = 1

}
.

Let us introduce vectors b = (b1, b2, . . . , bm)t ∈
R

m, � = (�1, �2, . . . , �n)t ∈ E, u = (u1, u2, . . . , un)t ∈
E and a real m × n matrix A = (Aij) (1 ≤ i ≤ m,
1 ≤ j ≤ n). We have A ≡ [A1 A2 . . . Am]t ,

Ai = (Ai1, Ai2, . . . , Ain)t ∈ E , i = 1, . . . ,m.

No loss of generality is implied if we assume that

‖ Ai‖ = 1, i = 1, . . . ,m. (10)

The feasible set is S =
{

x ∈ E | Ax ≤ b
}

, i.e.,

S =
{
x ∈ E |

n∑
j=1

Aijxj − bi ≤ 0, i = 1, 2, . . . ,m
}

.

(11)
We assume that

S ⊂ [�,u] =
{

x ∈ E | �i ≤ xi ≤ ui , 1 ≤ i ≤ n
}

.

(12)
Hence S is a bounded closed convex subset of E. For any
x1,x2 ∈ S, and every θ ∈ (0, 1) we have

A (θx1 + (1 − θ)x2) = θAx1 + (1 − θ)Ax2

≤ θb + (1 − θ)b = b.

On the other hand,

‖x1 − x2‖ ≤ L12 = ‖� − u‖ ,
‖x1‖ ≤ L = max {‖�‖ , ‖u‖} .

(13)

We recall that the tangent cone to S at a point x is
the set T (S,x) ⊂ E defined by

d ∈ T (S,x) ⇐⇒ ∃{(hn , λn)}n>0 ⊂ E × R
∗
+,

λn → 0 , hn → d, x + λnhn ∈ S.

This property is exploited in the sequel.
Practical determination of T (S,x) is performed by

using active constraints. Let x ∈ S. The i-th constraint
is active at x if and only if At

ix − bi = 0 . The set
of active constraints Iac(x) and the number of active con-
straints mac(x) at x are, respectively,

Iac(x) =
{
i : 1 ≤ i ≤ m, At

ix − bi = 0
}

,

mac(x) = card (Iac(x)) .

We set AN (x) = [Ai : i ∈ Iac(x) ]t. AN (x) is the
mac(x) × n submatrix of A formed by the lines corre-
sponding to the active constraints at the point x. In the par-
ticular situation where Iac(x) = ∅, we have mac(x) = 0,
T (S,x) = E and we take AN (x) = 0 = ( 0, . . . , 0 ).
In the sequel, we shall use the following properties of
T (S,x).
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Proposition 1. Let x ∈ S. We have

∀ x ∈ S : T (S,x) =
{
d ∈ E|At

id ≤ 0, i ∈ Iac(x)
}

=
{
d ∈ E|AN (x)d ≤ 0

}
.

Moreover

∀ x ∈ S : S ⊂ { x } + T (S,x),

and the orthogonal projection from E onto T (s,x),
proj (x, ·) : E → T (S,x) satisfies

∀x ∈ S : S ⊂ { x} + Im (proj (x, ·)) , (14)

∀ x ∈ S : ‖proj (x,w)‖ ≤ ‖w‖ , ∀w ∈ E. (15)

Proof. The result is immediate formac(x) = 0 (Iac(x) =
∅), since T (S,x) = E, projT (S,x) ( x, w) = w.

Assume that mac(x) > 0 and let bN (x) =
[bi : i ∈ Iac(x) ]t . Analogously to AN (x), bN (x) is
formed by the lines of b corresponding to the indexes in
Iac(x).

We denote by Ic
ac(x) the complement of Iac(x),

Ic
ac(x) =

{
i : 1 ≤ i ≤ m, At

ix − bi < 0
}
.

Let

η (x) = min
{
bi − At

ix : i ∈ Ic
ac(x)

}
> 0.

We assume that d ∈ T (S,x) and wish to show that
AN (x)d ≤ 0. For any sequence {(hn , λn)}n>0 ⊂
E × R

∗
+ such that λn → 0 and hn → d, we have

λnAhn → 0. Thus, there exists an index n0 such that

n ≥ n0 =⇒ ‖λnAhn‖ < η (x)

=⇒ At
i (x+λnhn) − bi ≤ 0, ∀i ∈ Ic

ac(x).

In addition,
x + λnhn ∈ S =⇒

AN (x)hn =
AN (x) ( x + λnhn) − bN

λn
≤ 0.

Passing to the limit in this inequality, we obtain the claim
AN (x)d ≤ 0.

Now we assume that AN (x)d ≤ 0 and wish to show
that d ∈ T (S,x). Let λn = 1/n and hn = d. We have

n ≥ ‖ Ad ‖
η (x)

=⇒

At
i ( x+λnhn) − bi ≤ 0, ∀ i ∈ Ic

ac(x).

In addition,

AN (x) ( x + λnhn) − bN = AN (x)d ≤ 0.

