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1. Introduction

Time delays can be a cause of instability and performance
degradation. Dynamical systems with time delays have
attracted a lot of researchers mainly from the control com-
munity and many results on this class of systems have
been reported in the literature. We refer the reader to
(Boukas and Liu, 2002; Mahmoud, 2000) and the refer-
ences therein for more information.

The study of stability and/or stabilizability is,
in general, based on one of the following tech-
niques: the Lyapunov-Razumikhin method yielding
delay-independent conditions (Hale, 1977; Hmamed,
1997; Li and Souza, 1996; 1997a; Mahmoud, 2000;
Niculescu et al., 1994; Su, 1994; Su and Huang, 1992; Sun
et al., 1997; Wang et al., 1987; Xu, 1995; Xu and Liu,
1994) and the Lyapunov-Krasovskii approach, yielding
delay-dependent conditions (Boukas and Liu, 2002; Mah-
moud, 2000).

From the practical point of view, one is interested in
conditions that constrain the upper bound of the delay and
the lower and upper bounds of the first derivative of the
time-varying delay. Since, in general, the delay is time
varying, it can be usually represented by a function h(t),
and bounded by a constant h̄. It is therefore desirable
to have conditions that depend on the upper bound of the
time-varying delay and on the lower and upper bounds of
the first derivative of the time-varying delay.

The goal of this paper is to investigate the class of
dynamical uncertain linear systems with multiple time-
varying delays and to develop sufficient conditions for sta-
bility, stabilizability and their robustness, which depend
on the upper bounds of the delays and on the lower and
upper bounds of first derivative of time-varying delays.
The Lyapunov-Krasovskii approach will be used in this
paper.

In addition to that, the result is based on parameter-
dependent Lyapunov functions and the obtained sufficient
conditions are dilated Linear Matrix Inequalities (LMI).
However, we will restrict our presentation to systems with
a single delay in order to make it clearer and avoid a com-
plicated notation. The paper is organized as follows: In
Section 2, the problem is formulated and the required as-
sumptions are given. Section 3 deals with stability and
robust stability. Section 4 covers the stabilizability and
robust stabilizability of the class of systems under study.
Section 5 presents some numerical examples to show the
usefulness of the proposed results.

2. Problem Statement

Consider the following class of systems with multiple
time-varying delays:

ẋ(t) = A(t)x(t) + G(t)x
(
t − h(t)

)
+ B(t)u(t),

y(t) = C(t)x(t), (1)
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where x(t) is the state vector, u(t) is the control input,
h(t) is the time-varying delay of the system, and

A(t) = A + DaFa(t)Ea,

G(t) = G + DgFg(t)Eg ,

B(t) = B + DbFb(t)Eb.

(2)

Here A, G, B, Da, Ea, Dg, Eg , Db and Eb are given
matrices with appropriate dimensions, and Fa(t), Fg(t)
and Fb(t) represent system uncertainties satisfying the
following assumption.

Assumption 1. Assume that the uncertainties Fa(t),
Fg(t) and Fb(t) are Lebesgue measurable functions
which are bounded according to

F�
a (t)RaFa(t) ≤ Ra, (3)

F�
g (t)RgFg(t) ≤ Rg, (4)

F�
b (t)RbFb(t) ≤ Rb, (5)

and Ra, Rb and Rg are given matrices with appropriate
dimensions.

Remark 1. The uncertainties that satisfy (3)–(5) will be
referred to as admissible uncertainties. Notice that the un-
certainties Fa(t), Fg(t) and Fb(t) can depend on the
system state and the developed results will remain valid.
However, in the present paper we will consider only the
case of time-varying uncertainties.

Assumption 2. The time-varying delay h(t) is assumed
to satisfy the following conditions:

0 ≤ h(t) ≤ h̄ < ∞, (6)

0 ≤ ḣ(t) ≤ μ < 1, (7)

where h̄ and μ are given positive constants.

