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In this paper the adaptive control problem for a continuous infinite time-varying stochastic control system with jumps in
parameters and quadratic cost is investigated. It is assumed that the unknown coefficients of the system have limits as time
tends to infinity and the boundary system is absolutely observable and stabilizable. Under these assumptions it is shown
that the optimal value of the quadratic cost can be reached based only on the values of these limits, which, in turn, can be
estimated through strongly consistent estimators.
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1. Introduction

The problem of finding control that minimizes an er-
godic, quadratic cost functional for a linear system with
unknown parameters is probably the most well-known
stochastic adaptive control problem. There is an extensive
literature devoted to this problem. The latest publications
dealing with this class of adaptation are by Duncanet al.,
(1990), Guo (1996), and Prandini (2001).

In this paper a variation of this problem for systems
with jump parameters is investigated. These models are
characterized by their hybrid state space. To the usual
Euclidean space, on which we model the basic dynam-
ics x, we append a finite setS. Let r be a discrete
Markov chain with a state spaceS. In applications,r,
called the mode, is a labeling process indicating the con-
text within which x evolves. Important research on these
models is motivated by significant applications. This class
of processes has been used successfully to model air traf-
fic (Blom, 1990), manufacturing systems (Boukas and
Harie, 1990), power systems (Sworder and Rogers, 1986),
fault tolerant systems (Świerniaket al., 1998), and multi-
plex redundant systems (Siljak, 1980), cf. also references
therein.

For systems with jump parameters, adaptive control
can be understood in two ways. In the first one we assume
that the states of the Markov chain cannot be observed
directly, but only partially through some noisy channel.
This approach is presented in (Dufour and Elliot, 1998;
Pan and Bar-Shalom, 1996). In this paper we consider a
version of an alternative situation. More precisely, the ob-

jective of the paper is to discuss the jump linear quadratic
problem for continuous time-varying systems with noise
on an infinite time interval. We take into account a sys-
tem with unknown coefficients having limits as functions
of time when the time tends to infinity and the conver-
gence is sufficiently fast in a sense, and we assume that
the limits are known. First we show that the control for
this system can be realized in the form of time-invariant
feedback with the feedback matrix equal to the one for the
time invariant system with coefficients equal to the lim-
its of the time-varying system. To this end, we show that
the solution of the time-varying differential Riccati equa-
tion converges in a certain sense to the solution of some
time-invariant algebraic Riccati equation under very natu-
ral conditions. Based on this result, we solve an adaptive
version of the problem. Similar results for a system with-
out jumps are obtained in (Czornik, 1998; 1999) and for
discrete time systems with jumps in (Czornik, 2001; 2002;
2004).

The problem of finding control that minimizes an er-
godic, quadratic cost functional for a jump linear system
with known parameters has been intensively studied in the
literature and there now exists voluminous literature on
the LQ control problem for systems with jumping param-
eters. Various formulations of the jump linear quadratic
problem are considered in (Costa and Fragoso, 1995;
Chizeck et al., 1998; Ghosh, 1995; Griffiths, 1985; Ji
and Chizeck, 1989; Mariton, 1987; Pan and Bar-Shalom,
1986; Rami El Ghaoui, 1996; Sworder, 1969; Sworder
and Robinson, 1983), and coupled Riccati equations con-
nected with this problem are studied in (Abou-Kandilet
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al. 1994; 1995; Czornik, 2000; Ji and Chizeck, 1988).

This paper is organized as follows: In Section 2
the jump linear quadratic problem with noise on a finite
and an infinite time interval is revisited. Some properies
of time-varying coupled differential Riccati equations re-
lated to the JLQ problem are discussed in Section 3. Fi-
nally, in Section 4 we use the results from Sections 2 and 3
to solve the adaptive control problem, and Section 5 con-
tains concluding remarks.

