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Integral sliding mode design is considered for a class of uncertain systems in the presence of mismatched uncertainties in
both state and input matrices, as well as norm-bounded nonlinearities and external disturbances. A sufficient condition for
the robust stability of the sliding manifold is derived by means of linear matrix inequalities. The initial existence of the
sliding mode is guaranteed by the proposed control law. The improvement of the proposed control scheme performances,
such as chattering elimination and estimation of norm bounds of uncertainties, is then considered with the application of an
adaptive fuzzy integral sliding mode control law. The validity and efficiency of the proposed approaches are investigated
through a sixth order uncertain mechanical system.
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1. Introduction

The relationship between models and the reality they rep-
resent is subtle and complex. The differences or errors
between them define the term uncertainty. Thus, it is
necessary to analyze dynamic systems subject to uncer-
tainties. In other words, for control design purposes we
need to handle simple models. However, the obtained
controller must work when connected to a real system.
Control strategies based on this philosophy have attracted
the attention of researchers and have been widely con-
sidered. Variable Structure Control (VSC) with Sliding
Modes (SMs) has been regarded as a robust technique for
its insensitivity to external disturbances and model uncer-
tainties satisfying the matching condition, i.e., perturba-
tions that affect the system model through the input chan-
nel (Decarlo et al., 1988; Hung et al., 1993). In addition,
the use of SMC can offer fast response, good transient
performance and order reduction. These advantages make
the SM technique very widespread in robust control de-
sign (Ha et al., 1999; Utkin, 1992).

The existence of the reaching phase in the result-
ing closed loop system yields the sensitivity of the dy-
namics to perturbations in an initial period of time in
which the system has not yet reached the sliding manifold
(Ackermann and Utkin, 1998). Hence, the new approach

known as Integral SMC (ISMC) has as the main contribu-
tion the elimination of the reaching phase. The basic idea
of this concept is the addition of an integral term in the
sliding surface allowing immediate sliding mode emer-
gence (Utkin and Shi, 1996). ISMC is used in the works
of Mnasri and Gasmi (2007a; 2007b) and good results are
obtained for large scale systems with matched uncertain-
ties.

Application of the same method in the control of
matched uncertain MIMO systems produced good per-
formance as for robustness and tracking (Mnasri and
Gasmi, 2008). However, in many cases, the uncertain-
ties and external disturbances do not always satisfy the
matching conditions. Contrary to the matched case, any
mismatched uncertainty affects the behavior of the sliding
mode directly, even when the ISMC approach is used. To
solve this problem, the main idea is the combination of
SMC with other robust techniques.

A majority of the existing methods are based on Clas-
sic SMC (CSMC) (Kim et al., 2000; Choi, 2001; Xia and
Jia, 2003). These methods are affected by the aforemen-
tioned insufficiency of SMC with the reaching phase. Re-
cently, much research has been focused on the advantages
of ISMC in the control of systems with mismatched un-
certainties. This method is considered by Cao and Xu
(2004) for the case of systems with mismatched uncer-
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tainties in the state matrix, but it is limited to matched
uncertainties in the input matrix and to external distur-
bances. A few recent studies have included the case of
mismatched uncertainties in the input matrix (Shaocheng
and Yongji, 2006; Choi, 2007). However, neither of them
is applicable in the presence of mismatched disturbances
not related to the input channel.

In this paper, we propose a new approach to design
ISMC for a class of uncertain systems. This class regroups
mismatched uncertainties in both state and input matri-
ces, as well as mismatched norm-bounded nonlinearities
and external disturbances. Our approach, based on Linear
Matrix Inequalities (LMIs), combines the advantages of
ISMC with H∞ control. This gives a sufficient condition
for the robust stability of the system in the sliding mode.
The chattering phenomenon, the main drawback of SMC,
is also considered in this paper. An adaptive fuzzy ISMC
law is proposed to improve the performance of the con-
trol scheme, by allowing elimination of chattering and the
estimation of the norm bounds of uncertainties. The effi-
ciency of the proposed control laws is investigated through
a sixth-order mechanical system example.