Remark 2. The case of multiple time-varying delays in
the model

ẋ(t) = A(t)x(t)+
p∑

i=1

Gi(t)x
(
t − hi(t)

)
+B(t)u(t) (8)

can be dealt with by taking

G(t) =
[

G1(t) . . . Gp(t)
]
,

xh(t) =
[

x�(t − h1(t)
)

. . . x�(t − hp(t)
) ]�

,

which allows us to rewrite (8) as

ẋ(t) = A(t)x(t) + G(t)xh(t) + B(t)u(t),

and all the subsequent developments will be carried out
analogously.

In the remainder of this paper the notation is stan-
dard unless specified otherwise. L > 0 (respectively,
L < 0) means that the matrix L is symmetric and pos-
itive definite (resp. symmetric and negative definite). The
Kronecker product of two matrices Z and W is a block
matrix H with generic block entries Hij = WijZ , i.e.,

W ⊗ Z = [WijZ]ij .

The symbol ‘Sym’ means

Sym(W ) = W + W�.

3. Stability Problem

In order to investigate system stability, we assume that the
control satisfies u(t) = 0 for every time instant t and
thus our system becomes

ẋ(t) = A(t)x(t) + G(t)x
(
t − h(t)

)
. (9)

The following result provides a sufficient condition for ro-
bust stability:

Theorem 1. If there exist positive-definite matrices X ,
P1 and P2 such that the LMI condition (10) is feasible,
with

α11 = (A + G)X + X (A + G)� + λXE�
a RaEaX

+ λXE�
g RgEgX,

α44 = P1 + λP1E
�
g RgEgP1,

α55 = P2 + λP2E
�
g RgEgP2,

α77 = Rg + λD�
g E�

g RgEgDg,

α16 = h̄XE�
g Rg,

α66 = (1 − μ)Rg, ,

α33 = (1 − μ)P2,

then the system (9) is robustly stable.

Remark 3. The procedure followed to derive (10) reveals
some similarities as the one in (Lee and Lee, 1999; 2000).
However, we note that there is only one LMI condition to
handle the implicit relation between P1, P2 and X .

Remark 4. Theorem 1 is intended for checking the sta-
bility of the time-varying delay system (9). In the case of
a constant time delay, other alternatives exist. We quote,
e.g., approaches based on a bivariate characteristic equa-
tion. However, the characteristic equation is difficult to
deal with and more efficient approaches are proposed in
the litterature, see, e.g., (Sen, 2002) and the references
therein.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α11 XA� XG� h̄GP1 h̄GP2 α16 GDg Da h̄Dg h̄Dg Dg

AX P1 0 0 0 0 0 Da 0 0 0
GX 0 α33 0 0 0 0 0 0 0 0

h̄P1G
� 0 0 α44 0 0 0 0 0 0 0

h̄P2G
� 0 0 0 α55 0 0 0 0 0 0

α�
16 0 0 0 0 α66 0 0 0 0 0

D�
g G� 0 0 0 0 0 α77 0 0 0 0
D�

a D�
a 0 0 0 0 0 −λRa 0 0 0

h̄D�
g 0 0 0 0 0 0 0 −λRg 0 0

h̄D�
g 0 0 0 0 0 0 0 0 −λRg 0

D�
g 0 0 0 0 0 0 0 0 0 −λRg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (10)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β11 XA� XG� β14 β15 β16 GDg Da Db h̄Dg h̄Dg Dg

AX P1 0 0 0 0 0 Da Db 0 0 0
GX 0 β33 0 0 0 0 0 0 0 0 0
β�

14 0 0 β44 0 0 0 0 0 0 0 0
β�

15 0 0 0 β55 0 0 0 0 0 0 0
β�

16 0 0 0 0 β66 0 0 0 0 0 0
D�

g G� 0 0 0 0 0 β77 0 0 0 0 0
D�

a D�
a 0 0 0 0 0 −λRa 0 0 0 0

D�
b D�

b 0 0 0 0 0 0 −λRb 0 0 0
h̄D�

g 0 0 0 0 0 0 0 0 −λRg 0 0
h̄D�

g 0 0 0 0 0 0 0 0 0 −λRg 0
D�

g 0 0 0 0 0 0 0 0 0 0 −λRg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (14)

4. Robust State Feedback Stabilization
Problem

In this section we will consider the class of systems given
by

ẋ(t) = A(t)x(t) + G(t)x
(
t − h(t)

)
+ Bu(t), (11)

where the matrices A(t), B(t) and G(t) are given
by (2).