2. Preliminaries

Consider the following stochastic differential equation:

dx(t) =
(
A
(
t, r(t)

)
x(t) + B

(
t, r(t)

)
u(t)

)
dt

+C
(
t, r(t)

)
dw(t), (1)

for t ≥ 0. Here r(t) is a continuous time Markov
chain taking values in a finite setS, with a generator
Λ = [qij(t)]i,j∈S (qii(t) = −qi(t)). Moreover x(t) ∈
Rn, u(t) ∈ Rm are the state and the input of the pro-
cess,{w(t), Ft} is a standard Wiener process inRn in-
dependent ofr(t). Let the initial valuesx(0) and r(0)
be independent random variables;x(0) is also indepen-
dent of theσ-algebra generated by{r(t) : t ∈ [0,∞]} .
Moreover, we assume that for eachi ∈ S the functions
A (·, i) : [0,∞) → Rn×n, B (·, i) : [0,∞) → Rm×n,
C (·, i) : [0,∞) → Rn×n are locally integrable. The
control is assumed to be in a feedback form:

u(t) = f
(
t, x(t), r(t)

)
,

where f : R × Rn × S → Rm is such that for some
constantk,

‖f(t, x, i)− f(t, y, i)‖ ≤ k ‖x− y‖ ,

‖f(t, x, i)‖ ≤ k (1 + ‖x‖) ,

for all t ∈ R, x ∈ Rn, i ∈ S. The cost to be minimized
is given by

J (x0, i0, T, u)

= E
(∫ T

0

[
〈Q(t, r(t))x(t), x(t)〉

+ 〈R (t, r(t))u(t), u(t)〉
]
dt
∣∣∣x(0) = x0, r(0) = i0

)
+ E 〈F (r(T ))x(T ), x(T )〉 , (2)

where, for eachi ∈ S, the functionsQ (·, i) : [0,∞)
→ Rn×n, R (·, i) : [0,∞) → Rm×m are locally in-
tegrable and the matricesQ(t, i), F (i) are nonnegative

and R(t, i) are positive definite for eacht ∈ [0,∞) and
i ∈ S. Using standard methods (see, e.g., Mariton, 1990),
we can establish the following result:

Theorem 1. The optimal control law for the problem (1)–
(2) is given by

u(t, i) = −L(t, i)x(t), (3)

where

L(t, i) = R−1(t, i)B′(t, i)K (T, t, i, F (i)) (4)

for r(t) = i and K (T, ·, i, F (i)) : [0, T ] → Rn×n, i ∈
S is the unique solution of the coupled differential Riccati
equation

d
dt

K (T, t, i, F (i))

= Q (T − t, i) + K (T, t, i, F (i))A (T − t, i)

+ A′ (T − t, i) K (T, t, i, F (i))

+ K (T, t, i, F (i))B (T − t, i) R−1 (T − t, i)

×B′ (T − t, i)K (T, t, i, F (i))

− qi(T − t)K (T, t, i, F (i))

+
∑
j 6=i

qij(T − t)K (T, t, j, F (j)) , (5)

with the terminal conditions

K (T, 0, i, F (i)) = F (i), i ∈ S. (6)

The value of the optimal cost is given by

〈K (T, T, i0, F (i0))x0, x0〉+ µ (T, T, i0) , (7)

where

d
dt

µ (T, t, i)

= tr
(
C ′(T − t, i)K

(
T, t, i, F (i)C(T − t, i)

))
+
∑
j∈S

qij(T − t)µ (T, t, j)

with the initial conditionsµ (T, 0, i) = 0, i ∈ S.

Taking B(·, i) ≡ 0, i ∈ S, from the last part of the
above theorem we obtain that for anyM (t, i) > 0, i ∈ S,
t ∈ [0,∞) the following formula is true:

E
(∫ t

0

〈M (s, r(s))x(s), x(s)〉ds
∣∣∣x(0) = x0,

r(0) = i0

)
=
〈
K̃(T, t, i0)x0, x0

〉
+ µ̃ (T, t, i0) , (8)
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where x is the solution of (1) withB(·, i) ≡ 0, i ∈ S

and K̃(T, t, i, 0), µ̃ (T, t, i), i ∈ S are the solutions of

d
dt

K̃(T, t, i, 0)

= M (T − t, i) + K̃(T, t, i, 0)A (T − t, i)

+A′ (T − t, i) K̃(T, t, i, 0)

−qi(T − t)K̃(T, t, i, 0) +
∑
j 6=i

qij(T − t)K̃(T, t, j),

K(T, 0, i, 0) = 0,

and

d
dt

µ̃ (T, t, i)

= tr
(
C ′(T − t, i)K̃ (T, t, i, 0) C(T − t, i)

)
+
∑
j∈S

qij(T − t)µ̃ (T, t, j) ,

µ̃ (T, 0, i) = 0.

The next lemma concerns a simple property of the
solution of the coupled differential Riccati equation which
will be used in our further discussion.

