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Fuzzy cellular neural networks with time-varying delays are considered. Some sufficient conditions for the existence and
exponential stability of periodic solutions are obtained by using the continuation theorem based on the coincidence degree
and the differential inequality technique. The sufficient conditions are easy to use in pattern recognition and automatic
control. Finally, an example is given to show the feasibility and effectiveness of our methods.
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1. Introduction

Consider the following fuzzy cellular neural networks
with time-varying delays:

x′
i(t) = −cixi(t) +

n∑

j=1

aij(t)fj(xj(t − τij(t)))

+
n∧

j=1

αij(t)fj(xj(t − τij(t))) + Ii(t)

+
n∧

j=1

Tij(t)uj(t) +
n∨

j=1

βij(t)fj(t − τij(t))

+
n∨

j=1

Hij(t)uj(t), i = 1, 2, . . . , n, (1)

where n corresponds to the number of units in a neural
network, xi(t) corresponds to the state vector of the i-th
unit at time t, ci represents the rate with which the i-th
unit will reset its potential to the resting state in isolation
when disconnected from the network and external input,

aij(t) denotes the strength of the j-th unit on the i-th unit
at time t,

∧
and

∨
denote fuzzy AND and fuzzy OR op-

erations, respectively, fj(·) (j = 1, 2, . . . , n) are signal
transmission functions, αij(t) and βij(t) are respectively
the elements of fuzzy feedback MIN and fuzzy feedback
MAX at time t, Tij(t) and Hij(t) are respectively the ele-
ments of fuzzy feed-forward MIN and fuzzy feed-forward
MAX at time t, uj(t) denotes the external inputs at time
t, and Ii(t) denotes the bias of the i-th unit at time t.

It is well known that the Fuzzy Cellular Neu-
ral Network (FCNN) first introduced by Yang and
his co-workers (Yang and Yang, 1996; Yang et
al., 1996) is another type of cellular neural network
model, which combines fuzzy operations (fuzzy
AND and fuzzy OR) with cellular neural networks.
As dynamical systems with a special structure,
FCNNs have many interesting properties that de-
serve theoretical studies. In recent years, autonomous
FCNNs have been extensively studied and successfully
applied to image processing and to solve nonlinear
algebraic equations. Such applications rely on the
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qualitative properties of stability (Huang, 2006; Liu
and Tang, 2004; Yuan et al., 2006; Zhang and Xi-
ang, 2008; Zhang and Luo, 2009; Liu et al., 2009; Niu
et al., 2008). During hardware implementation, time
delays occur due to finite switching speeds of the
amplifiers and communication time. Time delays
may lead to oscillations and, furthermore, to network
instability. Therefore, the study of the stability of
FCNNs with delay is required in practice. However,
non-autonomous phenomena often occurs in many real-
istic systems, particularly, when we consider long-time
dynamical behavior of a system. The system parameters
and time delays will usually change in time. Thus the
research on non-autonomous FCNNs is very important,
just like that on autonomous FCNNs.

So for, many important results on CNNs have been
obtained regarding the existence of equilibria, global
asymptotic stability, global exponential stability (Kosto,
1987; 1988; Gopalsmy and He, 1994; Cao and Wang,
2002; Cao, 2003; Cao and Dong, 2003; Chen et al., 2004;
Liu et al., 2003; Liao and Yu, 1998; Zhao, 2006; 2002;
Arik and Tavsanoglu, 2005; Tian et al., 2010; Wang et
al., 2007; Raja et al., 2011). Especially the investiga-
tion of CNNs with periodic coefficients and delays has
attracted more and more attention of researchers (Liu and
Tang, 2006; Liu and Huang, 2006). To the best of our
knowledge, few authors consider the stability of fuzzy cel-
lular neural networks with periodic coefficients and time-
varying delays. Motivated by the above discussion, in this
paper, by using the continuation theorem of coincidence
degree theory and the differential inequality technique,
we will give some sufficient conditions for the existence
and exponential stability of periodic solutions to the sys-
tem (1).

Throughout this paper, we always assume that
aij(t), αij(t), βij(t), τij(t), Tij(t), Hij(t), uj(t) and
Ii(t) are continuous ω-periodic functions, where
i, j = 1, 2, . . . , n, τ = max1≤i,j≤n{maxt∈[0,ω] τij(t)}.

For convenience, we introduce the following nota-
tion. Let r(t) be a ω-periodic solution defined on R,

r+ = max
0≤t≤ω

|r(t)|, r =
1
ω

∫ ω

0

r(t) dt,

‖r‖2 =
(∫ ω

0

|r(t)|2 dt

)1/2

.

We will use x = (x1, x2, . . . , xn)T ∈ R
n to denote a col-

umn vector (symbol ‘T ’ denotes the transpose of a vector).
For a matrix D = (dij)n×n, DT denotes the transpose
of D, and En denotes the identity matrix of size n. For
a matrix or a vector D ≥ 0 means that all entries of D
are greater than or equal to zero. D > 0 can be defined
similarly. For a matrix or a vector, D ≥ E (respectively,
D > E) means that D−E ≥ 0 (respectively, D−E > 0).