Thus, x + λnhn ∈ S and we obtain the claim

d ∈ T (S,x).

In this way, the first assertion of the proposition is
established. For the second one, let y ∈ S and d = y−x.
Then λn = 1/n > 0, hn = d and x + λnhn = (1 −
1/n)x + (1/n)y ∈ S. Thus, d ∈ T (S,x) and we have

S − { x } =
{

d = y − x | y ∈ S
}
⊂ T (S,x).

Hence,
S ⊂ { x } + T (S,x) .

Since T (S,x) = Im (proj (x, ·)), we have S ⊂ {x} +
Im (proj (x, ·)). The inequality ‖proj (x,w)‖ ≤ ‖w‖
results from the standard properties of orthogonal projec-
tions. �

For a given element v ∈ E, we have proj (x,v) =
ΠT (x,v)v, where ΠT (x,v) is an n × n matrix, deter-
mined as follows. Let

I+(x,v) =
{
i ∈ Iac(x) : At

iv > 0
}
,

m+(x,v) = card (I+(x)) .

If I+(x,v) = ∅, we set ΠT ( x,v) = Id, the n × n
identity matrix. If I+(x,v) �= ∅, we set A+(x,v) =
[Ai : i ∈ I+(x,v) ]t. There is no loss of generality in
assuming that

rank (A+(x,v)) = m+(x,v) . (16)

Otherwise, we extract from A+(x,v) a maximal rank
submatrix and the associated lines. Then ΠT (x,v) is
the matrix associated with the operator projx(v) = v −
Π+(x,v)v, where Π+(x,v) corresponds to the orthog-
onal projection onto the subspace spanned by the vectors
forming A+ :

N+(x) = span
[
At

i : i ∈ I+(x)
]

=
{
d ∈ E

∣∣ d =
∑

i∈I+(x)

λiAi

}
.

We have (Luenberger, 1973)

ΠT (x,v) = Id − Π+(x,v) ,

Π+(x,v) = At
+

(
A+At

+

)−1
A+ .

We shall also use the following properties of the step.

Proposition 2. Let x ∈ S and d ∈ T (S,x). The
maximal allowable step in the direction d at the point
x ∈ S is

ωmax (x, d) = max
{
ω | A(x + ωd) ≤ b

}
.
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We have

∀ x ∈ S and d ∈ T (S,x) : ωmax (x, d) > 0.

Moreover, for any x ∈ S there is an ε > 0 such that

d ∈ T (S,y), ∀y ∈ x +Bε

and
min

y∈x+Bε

ωmax (y, d) > 0,

and for any d ∈T (S,x) there is an ε > 0 such that

(d +Bε) ∩ T (S,x) �= ∅
and

min
t ∈ (d+ Bε) ∩T (S,x)

ωmax (x, t) > 0,

where Bε = {u ∈ E |‖u‖ ≤ ε} is the ball with center 0
and radius ε.

Proof. We have

ωmax (x, d) = min
1≤i≤m

{ωi} ,

ωi =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bi −
n∑

j=1

Aijxj

n∑
j=1

Aijdj

if
n∑

j=1

Aijdj > 0,

+ ∞ otherwise

and

bi −
n∑

j=1

Aijxj > 0.

Thus, ωmax (x, d) > 0.
Let d ∈ T (S,x). Assume that for each n > 0 there

exists yn such that ‖yn‖ ≤ 1/n and

d /∈T (S,xn),xn = x + yn.

Thus, there exists i(n) such that

At
i(n)xn − bi(n) = 0, At

i(n)d > 0.

Let
r (k) = max {i(n) : n ≥ k} ,

n (k) = min {n : n ≥ k and i(n) = r(k) } .

By construction, { r (k)}k>0 ⊂ {1, . . . , m} is de-
creasing and bounded from below. Thus, r (k) → r for
k → ∞. Since {1, . . . , m} is discrete, there is a k0 such
that k ≥ k0 =⇒ r (k) = r. We have

k ≥ k0 =⇒ At
rxn(k) − br = 0 and At

rd > 0.

Passing to the limit as k → ∞, we have, since yn → 0,

At
rx − br = 0 and At

rd > 0.

Thus, d /∈ T (S,x) and we have a contradiction. Hence,
there is an n > 0 such that

‖y‖ ≤ 1
n

=⇒ d ∈T (S,x + y).

Let d ∈ T (S,x). Assume that

∀ε > 0 : min
y∈x+Bε

ωmax (x, d) = 0.

Then for any n > 0 there is a yn such that

‖ yn‖ ≤ 1
n
, ωmax (xn,d) ≤ 1

n
, xn = x + yn.

Thus, there exists i(n) such that

bi(n) − At
i(n)xn

At
i(n)d

≤ 1
n

,

bi(n) − At
i(n)xn > 0 , At

i(n)d > 0.

Let

r (k) = max
{
i(n) : n ≥ k

}
,

n (k) = min
{
n : n ≥ k and i(n) = r(k)

}
.