2. Problem formulation

2.1. System description. Consider the following un-
certain system:

⎧
⎨

⎩

ẋ = [A + ΔA] x
+ [B + ΔB] u(t) + f(x, t) + Hω(t),

y = Cx,
(1)

where x ∈ R
n is the state vector, u ∈ R

m is the input
control, y ∈ R

q is the controlled output, f(x, t) ∈ R
n

is the vector of nonlinearities and unmodelled dynamics.
Here ω ∈ R

p is a square-integrable external disturbance.
A ∈ R

n×n is the system characteristic matrix, B ∈ R
n×m

is the input matrix, H ∈ R
n×p is the matrix of external

disturbances, C ∈ R
q×n is the output matrix, ΔA and

ΔB represent system and input matrix uncertainties, re-
spectively. We make the following assumptions:

(i) The pair (A, B) is stabilizable.

(ii) The input matrix B has full rank.

(iii) There exist known positive constants a, b, g, and ω0

such that ‖ΔA‖ ≤ a, ‖ΔB‖ ≤ b , ‖f(x, t)‖ ≤ g ‖x‖
and ‖ω(t)‖ ≤ ω0, for all t ∈ R

+.

(iv) ‖B+ΔB‖ ≤ bm < 1 , where bm is a positive known

scalar and B+ ≡ (
BT B

)−1
BT .

2.2. Preliminary results. In this section, we give some
preliminary results that will be helpful to obtain our main
results.

Lemma 1. (Boyd et al., 1994) Consider the following
unforced system:

{
ẋ = Ax + Hω,

y = Cx.
(2)

This system is quadratically stable and satisfies the H∞
constraint ‖Tyω‖∞ < γ if there exists a quadratic Lya-
punov function V (x) = xT Px, P > 0 such that, for all
t > 0,

V̇ + yT y − γ2ωT ω < 0. (3)

Lemma 2. (Choi, 2007) For any vectors x and y with
appropriate dimensions, the following inequality holds:

2xT y ≤ εxT x + ε−1yT y, ∀ε > 0. (4)

Lemma 3. (Boyd et al., 1994) Consider a block symmet-
ric matrix [

A BT

B C

]

, (5)

where A and C are square matrices, with C being nega-
tive definite. This matrix is negative definite if and only if
A − BT C−1B is negative semi-definite.

3. Sliding mode stability

3.1. Sliding surface choice. In this work, we choose
the switching function as follows:

S(t) = B+x + z, (6)

where z ∈ R
m is the solution of the following dynamic

equation:

ż = −(B+A + K)x, z(0) = −B+x(0), (7)

where K ∈ R
m×n is a state feedback gain which should

be designed to lead the closed loop system to the desired
performances in the sliding mode. The sliding surface
considered allows the elimination of the reaching phase
characterizing CSMC, because the initial value S(0) = 0
for any initial conditions. The time derivative of the
switching function is derived using (1) and (6) as follows:

Ṡ(t) = B+ [[A + ΔA] x + [B + ΔB] u + f + Hω]

− B+Ax − Kx

= B+ [ΔAx + [B + ΔB] u + f + Hω] − Kx.
(8)

Let us suppose that

Γ = In − BB+, (9)
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where In ∈ R
n×n is the n × n identity matrix. Accord-

ingly, it is easy to deduce that

B+Γ = B+ − B+BB+ = B+ − B+ = 0. (10)

In addition, we can rewrite the uncertainty terms as fol-
lows:

ΔA(t) = BΔAm(t) + ΔAu(t), (11a)

ΔB(t) = BΔBm(t) + ΔBu(t), (11b)

f(x, t) = Bfm(x, t) + fu(x, t), (11c)

H = BHm + Hu, (11d)

where

ΔAm(t) = B+ΔA(t), ΔBm(t) = B+ΔB(t),

fm(x, t) = B+f(x, t), Hm = B+H,

ΔAu(t) = ΓΔA(t), ΔBu(t) = ΓΔB(t),
fu(x, t) = Γf(x, t), Hu = ΓH.