In this section we restrict ourselves to the state feed-
back case given by

u(t) = Kx(t). (12)

Then the closed-loop system is described by

ẋ(t)

=

(
A+BK+

[
Da Db

] [Fa(t) 0
0 Fb(t)

] [
Ea

EbK

])

× x(t) +
(
G + DgFg(t)Eg

)
x
(
t − h(t)

)
. (13)

The closed-loop robust stability conditions can be ob-
tained by a direct application of Theorem 1 which we for-
mulate in Theorem 2.

Theorem 2. If there exist a non-zero matrix S and
positive-definite matrices X , P1 and P2 such that the
condition (14) is feasible, with

β11 = (A + G) X + X (A + G)� + BS + S�B�

+ λ
[

XE�
a S�E�

b

][ Ra 0
0 Rb

][
EaX

EbS

]
,

β44 = P1 + λP1E
�
g RgEgP1,

β55 = P2 + λP2E
�
g RgEgP2,

β77 = Rg + λD�
g E�

g RgEgDg,

β16 = h̄XE�
g Rg,

β66 = (1 − μ)Rg,



M.-S. Saadni et al.324

β33 = (1 − μ)P2,

β14 = h̄GP1,

β15 = h̄GP2,

then the system (11) is robustly stabilizable with the state
feedback gain given by

K = SX−1.

Proof. Following similar arguments as in the proof of The-
orem 1, we get the desired result.

Remark 5. It is worth noticing that the condition (14) is
not an LMI in the present form, but a simple Schur com-
plement leads to an LMI that can be easily solved using
any LMI solver.

Remark 6. The control law (12) takes account only of the
current state because we assume that the delay is varying
and eventually unknown. One can use a linear time delay
controller (Marchenko et al., 1996, Eqn. (5)) in the case
of a well-known delay, which, obviously, will lead to less
conservatism compared with the present controller (12).

5. Illustrative Example

Example 1. In this example we deal with the stability
problem

ẋ(t) = A(t)x(t) + G(t)x
(
t − h(t)

)
(15)

with

A =

[
−2 0
0 −1

]
, G =

[
−1 0
−1 −1

]
, (16)

D = Dd =

[
0.2 0
0 0.2

]
, Ea = Ed =

[
1 0
0 1

]
. (17)

In the case of a constant delay, that is, ḣ(t) = 0, Table 1
shows a comparison of our result with some previous con-
ditions from the literature guaranteeing the stability of the
uncertain time-delay system. �

Example 2. In this example (Lee and Lee, 1999) we deal
with the stabilization problem. For this purpose, we con-
sider the open-loop system

ẋ(t) = A(t)x(t) + G(t)x
(
t − h(t)

)
+ B(t)u(t), (18)

Table 1. Comparison of the proposed
method with previous works.

τ

Li and Souza (1997b) 0.2013

Kim (2001) 0.2412

Lee and Lee (1999) 0.4708

Our results 0.525

where the controller has the form

u(t) = Kx(t). (19)

The system matrices are given as follows:

A =

[
0 0
0 1

]
, G =

[
−1 −1
0 −0.9

]
, B =

[
0
1

]
,

(20)

D = Dd =

[
0.2 0
0 0.2

]
, Ea = Ed =

[
1 0
0 1

]
.

(21)

Applying Theorem 2, we get the stabilizing state feedback

K =
[

0.1908 −3.5593
]

(22)

for any constant time delay h̄ ≤ 0.299s.

Figures 1 and 2 give the behavior of the system states
for a time delay h̄ = 0.299 s with two different uncer-
tainty matrices. �
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Fig. 1. Behavior of state components for the uncer-
tainty matrices Fa = Fd = 0.2 × I .
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Fig. 2. Behavior of state components for the uncer-
tainty matrices Fa = Fd = 0.9 × I .

