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This paper considers the properties of a minimum variance self-tuning tracker for MIMO systems described by ARMAX
models. It is assumed that the stochastic noise has a non-Gaussian distribution. Such an assumption introduces into a
recursive algorithm a nonlinear transformation of the prediction error. The system under consideration is minimum phase
with different dimensions for input and output vectors. In the paper the concept of Kronecker’s product is used, which allows
us to represent unknown parameters in the form of vectors. For parameter estimation a stochastic approximation algorithm
is employed. Using the concept of the stochastic Lyapunov function, global stability and optimality of the feedback system
are established.
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1. Introduction

Adaptive control is a very important topic in control the-
ory and practice. A vast amount of literature already exists
on parameter estimation and adaptive control of stochas-
tic systems (Åström and Wittenmark, 1989; Caines, 1988;
Chen and Guo, 1991; Duflo, 1997; Goodwin and Sin,
1984; Kumar and Varaija, 1986). In those references it
is assumed that stochastic disturbance has a Gaussian dis-
tribution. In some cases a dominant aspect in a control
problem is the unmodeled dynamics, and then it is very
important to assume the robustness of the control scheme
(Ioannou and Sun, 1996; Landau et al., 1998; Sastry and
Bodson, 1989).

The problem of stochastic adaptive control of linear
ARMAX systems has received considerable attention in
the literature. In (Goodwin et al., 1981), self-optimality
and global stability for minimum variance regulation and
tracking were proved. Self-optimality means that the time
average value of the square of the tracking error is min-
imal. In (Becker et al., 1985), for a stochastic gradi-
ent algorithm, the self-tuning property for the regulation
problem was shown. This means that the adaptive con-
trol law converges to an optimal control law. The same
results were obtained for the tracking problem in (Kumar
and Praly, 1987). The results of (Lin et al., 1985) show
that the self-tuning regulation with the minimum variance
cost criterion is asymptotically optimal. That does not oc-
cur for other cost criteria (for example, the quadratic cost
criterion). An exception is the class of systems with large
delays.

In the above papers it is shown that, in the case of
the minimum variance problem, the closed-loop identifi-
ability problem does not prevent self-tuning because ev-
ery possible limit of parameter estimates leads to an opti-
mal control law. Moreover, in (Becker et al., 1985) it is
shown that the parameter estimate converges to some ran-
dom multiple of the true parameter. For consistent param-
eter estimation it is necessary to introduce an additional
signal: continually disturbed control (Caines, 1988), a di-
minishing excitation signal (Chen and Guo, 1991), or an
occasional excitation (Lai and Wei, 1986). The problemof
the robustness of the minimum-variance controller is con-
sidered in (Praly et al., 1989). It is shown that an adaptive
controller for linear stochastic systems is optimal for all
ideal plants and remains stable with respect to violations
of the positive real condition and with respect to pertur-
bations of the system in the graph topology from all ideal
plants. In the case of multiplicative and additive system
perturbations, the problem of adaptive control was consid-
ered in (Radenkovic and Michel, 1992). The underlying
idea for the above problem is the construction of a suitable
Lyapunov function for different periods of adaptation.

In this paper we will consider a minimum-variance
controller when the disturbance is non-Gaussian. The
non-Gaussian assumption introduces a nonlinear transfor-
mation of the tracking error in the estimation algorithm.
A special case of such a situation is when one has a-
priori information about the class of distributions to which
the actual real disturbance belongs. In such a situation
the theory of min-max estimation can be applied and the



V. Filipovic352

corresponding algorithm is known as a robust algorithm
(Filipovic and Kovacevic, 1994). Robustness here is with
respect to a change in the disturbance distribution. In
(Filipovic, 1999), a robust ELS algorithm was consid-
ered and stability and optimality of the minimum variance
controller were proved. It was shown that for the stabil-
ity of the adaptive controller is not necessary to modify
the gain matrix. The tracking problem when the noise is
non-Gaussian and when, also, unmodeled dynamics are
present was considered in (Filipovic, 1996). Global con-
vergence for a robust adaptive one-step ahead predictor is
proved in (Filipovic, 2001).