Lemma 1. For each i ∈ S and T > 0, if 0 ≤ t1 < t2 ≤
T , then K(T, t1, i, 0) ≤ K(T, t2, i, 0).

Proof. Let C(·, i) ≡ 0, i ∈ S, then the proof follows
easily from (2) and (7).

Now consider the problem with the infinite-time in-
terval [0,∞) . As the cost functional for this case we take

J (x0, i0, u)

= lim
T→∞

1
T

E
(∫ T

0

[
〈Q (t, S(t))x(t), x(t)〉 (9)

+
〈
R
(
t, S(t)

)
u(t), u(t)

〉 ]
dt
∣∣∣x(0) = x0, r(0) = i0

)
.

For the noise-free system (C(i) = 0, i ∈ S), as the cost
functional on the infinite time interval we take

J (x0, i0, u)

= lim
T→∞

E
(∫ T

0

[ 〈
Q
(
t, S(t)

)
x(t), x(t)

〉
(10)

+
〈
R
(
t, S(t)

)
u(t), u(t)

〉 ]
dt
∣∣∣x(0) = x0, r(0) = i0

)
.

Definition 1. We call the noise-free system

{A (t, i) , B (t, i) , Q (t, i) , R (t, i) , qij(t) : i, j ∈ S}

optimizableif, for every (x0, i0) ∈ Rn × S, there exists
control u such thatJ (x0, i0, u) < ∞.

Lemma 2. If the system

{A (t, i) , B (t, i) , Q (t, i) , R (t, i) , qij(t); i, j ∈ S}

is optimizable, then there exists a constantc > 0 such
that

‖K (T, t, i, 0)‖ < c (11)

for any T > 0, t ∈ [0, T ] and i ∈ S.

Proof. Fix (x0, i0) ∈ Rn × S and let ũ be such that
J (x0, i0, ũ) < ∞. Consider the control problem (1)
and (9). Then the proof is a straightforward consequence
of Lemma 1 and the inequality

〈K (T, T, i0, 0) x0, x0〉 ≤ J (x0, i0, ũ) .

Consider now the time-invariant control problem
with

A (t, i) ≡ A(i), B (t, i) ≡ B(i), C (t, i) ≡ C(i),

Q (t, i) ≡ Q(i), R (t, i) ≡ R(i), qij(t) = qij.

In this case we can omit the indexT in K (T, t, i, F (i))
and µ (T, t, i) .

From the definition of optimalizability it is clear that
it is a necessary condition for the existence of a solution
to the JLQ problem on the infinite time interval. The next
theorem shows that it is also a sufficient condition.

Theorem 2. If the system

{A (i) , B (i) , Q (i) , R (i) , qij ; i, j ∈ S}

is optimizable, then the coupled algebraic Riccati equa-
tion

Q (i) + K (i) A (i) + A′ (i) K (i)

−K (i) B (i)R−1 (i) B′ (i) K (i)− qiK (i)

+
∑
j 6=i

qijK (j) = 0 (12)

has a positive-semidefinite solution. In the set of positive-
semidefinite solutions of (12) there exists a minimal so-
lution {K0(i) : i ∈ S} . Moreover,K0(i) is the limit of
K (t, i, 0) as t → ∞ and the optimal control for the
problem (1)–(9) is given by

ũ(t) = −R−1(i)B′(i)K0(i)x(t), i ∈ S. (13)
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Proof. From Lemmas 1 and 2 we conclude that the limit

lim
t→∞

K (t, i, 0) = K0(i) (14)

exists. Taking the limit in both sides of (5) we see that
K0(i), i ∈ S is indeed a solution of (12).

Now we show that for two given positive-
semidefinite matricesX and Y such thatX ≤ Y , the
inequality

K (t, i,X) ≤ K (t, i, Y ) (15)

holds for all t ≥ 0 and i ∈ S. For this purpose, consider
the system (1) withC(i) = 0 and write J1 (x0, i0, T, u)
and J2 (x0, i0, T, u) for the cost functional (2) with
F (i) = X and F (i) = Y, i ∈ S. Using X ≤ Y it
follows that

J1 (x0, i0, T, u) ≤ J2 (x0, i0, T, u)

for any controlu. Hence, using Theorem 1, from (15) we
conclude (7). Note that (14) and (15) make it obvious that
{K0(i) : i ∈ S} is a minimal solution of (12).