6. Conclusion

This paper deals with a class of dynamical linear uncertain
systems with time-varying delays in the state. The uncer-
tainty is assumed to be norm bounded. Delay-dependent
sufficient conditions have been developed to check the ro-
bust stability. A state feedback controller is considered
for the stabilizability problem, and delay-dependent con-
ditions are developed to check the stabilizability problem.
The obtained conditions are formulated by means of LMI
conditions. The extension to multiple time varying delays
can be dealt with according to Remark 2.
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Appendices

Appendix A

Consider the function

V (t) =
∫ 0

−h̄

∫ t

a(t+θ)

f(τ) dτ dθ,

where the function a(t) is differentiable. Assume that
f(t) is the first derivative of H(t), that is,

Ḣ(t) = f(t).

Then we have∫ t

t+θ

f(τ) dτ =
∫ t

a(t+θ)

Ḣ(τ) dτ = H(t)− H
(
a(t + θ)

)
and∫ 0

−h̄

(
H(t) − H

(
a(t + θ)

))
dθ

= H(t)
∫ 0

−h̄

dθ −
∫ 0

−h̄

H
(
a(t + θ)

)
dθ

= h̄H(t) −
∫ 0

−h̄

H
(
a(t + θ)

)
dθ.

Hence V (t) is given by

V (t) = h̄H(t) −
∫ 0

−h̄

H
(
a(t + θ)

)
dθ,

and its derivative can be written as

V̇ (t) = h̄Ḣ(t) −
∫ 0

−h̄

ȧ(t + θ)Ḣ
(
a(t + θ)

)
dθ

= h̄f(t) −
∫ 0

−h̄

ȧ(t + θ)f
(
a(t + θ)

)
dθ,

i.e., the first derivative of V (t) is given by

V̇ (t) = h̄f(t) −
∫ 0

−h̄

ȧ(t + θ)f
(
a(t + θ)

)
dθ.

Appendix B: Proof of Theorem 1

Let us consider the Lyapunov candidate function

V = V0 + V1 + V2 + V3

with

V0 = x�(t)Px(t), (23)

V1 =
∫ 0

−h̄

∫ t

t+θ

x�(τ)A� (h̄P1

)−1
Ax(τ) dτ dθ, (24)

V2 =
1

1 − μ

∫ 0

−h̄

∫ t

t+θ−h(t+θ)

x�(τ)G� (h̄P2

)−1

× Gx(τ) dτ dθ, (25)

V3 =
1

1 − μ

∫ 0

−h̄

∫ t

t+θ−h(t+θ)

x�(τ)

× E�
g

(
h̄Rg

)
Egx(τ) dτ dθ. (26)

To derive a sufficient robust stability condition we have to
compute the first derivative with respect to time t of the
Lyapunov candidate function V along the system trajec-
tory. The first derivatives of V1, V2 and V3 are respec-
tively given by

V̇1 = x�(t)A(t)�P−1
1 A(t)x(t)

−
∫ 0

−h̄

x�(t + θ)A(t + θ)�
(
h̄P1

)−1

× A(t + θ)x(t + θ) dθ,

V̇2 =
1

1 − μ

[
x�(t)G�P−1

2 Gx(t)

−
∫ 0

−h̄

(
1 − ḣ(t + θ)

)
x�(t + θ − h

(
t + θ)

)

× G� (h̄P2

)−1
Gx(t + θ − h

(
t + θ)

)
dθ
]

≤ 1
1 − μ

x�(t)G�P−1
2 Gx(t)

−
∫ 0

−h̄

x�(t + θ − h
(
t + θ)

)

× G� (h̄P2

)−1
Gx(t + θ − h

(
t + θ)

)
dθ,

V̇3 =
1

1 − μ

[
h̄2x�(t)E�

g RgEgx(t)

−
∫ 0

−h̄

(
1 − ḣ(t + θ)

)
x�(t + θ − h

(
t + θ)

)

× E�
g

(
h̄Rg

)
Egx(t + θ − h

(
t + θ)

)
dθ
]

≤ 1
1 − μ

h̄2x�(t)E�
g RgEgx(t)

= −
∫ 0

−h̄

x�(t + θ − h
(
t + θ)

)
× E�

g

(
h̄Rg

)
Egx(t + θ − h

(
t + θ)

)
dθ.
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The first derivative of V0 with respect to time is

V̇0 = 2ẋ�(t)Px(t)

= 2x�(t)P
(
A(t)x(t) + G(t)x

(
t − h(t)

))
= 2x�(t)PA(t)Px(t)

+ 2x�(t)PG(t)x
(
t − h(t)

)
. (27)

The standard result

x
(
t − h(t)

)− x(t) = −
∫ 0

−h(t)

ẋ(t + θ) dθ,

expressing the delayed state as a function of the current
state, will be used in what follows.