In this paper we will investigate an adaptive
minimum-variance controller for a system which is de-
scribed by a multivariable ARMAX model. It is assumed
that the system is minimum phase and that the relevant
vectors of signals have different dimensions (rectangu-
lar systems). For parameter estimation, a stochastic ap-
proximation algorithm is used. Using the concept of the
stochastic Lyapunov function, stability and optimality of
the feedback system are established.

2. Problem Formulation

Let the system under consideration be described by a lin-
ear multi-input, multi-output ARMAX model with m-
dimensional output and l-dimensional input,

A(z)yn+1 = B(z)un +C(z)wn+1, n ≥ 0, (1)

yn = wn = 0, un = 0, n < 0,

where A(z), B(z) and C (z) are matrix polynomials in
the shift-back operator zyn = yn−1 of orders p, q and
r, respectively, i.e.,

A(z) = I +A1z + · · · +Apz
p, p ≥ 0, (2)

B(z) = B1 +B2z + · · · +Bqz
q−1, q ≥ 1, (3)

C(z) = I +C1z + · · · +Crz
r, r ≥ 0. (4)

The noise {wn} is assumed to be a martingale-
difference sequence with respect to a nondecreasing fam-
ily of σ-algebras {Fn}.

The unknown matrix coefficients are

θM = [−A1 · · · −ApB1 · · ·BqC1 · · ·Cr]
T
. (5)

Model (1) can then be rewritten in the form

yn+1 =
(
θM
)T
φ0

n +wn+1, (6)

where (
φ0

n

)T
=
[
yT

n · · ·yT
n−p+1u

T
n · · ·uT

n−q+1

wT
n · · ·wT

n−r+1

]
. (7)

Let us introduce

X0
n =

⎡
⎢⎢⎢⎢⎣

(
φ0

n

)T 0(
φ0

n

)T
. . .

0
(
φ0

n

)T

⎤
⎥⎥⎥⎥⎦ = I ⊗ (φ0

n

)T
,

(8)
where ⊗ stands for the Kronecker product. Also, a new
vector θ is constructed by stacking the columns of the
θM matrix. The relation (6) now has the form

yn+1 = X0
nθ +wn+1. (9)

In this paper we will consider a direct adaptive
minimum-variance controller. The algorithm for esti-
mating the unknown parameters can be reduced to the
minimization of the functional (Filipovic and Kovacevic,
1994):

J (θ) = E {Φ (εn+1)} , Φ : R
m → R

1, (10)

where εn+1 is the prediction error, i.e., εn+1 = yn+1 −
ŷn+1, in which ŷn+1 is the prediction of yn+1. The al-
gorithm will have a stochastic approximation form (Kush-
ner and Yin, 2003).

The functional J (θ) depends on the probability of
observations, which is, in general, non-Gaussian. From
identification theory it is known that

Φ (x) = − logp (x) , x ∈ R
m, (11)

where p(·) is probability density. As a result of applying
the methodology of (Filipovic and Kovacevic, 1994) to (8)
and (9), we get

θn+1 = θn +
aXT

n

rn
Ψ (yn+1 −Xnθn) ,

0 < a ≤ 1, (12)

rn = rn−1 + trXT
nMXn, (13)

Ψ (x) = −∇x logp (x) , (14)

(φn)T =
[
yT

n · · ·yT
n−p+1u

T
n

· · ·uT
n−q+1y

T
n − (Xn−1θn−1)

T

· · ·yT
n−r − (Xn−r+1θn−r+1)

T
]
, (15)

Xn = I ⊗ φT
n , (16)

M = E {∇xΨ (x)} , x ∈ R
m, (17)

Xnθn = y∗n+1. (18)

The controller (18) is a minimum-variance one, where
{y∗n+1} is a sequence of bounded deterministic signals.
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Remark 1. If we can use an a priori assumption that the
distribution of the real noise lies in a specified class of dis-
tributions F which is convex and vaguely compact (Hu-
ber, 2003), it is possible to construct a robust real-time
procedure in a min-max sense. The members of F are
symmetric and F contains the standard normal distribu-
tion N . Two important classes are:

(a) the gross error model:

F1ε =
{
F : F = (1 − ε)N + εG,

G is symmetric
}
, ε ∈ [0, 1) ,

b) the Kolmogorov model:

F2ε =
{
F : F is symmetric and

sup
x

|F (x) −N(x)| ≤ ε
}
, ∃ε > 0.