The initial conditions associated with the system (1)
are of the form

xi(s) = ϕi(s), s ∈ [−τ, 0], i = 1, 2, . . . , n, (2)

where

ϕ = (ϕ1(t), ϕ2(t), . . . , ϕn(t))T ∈ C([−τ, 0], Rn).

Throughout this paper, we make the following assump-
tions:
(A1) fj(·) is Lipschitz continuous on R with Lipschitz
constants pj (j = 1, 2, . . . , n), and fj(0) = 0. That is, for
all x, y ∈ R,

|fj(x) − fj(y)| ≤ pj|x − y|.
(A2) There exist non-negative constants pj and qj such
that |fj(x)| ≤ pj |x| + qj , for j = 1, 2, . . . , n, x ∈ R.

Definition 1. The periodic solution z∗(t) = (x∗
1(t),

x∗
2(t), . . . , x

∗
n(t))T of the system (1) with the initial value

ϕ∗ = (ϕ∗
1, ϕ

∗
2, . . . , ϕ

∗
n)T ∈ C([−τ, 0], Rn) is said to be

globally exponentially stable if there exist constants λ > 0
and M ≥ 1 such that

|xi(t) − x∗
i (t)| ≤ M‖ϕ − ϕ∗‖e−λt,

∀t > 0, i = 1, 2, . . . , n,

for every solution z(t) = (x1(t), x2(t), . . . , xn(t))T of
the system (1) with the initial value ϕ ∈ C ([−τ, 0], Rn).

Definition 2. A real matrix A = (aij)n×n is said to
be an M-matrix if aij ≤ 0, i, j = 1, 2, . . . , n, i �= j, and
A−1 ≥ 0.

Lemma 1. (Liao and Yu, 1998) Let A = (aij) be an n×n
matrix with non-positive off-diagonal elements. Then the
following statements are equivalent:

(i) A is an M-matrix.

(ii) The real parts of all eigenvalues of A are positive.

(iii) There exists a vector η > 0 such that Aη > 0.

(iv) There exists a vector ξ > 0 such that ξT A > 0.

Lemma 2. (Yang and Yang, 1996) Suppose x and y are
two states of the system (1). Then we have

∣∣∣
n∧

j=1

αij(t)fj(x) −
n∧

j=1

αij(t)fj(y)
∣∣∣

≤
n∑

j=1

|αij(t)||fj(x) − fj(y)|,

and
∣∣∣

n∨

j=1

βij(t)fj(x) −
n∨

j=1

βij(t)fj(y)
∣∣∣

≤
n∑

j=1

|βij(t)||fj(x) − fj(y)|.
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The rest of this paper is organized as follows. In Sec-
tion 2, we will prove the existence of a periodic solution
by using the continuation theorem of coincidence degree
theory. In Section 3, we establish the result that periodic
solutions are globally exponentially stable by using the
Lyapunov function method. In Section 4, an example will
be given to illustrate the feasibility and effectiveness of
our methods. General conclusions are drawn in Section 5.

2. Existence of a periodic solution

In this section, based on Mawhin’s continuation theorem,
we shall study the existence of at least one periodic solu-
tion of (1). To do so, we need some prerequisites.

For ease of exposition, throughout this paper will
adopt the following notation:

|xi|∞ = max
t∈[0,ω]

|xi(t)|,

u(t) = (x1(t), x2(t), . . . , xn(t))T ,

|xi|2 =
(∫ ω

0

|xi(t)|2 dt

)1/2

, i = 1, 2, . . . , n.

We denote by X the set of all continuously ω-periodic
solutions u(t) defined on R, and write

‖u‖X = max{|x1|∞, |x2|∞, . . . , |xn|∞}.
Consider the following abstract equation in the Ba-

nach space X :
Lx = λNx, (3)

where L : DomL ∩ X → X is a Fredholm mapping of
index zero and λ ∈ [0, 1] is a parameter. There exist two
linear and continuous projectors P and Q,

P : X ∩ Dom L → Ker L, Q : X → X/Im L,

such that Im P = Ker L, Ker Q = Im L. Since
dim Im Q = dim Ker L, there exists an algebraical and
topological isomorphism J : Im Q → Ker L.

Lemma 3. (Gaines and Mawhin, 1990) Let X be a Ba-
nach space and let L be a Fredholm mapping of index
zero. Assume that N : Ω → X is L compact on Ω with Ω
open and bounded in X . Furthermore, suppose that

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩ Dom L, Lx �= λNx,

(b) for each x ∈ ∂Ω ∩ Ker L, QNx �= 0,

(c) deg{QNx, Ω ∩ Ker L, 0} �= 0.

Then the equation Lx = Nx has at least one solution in
Ω, where Ω is the closure to Ω, ∂Ω is the boundary of Ω.

Theorem 1. Assume that (A2) holds, and the following
condition is satisfied:

(A3) En−D is an M-matrix, where D = (dij)n×n, dij =
1
ci

(a+
ij + α+

ij + β+
ij)pj , i, j = 1, 2, . . . , n. Then the sys-

tem (1) has at least one ω-periodic solution.