The term containing the matrix G(t) in (27) is ex-
panded as follows:

2x�(t)PG(t)x
(
t − h(t)

)
= 2x�(t)PG(t)x(t)

− 2x�(t)PG(t)
∫ 0

−h(t)

ẋ(t + θ) dθ

= 2x�(t)PG(t)x(t)

− 2x�(t)PG(t)
∫ 0

−h(t)

A(t + θ)x(t + θ) dθ

− 2x�(t)PG(t)
∫ 0

−h(t)

G(t + θ)

× x(t + θ − h
(
t + θ)

)
dθ. (28)

Note that the term

−2x�(t)PG(t)
∫ 0

−h(t)

A(t + θ)x(t + θ) dθ

can be bounded as

− 2x�(t)PG(t)
∫ 0

−h(t)

A(t + θ)x(t + θ) dθ

≤
∫ 0

−h̄

x�(t)PG(t)
(
h̄P1

)
G(t)�Px(t) dθ

+
∫ 0

−h̄

x�(t + θ)A�(t + θ)
(
h̄P1

)−1

× A(t + θ)x(t + θ) dθ. (29)

Also, note that the term

−2x�(t)PG(t)
∫ 0

−h(t)

G(t + θ)x(t + θ − h
(
t + θ)

)
dθ

in (28) can be bounded as follows:

− 2x�(t)PG(t)
∫ 0

−h(t)

G(t + θ)x(t + θ − h
(
t + θ)

)
dθ

= − 2x�(t)PG(t)
∫ 0

−h(t)

Gx(t + θ − h
(
t + θ)

)
dθ

− 2x�(t)PG(t)Dg

×
∫ 0

−h(t)

Fg(t + θ)Egx(t + θ − h
(
t + θ)

)
dθ

≤
∫ 0

−h̄

x�(t)PG(t)
(
h̄P2

)
G(t)�Px(t) dθ

+ h̄x�(t)PG(t)Dg

(
h̄Rg

)−1
D�

g G�(t)Px(t)

+
∫ 0

−h̄

x�(t + θ − h
(
t + θ)

)
G� (h̄P2

)−1

× Gx(t + θ − h
(
t + θ)

)
dθ

+
∫ 0

−h(t)

x�(t + θ − h
(
t + θ)

)
E�

g F�
g (t + θ)

(
h̄Rg

)
× Fg(t + θ)Egx(t + θ − h

(
t + θ)

)
dθ

≤ h̄2x�(t)PG(t)P2G(t)�Px(t)

+ x�(t)PG(t)DgR−1
g D�

g G�(t)Px(t)

+
∫ 0

−h̄

x�(t + θ − h
(
t + θ)

)
G� (h̄P2

)−1

× Gx(t + θ − h
(
t + θ)

)
dθ

+
∫ 0

−h(t)

x�(t + θ − h
(
t + θ)

)
× E�

g

(
h̄Rg

)
Egx(t + θ − h

(
t + θ)

)
dθ.

Hence, collecting all the expressions above, we have for
the first derivative of V0

V̇0 ≤ x�(t)
(
P (A(t)+G(t))+(A(t)+G(t))�P

)
x(t)

× x�(t)
(
h̄2PG(t)P1G

�(t)P

+ h̄2PG(t)P2G
�(t)P

+ PG(t)DgR
−1
g D�

g G�(t)P
)
x(t)

+
∫ 0

−h(t)

x�(t + θ)A�(t + θ)
(
h̄P1

)−1

× A(t + θ)x(t + θ) dθ
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M(A(t), G(t), X)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α11 XA(t)� XG� h̄G(t)P1 h̄G(t)P2 h̄XE�
g Rg G(t)Dg

A(t)X −P1 0 0 0 0 0
GX 0 −(1 − μ)P2 0 0 0 0

h̄P1G
�(t) 0 0 −P1 0 0 0

h̄P2G
�(t) 0 0 0 −P2 0 0

h̄RgEgX 0 0 0 0 −(1 − μ)Rg 0
D�

g G�(t) 0 0 0 0 0 −Rg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (30)

+
∫ 0

−h(t)

x�(t + θ − h
(
t + θ)

)
G� (h̄P2

)−1

× Gx(t + θ − h
(
t + θ)

)
dθ

+
∫ 0

−h(t)

x�(t + θ − h(t + θ)
)
E�

g

(
h̄Rg

)
× Egx(t + θ − h

(
t + θ)

)
dθ.