Recent applications of robust statistics in engineering are
presented in (Hubert et al., 2004). A statistical analysis
for atypical observations in economic and financial time
series is made in (Lucas et al., 2005).

3. Analysis of the Adaptive Algorithm

In this part of the paper global stability of the control sys-
tem and a self-optimizing property of the adaptive con-
troller are established. These results are formulated in the
form of the following theorem:

Theorem 1. Assume that for the model (1) and the algo-
rithm (12)–(18) the following conditions are satisfied:
C1: B1 has full rank and B+

1 B(z) is an asymptotically
stable matrix polynomial, where B+

1 denotes the
pseudoinverse of B1.

C2: All zeros of the polynomial detC(z) lie inside the
unit circle.

C3: Upper bounds for p, q and r are known.

C4: All finite-dimensional distributions of {x0,w} are
absolutely continuous with respect to the Lebesque
measure, where
x = {y0, . . . ,y1−n;u0, . . . ,u1−n;w0, . . . ,w1−n},
n = max {p, q, r}.

C5: The reference signal {y∗n} is uniformly bounded.

C6: {wn, Fn} is a martingale-difference sequence hav-
ing a symmetric probability distribution function
P (·) and satisfying

E
{
wn+1w

T
n+1 | Fn−1

}
= R a.s.,

E
{
‖wn+1‖4 | Fn−1

}
≤ Cw <∞ a.s.

C7: The functions ψi (·), i = 1, . . . ,m are odd and
continuous everywhere.

C8: The functions ψi (·), i = 1, . . . ,m are uniformly
bounded.

C9: λmin {M} > 0.

C10: There exists a passive operatorH such that for ev-
ery n ≥ 1 we have

HZ1n = Φ1

(
C−1(z)Z1n

)
−1

2
Φ2

(
C−1(z)Z1n

)
Z1n,

Z1n = −Xnθ̃n, θ̃n = θn − θ,

Φ1

(
C−1(z)Z1n

)
= E

{
ψ
(
C−1(z)Z1n −wn+1

) |Fn

}
,

Φ2

(
C−1(z)Z1n

)
= E

{
ψ′ (C−1(z)Z1n −wn+1

) |Fn

}
.

C11: 0 < ‖Φ2 (x)‖ <∞, ∀x.
Then the adaptive controller is stable and optimal in the
following sense:

lim
n→∞

1
n

n∑
i=0

(
‖yi+1‖2 + ‖ui+1‖2

)
<∞ a.s.,

lim
n→∞

1
n

n∑
i=0

(
yi+1 − y∗i+1

) (
yi+1 − y∗i+1

)T = R a.s.

Proof. Introducing the stochastic Lyapunov function

Vn+1 = θ̃T
n+1θ̃n+1, θ̃n+1 = θn+1 − θ, (19)

and using (12), one can get

Vn+1 =
[
θ̃n+

aXT
n Ψ (εn+1)
rn

]T[
θ̃n+

aXT
n Ψ (εn+1)
rn

]

= θ̃T
n θ̃n+

aθ̃T
nX

T
n Ψ (εn+1)
rn

+
aΨT (εn+1)Xnθ̃n

rn

+
a2ΨT (εn+1)XnX

T
n Ψ (εn+1)

r2n

= Vn +
2a
(
Xnθ̃n

)T

Ψ (εn+1)

rn

+
a2ΨT (εn+1)XT

nXnΨ (εn+1)
r2n

. (20)

The prediction error εn+1 has the form (Duflo, 1997):

εn+1 = −C−1(z)Xnθ̃n +wn+1. (21)