Proof. In order to use the continuation theorem of coinci-
dence degree theory to establish the existence of a periodic
solution, let

(Nu)i(t)

= −cixi(t) +
n∑

j=1

aij(t)fj(xj(t − τij(t)))

+
n∧

j=1

αij(t)fj(xj(t − τij(t))) + Ii(t)

+
n∧

j=1

Tij(t)uj(t) +
n∨

j=1

βij(t)fj(t − τij(t))

+
n∨

j=1

Hij(t)uj(t), i = 1, 2, . . . , n. (4)

(Lu)(t) = u′(t) = (x′
1(t), x

′
2(t), . . . , x

′
n(t))T , (5)

Dom L = {u(t) : u(t) ∈ X, u′(t) ∈ X}, (6)

Pu = Qu =
1
ω

∫ ω

0

u(t) dt

=
(

1
ω

∫ ω

0

x1(t) dt, . . . ,
1
ω

∫ ω

0

xn(t) dt

)T

for u(t) = (x1(t), x2(t), . . . , xn(t))T ∈ X ∩Dom L. It is
easy to prove that L is a Fredholm mapping of index zero,
P : X ∩ Dom L → Ker L and Q : X → X/Im L are two
projectors, and N is L compact on Ω for any given open
bounded set.

In view of (4)–(6), the operator equation Lx =
λNx, λ ∈ (0, 1), is equivalent to the following one:

x′
i(t) = λ

⎡

⎣−cixi(t) +
n∑

j=1

aij(t)fj(xj(t − τij(t)))

+
n∧

j=1

αij(t)fj(xj(t − τij(t))) + Ii(t)

+
n∧

j=1

Tij(t)uj(t) +
n∨

j=1

βij(t)fj(t − τij(t))

+
n∨

j=1

Hij(t)uj(t)

⎤

⎦ , i = 1, 2, . . . , n. (7)

Suppose that u(t) = (x1(t), x2(t), . . . , xn(t))T ∈
X is a solution of the system (7) for a certain λ ∈
(0, 1). Then xi(t) is continuously differentiable (i =
1, 2, . . . , n). Therefore, there exists ti ∈ [0, ω] such that
|xi(ti)| = maxt∈[0,ω] |xi(t)|. Hence x′

i(ti) = 0 (i =
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1, 2, . . . , n). This implies that, for i = 1, 2, . . . , n,

cixi(ti) =
n∑

j=1

aij(ti)fj(xj(ti − τij(ti)))

+
n∧

j=1

αij(t)fj(xj(ti − τij(ti))) + Ii(ti)

+
n∧

j=1

Tij(ti)uj(ti) +
n∨

j=1

Hij(ti)uj(ti)

+
n∨

j=1

βij(ti)fj(ti − τij(ti)). (8)

Thus

|xi(ti)| =

∣∣∣∣∣
1
ci

[ n∑

j=1

aij(ti)fj(xj(ti − τij(ti)))

+
n∧

j=1

αij(t)fj(xj(ti − τij(ti))) + Ii(ti)

+
n∧

j=1

Tij(ti)uj(ti) +
n∨

j=1

Hij(ti)uj(ti)

+
n∨

j=1

βij(ti)fj(ti − τij(ti))
]∣∣∣∣∣

≤
n∑

j=1

1
ci
|aij(ti)||fj(xj(ti − τij(ti)))|

+
n∧

j=1

1
ci
|αij(t)||fj(xj(ti − τij(ti)))|

+
n∨

j=1

1
ci
|βij(ti)||fj(ti − τij(ti))|

+
n∨

j=1

1
ci
|Hij(ti)||uj(ti)| + 1

ci
|Ii(ti)|

+
n∧

j=1

1
ci
|Tij(ti)||uj(ti)|

≤
n∑

j=1

1
ci

(a+
ij + α+

ij + β+
ij)pj |xj(ti − τij(ti))|

+
n∑

j=1

1
ci

(a+
ij + α+

ij + β+
ij)qj

+
n∧

j=1

1
ci

T +
ij u+

j +
n∨

j=1

1
ci

H+
iju

+
j +

1
ci

I+
i

≤
n∑

j=1

1
ci

(a+
ij + α+

ij + β+
ij)pj |xj(tj)|

+
n∑

j=1

1
ci

(a+
ij + α+

ij + β+
ij)qj +

n∧

j=1

1
ci

T +
ij u+

j +
1
ci

I+
i

≤
n∑

j=1

dij |xj(tj)| + Gi, (9)

where

Gi =
n∑

j=1

1
ci

(a+
ij + α+

ij + β+
ij)qj

+
n∧

j=1

1
ci

T +
ij u+

j +
1
ci

I+
i , i = 1, 2, . . . , n.

From (9), it follows that

(En − D)(|x1(t1)|, |x2(t2)|, . . . , |xn(tn)|)T

≤ (G1, G2, . . . , Gn)T := G. (10)

Since En −D is an M-matrix, from (A3) and Lemma 1 it
follows that there exists a vector η = (η1, η2, . . . , ηn) >
(0, 0, . . . , 0) such that

η = (η1, η2, . . . , ηn) = η(En − D) > (0, 0, . . . , 0),
(11)

which, together with (10), implies that

min{η1, η2, . . . , ηn}(|x1(t1)| + · · · + |xn(tn)|)
≤ η1|x1(t1)| + η2|x2(t2)| + · · · + ηn|x1(tn)|
= η(En − D)(|x1(t1)|, |x2(t2)|, . . . , |xn(tn)|)T

≤ η(G1, G2, . . . , Gn)T

= η1G1 + η2G2 + · · · + ηnGn. (12)

Therefore,

|xi|∞ = max
t∈[0,ω]

|xi(t)| = |xi(ti)|

≤ 1
min

1≤i≤n
{ηi}

(η1G1 + η2G2 + · · · + ηnGn)

:= δ.