(12)
Furthermore, there exist known positive constants am, au,
bu, gm, and gu such that ‖ΔAm‖ ≤ am , ‖ΔAu‖ ≤ au,
‖ΔBu‖ ≤ bu , ‖fm(x, t)‖ ≤ gm ‖x‖, and ‖fu(x, t)‖ ≤
gu ‖x‖.

Therefore, using (9)–(12), Eqn. (8) can be trans-
formed into

Ṡ = ΔAmx + (Im + ΔBm)u

+ fm(x, t) + Hmω − Kx. (13)

The intrinsic condition of the sliding mode emergence is

S(t) = 0, Ṡ(t) = 0. (14)

This condition allows deriving the expression for the
equivalent control as follows:

ueq = −(Im + ΔBm)−1

×
[
ΔAmx + fm(x, t) + Hmω − Kx

]
. (15)

Remark 1. Equation (15) requires that the matrix (Im +
ΔBm) be nonsingular. This requirement is guaranteed by
Assumption (iv).

3.2. Stability of the sliding motion. By substituting
(15) in (1), the sliding mode dynamics can be described
by

ẋ(t) = Ax + BKx + B̃Kx + ΔAux − B̃ΔAmx

+ fu − B̃fm + Huω − B̃Hmω,
(16)

where
B̃ = ΔBu(Im + ΔBm)−1. (17)

It is clear from (16) that the system dynamics in the slid-
ing mode are affected by the existence of uncertainties
and disturbances. Our objective is the design of a state
feedback gain K . This gain guarantees the stability of
the closed loop system while satisfying the H∞ constraint
‖Tyω‖∞ < γ . In order to reach this goal, we proceed by
means of the LMI method.

Theorem 1. The uncertain system (1) with the as-
sumptions (i)–(iv) is quadratically stable on the slid-
ing surface described by (6) and satisfies the H∞ con-
straint ‖Tyω‖∞ < γ if there exist a symmetric positive-
definite matrix X , a matrix R and positives scalars εi, i =
1, . . . , 6, such that the following LMI holds:

[
Ξ Θ
∗ Ψ

]

< 0, (18)

where

Ξ =

⎡

⎢
⎢
⎢
⎢
⎣

Σ XCT auX buamX guX
∗ −I 0 0 0
∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε∗2I 0
∗ ∗ ∗ ∗ −ε3I

⎤

⎥
⎥
⎥
⎥
⎦

, (19)

Σ =AX + XAT + BR + RT BT +
6∑

i=1

εiI, (20)

R =KX, ε∗i = (1 − bm)2εi, (21)

Θ =

⎡

⎢
⎢
⎢
⎢
⎣

bugmX buRT Hu 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

, (22)

Ψ =

⎡

⎢
⎢
⎣

−ε∗4I 0 0 0
∗ −ε∗5I 0 0
∗ ∗ −γ2I buHT

m

∗ ∗ ∗ −ε∗6I

⎤

⎥
⎥
⎦ . (23)

Here the asterisk denotes the transpose of the correspond-
ing block above the main diagonal, and I denotes the iden-
tity matrix of appropriate dimension.

Proof. Consider a symmetric positive-definite matrix P
and choose a candidate Lyapunov function,

V (x) = xT Px. (24)

In order to complete the proof, we proceed by verification
of Lemma 1:

V̇ + yT y − γ2ωT ω

= xT
[
PA + AT P + PBK + KT BT P

]
x

+ 2xT PΔAux − 2xT PB̃ΔAmx + 2xT Pfu

− 2xT PB̃fm + 2xT PB̃Kx + 2xT PHuω

− 2xT PB̃Hmω + xT CT Cx − γ2ωT ω.
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Using Lemma 2, we get