Using Condition C8, we conclude that

‖Ψ (·)‖ ≤ k, ∈ (0,∞) , (22)

where Ψ (·) = [ψ1 (·) · · ·ψm (·)]T .
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Taking conditional expectations and having Condi-
tion C7 in mind from (20)–(22) we obtain

E {Vn+1 |Fn }

≤Vn− 2a(Xnθn)T

rn
E
{
Ψ
(
C−1(z)Xnθ̃n−wn+1

)
| Fn

}

+
a2k‖Xn‖2

r2n

= Vn − 2a(Xnθ̃n)T

rn
Φ1

(
C−1(z)Xnθ̃n

)

+
a(Xnθ̃n)T (Xnθ̃n)

rn
Φ2

(
C−1(z)Xnθ̃n

)

− a‖Xnθ̃n‖2

rn
Φ2

(
C−1(z)Xnθ̃n

)
+
a2k ‖Xn‖2

r2n

= Vn − 2a(Xnθ̃n)T

rn

×
[
Φ1

(
C−1(z)Xnθ̃n

)
− 1

2
Φ2

(
C−1(z)Xnθ̃n

)
Xnθ̃n

]

− a‖Xnθ̃n‖2

rn
Φ2

(
C−1(z)Xnθ̃n

)
+
a2k ‖Xn‖2

r2n
. (23)

Define

Sn = 2a
n∑

i=1

(
Xiθ̃i

)T [
Φ1

(
C−1(z)Xiθ̃i

)

− 1
2
Φ2

(
C−1(z)Xiθ̃i

)
Xiθ̃i

]
+ k0. (24)

From Condition C10 it follows that

Sn ≥ 0, ∃k0 > 0.

Now we will define the nonnegative random variable:

Tn+1 = Vn+1 +
Sn

rn
. (25)

From the definitions of Sn and rn, we obtain

E {Tn+1 |Fn } = E {Vn+1 |Fn } +
Sn

rn
, rn−1 ≤ rn.

(26)

Using the relations (23)–(26), we have

E {Tn+1 | Fn}

≤ Vn +
Sn−1

rn−1

− a‖Xnθ̃n‖2

rn
Φ2

(
C−1(z)Xnθ̃n

)
+
a2k ‖Xn‖2

r2n

= Tn− a‖Xnθ̃n‖2

rn
Φ2

(
C−1(z)Xnθ̃n

)

+
a2k ‖Xn‖2

r2n
. (27)

For the last term in (27) we can write

∞∑
i=0

a2k‖Xi‖2

r2i
≤ a2k

∞∑
i=0

‖Xi‖2

1 + λmin {M}
i∑

k=1

‖Xn‖2

=
a2k

λmin {M}
∞∑

i=0

λmin {M} ‖Xi‖2

1+λmin {M}
i∑

k=1

‖Xn‖2

<∞ a.s.

(28)

The last result is a consequence of the Abel-Deany theo-
rem (Rudin, 1964).

Using Condition C11, the Robbins-Siegmund mar-
tingale convergence theorem (Robins and Siegmund,
1971), (27) and (28), we get

∞∑
i=0

‖Xiθ̃i‖2

ri
= O (1). (29)

Now we will prove that, under Condition C6, we have
rn → ∞ as n→ ∞. From C6 we obtain

E
{(
wn+1w

T
n+1 −R

) |Fn

}
= 0. (30)

Further, we can write (having in mind Condition C6):∥∥∥∥
∞∑

i=0

1
(i+ 1)2

E
{(
wi+1w

T
i+1 +R

)T

× (wi+1w
T
i+1 −R

) | Fi

}∥∥∥∥
≤
∥∥∥∥

∞∑
i=0

1
(i+ 1)2

E
{(
wi+1w

T
i+1 +R

)T

× (wi+1w
T
i+1 +R

) | Fi

}∥∥∥∥
≤

∞∑
i=0

1
(i+ 1)2

∥∥∥∥E
{(

‖wi+1‖2 + ‖R‖
)2

| Fi

}∥∥∥∥
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=
∞∑

i=0

E
{‖wi+1‖4 | Fi

}
(i+ 1)2

+ 2‖R‖
∞∑

i=0

E
{‖wi+1‖2 | Fi−1

}
(i+ 1)2

+ ‖R‖2
∞∑

i=0

1
(i+ 1)2

≤ (Cw + 2‖R‖trR+ ‖R‖2
) ∞∑

i=0

1
(i+ 1)2

<∞ a.s. (31)