(13)

From (A3) and Lemma 1, we have that there exists
a vector ξ = (ξ1, ξ2, . . . , ξn)T > (0, 0, . . . , 0)T such
that (En − D)ξ > 0. Therefore, we can choose a pos-
itive number a > 1 such that ξ = (ξ1, ξ2, . . . , ξn)T =
(aξ1, aξ2, . . . , aξn)T = aξ and

ξi = aξi > δ, (En − D)ξ > G. (14)

Take

Ω = {u : u(t) ∈ X, |u(t)| < ξ, ∀t ∈ R}, (15)

which satisfies the condition (a) of Lemma 3. If u(t) =
(x1(t), x2(t), . . . , xn(t)) ∈ ∂Ω ∩ Ker L, then u(t) is a
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constant vector on R
n. Hence there exist some i ∈

{1, 2, . . . , n} such that |xi| = ξi. It follows that

(QNu)i = −cixi +
n∑

j=1

fj(xj)
1
ω

∫ ω

0

aij(t) dt

+
n∧

j=1

fj(xj)
1
ω

∫ ω

0

αij(t) dt

+
n∧

j=1

1
ω

∫ ω

0

Hij(t)uj(t) dt +
1
ω

∫ ω

0

Ii(t) dt

+
n∨

j=1

fj(xj)
1
ω

∫ ω

0

βij(t) dt

+
n∨

j=1

1
ω

∫ ω

0

Tij(t)uj(t) dt. (16)

We claim that

|(QNu)i| > 0, i = 1, 2, . . . , n. (17)

To get a contradiction, assume that |(QNu)i| = 0,
namely,

0 = −cixi +
n∑

j=1

fj(xj)
1
ω

∫ ω

0

aij(t) dt

+
n∧

j=1

fj(xj)
1
ω

∫ ω

0

αij(t) dt

+
n∧

j=1

1
ω

∫ ω

0

Hij(t)uj(t) dt

+
n∨

j=1

fj(xj)
1
ω

∫ ω

0

βij(t) dt

+
n∨

j=1

1
ω

∫ ω

0

Tij(t)uj(t) dt +
1
ω

∫ ω

0

Ii(t) dt.

Then there exists some t∗ ∈ [0, ω] such that

0 = −cixi +
n∑

j=1

aij(t∗)fj(xj) +
n∧

j=1

αij(t∗)fj(xj)

+
n∨

j=1

βij(t∗)fj(xj) +
n∧

j=1

Tij(t∗)uj(t∗)

+
n∨

j=1

Hij(t∗)uj(t∗) + Ii(t∗).

Therefore,

ξi = |xi|

≤
n∑

j=1

1
ci
|aij(t∗)||fj(xj)| +

n∧

j=1

1
ci
|αij(t∗)||fj(xj)|

+
n∨

j=1

1
ci
|βij(t∗)||fj(xj)| +

n∧

j=1

1
ci
|Tij(t∗)||uj(t∗)|

+
n∨

j=1

1
ci
|Hij(t∗)||uj(t∗)| + 1

ci
|Ii(t∗)|

≤
n∑

j=1

1
ci

a+
ijpj |xj | +

n∑

j=1

1
ci

α+
ijpj |xj |

+
n∑

j=1

1
ci

β+
ijpj|xj | +

n∑

j=1

1
ci

(a+
ij + α+

ij + β+
ij)qj

+
n∧

j=1

1
ci

T +
ij u+

j +
n∨

j=1

1
ci

H+
iju

+
j +

1
ci

I+
i

=
n∑

j=1

dij |xj | + Gi ≤
n∑

j=1

dijξj + Gi.

It follows that ((En−D)ξ)i ≤ Gi, which contradicts
(En − D)ξ > G. Therefore (17) holds, i.e., the condition
(b) of Lemma 3 is satisfied.

Next, we define a continuous function Φ : Ω ∩
Ker L × [0, 1] → X by

Φ(u, ρ) = ρ diag(−c1,−c2, . . . ,−cn)u + (1 − ρ)QNu,
(18)

for all u = (x1, x2, . . . , xn)T ∈ Ω ∩ Ker L = Ω ∩ R
n

and ρ ∈ [0, 1]. If u(t) = (x1(t), x2(t), . . . , xn(t))T ∈
∂Ω ∩ Ker L, then u(t) is a constant vector in R

n, and
there exists some i ∈ {1, 2, . . . , n} such that |xi| = ξi.
It follows that

(Φ(u, ρ))i

= −cixi + (1 − ρ)

[
n∑

j=1

fj(xj)
1
ω

∫ ω

0

aij(t) dt

+
n∧

j=1

fj(xj)
1
ω

∫ ω

0

αij(t) dt +
1
ω

∫ ω

0

Ii(t) dt

+
n∨

j=1

fj(xj)
1
ω

∫ ω

0

βij(t) dt

+
n∨

j=1

1
ω

∫ ω

0

Tij(t)uj(t) dt

+
n∧

j=1

1
ω

∫ ω

0

Hij(t)uj(t) dt

]
. (19)