2xT PΔAux ≤ ε1x
T P 2x + ε−1

1 xT ΔAux

≤ xT
[
ε1P

2 + a2
uε−1

1 I
]
x,

−2xT PB̃ΔAmx ≤ ε2x
T P 2x

+ ε−1
2 xT ΔAT

mB̃T B̃ΔAmx

≤ xT

[

ε2P
2 +

b2
ua2

m

(1 − bm)2
ε−1
2 I

]

x,

2xT Pfu ≤ ε3x
T P 2x + ε−1

3 fT
u fu

≤ xT
[
ε3P

2 + g2
uε−1

3 I
]
x,

−2xT PB̃fm ≤ ε4x
T P 2x + ε−1

4 fT
mB̃T B̃fm

≤ xT

[

ε4P
2 +

b2
ug2

m

(1 − bm)2
ε−1
4 I

]

x,

2xT PB̃Kx ≤ ε5x
T P 2x + ε−1

5 xT KT B̃T B̃Kx

≤ xT
[
ε5P

2

+
b2
u

(1 − bm)2
ε−1
5 KT K

]
x,

−2xT PB̃Hmω ≤ ε6x
T P 2x + ε−1

6 ωT HT
mB̃T B̃Hmω

≤ ε6x
T P 2x

+
b2
u

(1 − bm)2
ε−1
6 ωT HT

mHmω,

Consequently, we obtain

V̇ + yT y − γ2ωT ω

≤ xT Ωx + xT PHuω + ωT HT
u Px

+ ωT

[

−γ2I +
b2
u

(1 − bm)2
ε−1
6 HT

mHm

]

ω,

(25)

where

Ω = PA + AT P + PBK + KT BT P + CT C

+
6∑

i=1

εiP
2 +

(
a2

uε−1
1 +

b2
ua2

m

(1 − bm)2
ε−1
2 + g2

uε−1
3

+
b2
ug2

m

(1 − bm)2
ε−1
4

)
I +

b2
u

(1 − bm)2
ε−1
5 KT K.

The inequality (25) can be reformulated as follows:

V̇ + yT y − γ2ωT ω

≤ [
xT ωT

]

×
[

Ω PHu

HT
u P

b2u
(1−bm)2 ε−1

6 HT
mHm − γ2I

][
x
ω

]

Thus Lemma 1 is satisfied if
[

Ω PHu

HT
u P

b2u
(1−bm)2 ε−1

6 HT
mHm − γ2I

]

< 0. (26)

The next LMI can be derived from (26), by using
Lemma 3:

⎡

⎣
Ω PHu 0

HT
u P −γ2I buHT

m

0 buHm −(1 − bm)2ε6I

⎤

⎦ < 0. (27)

After pre-multiplying and post-multiplying (27) by
diag

[
P−1, I, I

]
, considering X = P−1 and R =

KX , the LMI (18) is obtained by the successive use of
Lemma 3. Therefore, the proof is complete. �

4. Reachability analysis

In the preceding section a sufficient condition was derived
for the quadratic stability of the uncertain system on the
sliding manifold S(t) = 0. Now, we proceed with the
second task, which is the design of an SMC law, such that
the reachability of the specified sliding surface is guaran-
teed.

4.1. Integral sliding mode control law. The proposed
ISMC law is specified through the following result.

Theorem 2. Consider the uncertain system (1) with the
assumptions (i)–(iv). Suppose that the switching surface
is given by (6) with K = RX−1, where X and R are
solutions of the LMI (18). Suppose also that the SMC law
is

u = Kx − ρ
S

‖S‖ , (28)

where

ρ =
1

1 − bm
ρ1,

ρ1 =q + (am + bm ‖K‖ + gm) ‖x‖ + ‖Hm‖ω0,

(29)

with q being a small positive scalar. Then a stable sliding
mode exists from the initial time.

Proof. Consider the Lyapunov function

V =
1
2
ST S. (30)

Using (13), the derivative of this function with respect to
time is given as follows:

ST Ṡ = ST
[
ΔAmx + (Im + ΔBm)u

+ Hmω + fm − Kx
]

= ST (ΔAmx + ΔBmKx + Hmω + fm

− (Im + ΔBm) ρ
S

‖S‖)

= ST (ΔAmx + ΔBmKx + Hmω + fm)

− ρ ‖S‖ − ρST ΔBm
S

‖S‖
= ST (ΔAmx + ΔBmKx + Hmω + fm)

− ρ1 ‖S‖ − bm

1 − bm
ρ1 ‖S| − ρST ΔBm

S

‖S‖



LMI-based adaptive fuzzy integral sliding mode control of mismatched uncertain systems 609

≤ ‖S‖ [ ‖ΔAmx‖ + ‖ΔBmKx‖ + ‖Hmω‖
+ ‖fm‖ ] − ρ1 ‖S‖ − bmρ ‖S‖

≤ −q ‖S‖ < 0.