It remains to solve the optimal control problem. For
every controlu we have

1
T

J (x0, i0, T, u) ≤ J (x0, i0, u) ,

whereJ (x0, i0, T, u) is given by (2) withF (i) = 0 and
J (x0, i0, u) defined by (9). Consequently,

inf
u

J (x0, i0, u)

≥inf
u

1
T

J (x0, i0, T, u)

=
1
T

(〈K (T, i0, 0) x0, x0〉+ µ (T, i0)) .

Since the above inequality is true for allT , we may take
the limit asT tends to infinity, which gives

inf
u

J (x0, i0, u) ≥ tr (C ′ (i0) K (i0) C (i0)) ,

because from Lemma 1 we know that the functions
K (·, i, 0) , i ∈ S are bounded on[0,∞) . An easy
computation of (8) shows that for the control given
by (13) the cost functional takes the value equal to
tr (C ′ (i0) K (i0) C (i0)) .

Remark 1. The control given by (13) is also optimal for
the noise-free system with the cost functional (10), c.f.
(Czornik andŚwierniak, 2004).

3. Coupled Differential Riccati Equation

For the proof of the next lemma, we refer the reader to
(Wonham, 1971).

Lemma 3. Let K(T, t, i, F (i)) be the solution of the
equation

d
dt

K(T, t, i, F (i))

=
(

A(T − t, i)−B(T − t, i)L(t, i)− 1
2
qi(T − t)I

)′
×K(T, t, i, F (i)) + K(T, t, i, F (i))

×
(
A(T−t, i)−B(T−t, i)L(t, i)− 1

2
qi(T−t)I

)
+ L′(t, i)R(T − t, i)L(t, i)

+
∑
j 6=i

qij(T − t)K(T, t, j, F (j))

+ Q(T − t, i), i ∈ S, (16)

K(T, 0, i, F (i)) = F (i),

where L(·, i) : [0,∞) → Rm×n is a locally integrable
function. Then

K(T, t, i, F (i)) ≤ K(T, t, i, F (i)), (17)

whereK(T, t, i, F (i)) is the solution of (5).

Consider the time invariant noise-free system

dx(t) = (A (S(t))x(t) + B (S(t))u(t)) dt, (18)

with the output equation

y(t) = C(r(t))x(t). (19)

The next definition of the stochastic stability and observ-
ability of (18)–(19) is given in (Ji and Chizeck, 1990).
More details on this topic can be found in (Fenget al.,
1992).

Definition 2. We say that the system{A(i), B(i), qij :
i, j ∈ S} is stochastically stabilizableif, for all
(x0, r0) ∈ Rn × S, there exists a functionL : S →
Rm×n such that for the control

u(t) = L(r(t))x(t)

there exists a symmetric positive definite matrixM satis-
fying

lim
T→∞

E

(∫ T

0

‖x(t)‖dt
∣∣∣x(0) = x0, r(0) = i0

)

≤ 〈Mx0, x0〉 .
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We say that the system{A(i), C(i), r(t), qij : i, j ∈ S}
is observableif, and only if, for each i ∈ S, the pair
(C(i), A(i)) is observable.

The following result on the convergence of a solution
of the differential Riccati equation to the solution of the
algebraic Riccati equation is a slight generalization of the
results from (Abou-Kandilet al., 1994; Ji and Chizeck,
1990).

Theorem 3. If the system{A(i), B(i), qij : i, j ∈ S}
is stochastically stabilizable and the system
{A(i), C(i), qij : i, j ∈ S} is observable, then for
any initial values

{F0(i) : i ∈ S}

we have
lim

t→∞
K (t, i, F0(i)) = K(i),

where {K (t, i, F0(i)) , i ∈ S} is the solution of the time
invariant Riccati equation (5) and{K (i) , i ∈ S} is the
unique positive-definite solution of the coupled algebraic
Riccati equation (12), and the convergence is uniform on
the set

{F0(i) : ‖F0(i)‖ < c, i ∈ S}
for any positive constantc > 0.

Proof. The uniqueness and positive definiteness of the
solution is guaranteed by Theorem 5 in (Ji and Chizeck,
1990).