We claim that

|(Φ(u, ρ))i| > 0. (20)
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If this is not true, then |(Φ(u, ρ))i| = 0. Indeed,

0 = −cixi + (1 − ρ)

⎡

⎣
n∑

j=1

fj(xj)
1
ω

∫ ω

0

aij(t) dt

+
n∧

j=1

fj(xj)
1
ω

∫ ω

0

αij(t) dt +
1
ω

∫ ω

0

Ii(t) dt

+
n∨

j=1

fj(xj)
1
ω

∫ ω

0

βij(t) dt

+
n∨

j=1

1
ω

∫ ω

0

Tij(t)uj(t) dt

+
n∧

j=1

1
ω

∫ ω

0

Hij(t)uj(t) dt

⎤

⎦ .

Therefore there exists some t∗∗ ∈ [0, ω] such that

0 = −cixi + (1 − ρ)

⎡

⎣
n∑

j=1

aij(t∗∗)fj(xj)

+
n∧

j=1

αij(t∗∗)fj(xj) + Ii(t∗∗)

+
n∨

j=1

βij(t∗∗)fj(xj) +
n∨

j=1

Tij(t∗∗)uj(t∗∗)

+
n∧

j=1

Hij(t∗∗)uj(t∗∗)

⎤

⎦ .

Thus

ξi = |xi|

≤ (1 − ρ)

⎡

⎣
n∑

j=1

1
ci
|aij(t∗∗)||fj(xj)| + 1

ci
|Ii(t∗∗)|

+
n∧

j=1

1
ci
|αij(t∗∗)||fj(xj)|

+
n∨

j=1

1
ci
|βij(t∗∗)||fj(xj)|

+
n∧

j=1

1
ci
|Tij(t∗∗)||uj(t∗∗)|

+
n∨

j=1

1
ci
|Hij(t∗∗)||uj(t∗∗)|

⎤

⎦

≤
n∑

j=1

1
ci

a+
ijpj |xj | +

n∑

j=1

1
ci

α+
ijpj |xj |

+
n∑

j=1

1
ci

β+
ijpj |xj | +

n∑

j=1

1
ci

(a+
ij + α+

ij + β+
ij)qj

+
n∧

j=1

1
ci

T +
ij u+

j +
n∨

j=1

1
ci

H+
iju

+
j +

1
ci

I+
i

=
n∑

j=1

dij |xj | + Gi ≤
n∑

j=1

dijξj + Gi.

This implies that ((En −D)ξ)i ≤ Gi, which contra-
dicts (En−D)ξ > G. Therefore (20) holds, which means
that

Φ(x1, x2, . . . , xn, ρ) �= (0, 0, . . . , 0)T ,

∀(x1, x2, . . . , xn) ∈ ∂Ω ∩ Ker L, ρ ∈ [0, 1]. Using the
homotopy invariance theorem, we have

deg{QN, Ω ∩ Ker L, (0, 0, . . . , 0)T }
= deg{(−c1x1,−c2x2, . . . ,−cnxn)T ,

Ω ∩ Ker L, (0, 0, . . . , 0)T } �= 0.

To summarize, we have proved that Ω satisfies all the
conditions of Lemma 3. Thus, by Lemma 3, it follows
that Lx = Nx has at least one solution in X , namely, the
system (1) has at least one ω-periodic solution. The proof
is complete. �

3. Global exponential stability of periodic
solutions

In this section, we will construct some suitable Lyapunov
function to study the global exponential stability of the
periodic solution of the system (1).

Theorem 2. If Assumptions (A1) and (A3) are satisfied,
then the system (1) has exactly one ω-periodic solution,
which is globally exponentially stable.

Proof. From Theorem 1, the system (1) has at least one ω-
periodic solution z∗(t) = (x∗

1(t), . . . , x
∗
n(t))T . Suppose

that z(t) = (x1(t), . . . , xn(t))T is an arbitrary solution
of (1). Then from the system (1) it follows that, for i =
1, 2, . . . , n,

d
dt

(xi(t) − x∗
i (t))

= −ci(xi(t) − x∗
i (t))

+
n∑

j=1

aij(t)(fj(xj(t − τij(t))) − fj(x∗
j (t)))

+
n∧

j=1

αij(t)fj(xj(t − τij(t))) −
n∧

j=1

αij(t)fj(x∗
j (t))

+
n∨

j=1

βij(t)fj(xj(t − τij(t))) −
m∨

j=1

βij(t)fj(x∗
j (t)).
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By (A1) and Lemma 2, we have

D−|xi(t) − x∗
i (t)| ≤ −ci|xi(t) − x∗

i (t)|

+
n∑

j=1

|aij(t)||fj(t − τij(t)) − fj(x∗
j (t))|

+
∣∣∣

n∧

j=1

αij(t)fj(xj(t − τij(t)))

−
n∧

j=1

αij(t)fj(x∗
j (t))

∣∣∣

+
∣∣∣

n∨

j=1

βij(t)fj(xj(t − τij(t)))

−
n∨

j=1

βij(t)fj(x∗
j (t))

∣∣∣

≤ −ci|xi(t) − x∗
i (t)| +

n∑

j=1

(a+
ij + α+

ij + β+
ij)