Recall that we have already obtained that∫ 0

−h̄

x�(t + θ)A(t + θ)�
(
h̄P1

)−1
A(t + θ)x(t + θ) dθ

= −V̇1 + x�(t)A(t)�P−1
1 A(t)x(t),

∫ 0

−h̄

x�(t + θ − h
(
t + θ)

)
G� (h̄P2

)−1

× Gx(t + θ − h
(
t + θ)

)
dθ

≤ −V̇2 +
1

1 − μ
x�(t)G�P−1

2 Gx(t),

∫ 0

−h̄

x�(t + θ − h
(
t + θ)

)
E�

g

(
h̄Rg

)
× Egx(t + θ − h

(
t + θ)

)
dθ

≤ −V̇3 +
h̄2

1 − μ
x�(t)E�

g RgEgx(t),

from which we get

V̇0 + V̇1 + V̇2 + V̇3

≤ 2x�(t)P (A(t) + G(t)) x(t)

+ h̄2x�(t)PG(t)P1G
�(t)Px(t)

+ x�(t)A(t)�P−1
1 A(t)x(t)

+ h̄2x�(t)PG(t)P2G
�(t)Px(t)

+
1

1 − μ
x�(t)G�P−1

2 Gx(t)x�(t)PG(t)DgR
−1
g

× D�
g G�(t)Px(t)

+
h̄2

1 − μ
x�(t)E�

g RgEgx(t).

Hence our condition becomes

(
A(t) + G(t)

)
X + X

(
A(t) + G(t)

)� + h̄2G(t)P1G
�(t)

+ XA(t)�P−1
1 A(t)X + h̄2G(t)P2G

�(t)

+
1

1 − μ
XG�P−1

2 GX + G(t)DgR
−1
g D�

g G�(t)

+
h̄2

1 − μ
XE�

g RgEgX < 0,

from which we easily deduce the condition (30), with

α11 = (A(t) + G(t)) X + X (A(t) + G(t))� .

At this step we replace A(t) and G(t) by their ex-
pressions (2) and get Eqn. (31), with

F(t) =

[
Fa(t)

I3 ⊗ Fg(t)

]
.

The application of Lemma 1 (see Appendix C) al-
lows us to get

M(A, G, X) + D�
(
λR
)−1

D + E
(
λR
)
E�
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M(
A(t), G(t), X

)
= M(A, G, X)

+ Sym

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Da Dg Dg Dg Dg

Da 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
F(t)

⎡
⎢⎢⎢⎢⎢⎢⎣

EaX 0 0 0 0 0
EgX 0 0 0 0 0

0 0 h̄EgP1 0 0 0
0 0 0 h̄EgP2 0 0
0 0 0 0 0 h̄EgDg

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

< 0, (31)

with

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

D�
a D�

a 0 0 0 0 0
D�

g 0 0 0 0 0 0
D�

g 0 0 0 0 0 0
D�

g 0 0 0 0 0 0
D�

g 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XE�
g XE�

a 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 h̄P1E

�
g 0 0

0 0 0 h̄P2E
�
g 0

0 0 0 0 0
0 0 0 0 h̄D�

g E�
g

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and it becomes obvious that the condition (10) can be eas-
ily deduced.

Appendix C

Lemma 1. (Li et al., 1992) Let Z , E, F , R and Δ
be matrices of appropriate dimensions. Assume that Z
is symmetric, R is symmetric and positive definite, and
Δ�RΔ ≤ R. Then

Z + EΔF + F�Δ�E� < 0

if and only if there exists a scalar λ > 0 satisfying

Z + E
(
λR
)
E� + F�

(
λR
)−1

F < 0.
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