Consider again the system (1) withC(i) = 0. Let
x̃ be the solution of (1) corresponding to the optimal con-
trol ũ for the problem (1), (10) given by (13). In (Ji and
Chizeck, 1990) it is shown that

lim
t→∞

E ( 〈x̃(t), x̃(t)〉|x(0) = x0, r(0) = i0) = 0. (20)

Fix c > 0, set {F0(i) : ‖F0(i)‖ < c, i ∈ S} and
consider two control problems (1)–(2): the first with
F (i) = F0(i), i ∈ S and the second withF (i) = 0, i ∈
S. Let Jl (x0, i0, T, u) and ũ(l), l = 1, 2, denote cost
functionals and optimal control, respectively, for these
two problems. According to the definition of the cost
functional, we have

J1

(
x0, i0, T, ũ(1)

)
≤ J2

(
x0, i0, T, ũ(2)

)
≤
{

E

(∫ T

0

[ 〈
Q
(
r(t)

)
x̃(t), x̃(t)

〉
+
〈
R
(
r(t)

)
ũ(t), ũ(t)

〉 ]
dt
∣∣∣x(0) = x0, r(0) = i0

)

+ E
〈
F
(
r(T )

)
x̃(T ), x̃(T )

〉}
.

From Theorems 1 and 2 taken in conjunction with
(20) we know that the right and left-hand sides of
the above inequality tend toK(i0) uniformly on the
set {F0(i) : ‖F0(i)‖ < c, i ∈ S} . This proves the theo-
rem.

The next theorem contains the main result of this sec-
tion.

Theorem 4. Assume that the system{
A (t, i) , B (t, i) , C (t, i) , Q (t, i) , R (t, i) , qij(t);

t ∈ [0,∞) , i, j ∈ S
}

is such that

1.
∫ ∞

0

‖A(t, i)−A(i)‖dt < ∞,

∫ ∞

0

‖B(t, i)−B(i)‖dt < ∞,

∫ ∞

0

‖C(t, i)− C(i)‖dt < ∞,

∫ ∞

0

‖Q(t, i)−Q(i)‖dt < ∞,

∫ ∞

0

‖R(t, i)−R(i)‖dt < ∞,

∫ ∞

0

|qij(t)− qij |dt < ∞;

2. R(i) > 0, i ∈ S, whereR(i) = lim
t→∞

R(t, i);

3. {A(i), B(i), qij , i, j ∈ S} is stochastically stabiliz-
able, where

A(i) = lim
t→∞

A(t, i), B(i) = lim
t→∞

B(t, i),

qij = lim
t→∞

qij(t);

4.
{

A(i),
√

Q(i), qij , i, j ∈ S
}

is observable, where

Q(i) = lim
t→∞

Q(t, i).

Then

lim
T→∞

1
T

∫ T

0

K (T, t, i, F (i)) dt = K(i), (21)

for any initial condition{F (i) : F (i) > 0, i ∈ S}, where
K (T, t, i, F (i)) , i ∈ S are given by (5) andK(i), i ∈ S
are the unique solutions of (12).
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Proof. For the simplicity of our future notation, we write

L (A,B, {Ki, qij : i, j ∈ S} , Q,R)

= Q (i) + K (i)A (i) + A′ (i) K (i)

+ K (i) B (i) R−1 (i) B′ (i)K (i)− qiK (i)

+
∑
j 6=i

qijK (j) .

Using this notation, we can rewrite (5) and (12) as

K (T, t, i, F (i))

= F (i) +
∫ t

0

L
(
A(T − s, i), B(T − s, i),

{
K (T, s, i, F (i)) , qij(T − s) : i, j ∈ S

}
,

Q(T − s, i), R(T − s, i)
)
ds (22)

and

L (A(i), B(i), {K (i) , qij : i, j ∈ S} , Q(i), R(i)) = 0.
(23)

Together with (22) and (23) we will consider the fol-
lowing time invariant coupled Riccati equation:

K (t, i, F (i))

= F (i) +
∫ t

0

L
(
A(i), B(i),

{
K (t, i, F (i)) , qij : i, j ∈ S

}
, Q(i), R(i)

)
dt. (24)

Let K(T, t, i, F (i)) be the solution of (16) withL(t, i) ≡
L(i) = R−1(i)B′(i)K(i). Then

K(T, t, i, F (i))

= Φ′(T, T − t, i)F (i)Φ(T, T − t, i)

+
∫ t

0

Φ′(T − s, T − t, i)
(
L′(i)R(T − s, i)L(i)

+
∑
j 6=i

qij(T − s)K(T, s, j, F (j))

+ Q(T − s, i)
)
Φ(T − s, T − t, i)ds

)
, (25)

where Φ(t, s, i), i ∈ S is the transition matrix of the
equation

d
dt

z(t) =
(
A(t, i)−B(t, i)L(i)− 1

2
qi(t)I

)
z(t). (26)

In (Ji and Chizeck, 1990) it was shown that the matrices
A(i) − B(i)R−1(i)B′(i)K(i) − 1

2qiI, i ∈ S are stable.