× pj |xj(t − τij(t)) − x∗
j (t)|, (21)

where D− denotes the upper left derivative. If we let
yi(t) = xi(t) − x∗

i (t), then (21) becomes

D−|yi(t)|

≤ −ci|yi(t))| +
n∑

j=1

(a+
ij + α+

ij + β+
ij)pj sup

t−τ≤s≤t
|yj(s)|

= −ci|yi(t))| +
n∑

j=1

(a+
ij + α+

ij + β+
ij)pjyj(t), (22)

where yj(t) = supt−τ≤s≤t |yj(s)|. From (A3) and
Lemma 1, we obtain that there exists a vector η =
(η1, η2, . . . , ηn)T > (0, 0, . . . , 0)T such that

(En − D)η > (0, 0, . . . , 0)T .

Indeed, for i = 1, 2, . . . , n,

ηi −
n∑

j=1

dijηj

= ηi −
n∑

j=1

1
ci

(a+
ij + α+

ij + β+
ij)pjηj > 0,

which implies that

− ciηi +
n∑

j=1

(a+
ij + α+

ij + β+
ij)pjηj < 0. (23)

We can choose a small positive constant λ < 1 such
that, for i = 1, 2, . . . , n,

ληi +

⎡

⎣−ciηi +
n∑

j=1

(a+
ij + α+

ij + β+
ij)pjηje

λτ

⎤

⎦ < 0.

(24)

We can choose a constant γ > 1 such that

γηie
−λt > 1, ∀t ∈ [−τ, 0]. (25)

For each ε > 0, let

Yi(t) = γηi

⎡

⎣
n∑

j=1

yj(0) + ε

⎤

⎦ e−λt, i = 1, 2, . . . , n.

(26)
From (24) and (26), it follows that

D−Yi(t)

= −λγηi

⎡

⎣
n∑

j=1

yj(0) + ε

⎤

⎦ e−λt

>

⎡

⎣−ciηi +
n∑

j=1

(a+
ij + α+

ij + β+
ij)pjηje

λτ

⎤

⎦ γ

×
⎡

⎣
n∑

j=1

yj(0) + ε

⎤

⎦ e−λt

= −ciγηi

⎡

⎣
n∑

j=1

yj(0) + ε

⎤

⎦ e−λt

+
n∑

j=1

[
(a+

ij + α+
ij + β+

ij)pjηjγ

×
⎛

⎝
n∑

j=1

yj(0) + ε

⎞

⎠ e−λ(t−τ)

⎤

⎦

= −ciYi(t) +
n∑

j=1

(a+
ij + α+

ij + β+
ij)pjY j(t), (27)

where Y j(t) = supt−τ≤s≤t Yj(s). From (25) and (26),
we have, for t ∈ [−τ, 0],

Yi(t) = γηi

⎡

⎣
n∑

j=1

yj(0) + ε

⎤

⎦ e−λt

>

n∑

j=1

yj(0) + ε > |yi(t)|. (28)

We claim that

|yi(t)| < Yi(t), ∀ t > 0, i = 1, 2, . . . , n. (29)

If not, there must exist some i ∈ {1, 2, . . . , n}, ti > 0
such that, for j = 1, 2, . . . , n, t ∈ [−τ, ti),

|yi(ti)| = Yi(ti), |yj(t)| < Yj(t). (30)

Indeed, for j = 1, 2, . . . , n, t ∈ [−τ, ti),

|yi(ti)| − Yi(ti) = 0, |yj(t)| − Yj(t) < 0. (31)
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It follows that

0 ≤ D−(|yi(ti) − Yi(ti))

= lim sup
h→0−

1
h

{
[|yi(ti + h)| − Yi(ti + h)]

− [|yi(ti)| − Yi(ti)]
}

≤ lim sup
h→0−

|yi(ti + h)| − |yi(ti)|
h

− lim inf
h→0−

Yi(ti + h) − Yi(ti)
h

= D−|yi(ti)| − D−Yi(ti). (32)

From (22), (27) and (30), we obtain

D−|yi(ti)|

≤ −ci|yi(ti)| +
n∑

j=1

(a+
ij + α+

ij + β+
ij)pj |yj(ti)|

= −ciYi(ti) +
n∑

j=1

(a+
ij + α+

ij + β+
ij)pj |yj(ti)|

≤ −ciYi(ti) +
n∑

j=1

(a+
ij + α+

ij + β+
ij)pj |Y j(ti)|

≤ D−Yi(ti) (33)

which contradicts (32). Therefore (29) holds. Let ε → 0+

and M = n max1≤i≤n{γηi + 1}. From (26) and (29) it
follows that

|xi(t) − x∗
i (t)| = |yi(t)| ≤ γηi

n∑

j=1

yj(0)e−λt

≤ nγηi‖ϕ − ϕ∗‖e−λt

≤ M‖ϕ − ϕ∗‖e−λt, i = 1, 2, . . . , n

for t > 0. This completes the proof. �

4. Illustrative example

Consider the following fuzzy cellular neural network with
time-varying delays:

x′
i(t) = −xi(t) +

3∑

j=1

aij(t)fj(xj(t − τij(t)))

+
3∧

j=1

αij(t)fj(xj(t − τij(t))) + Ii(t)