Using Theorem 2.18 of (Hall and Heyde, 1980, p. 35), we
thus obtain

∞∑
i=0

wi+1w
T
i+1 −R

i+ 1
<∞ a.s., (32)

and then using Kronecker’s lemma (Shiryayev, 2004), we
have

lim
n→∞

1
n

n∑
i=0

wi+1w
T
i+1 = R > 0 a.s. (33)

From the last relation we get

lim
n→∞

1
n

n∑
i=0

‖wi+1‖2
> 0 a.s. (34)

Using (1) and Condition C2, we have

n∑
i=0

‖wi+1‖2 ≤ k1

n∑
i=0

(
‖yi+1‖2 + ‖ui‖2

)
,

k1 ∈ (0,∞) . (35)

Assume that

lim
n→∞ rn <∞ a.s. (36)

From the definition of rn, cf. (13), and (35) it follows that

rn ≥ 1 + λmin {M} ‖Xn‖2

≥ 1 + k2

(
n∑

i=0

‖wi+1‖2 +
n∑

i=0

‖yi+1‖2 +
i∑

k=1

‖ui‖2

)

≥ 1+k3

n∑
i=0

‖wi+1‖2
, k2∈(0,∞) , k3∈(0,∞) . (37)

Using (35) and (37), we obtain

lim
n→∞

1
n

n∑
i=0

‖wi+1‖2 = 0 a.s. (38)

The last relation contradicts (34) so that we always have

lim
n→∞ rn = ∞ a.s. (39)

Using Kronecker’s lemma (Shiryayev, 2004), from (29)
and (39) we get

lim
n→∞

1
rn

n∑
i=0

∥∥Xiθ̃i

∥∥2 = 0 a.s. (40)

Condition C1, taken in conjunction with (1) and (34),
yields

1
n

n∑
i=0

‖ui‖2≤ k4

n

n∑
i=0

‖yi+1‖2+ k5, ; (k4, k5) ∈ (0,∞) .

(41)
Also, for rn we can write (having in mind C11):

rn ≤ 1 + λmin {M}
n∑

i=0

‖Xn‖2
. (42)

Using (41) and (42), we have

rn
n

≤ k6

n

n∑
i=0

‖yi+1‖2 + k7, (k6, k7) ∈ (0,∞) . (43)

Similary to (Goodwin et al., 1981), from (41) and (43) it
follows that

lim inf
n→∞

n

rn
> 0 a.s. (44)

Now from (40) and (44) we have

lim
n→∞

1
n

n∑
i=0

∥∥Xiθ̃i

∥∥2 = 0 a.s. (45)

Since (44) is equivalent to

lim sup
n→∞

rn
n
<∞ a.s., (46)

from the definition of rn it follows that

lim sup
n→∞

1
n

n∑
i=0

‖yi+1‖2
< ∞ a.s., (47)

lim sup
n→∞

1
n

n∑
i=0

‖ui‖2 < ∞ a.s. (48)

So the stability of the adaptive controller has been estab-
lished.