By Assumption 1 we have∫ ∞

0

∥∥∥(A(t, i)−B(t, i)L(i)− 1
2
qi(t)I

)
−
(
A(i)−B(i)R−1(i)B′(i)K(i)−1

2
qiI
)∥∥∥dt < ∞.

Consequently (see, Afanas’evet al., 1989), (26) is stable
and

‖Φ(t, s, i)‖ ≤ ae−b(t−s)

for some positive constantsa and b. From this fact and
(25) we can conclude that

‖S(T, t)‖ ≤ c1 + c2

∫ t

0

e−2b(t−s) ds.

For any set of the initial values{F (i) : F (i) > 0, i ∈ S}
there is a constantc such that

‖K (T, t, i, F (i))‖ < c,

‖K (s, i,K (T, t, i, F (i)))‖ < c (27)

for any T, s > 0, t ∈ [0, T ] and i ∈ S. Assumption 1
makes it obvious that

lim
t→∞

‖A(t, i)−A(i)‖=0,

lim
t→∞

‖B(t, i)−B(i)‖=0,

lim
t→∞

‖C(t, i)− C(i)‖=0,

lim
t→∞

|qij(t)− qij |=0, (28)

lim
t→∞

‖Q(t, i)−Q(i)‖=0,

lim
t→∞

‖R(t, i)−R(i)‖=0.

From this and (27) it follows that for anyε > 0 we
can findT0(ε) such that∫ t

0

‖∆ (T, s, i)‖ds < ε, (29)

for T, t > 0, T − t > T0(ε), where

∆
(
T, s, i

)
= L

(
A(i), B(i),{

K (T, s, i, F (i)) , qij : i, j ∈ S
}

,

Q(i), R(i)
)
− L

(
A(T − s, i), B(T − s, i),{

K (T, s, i, F (i)) , qij(T − s) : i, j ∈ S
}

,

Q(T − s, i), R(T − s, i)
)
. (30)
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We next show that for eachε > 0 and t > 0 there
is a constantc(t) > 0 (depending only ont) such that

‖K (T, t + τ, i, F (i))−K (t, i,K (T, τ, i, F (i)))‖

< εc(t), (31)

for T, τ > 0, T − τ − t > T0(ε). Using the notation (30),
we can rewrite (22) as

K (T, t + τ, i, F (i))

= F (i) +
∫ t+τ

0

(
L
(
A(i), B(i),

{
K
(
T, s, i, F (i)

)
, qij : i, j ∈ S

}
Q(i), R(i)

)
,

−∆ (T, s, i)
)
ds. (32)

Then from (29) it follows that∥∥∥K(T, t + τ, i, F (i)
)
−K

(
t, i,K

(
T, τ, i, F (i)

))∥∥∥
≤
∥∥∥F (i) +

∫ t+τ

0

(
L
(
A(i), B(i),

{
K
(
T, s, i, F (i)

)
,

qij : i, j ∈ S
}

, Q(i), R(i)
)
−∆

(
T, s, i

))
ds

−
∫ t

0

L
(
A(i), B(i),

{
K
(
s, i,K

(
T, τ, i, F (i)

))
,

qij : i, j ∈ S
}

, Q(i), R(i)
)
ds−K

(
T, τ, i, F (i)

)∥∥∥
=
∥∥∥∫ t+τ

0

(
L
(
A(i), B(i),

{
K
(
T, s, i, F (i)

)
,

qij : i, j ∈ S
}

, Q(i), R(i)
)
−∆

(
T, s, i

))
ds

−
∫ t

0

L
(
A(i), B(i),

{
K
(
s, i,K

(
T, τ, i, F (i)

))
,

qij : i, j ∈ S
}

, Q(i), R(i)
)
ds

−
∫ τ

0

L
(
A(T − s, i), B(T − s, i),

{
K
(
T, s, i, F (i)

)
,

qij(T − s) : i, j ∈ S
}

Q(T − s, i), R(T − s, i)
)
ds
∥∥∥

≤ ε +
∥∥∥∫ t+τ

0

L
(
A(i), B(i),

{
K
(
T, s, i, F (i)