+
3∨

j=1

βij(t)fj(t − τij(t)) +
3∧

j=1

Tij(t)uj(t)

+
3∨

j=1

Hij(t)uj(t), i = 1, 2, 3, (34)

where

a11(t) = α11(t) = β11(t) =
1
4

sin t,

a12(t) = α12(t) = β12(t) =
1
9

cos t,

a13(t) = α13(t) = β13(t) =
1
4

sin t,

a21(t) = α21(t) = β21(t) =
1
2

sin t,

a22(t) = α22(t) = β22(t) =
1
6

cos t,

a23(t) = α23(t) = β23(t) =
1
2

sin t,

a31(t) = α31(t) = β31(t) = sin t,

a32(t) = α32(t) = β32(t) =
1
6

cos t,

a33(t) = α33(t) = β33(t) =
1
9

cos t,

τ11(t) = τ12(t) = τ13(t) = cos t,

τ21(t) = τ22(t) = τ23(t) = sin t,

τ31(t) = τ32(t) = τ33(t) =
1
2

sin t,

I1(t) = cos t, I2(t) = sin t, I3(t) = 2 cos t,

Tij(t) = Hij(t) = sin t, Kji(t) = Nji(t) = cos t,

ui(t) = uj(t) = 2 sin t, (i, j = 1, 2).

Take fj(x) = 1
2 (|x + 1| − |x − 1|) (j = 1, 2, 3). We

have pi = 1 (i = 1, 2, 3). By simple computation, we get

a+
11 = α+

11 = β+
11 =

1
4
, a+

12 = α+
12 = β+

12 =
1
9
,

a+
13 = α+

13 = β+
13 =

1
4
, a+

21 = α+
21 = β+

21 =
1
2
,

a+
22 = α+

22 = β+
22 =

1
6
, a+

23 = α+
23 = β+

23 =
1
2
,

a+
31 = α+

31 = β+
31 = 1, a+

32 = α+
32 = β+

32 =
1
6
,

a+
33 = α+

33 = β+
33 =

1
9
.

Then we have

D = (c−1
i (a+

ij + α+
ij + β+

ij)pj)3×3

=

⎛

⎜⎜⎜⎜⎜⎝

3
4

1
3

3
4

3
2

1
2

3
2

3
1
2

1
3

⎞

⎟⎟⎟⎟⎟⎠
.
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Therefore,

E3 − D =

⎛

⎜⎜⎜⎜⎜⎝

1
4

−1
3

−3
4

−3
2

1
2

−3
2

−3 −1
2

2
3

⎞

⎟⎟⎟⎟⎟⎠
.

Hence it follows that all the conditions needed in Theo-
rem 2 are satisfied. Therefore, according to Theorem 2,
the system (34) has one 2π-periodic solution which is
globally exponentially stable.

5. Conclusion

In this paper, we use the continuation theorem of coinci-
dence degree theory and the Lyapunov function to study
the existence and global exponential stability of a peri-
odic solution for fuzzy cellular neural networks with time-
varying delays. The sufficient conditions for the existence
and global stability of the periodic solution are indepen-
dent of time delays. Moreover, an example is given to
illustrate the effectiveness of the new results.

Acknowledgment

This work is partially supported by the Scientific Re-
search Foundation of the Guizhou Science and Technol-
ogy Department (No. [2011]J2096), the Doctoral Foun-
dation of the Guizhou College of Finance and Economics
(2010), and the Scientific Research Foundation of the Hu-
nan Provincial Education Department (10B023). The au-
thors would like to thank the editor and three anonymous
reviewers for their helpful comments and valuable sug-
gestions, which have greatly improved the quality of this
paper.

References
Arik, S. and Tavsanoglu, V. (2005). Global asymptotic sta-

bility analysis of bidirectional associative memory neu-
ral networks with constant time delays, Neurocomputing
68: 161–176.

Cao, J. (2003). Global asympotic stability of delayed bi-
directional associative memory neural networks, Applied
Mathematics and Computation 142(2): 333–339.

Cao, J. and Dong, M. (2003). Exponential stability of delayed bi-
directional associative memory neural networks, Applied
Mathematics and Computation 135(1): 105–112.

Cao, J. and Wang, L. (2002). Exponential stability and periodic
oscilatory solution in BAM networks with delays, IEEE
Transactions on Neural Networks 13(2): 457–463.

Chen, A., Cao, J. and Huang, L. (2004). Exponential stability
of BAM neural networks with transmission delays, Neuro-
computing 57: 435–454.

Gaines, R.E. and Mawhin, J.L. (1990). Coincidence De-
gree and Nolinear Differential Equations, Springer-Verlag,
Berlin/New York, NY.

Gopalsmy, K. and He, X.Z. (1994). Delay-independent stabil-
ity in bi-directional associative memory networks, IEEE
Transactions on Neural Networks 5(6): 998–1002.

Huang, T. (2006). Exponential stability of fuzzy cellular neu-
ral networks with distributed delay, Physics Letters A
351(1): 48–52.

Kosto, B. (1987). Adaptive bi-directional associative memories,
Applied Optics 26(23): 4947–4960.

Kosto, B. (1988). Bi-directional associative memories, IEEE
Transactions on Systems, Man, and Cybernetics 18(1): 49–
60.