Analogously to the above argument, there exists k0 such
that k ≥ k0 =⇒ r (k) = r, and we have

k ≥ k0 =⇒ br − At
rxn(k) ≤ 1

n
At

rd,

br − At
rxn(k) > 0, At

rd > 0.

By taking the limit for k → ∞, we have, since yn → 0,

br − At
rx ≤ 0, br − At

rx > 0, At
rd > 0.

and we obtain a contradiction.
Let d ∈ T (S,x). We have (d + Bε) ∩ T (S,x) �=

∅ for any ε > 0, since d ∈ (d + Bε) ∩ T (S,x). Assume
that

∀ ε > 0 : min
t ∈ (d + Bε) ∩ T (S,x)

ωmax (x, t) = 0.

Then for any n > 0 there is a tn such that

‖ tn‖ ≤ 1
n
, ωmax (x, dn) ≤ 1

n
, dn = d + tn.

Thus, there exists i(n) such that

bi(n) − At
i(n)x

At
i(n)dn

≤ 1
n

,

bi(n) − At
i(n)x > 0, At

i(n)dn> 0.

Let

r (k) = max
{
i(n) : n ≥ k

}
,
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n (k) = min { n : n ≥ k and i(n) = r(k) } .

Analogously to the demonstration above, there exists k0

such that k ≥ k0 =⇒ r (k) = r, and we have

k ≥ k0 =⇒ br − At
rx ≤ 1

n
At

rdn(k) ,

br − At
rx > 0, At

rdn(k)> 0.

Passing to the limit as k → ∞, we have, since tn → 0,

br − At
rx ≤ 0, br − At

rx > 0, At
rd ≥ 0,

and we get a contradiction. �
As mentioned above, the objective function f :

E −→ R is assumed to be locally Lipschitz continuous:
it may have a countable number of points of nondifferen-
tiability. Moreover, f is not assumed to be convex. Since
S is closed and bounded, and f is continuous, there exists
θ∗ ∈ R such that

min
S

f = θ∗ ∈ R. (17)

Let θ > θ∗. We denote by Sθ the set

Sθ =
{

x ∈ S | θ∗ ≤ f(x) < θ
}
.

In the sequel, we consider

θmax = max { θ | Sθ ∩ S �= ∅} .

The continuity of f implies that

θ∗ < θ < θmax

=⇒ meas (Sθ) > 0 and meas (S − Sθ) > 0 . (18)

3. Projected variable metric method

The class of variable metric methods was originally intro-
duced by Davidon (1991) along with Fletcher and Powell
(1963) in an attempt to get information about the curva-
ture of the objective function by using a variable symmet-
ric positive definite n× n matrix Bk and

vk = arg min
{

gt
kv : vtBkv = 1

}
.

The properties of Bk show that vtBkv is a norm:
vk is the element of the generalized circle Ck =
{v : vtBkv = 1} having the most negative Euclidean
projection on the direction of gk. This method is known
as the DFP descent method. Several variants may be
found in the literature, such as the BFGS descent method
(Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970) and other quasi-Newton methods.

As mentioned above, the determination of the de-
scent direction vk usually involves the gradient gk =
∇f (xk) of the objective function at the point xk, which
may be not defined due to the lack of regularity of f (Peng

and Heying, 2009; Uryasev, 1991). In addition, the objec-
tive function is not assumed to be convex and its subdif-
ferential may be empty.

These considerations provide a simple way to extend
descent methods based on the gradient to the nonsmooth
situation under consideration: if the objective function f
is differentiable at xk, the descent direction dk is deter-
mined by using the standard gradient gk = ∇f (xk). Oth-
erwise, we consider a local affine underestimate or over-
estimate γk (y) = ( pk, y − xk) + f(xk), and we use
gk = pk for the determination of the descent direction
(for more, see El Mouatasim et al., 2006). In practice, γk

may be numerically approximated by using the values of
f or ∇f at points close to xk. This approach is particu-
larly suitable for the situation under consideration, since
f is differentiable almost everywhere (i.e., except for a
set having zero Lebesgue measure (Makela and Neittaan-
maki, 1992)).

4. Stochastic perturbation

As previously observed, the lack of convexity yields that
the convergence to a global minimum cannot be ensured.
In order to solve this difficulty, the original sequence
generated by the iterations, {xk}k ≥ 0, is replaced by
a sequence of random variables {Xk}k ≥ 0 defined by
Eqns. (7)–(9).

In previous works, an analogous strategy has
been applied to smooth unconstrained (Pogu and
Souza de Cursi, 1994) or smooth constrained situations
(El Mouatasim et al., 2006; Souza de Cursi et al., 2003),
involving iterations of the form Xk+1 = Qk(Xk) + Pk,
which corresponds to a Markov chain with the memory
length equal to one, since only the last result intervenes. In
the situation under consideration, the iterate number k+1
depends on the whole preceding history (see Step 7 of the
algorithm). This corresponds to a particular kind of the
Markov chain, where the variable is not Xk but the whole
history X≤ k. Thus, the preceding theoretical results do
not apply immediately and must be modified in order to
match the situation under consideration.