Then, the SMC law considered guarantees the reachability
of the switching surface. In addition, the initial value of
S(t) is given by S(0) = 0. Thus, the proof is complete.

�

Remark 2. The switching gain (29) of the proposed con-
troller is a function of the norm-bounds of the matched
components of uncertainties and disturbances am, bm, gm

and ‖Hm‖. Moreover, am ≤ a, bm ≤ b, gm ≤ g,
‖Hm‖ ≤ ‖H‖, which allows the optimization of the dis-
continuous controller magnitude. This argument justifies
the procedure proposed in (11)–(12).

4.2. Adaptive fuzzy ISMC law. Two major prob-
lems may affect the applicability of the proposed SMC
law. The first is the difficulty to obtain the exact values
of uncertainties and disturbance bounds. The second is
the phenomenon of chattering, a major disadvantage of
SMC, which is induced by the switching nature of the con-
troller. Hence, to overcome these problems, an Adaptive
Fuzzy ISMC (AFISMC) law is presented in this section.
The proposed AFISMC is based on the introduction of
a Fuzzy Logic (FL) inference mechanism which replaces
the switching control law. The switching function (6) can
be written as

S = [s1 · · · si · · · sm]T .

Let si be the input linguistic variable of FL, and uF,i

be the output linguistic variable. The associated fuzzy sets
are expressed as follows:

• for the antecedent proposition (si): P (Positive), N
(Negative), and Z (Zero);

• for the consequent proposition (uF,i ): PE (Positive
Effort), NE (Negative Effort), and ZE (Zero Effort).

In order to make the sliding surface attractive, the
fuzzy linguistic rule base can be given as follows:

1. Rule 1: If si is P, then uF,i is PE.

2. Rule 2: If si is Z, then uF,i is ZE.

3. Rule 3: If si is N, then uF,i is NE.

The membership functions of the input fuzzy sets are of
the triangle type, and those of the output fuzzy sets are of
the singleton type. The singleton defuzzification method
is used in this work. Then the fuzzy controller (output of
the defuzzification module) can be written as

uF,i =
∑3

k=1 μjkδjk
∑3

k=1 μjk

, (31)

where 0 ≤ μjk ≤ 1 is the firing strength of rule k, k =
1, . . . , 3, δj1 = δj , δj2 = 0, and δj3 = −δj stand for the
centres of the membership functions PE, ZE, and NE, re-
spectively. Owing to the special choice of triangular mem-
bership functions, we get

3∑

k=1

μjk = 1. (32)

As a result, (31) can be reduced to the following:

uF,j = (μj1 − μj3) δj . (33)

According to the aforementioned fuzzy rule base, it
is easy to observe that

uF,j =
{

μj1δj , if sj > 0,
−μj3δj , if sj < 0.

(34)

Then we can conclude that

sj (μj1 − μj3) δj ≥ 0. (35)

Consider again the Lyapunov candidate function
(30). As was mentioned at the beginning of the proof of
Theorem 2, its derivative with respect to time is given by

V̇ = ST
[
ΔAmx + (Im + ΔBm)u

+ Hmω + fm − Kx
]
. (36)

Consequently, if the controller is selected as follows:

u = Kx + uF , (37)

where uF is the fuzzy controller specified by

uF = − 1
1 − bm

[uF,1 · · ·uF,m]T , (38)

then (36) can be written as

V̇ = ST
[
ϕ(x, ω, t) + (Im + ΔBm)uF

]
, (39)

where

ϕ(x, ω, t) = ΔAmx + ΔBmKx + Hmω + fm

= [ϕ1 · · ·ϕm]T .
(40)

Therefore,

V̇ =
m∑

j=1

sjϕj − 1
1 − bm

m∑

j=1

sjuF,j − ST ΔBmuF

≤
m∑

j=1

|sjϕj | − 1
1 − bm

m∑

j=1

sj(μj1 − μj3)δj

+ ‖ΔBm‖∥
∥ST uF

∥
∥

≤
m∑

j=1

|sjϕj | − 1
1 − bm

m∑

j=1

sj(μj1 − μj3)δj

+
bm

1 − bm

m∑

j=1

sj(μj1 − μj3)δj .
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Fig. 1. Structure of the proposed AFISMC scheme.

