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In this paper we show new formulas for the spectral radius and the spectral subradius of a set of matrices. The advantage of
our results is that we express the spectral radius of any set of matrices by the spectral radius of a set of symmetric positive
definite matrices. In particular, in one of our formulas the spectral radius is expressed by singular eigenvalues of matrices,
whereas in the existing results it is expressed by eigenvalues.
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1. Introduction

The idea of the spectral radius of a set of matrices was
introduced in the seminal paper (Rota and Strang, 1960).
For two square matrices A and B, the authors defined

ρ(A, B)

= lim
n→∞

[
largest norm of any product with n factors

] 1
n .

The product can have As and Bs in any order (and the
limn→∞ is actually a limit). For a single matrix it equals
the largest magnitude of the eigenvalues. But the products
of A and B can produce norms and eigenvalues that are
very hard to estimate (as n increases) from the two ma-
trices. The Lyapunov exponent is a similar number, using
averages over products of the length n instead of maxima,
and it suffers from the same difficulty in actual computa-
tion. The definitions extend directly to sets of more than
two matrices, and an lp norm joint spectral radius has also
proved useful (Jia, 1995). For a long time the general-
ized spectral radius has not found applications. However,
Daubechies and Lagarias (1992a; 1992b) pointed an appli-
cation in solving the key equation in wavelet theory, i.e.,
the refinement equation (or the dilation equation) for the
scaling function. In (Michelli and Prautzsch, 1989), the
idea of the spectral radius of a set of matrices was used in
the subdivision algorithm for computer aided design.

Further applications of the generalized spectral ra-
dius were possible due the great result of Berger and Wang
(1992), which provides the option of estimating ρ from
the eigenvalues of the products, instead of their norms. A
simpler proof of this fact was given by Elsner (1995). The
absolute value of eigenvalues approaches from below and
the norms from above. Further applications were found in

the stability theory of time varying linear systems and lin-
ear inclusions (Czornik, 2005; Gurvits, 1995; Shih, 1999).
The latter application is explained by Theorem 1 below.

Let Σ denote a nonempty set of real l × l matrices.
For m ≥ 1, Σm is the set of all products of matrices in Σ
of the length m,

Σm =
{
A1A2 . . . Am : Ai ∈ Σ, i = 1, . . . , m

}
.

Denote by ρ(A) the spectral radius and by ‖A‖ a matrix
norm of the matrix A. By the matrix norm we understand
a norm that satisfies the submultiplicative property, i.e.,
‖AB‖ ≤ ‖A‖ ‖B‖. The common spectral radius is de-
fined as

ρ̂(Σ) = lim
n→∞

[
sup

{
ρ(A) : A ∈ Σn

}] 1
n

, (1)

and the generalized spectral radius as

ρ̃(Σ) = lim
n→∞

[
sup

{‖A‖ : A ∈ Σn
}] 1

n

. (2)

In (Berger and Yang, 1992; Elsner, 1995), it was
shown that for a bounded set Σ the limit in (2) exists and
we have

ρ̂(Σ) = ρ̃(Σ) =: ρ(Σ),

from which it follows that

ρ(Σ) = inf
n∈N

sup
A∈Σn

‖A‖ 1
n = sup

n∈N
sup

A∈Σn

ρ(A)
1
n .

For a bounded set Σ, the common value of ρ̂(Σ), ρ̃(Σ) is
called the spectral radius of Σ.

In (Gurvits, 1995), the ideas of a joint spectral subra-
dius and a generalized spectral subradius of the set of ma-
trices were introduced. They were further investigated in
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(Czornik, 2005). The results were used in (Gurvits, 1995)
to present conditions for the Markov asymptotic stability
of a discrete linear inclusion. The definitions are as fol-
lows: The common spectral subradius is defined as

ρ̂(Σ) = lim
n→∞

[
sup {ρ(A) : A ∈ Σn}

] 1
n

, (3)

and the generalized spectral subradius as

ρ̃(Σ) = lim
n→∞

[
sup {‖A‖ : A ∈ Σn}

] 1
n

.

In (Czornik, 2005), it was shown that for any non-
empty set Σ we have

ρ̃(Σ) = inf
n∈N

inf
A∈Σn

‖A‖ 1
n = inf

n∈N

inf
A∈Σn

ρ(A)
1
n = ρ̂(Σ).

The common value of ρ̂(Σ) and ρ̃(Σ) is called the spectral
subradius of Σ and it is denoted by ρ(Σ).