In this section, we establish the convergence results
concerning the general iterations given by

∀ k ≥ 1 : Xk+1 = Xk + hk (X≤k) + Pk, (19)

where X0 = x0 ∈ S and X1 = x1 ∈ S are given. It is
assumed that hk (·) is bounded on Sk+1, i.e., there exists
a real number Λ ≥ 0 such that

∀x≤k ∈ Sk+1 : ‖hk (x≤k)‖ ≤ Λ. (20)

The algorithm corresponds to

∀ k ≥ 1 : hk (x≤k) = ωkproj (xk, sk (x≤k)) .
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Equations (5) and (15) show that this definition
satisfies the inequality (20). Nevertheless, the mathe-
matical results apply to a larger context: for instance,
hk ( x≤ k) = 0 also satisfies (20); in this case, the
algorithm becomes a purely stochastic search. Analo-
gously, these assumptions take into account situations
where hk ( x≤ k) is not always a descent direction, but
remains bounded. If hk ( x≤ k) is not a descent direction,
the stochastic perturbation drives the process and yields a
descent at each iteration. Here hk ( x≤ k) is expected to
drive the iterations in the neighbourhood of a minimum, in
order to accelerate the convergence compared with a pure
random search.

The proof of the results follows the lines of
El Mouatasim et al. (2006), Pogu and Souza de Cursi
(1994) as well as Souza de Cursi et al. (2003). It must
be noticed that smoothness arguments are not directly in-
volved in the probabilistic results of convergence estab-
lished in the sequel (but they are involved in the definition
of the deterministic term hk ( x≤ k)). The convergence of
the iterations is a consequence of the following fundamen-
tal theorem.

Theorem 1. Let { Xk }k ≥ 0 ⊂ S be a sequence of ran-
dom variables defined by Eqn. (19), where hk ( x≤ k) sat-
isfies the inequality (20). Assume that Pk is the restric-
tion to S of a random variable Tk taking its values on
the whole space E, such that its density φk satisfies the
conditions

∀k ≥ 0 : φk (p) ≥ ψk (‖p‖) > 0,

∀M ≥ 0 :
+∞∑
k=0

ψk (M) = +∞ ,

where ψk : R → R is a decreasing function.
Let

Uk = min {f (Xi) : 1 ≤ i ≤ k} .

Then there exists U ≥ θ∗ such that Uk −→ U as k −→
+∞ and U = θ∗ almost surely .

A simple way for the generation of perturbations Pk

satisfying these assumptions consists in considering an
n-sample Z from N(0, 1) ( i.e., Z is an n-dimensional
vector, independent of Xk, formed by independent vari-
ables of the same law N(0, 1)) and a decreasing sequence
{ ξk }k ≥ 0 of strictly positive real numbers converging to
zero. We set Tk = ξkZ, and Pk is the restriction of Tk

to the values such that Xk + hk ( X≤ k) + Tk ∈ S. We
have

P ( Tk < p) = P

(
Z <

p
ξk

)

and

φk (p) =
1

(ξk)n ρk

(
p
ξk

)

=
1

(ξk)nψ

(‖p‖
ξk

)
= ψk (‖p‖) ,

where n = dim(E). In practice, the generation of the re-
striction of Tk may lead to the rejection of a large number
of the points generated. Thus, we shall use

Pk = ωkξk Zk,

Zk = proj (Xk,Z) = ΠkZ, Πk = ΠT (Xk) ,
(21)

where ωk is the step associated with the direction dk +
ξk Zk. Since Z is an n-sample from N(0, 1) and
proj ( Xk, · ) is an orthogonal projection operator, and
the components of Zk in any orthonormal basis form
a sample from N(0, 1) (Bouleau, 1986; Souza de Cursi,
1991). In addition, Proposition 1 shows that Xk+1 spans
S. This approach generates only admissible points.

Theorem 1 is a consequence of the following result.

Proposition 3. Let { Un }n ≥ 0 be a decreasing sequence,
lower bounded by θ∗. Then there exists U such that

Un −→ U as n→ +∞ .

Assume that, in addition, for any θ ∈]θ∗, θmax[ , there is
a sequence of strictly positive real numbers { ck(θ) }k ≥ 0

such that for every k ≥ 0 we have

P (Uk+1 < θ | Uk ≥ θ) ≥ ck(θ) > 0 ,
+∞∑
k=0

ck(θ) = +∞.

Then U = θ∗ almost surely.

Proof. See, for instance, the results of Pinter (1996) or
Pogu and Souza de Cursi (1994). �

Proof of Theorem 1. Let us introduce

Sk =
{
z ∈ E | ∃ (x≤k) ∈ Sk+1

such that xk + hk (x≤k) + z∈S
}
.

Since S is bounded and | hk ( x≤ k)| ≤ Λ, Sk is bounded.
Thus, there is a real number Γ > 0 such that | z | ≤ Γ,
∀ z ∈ Sk . In addition, the assumption (18) shows that
meas ( Sk) > 0.