Hence we get

V̇ ≤
m∑

j=1

|sj | [|ϕj | − |μj1 − μj2| δj ] . (41)

As a result, V̇ < 0 if the following inequality holds:

δj >
|ϕj |

|μj1 − μj3| , j = 1, . . . , m. (42)

According to Wang’s theorem (Wang, 1997), there
exists an optimal value δj which satisfies the preceding in-
equality. However, this value cannot be accurately deter-
mined because the uncertainties bounds cannot be easily
extracted. Then, δj is chosen as the parameter to be up-
dated. The structure of the proposed scheme is indicated
in Fig. 1. The following theorem describes this control
law.

Theorem 3. Consider the uncertain system (1) with the
assumptions (i)–(iv). Suppose that the switching surface
is given by (6), where X and R are solutions to be LMI
(18). If the control law is given by (37), where uF is the
fuzzy controller (38), and δj is replaced by the adaptive
parameter δ̂j described as follows:

˙̂
δj = βjsj(μj1 − μj3), (43)

with βj being a nonnegative scalar, then a stable sliding
mode exists from the initial time.

Proof. The estimated error between the adaptive parame-
ter δ̂j and the optimal value δj is defined as

δ̃j = δ̂j − δj . (44)

Thereafter, we choose the following Lyapunov candidate:

V1 = V +
1
2

m∑

j=1

β−1
j δ̃2

j . (45)

Fig. 2. Mechanical system example.

Thus we obtain

V̇1 = V̇ +
m∑

j=1

β−1
j δ̃j

˙̃δj . (46)

By using (37), (39), (43) and (44), (46) can be rewritten as

V̇1 =
m∑

j=1

sjϕj − 1
1 − bm

m∑

j=1

sjuF,j − ST ΔBmuF

+
m∑

j=1

(δ̃j − δj)sj(μj1 − μj3)

=
m∑

j=1

[
sjφj − sjδj(μj1 − μj3)

] − ST ΔBmuF

− 1
1 − bm

m∑

j=1

sjuF,j +
m∑

j=1

δ̂jsj(μj1 − μj2)

≤ − 1
1 − bm

m∑

j=1

sj δ̂j(μj1 − μj3)

+
m∑

j=1

sj δ̂j(μj1 − μj3)

+
m∑

j=1

[
sjφj − sjδj(μj1 − μj3)

]

+ ‖ΔBm‖ ∥
∥ST uF

∥
∥

≤
m∑

j=1

|sj | |φj | − δj |μj1 − μj3|

−
m∑

j=1

sj δ̂j(μj1 − μj3)

+
m∑

j=1

sj δ̂j(μj1 − μj3)

≤
m∑

j=1

∣
∣sj [| |φj | − δj |μj1 − μj3|

]
< 0.

Thus, the time derivative of the Lyapunov candidate func-
tion is negative. This completes the proof. �

5. Example

In this section we shall evaluate the proposed control laws
through the application to a sixth-order mechanical sys-
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(g)
Fig. 3. Simulation results using ISMC: switching function S1(t) (a), switching function S2(t) (b), controller u1(t) (c), controller u2(t)

(d), acceleration q̈1(t) (e), acceleration q̈2(t) (f), acceleration q̈3(t) (g).
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Fig. 4. Simulation results using AFISMC: switching function S1(t) (a), switching function S2(t) (b), controller u1(t) (c), controller
u2(t) (d), acceleration q̈1(t) (e), acceleration q̈2(t) (f), acceleration q̈3(t) (g).
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tem shown in Fig. 2. Suppose that

mi = m + Δmi

= m(1 + ξi), i = 1, . . . , 3, m = 1,

k1 = k2 = 2, c = 3,

x =
[

q1 q̇1 q2 q̇2 q3 q̇3

]T
,

u =
[

u1 u2

]T
, ω =

[
f1 f2 f3

]T
.