Liao, X.F. and Yu, J.B. (1998). Qualitative analysis of
bi-directional associative memory with time delay, In-
ternational Journal of Circuit Theory and Applications
26(3): 219–229.

Liu, B.W. and Huang, L.H. (2006). Existence and exponential
stability of periodic solutions for cellular neural networks
with time-varying delays, Physics Letters A 349(6): 474–
483.

Liu, Y.Q. and Tang, W.S. (2004). Exponential stability of fuzzy
cellular neural networks with costant and time-varying de-
lays, Physics Letters A 323(3): 224–233.

Liu, Y.Q. and Tang, W.S. (2006). Existence and exponen-
tial stability of periodic solution for bam neural networks
with periodic coefficients and delays, Neurocomputing
69(16): 2152–2160.

Liu, Z., Chen, A. and Huang, L. (2003). Existence and global
exponential stability of periodic solution to self-connection
BAM neural networks with delays, Physics Letters A
328(2): 127–143.

Liu, Z., Zhang, H. and Wang, Z. (2009). Novel stability crite-
rions of a new fuzzy cellular neural networks with time-
varying delays, Neurocomputing 72(4): 1056–1064.

Niu, S., Jiang, H. and Teng, Z. (2008). Exponential stability and
periodic solutions of FCNNs with variable coefficients and
time-varying delays, Neurocomputing 71(13): 2929–2936.

Raja, R., Sakthivel, R., Anthoni, S.M. and Kim, H. (2011). Sta-
bility of impulsive Hopfield neural networks with Marko-
vian switching and time-varying delays, International
Journal of Applied Mathematics and Computer Science
21(1): 127–135, DOI: 10.2478/v10006-011-0009-y.

Tian, A., Gai, M., Shi, B. and Zhang, Q. (2010). Existence
and exponential stability of periodic solution for a class of
Cohen–Grossberg-type BAM neural networks, Neurocom-
puting 73(16): 3147–3159.

Wang, Z., Zhang, H. and Yu, W. (2007). Robust exponential
stability analysis of neural networks with multiple time de-
lays, Neurocomputing 70(13): 2534–2543.

Yang, T. and Yang, L.B. (1996). The global stability of fuzzy
cellular neural networks, IEEE Transactions on Circuits
and Systems 1: Fundamental Theory and Applications
43(10): 880–883.



658 Q. Zhang et al.

Yang, T., Yang, L.B., Wu, C.W. and Chua, L.O. (1996). Fuzzy
cellular neural networks: Theory, 4th IEEE International
Workshop on Cellular Neural Networks and Their Appli-
cations, Seville, Spain, pp. 181–186.

Yuan, K., Cao, J. and Deng, J. (2006). Exponential stability and
periodic solutions of fuzzy cellular neural networks with
time-varying delays, Neurocomputing 69(13): 1619–1627.

Zhang, Q. and Luo, W. (2009). Global exponential stability
of fuzzy BAM neural networks with time-varying delays,
Chaos, Solitons and Fractals 42(4): 2239–2245.

Zhang, Q. and Xiang, R. (2008). Global asymptotic stability of
fuzzy cellular neural networks with time-varying delays,
Physics Letters A 372(22): 3971–3978.

Zhao, H. (2002). Global exponential stability of bidirectional as-
sociative memory neural networks with distributed delays,
Physics Letters A 297(3): 182–190.

Zhao, H. (2006). Exponential stability and periodic oscillatory of
bidirectional associative memory neural networks involv-
ing delays, Neurocomputing 69(4): 424–448.

Qianhong Zhang received the M.Sc. degree
from Southwest Jiaotong University, Chengdu,
China, in 2004, and the Ph.D. degree from
Central South University, Changsha, China, in
2009, both in mathematics/applied mathematics.
From 2004 to 2009, he was a lecturer at the
Hunan Institute of Technology, Hengyang, Hu-
nan, China. In 2010, he joined the Guizhou
Key Laboratory of Economic Systems Simu-
lation, Guizhou College of Finance and Eco-

nomics, Guiyang, China, where he currently works as an associate
professor. He also is the author or coauthor of more than 30 journal
papers. His research interests include nonlinear systems, neural net-
works, fuzzy differential and fuzzy difference equations, and stability
theory.

Lihui Yang received the M.Sc. degree at the De-
partment of Applied Mathematics of Southwest
Jiaotong University, Chengdu, China, in 2005.
From 2005 to 2008, he was with the Huaiying
Institute of Technology, Huai’an, Jiangsu, China.
In 2008, he joined the Department of Mathe-
matics, Hunan City University, Yiyang, Hunan,
China. He is currently a lecturer at Hunan City
University. He also is the author or coauthor of
more than 20 journal papers. His research inter-

ests include neural networks and fuzzy systems.

Daixi Liao received the B.Sc. degree in 2003 and
the M.Sc. degree in 2009 from Xiangtan Univer-
sity, Xiangtan, Hunan, China, both in mathemat-
ics. He is currently a lecturer at the Hunan In-
stitute of Technology, Hengyang, Hunan, China.
His present research interests include neural net-
works and nonlinear systems.

Received: 9 January 2011
Revised: 30 June 2011


	Introduction
	Existence of a periodic solution
	Global exponential stability of periodic solutions
	Illustrative example
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