Let z ∈ Sk, and let Φk denote the cumulative func-
tion of Pk and Hk = hk ( X≤ k). We have

P ( Xk+1 < z | X≤ k = x≤ k )
= P ( Xk +Hk + Pk < z | X≤ k = x≤ k )
= P ( Pk < z − xk − hk ( x≤ k) ) .
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Thus, the conditional cumulative function of Xk+1 is

Fk+1 (z |X≤k = x≤k ) = Φk (z − xk − hk (x≤k)) .

and the associated density of probability fk+1 is

fk+1 (z |X≤k = x≤k ) = φk (z − xk − hk (x≤k)) .

Hence, we have

fk+1 (z |X≤k = x≤k )
≥ ψk (‖ z − xk − hk (x≤k)‖) .

Since

‖z − xk − hk (x≤k)‖ ≤ ‖z − xk‖ + ‖hk (x≤k)‖
≤ L12 + Λ,

where L12 = ‖� − u‖ and ψk, is decreasing,

ψk (‖z − x − hk (x,y)‖) ≥ ψk (L12 + Λ) ,

and we have

fk+1 (z |X≤k = x≤k ) ≥ ψk (M) > 0,
M = L12 + Λ > 0. (22)

Let k ≥ 2. Since { Xk }k ≥ 0 ⊂ S , we have

P
(
X≤k−1 ∈ Sk

)
= 1 .

Thus,

P (Xk /∈ Sθ) = P
(
Xk /∈ Sθ , X≤k−1 ∈ Sk

)
.

Moreover,

P
(
Xk /∈ Sθ | X≤k−1 ∈ Sk

)

=
P

(
Xk /∈ Sθ , X≤k−1 ∈ Sk

)
P (X≤k−1 ∈ Sk)

= P (Xk /∈ Sθ) .

Hence

P (Xk /∈ Sθ) =
∫

Sk

P (X≤k−1 ∈ dx≤k−1)

×
∫

S−Sθ

fk

(
z

∣∣X≤k−1 ∈ Sk
)
dz .

Thus, from Eqn. (22),

P ( Xk /∈ Sθ ) ≥
∫

Sk

P ( X≤ k−1 ∈ dx≤ k−1 )

×
∫

S−Sθ

ψk−1 (M) dz

and

P ( Xk /∈ Sθ ) ≥ meas ( S − Sθ ) ψk−1 (M)

×
∫

Sk

P ( X≤ k−1 ∈ dx≤ k−1 ) .

We have
∫

Sk

P (X≤k−1 ∈ dx) = P
(
X≤k−1 ∈ Sk

)
= 1.

Thus,

P (Xk /∈ Sθ) ≥ meas (S − Sθ)ψk−1 (M) > 0. (23)

We have

P (Xk+1 ∈ Sθ,Xk /∈ Sθ)

= P
(
Xk+1 ∈ Sθ,Xk /∈ Sθ,X≤k−1 ∈ Sk

)
.

Thus,

P (Xk+1 ∈ Sθ,Xk /∈ Sθ)

=
∫

(S−Sθ)×Sk

P (Xk ∈ dx, X≤k−1 ∈ dy≤k−1)

×
∫

Sθ

fk+1 (z |Xk = x,X≤k−1 = y≤k−1 ) dz.

From Eqn. (22),

P (Xk+1 ∈ Sθ,Xk /∈ Sθ) ≥ meas (Sθ)ψk (M)

×
∫

(S−Sθ)×S

P (Xk ∈ dx, Xk−1 ∈ dy) ,

that is to say,
P (Xk+1 ∈ Sθ,Xk /∈ Sθ)

≥ meas (Sθ)ψk (L12)P (Xk /∈ Sθ) .

Thus, from Eqn. (23),

P (Xk+1 ∈ Sθ | Xk /∈ Sθ)

=
P (Xk+1 ∈ Sθ,Xk /∈ Sθ)

P (Xk /∈ Sθ)
≥ meas (Sθ)ψk (M) .

(24)

By construction, the sequence { Un }n ≥ 0 is decreas-
ing and bounded from below by θ∗. Thus, there exists
U ≥ θ∗ such that Uk −→ U as k −→ +∞. Moreover,

P (Uk+1 < θ | Uk ≥ θ)
= P (Xk+1 ∈ Sθ | Xk /∈ Sθ) ≥ ck(θ),

where
ck(θ) = meas (Sθ)ψk (M) .

The result follows from Proposition 3. �

Random perturbation of the projected variable metric
algorithm.

Step 0. Parameter: bstep = 0.1. Data: x0 = X0 ∈ S.

Step 1. Initialization. Set k = 0, B0 = I.
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Step 2. Generalized gradient calculation: g ∈ ∂f(Xk).

Step 3. Generalized gradient normalization: gk = g/‖g‖.

Step 4. Set gb = Bt
kgk, gm = Bkgb.