The system can be described by the following state
equation:

ẋ = (A + ΔA)x + (B + ΔB)u + Hω,

with

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0
−2 0 2 0 0 0
0 0 0 1 0 0
2 0 −4 −3 2 3
0 0 0 0 0 1
0 0 2 3 −2 −3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
1 0
0 0
0 0
0 0
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

ΔA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
2ζ1 0 −2ζ1 0 0 0
0 0 0 0 0 0

−2ζ2 0 4ζ2 3ζ2 −2ζ2 −3ζ2

0 0 0 0 0 1
0 0 −2ζ3 −3ζ3 2ζ3 3ζ3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

ΔB =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
−ζ1 0
0 0
0 0
0 0
0 −ζ3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

ζi =
ξi

1 + ξi
, fi = 0.1 sin(πt).

For ξi = 0.1, i = 1, . . . , 3, applying the decom-
position procedure given by (11)–(12), we get am =
0.4711, au = 0.5892, bm = 0.0909, bu = 0. Then a fea-
sible solution of the LMI (18) is given by

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.055 −0.099 −0.005
−0.099 0.380 0.015
−0.005 0.015 0.062
0.023 −0.072 −0.070
−0.015 −0.001 −0.010
0.027 −0.015 0.012

0.023 −0.015 0.027
−0.072 −0.001 −0.015
−0.070 −0.010 0.012
0.385 0.038 −0.129
0.038 0.053 −0.075
−0.129 −0.075 0.238

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

ε1 = 0.0385, γ = 1.4534,

K =
[−2.661 −3.862 −2.453

2.285 0.922 −3.025

0.286 −4.266 −1.972
−3.742 −0.740 −0.637

]

.

We remark that none of the traditional design meth-
ods of Kim et al. (2000), Choi (2001) or Xia and Jia
(2003) nor the integral SMC methods given by Cao and
Xu (2004), Shaocheng and Yongji (2006) or Choi (2007)
is applicable to the example considered. The simulation
results are obtained for the initial state vector

x(0) =
[

0.1 0.2 0.3 0.4 0.5 0.6
]T

.

Figures 3 and 4 indicate the evolution of switch-
ing function components, controller components, and ac-
celerations using the proposed ISMC (28) and AFISMC
(37)–(43), respectively. The displacement evolution for
both ISMC and AFISMC methods is shown in Fig. 5.
From these simulation results it is clear that the proposed
schemes result in a stable sliding mode from the initial
time. However, it is obvious from the controller evolu-
tion that the first approach is accompanied with the chat-
tering phenomenon, which induces the appearance of an
undesirable vibration as depicted by the evolution of ac-
celerations. Fortunately, this disadvantage is overcome by
AFISMC through the elimination of high frequency dis-
continuities in both the controller and acceleration. In ad-
dition, Fig. 5 shows that the last approach preserves the
same dynamical performances of the closed loop system
as the first one.

Figure 6 shows the displacement evolution for both
the nominal and uncertain systems. The displacements
q1(t) and q3(t), which are directly actuated by the control
input, are superposed for both systems, while there exist a
slight difference in the case of q2(t) representing a nonac-
tuated variable. Therefore the robustness of the proposed
approach is confirmed.

6. Conclusion

A robust ISMC design for mismatched uncertain systems
has been studied. A sufficient condition for quadratic sta-
bility of sliding motion has been established in terms of
LMIs. The immediate sliding mode existence has been
guaranteed by the proposed ISMC law. The induced chat-
tering phenomenon has been eliminated by the introduc-
tion of an AFISMC law. Finally, the effectiveness of the
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Fig. 5. Displacement evolution according to both ISMC and
AFISMC: displacement q1(t) (a), displacement q2(t)
(b), displacement q3(t) (c).

proposed methods has been proved through a sixth order
uncertain mechanical system example.
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