)
,

qij : i, j ∈ S
}

, Q(i), R(i)
)
ds

−
∫ t

0

L
(
A(i), B(i),

{
K
(
s, i,K

(
T, τ, i, F (i)

))
,

qij : i, j ∈ S
}

, Q(i), R(i)
)
ds

−
∫ τ

0

L
(
A(T − s, i), B(T − s, i),

{
K
(
T, s, i, F (i)

)
,

qij(T − s) : i, j ∈ S
}

Q(T − s, i), R(T − s, i)
)
ds
∥∥∥.

From (29) and (30) it is clear that∥∥∥K(T, t + τ, i, F (i)
)
−K

(
t, i, K

(
T, τ, i, F (i)

))∥∥∥
≤ ε +

∥∥∥∫ t+τ

0

L
(
A(i), B(i),

{
K
(
T, s, i, F (i)

)
,

qij : i, j ∈ S
}

, Q(i), R(i)
)
ds

−
∫ t

0

L
(
A(i), B(i),

{
K
(
s, i,K

(
T, τ, i, F (i)

))
,

qij : i, j ∈ S
}

, Q(i), R(i)
)
ds

−
∫ τ

0

(
L
(
A(i), B(i),

{
K
(
T, s, i, F (i)

)
,

qij : i, j ∈ S
}

, Q(i), R(i)
)
−∆

(
T, s, i

))
ds
∥∥∥

≤ 2ε +
∥∥∥∫ t+τ

0

L
(
A(i), B(i),

{
K
(
T, s, i, F (i)

)
,

qij : i, j ∈ S
}

, Q(i), R(i)
)
ds

−
∫ t

0

L
(
A(i), B(i),

{
K
(
s, i,K

(
T, τ, i, F (i)

))
,

qij : i, j ∈ S
}

, Q(i), R(i)
)
ds

−
∫ τ

0

L
(
A(i), B(i),

{
K
(
T, s, i, F (i)

)
,

qij : i, j ∈ S
}

, Q(i), R(i)
)
ds
∥∥∥

= 2ε +
∥∥∥∫ t+τ

τ

L
(
A(i), B(i),

{
K
(
T, s, i, F (i)

)
,

qij : i, j ∈ S
}

, Q(i), R(i)
)
ds

−
∫ t

0

L
(
A(i), B(i),

{
K
(
s, i,K

(
T, τ, i, F (i)

))
,

qij : i, j ∈ S
}

, Q(i), R(i)
)
ds
∥∥∥

= 2ε +
∥∥∥∫ t

0

L
(
A(i), B(i),

{
K
(
T, s + τ, i, F (i)

)
,

qij : i, j ∈ S
}

, Q(i), R(i)
)
ds
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−
∫ t

0

L
(
A(i), B(i),

{
K
(
s, i,K

(
T, τ, i, F (i)

))
,

qij : i, j ∈ S
}

, Q(i), R(i)
)
ds
∥∥∥. (33)

It is not difficult to check that there is a constantc̃ > 0
such that∥∥L(A,B, {Ui, qij : i, j ∈ S} , Q,R

)
−L
(
A,B, {Vi, qij : i, j ∈ S} , Q,R

)∥∥
≤ c̃ max

j∈S
‖Uj − Vj‖ (34)

for any sets{Ui : i ∈ S}, {Vi : i ∈ S} of symmetric pos-
itive definite matrices for which

max
j∈S

‖Uj − Vj‖ < c,

where c is the constant from (27). Using the bound (34)
to (33), we have∥∥K (T, t + τ, i, F (i))−K (t, i,K (T, τ, i, F (i)))

∥∥
≤ 2ε + c̃ max

j∈S

∥∥∥∫ t

0

(
K (T, s + τ, j, F (j))

−K (s, j,K (T, τ, j, F (j)))
)
ds
∥∥∥

and

max
j∈S

∥∥∥K (T, t + τ, i, F (i))−K (t, i,K (T, τ, i, F (i)))
∥∥∥

≤ 2ε + c̃ max
j∈S

∥∥∥∫ t

0

(
K (T, s + τ, j, F (j))

−K (s, j,K (T, τ, j, F (j)))
)
ds
∥∥∥. (35)

Applying Gronwall’s lemma to (35), we obtain

max
j∈S

∥∥∥K(T, t + τ, i, F (i)
)

−K
(
t, i, K (T, τ, i, F (i))

)∥∥∥ ≤ 2εec̃t,

and the proof of (31) is complete.