Step 5. Direction calculation:

vk = sk ( X≤ k ) =

{
− gm

‖gb‖ if gm �= 0,

0 if gm = 0,

where X≤ k=( Xk, Xk−1, . . ., X0).

Step 6. Calculation of the optimal step Ωk.

Step 7. Set

Xk+1 = Xk + Ωkproj (Xk, sk (X≤ k )) + Pk.

Step 8. Set g ∈ ∂f(Xk+1).

Step 9. Generalized gradient normalization:

gk+1 = g/‖g‖.
Step 10. Set

Bk+1 = Bk + bstep(gkgt
k+1Bk + gk+1gt

kBk).

Step 11. Set k = k + 1.

Step 12. Go to Step 4.

The step Ωk has to be determined by an independent
rule. Classical choices are, for instance, the fixed step,
Wolfe’s rule or the optimal step. In our calculations, we
shall use the optimal step approach.

5. Numerical experiments

In this section, we describe practical implementation of
random perturbations and we present the results of some
numerical experiments which illustrate the numerical be-
havior of the method.

At the iteration number k ≥ 0, we have that
X≤ k is known and Xk+1 has to be determined. From
the numerical standpoint, we consider finite samples of
Pk. Let ksto be a nonnegative integer and Pk =(
P1

k, . . . , Pksto
k

)
from Pk be a sample formed by

ksto variates from Pk. By setting P0 = 0, Eqn.
(19) furnishes ksto + 1 values from Xk+1, denoted by

Xk+1 =
(
X0

k+1, X1
k+1, . . . , Xksto

k+1

)
. Then, we esti-

mate Uk+1 ≈ min {f (X) : X ∈ {Xk} ∪ Xk+1} and
Xk+1 = argmin {f (X) : X ∈ {Xk} ∪ Xk+1}.

In our experiments, the perturbation is generated ac-
cording to Eqn. (21). The Gaussian variates are obtained
from calls to standard generators. We use

ξk =
√

a

log(k + 2)
,

where a > 0.

According to Section 3, the descent direction is gen-
erated by using generalized gradients of the objective
function. If the objective function is differentiable at XK ,
the gradient is used. Otherwise, we consider local affine
underestimate or overestimate and the descent direction is
random convex combination of these elements. For in-
stance, if subgradients are available at a nondifferentiabil-
ity point, then the descent direction is a random convex
combination of elements of the subdifferential.

We introduce a maximum iteration number kmax: the
iterations are stopped when k = kmax. We denote by
fopt and xopt, the estimations of the optimal value f and
x∗ furnished by the method. fmean and xmean are their
mean values estimated from 100 independent runs. We
denote be V fmean and σfmean the variance and standard
deviation of fmean, which are estimated from the results
of the runs.

Our approach was programmed using Visual For-
tran 6.1. As far as the experiments were concerned, they
were performed on a workstation running an HP Intel
(R) M processor (1.30 GHz, 224 MB RAM). The case
ksto = 0 corresponds to unperturbed descent (determinis-
tic) method.

Results.

• Case 1: ω̄ = 500, kmax = 100, ksto = 500 and
a = 1.

• Case 2: ω̄ = 500, kmax = 500, ksto = 500 and
a = 1.

In Tables 1 and 2, we show the observed effect of
the variation in a single parameter value while the oth-
ers remain with their original value. Tables 1 and 2 con-
tain the minimal value objective f(x∗) = −0.38966, −
0.33036, − 1.8596, 128 and − 1964 of the problems
Mad 1, Mad 2, Pentagon, Wong 3 and HS114.

�

100

500

1000

�

129 132 145

�

�

�

�

�

kmax

fopt

4

Fig. 1. Evaluation of the objective function with the iteration
number for the Wong 3 problem.
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Table 3. Results of 100 tests.

Example 1 2 3 4 5

fmean −0.38959 −0.330357 −1.85957 132 −1931

vfmean 5.55 × 10−17 4.02 × 10−16 2.96 × 10−8 9.09 × 10−11 2.33 × 10−9

σfmean 7.45 × 10−9 2.01 × 10−8 1.72 × 10−4 9.54 × 10−6 4.83 × 10−5

−0.4002 −0.8929 −0.9776 −0.1916 2.15 2.30 7.87 5.02 1733.36 11989.23
xmean 0.9002 0.1786 0.3799 −0.7785 1.17 1.87 1.34 9.87 39.49 3047.92

0.3519 0.9146 8.39 8.67 2.63 1.09 1985.10 89.96
6.09 14.21 0.96 0.62 95.00 8.39
1.27 2.06 1.33 2.03 1.20 154.44

Table 1. Results of optimal values in Case 1.