The next goal is to prove system optimality. Write

ζn+1 = C−1(z)Xnθ̃n. (49)

Using Condition C2 and (45), we have

lim
n→∞

1
n

n∑
i=0

‖ζi+1‖2 = 0 a.s. (50)



V. Filipovic356

From (21) and (49) it follows that

yn+1 − y∗n+1 = −ζn+1 +wn+1. (51)

Using the last relation and the Cauchy-Schwarz inequality
(Rudin, 1964), we can writte∥∥∥∥ 1

n

n∑
i=0

(
yi+1 − y∗i+1

) (
yi+1 − y∗i+1

)T

− 1
n

n∑
i=0

wi+1w
T
i+1

∥∥∥∥
=
∥∥∥∥ 1
n

n∑
i=0

(−ζi+1 +wi+1) (−ζi+1 +wi+1)
T

− 1
n

n∑
i=0

wi+1w
T
i+1

∥∥∥∥
=
∥∥∥∥ 1
n

n∑
i=0

(
ζi+1ζ

T
i+1 − 2ζi+1w

T
i+1 +wi+1w

T
i+1

)

− 1
n

n∑
i=0

wi+1w
T
i+1

∥∥∥∥
=
∥∥∥∥ 1
n

n∑
i=0

ζi+1ζ
T
i+1 −

2
n

n∑
i=0

ζi+1w
T
i+1

∥∥∥∥
≤ 1
n

n∑
i=0

‖ζi+1‖2

+ 2

(
1
n

n∑
i=0

‖ζi+1‖2

) 1
2
(

1
n

n∑
i=0

‖wi+1‖2

) 1
2

.(52)

Having (34), (50) and (51), in mind from the last relation
we get

∥∥∥∥ 1
n

n∑
i=0

(
yi+1 − y∗i+1

) (
yi+1 − y∗i+1

)T

− 1
n

n∑
i=0

wi+1w
T
i+1

∥∥∥∥ −→
n→∞ 0. (53)

Finally, (30) and (50) yield

lim
n→∞

1
n

n∑
i=0

(
yi+1 − y∗i+1

) (
yi+1 − y∗i+1

)T = R. (54)

Our theorem is thus proven.

Remark 2. Condition C4 in Theorem 1 can be replaced
by some modifications of B1n (Åström and Wittenmark,
1973; Bercu, 1995; Chen and Guo, 1991).

Remark 3. In order to justify Condition C10, we need
some concepts of passive systems. Assume that a system
is described by an operator. Let Z denote the integers,
Z+ the positive integers (i.e., those greater then or equal
to zero) and l2 the Hilbert space with the inner product
〈·, ·〉 defined by

〈a, b〉 =
∞∑

k=0

aT (k) b (k).

We adopt some results from (Desoer and Vidyasagar,
1975) for discrete-time systems:

D1. Let f(k) : Z+ → Z. Then for each k ∈ Z+, the
function fn(k) : Z+ → Z is defined by

fn (k) =

{
f (k) , 0 ≤ k ≤ n,

0, n ≤ k,

and is called the trunction of f(k) to the interval
[0, n].

D2. The set l2e consists of all measurable functions
f (k) : Z+ → Z with the property that fn (k) ∈ l2
for all finite n. It is called the extension of l2 or the
extended l2 space.

D3. An operator G : l2e → l2e is said to be passive if

〈x,Gx〉n ≥ 0, ∀n ≥ 0, ∀x ∈ l2e.

When the operator G is nonlinear, Definition D3 implies
Condition C10, and hence (24).

When the stochastic disturbance wn is a Gaussian
process, Condition C10 has the form

n∑
n=1

ZT
1k

(
C−1 (z) − 1

2
I

)
Z1k > 0.

The above relation is correct when

Re
{
C−1(z) − 1

2
I

}
> 0.

That is a well-known condition from the theory of linear
recursive algorithms.

4. Conclusions

In this paper we have presented a methodology for adap-
tive control of discrete-time dynamic stochastic MIMO
systems when the disturbance has a non-Gaussian distri-
bution. Using the Huber min-max approach, the method-
ology is extended to the case when a-priori information
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exists about the class of distributions to which the real dis-
turbance belongs. The main contribution of the paper is
the proof of global stability and optimality of the adaptive
control system considered.

There are a number of interesting directions for fu-
ture research in this area. First, it is interesting to con-
sider robust recursive algorithms with the matrix gain
which would possess a higher speed of convergence.
Also, the problem of global stability and optimality of
the minimum-variance controller for systems with time-
delays and non-Gaussian disturbances could be consid-
ered.
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