Fix δ > 0. By Theorem 4 we can taket0 > 0 such
that ∥∥∥K(t, i, F̃ (i)

)
−K(i)

∥∥∥ <
δ

2
, (36)

for t > t0, i ∈ S and max
i∈S

∥∥∥F̃ (i)
∥∥∥ < c. For ε =

δ/2c (t0), where c (t0) is the constant from (31), take

T0(ε) according to (29). From (31) and (36) we have∥∥∥K(T, t + t0, i, F (i)
)
−K (i)

∥∥∥
≤
∥∥∥K(T, t + t0, i, F (i)

)
−K

(
t0, i,K (T, t, i, F (i))

)∥∥∥
+
∥∥∥K(t0, i,K (T, t, i, F (i))

)
−K(i)

∥∥∥
≤ c(t0)

δ

c(t0)
+

δ

2
= δ, (37)

for T, t > 0 such thatT − t > T0(ε) + t0. Then, taking
into account (27) and (37), we obtain

lim
T→∞

sup
1
T

∥∥∥∫ T

0

(
K
(
T, s, i, F (i)

)
−K

(
i
))

ds
∥∥∥

≤ lim
T→∞

sup
1
T

∫ t0

0

∥∥∥K(T, s, i, F (i)
)
−K

(
i
)∥∥∥ds

+ lim
T→∞

sup
1
T

∫ T−T0(ε)

t0

∥∥∥K(T, s, i, F (i)
)

−K
(
i
)∥∥∥ds

+ lim
T→∞

sup
1
T

∫ T

T−T0(ε)

∥∥∥K(T, s, i, F (i)
)

−K
(
i
)∥∥∥ds

= lim
T→∞

sup
1
T

∫ T−T0(ε)

t0

∥∥∥K(T, s, i, F (i)
)

−K (i)
∥∥∥ds

= lim
T→∞

sup
1
T

∫ T−T0(ε)−t0

0

∥∥∥K(T, s + t0, i, F (i)
)

−K
(
i
)∥∥∥ds

≤ lim
T→∞

sup
T − T0(ε)− t0

T
δ = δ

which, owing to the arbitrariness ofδ, yields the desired
conclusion.

4. Adaptive Control for the Time–Varying
JLQ

The main result of this section is given by the following
theorem:

Theorem 5. Assume that the assumptions of Theorem 3
hold and that the coefficientsA(t, r(t)) and B(t, r(t))
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of the system (1) are unknown and their limits

A(i) = lim
t→∞

A(t, i), B(i) = lim
t→∞

B(t, i)

are known. Then the optimal adaptive control law for the
time-varying control problem (1), (9) is given by

ũ(t) = −R−1(i)B′(i)K(i)x(t), i ∈ S, (38)

where {K(i), i ∈ S} is the unique solution of the alge-
braic coupled Riccati equation (12).

Proof. From (8) in Theorem 1, for any controlu we have

J (x0, u)

≥ lim
T→∞

1
T

[
〈K (T, t, i0, F (i0))x0, x0〉

+
∫ T

0

tr
(
C ′(T − s)K (T, s, i0, F (i0))C(T − s)

)
ds
]
.

(39)

From Lemma 4, Theorem 3 and (39) we conclude that

J (x0, u) ≥ tr (C ′ (i0) K (i0) C (i0)) ,

where C(i) = lim
t→∞

C(t, i). The last inequality shows

that the cost functional has a value not smaller than
tr (C ′ (i0)K (i0) C (i0)). From (8), using Theorem 3
again, it is easy to check that for the control law given
by (38) the cost functional takes this value.

5. Conclusion

In this paper we considered a version of adaptive control
for jump linear systems with quadratic cost functionals.
We took into account a system with unknown coefficients
having limits as functions of time when the time tends to
infinity and the limits are known. First we showed that the
optimal control for this system can be realized in the form
of time-invariant feedback with the feedback matrix equal
to that for the time invariant system with coefficients equal
to the limits of the time-varying system. To this end, we
showed that the solution of the time-varying differential
Riccati equation converges in some sense to the solution
of some time-invariant algebraic Riccati equation under
very natural conditions. Based on this result, we solved
the adaptive version of the linear quadratic problem.
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