Example 1 2 3 4 5

1 −0.38966 −0.33036 −1.8596 132 −1560
10 −0.38966 −0.33036 −1.8596 130 −1930

ω̄ 100 −0.38966 −0.33036 −1.8596 132 −1931
500 −0.38959 −0.33036 −1.8596 132 −1931
1000 −0.38954 −0.33036 −1.8596 132 −1931

10 −0.38959 −0.33036 −1.8590 146 −1348
50 −0.38959 −0.33036 −1.8596 133 −1644

kmax 100 −0.3896 −0.33036 −1.8596 132 −1931
500 −0.38965 −0.33036 −1.8596 130 −1964
1000 −0.38965 −0.33036 −1.8596 129 −1964

0 −0.11088 −0.28878 −1.4153 248 −1210
10 −0.38867 −0.33029 −1.8595 143 −1367
50 −0.38945 −0.33036 −1.8596 138 −1413

ksto 100 −0.38945 −0.330357 −1.8596 137 −1500
500 −0.38959 −0.33036 −1.8596 132 −1931
1000 −0.38959 −0.33036 −1.8596 131 −1920

0.1 −0.38965 −0.33036 −1.8596 131 −1758
1 −0.38959 −0.33036 −1.8596 132 −1931

a 10 −0.38965 −0.33035 −1.8596 133 −1668
100 −0.38648 −0.33009 −1.8596 134 −1726

�
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kmax

-1348-1644-1964
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fopt

77

Fig. 2. Evaluation of the objective function with the iteration
number for the HS114 problem.

In order to get some information about the robust-
ness, we have studied the behavior of the method when

Table 2. Results of optimal values in Case 2.

Example 1 2 3 4 5

1 −0.38966 −0.33036 −1.8596 128 −1958
10 −0.38966 −0.33036 −1.8596 128 −1961

ω̄ 100 −0.38966 −0.33036 −1.8596 130 −1964
500 −0.38965 −0.33036 −1.8596 130 −1964

1000 −0.38966 −0.33036 −1.8596 130 −1964

10 −0.38959 −0.33036 −1.8590 146 −1348
50 −0.38959 −0.33036 −1.8596 133 −1644

kmax 100 −0.38959 −0.33036 −1.8596 132 −1931
500 −0.38965 −0.33036 −1.8596 130 −1964

1000 −0.38965 −0.33036 −1.8596 129 −1964

0 −0.11088 −0.28878 −1.4153 248 −1210
10 −0.38951 −0.33035 −1.8594 138 −1459
50 −0.38965 −0.33036 −1.8596 135 −1744

ksto 100 −0.38965 −0.33036 −1.8596 135 −1932
500 −0.38965 −0.33036 −1.8596 130 −1964

1000 −0.38966 −0.33036 −1.8596 130 −1941

0.1 −0.38965 −0.33036 −1.85956 130 −1953
1 −0.38965 −0.33036 −1.8596 130 −1964

a 10 −0.38964 −0.33036 −1.8596 131 −1960
100 −0.38951 −0.33036 −1.8596 131 −1959

using different samples of random vectors. We observe
that the results are stable, with small variance.

6. Concluding remarks

We have presented a stochastic modification of the pro-
jected variable metric method for nonsmooth optimization
involving introduction of a stochastic perturbation. This
approach leads to a stochastic descent method where the
deterministic sequence generated by Clarke’s generalized
gradient is replaced with a sequence of random variables.

Numerical experiments show the effectiveness of the
method. The use of stochastic perturbations improves the
results furnished by Clarke’s generalized gradient, and the
robustness has been analyzed through the use of indepen-
dent runs employed to estimate the resulting variable as
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shown in Table 3. Thus, the robustness is increased. The
main classical difficulty in the practical use of stochastic
perturbations is connected with the tuning of the param-
eters. We have analyzed the practical effect of variations
of a, ω̄, kmax and ksto. As shown in Tables 1 and 2, the
more influenced parameters are kmax and ksto. We ob-
serve that, for a small number of iterations kmax, a large
number of perturbations ksto is needed in order to obtain
the best results, while a small ksto requests a large kmax.
The parameters a and ω̄ are less influential: the values of
about 1 to 10 produced good results.
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Appendix A

Example 1. (Luks̃an and Vlc̃ek, 2000) Mad 1 problem.

{
minF (x) = max{f1(x), f2(x), f3(x)},
subject to h1(x) = x1 + x2 − 0.5 ≥ 0,

where

f1(x) = x2
1 + x2

2 + x1x2 − 1,
f2(x) = sinx1,

f3(x) = − cosx2.

The starting point is x0 = (1, 2) .

Example 2. (Luks̃an and Vlc̃ek, 2000) Mad 2 problem.
{

minF (x) = max{f1(x), f2(x), f3(x)},
subject to h1(x) = −3x1 + x2 − 2.5 ≥ 0,

where fi(x), i = 1, 2, 3, as in Example 1. The starting
point is x0 = (−2, − 1) .

Example 3. (Luks̃an and Vlc̃ek, 2000) Pentagon prob-
lem.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

minF (x) = max{f1(x), f2(x), f3(x)},

subject to hi(x) = xi cos
2πj
5

+ xi+1 sin
2πj
5

≤ 1,

i = 1, 3, 5, j = 0, 1, 2, 3, 4,

where

f1(x) = −
√

(x1 − x3)2 + (x2 − x4)2,

f2(x) = −
√

(x3 − x5)2 + (x4 − x6)2,

f3(x) = −
√

(x5 − x1)2 + (x6 − x2)2.

The starting point is x0 = (−1, 0, 0, − 1, 0, 1) .

Example 4. (Luks̃an and Vlc̃ek, 2000) Wong 3 problem.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minF (x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2

+ (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+ 2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2

+ 2(x9 − 10)2 + (x10 − 7)2 + (x11 − 9)2

+ 10(x12 − 1)2 + 5(x13 − 7)2

+ 4(x14 − 14)2 + 27(x15 − 1)2 + x4
16

+ (x17 − 2)2 + 13(x18 − 2)2 + (x19 − 3)2

+ x2
20 + 95,

subject to

ψi(x) ≤ 0, i = 1, . . . , 13,

h1(x) = 4x1 + 5x2 − 3x7 + 9x8 ≤ 105,

h2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0,

h3(x) = −8x1 + 2x2 + 5x9 − 2x10 ≤ 12,

h4(x) = x1 + x2 + 4x11 − 21x12 ≤ 0,



Random perturbation of the projected variable metric method for nonsmooth nonconvex optimization. . . 329

where

ψ1(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120,

ψ2(x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40,

ψ3(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30,

ψ4(x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6,

ψ5(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10,

ψ6(x) = x2
1 + 5x11 − 8x12 − 28,

ψ7(x) = 4x1 + 9x2 + 5x2
13 − 9x14 − 87,

ψ8(x) = 3x1 + 4x2 + 3(x13 − 6)2 − 14x14 − 10,

ψ9(x) = 14x2
1 + 35x15 − 79x16 − 92,

ψ10(x) = 15x2
2 + 11x15 − 61x16 − 54,

ψ11(x) = 5x2
1 + 2x2 + 9x4

17 − x18 − 68,

ψ12(x) = x2
1 − x9 + 19x19 − 20x20 + 19,

ψ13(x) = 7x2
1 + 5x2

2 + x2
19 − 30x20.

In order to apply the algorithm, the nonlinear constraints
are penalized, i.e., F is replaced with

Fλ(x) = F (x) + λ

13∑
i=1

ψ+
i (x),

where

ψ+
i (x) = max{0, ψi(x)}.

Fλ satisfies the general assumptions. The numerical ex-
periment uses λ = 10. The starting point is

x0 =
(
2, 3, 5, 5, 1, 2, 7, 3, 6, 10, 2,

2, 6, 15, 1, 2, 1, 2, 1, 3
)
.

Example 5. (Luks̃an and Vlc̃ek, 2000) HS114 problem.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minF (x) = 5.04x1 + 0.035x2 + 10x3 + 3.36x5

−0.063x4x7,
subject to

ψi(x) ≤ 0, i = 1, . . . , 4,
ηj(x) = 0, j = 1, 2,
h1(x) = 0.222x10 + bx9 ≤ 35.82,

h2(x) = 0.222x10 + 1
bx9 ≥ 35.82,

h3(x) = 3x7 − ax10 ≥ 133,

h4(x) = 3x7 − 1
ax10 ≤ 133,

h5(x) = 1.22x4 − x1 − x5 = 0,

where

ψ1(x) = 1.12x1 + 0.13167x1x8 − 0.00667x1x
2
8

− 1
a
x4,

ψ2(x) = −(1.12x1 + 0.13167x1x8 − 0.00667x1x
2
8

− ax4),

ψ3(x) = 1.098x8 − 0.038x2
8 + 0.325x6

− 1
a
x7 + 57.425,

ψ4(x) = −(1.098x8 − 0.038x2
8 + 0.325x6

− ax7 + 57.425),

η1(x) =
98000x3

x4x9 + 1000x3
− x6,

η2(x) =
x2 + x5

x1
− x8,

a = 0.99, b = 0.90, and sample constraints are

10−5 ≤ x1 ≤ 2000, 85 ≤ x6 ≤ 93,

10−5 ≤ x2 ≤ 16000, 90 ≤ x7 ≤ 95,

10−5 ≤ x3 ≤ 120, 3 ≤ x8 ≤ 12,

10−5 ≤ x4 ≤ 5000, 1.2 ≤ x9 ≤ 4,

10−5 ≤ x5 ≤ 2000, 145 ≤ x10 ≤ 162,

The starting point is

x0 =
(
1745, 12000, 110, 3048, 1974,

89.2, 92.8, 8, 3.6, 145
)
.

As in the previous example, the nonlinear constraints are
penalized. In addition, the restriction h5 is rewritten as
h5 ≤ 0 and −h5 ≤ 0. The restriction −h5 ≤ 0 is treated
as an ordinary affine one, while the other one is penalized.
Thus we minimize

Fλ = F + λ
[ 4∑

i=1

ψ+
i + h+

5 + |η1| + |η2|
]
.

We use λ = 1000.
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