The relationship between the generalized spectral
radii and the stability of discrete time-varying linear sys-
tems is explained by the following theorem (the proof can
by found in (Czornik, 2005; Gurvits, 1995)):

Theorem 1. Consider a discrete time-varying linear sys-
tem

x(t + 1) = d(t)x(t), x(0) = x0,

where d is a sequence of matrices taken from Σ. Then

1. for any sequence d and any x0 ∈ R
l we have

limt→∞x(t) = 0 if and only if ρ(Σ) < 1,

2. there exists a sequence d such that for any x0 ∈ R
l

we have limt→∞x(t) = 0 if and only if ρ(Σ) < 1.

The purpose of this paper is to present new formu-
las for the spectral radius and subradius of a set of matri-
ces. In those formulas, the spectral radius is expressed by
singular eigenvalues of matrices, unlike in (1), where we
have to compute eigenvalues. It is well known that com-
puting singular eigenvalues is much simpler and, for some
algorithms, faster than computing eigenvalues. Therefore,
our results can be used to simplify numerical algorithms
for calculating the estimates of the spectral radius of a set
of matrices. This is demonstrated by examples.

2. Main Results

The main idea of this paper is to express the spectral ra-
dius and subradius of a set of any matrices with a set of
symmetric nonnegative definite matrices.

Write

Σn =

{
n∏

i=1

Ai : Ai ∈ Σ

}

and
Σn

s =
{
A · AT : A ∈ Σn

}
.

Now we formulate our first main result.

Theorem 2. For any nonempty and bounded set Σ of real
l × l matrices, we have

ρ(Σ) = inf
n∈N

sup
A∈Σn

s

‖A‖ 1
2n . (4)

The idea of the proof of the above theorem rests on
the fact that the value of (4) does not depend on the choice
of the matrix norm (Gripenberg, 1996). The proof of that
theorem uses some properties of special cases of matrix
norms and the properties of the suprema and infima of
some sets. Let us start with the definitions of norms used
in the lemmas and the proof of Theorem 2.

Define the following Euclidean vector norm:

‖x‖w =

√√√√ n∑
i=1

|xi|2,

and the matrix norms (Golub and Loan, 1996):

‖A‖1 =
n∑

i=1

n∑
j=1

|aij |,

‖A‖2 =

√√√√ n∑
i=1

n∑
j=1

|aij |2,

‖A‖3 = max
i

n∑
j=1

|aij |,

‖A‖4 = max
j

n∑
i=1

|aij |,

‖A‖5 = sup
x �=0

‖Ax‖w

‖x‖w
.

In (Golub and Loan, 1996), it was shown that there is a
simple relation between the norms ‖·‖1 and ‖·‖2, namely,
for any matrix A we have

√‖AAT ‖1 ≥ ‖A‖2.
We will also use the following lemma that connects

the spectral radius of a matrix with some special case of
the matrix norm. The proof of Parts 1, 2 and 3 of the
lemma can be found in (Golub and Loan, 1996; Guglielmi
and Zennaro, 2001; Horn and Johnson, 1985), respec-
tively.

Lemma 1. For any matrix A, we have

1. ‖AT ‖2
5 = ρ(AAT ),

2. ρ(A) = inf
‖·‖

‖A‖,
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3. ρ(A) = lim
n→∞‖An‖ 1

n .

Now we are ready to prove Theorem 2. We have

ρ(Σ) = inf
n∈N

sup
A∈Σn

‖A‖ 1
n .

It is well known that the above expression does not de-
pend on the choice of the matrix norm (Gripenberg, 1996).
Thus

inf
n∈N

sup
A∈Σn

‖A‖ 1
n = inf

n∈N

sup
A∈Σn

‖A‖ 1
n
2 .

Now we can write

inf
n∈N

sup
A∈Σn

‖A‖ 1
n
2 ≤ inf

n∈N

sup
A∈Σn

(√
‖AAT ‖1

) 1
n

= inf
n∈N

sup
A∈Σn

‖AAT ‖ 1
2n
1 .

Using the definition of the set Σn
s , we can write

inf
n∈N

sup
A∈Σn

‖AAT ‖ 1
2n
1 = inf

n∈N

sup
A∈Σn

S

‖A‖ 1
2n
1 ,

and because the value of the above does not depend on the
choice of the matrix norm, we get

inf
n∈N

sup
A∈Σn

S

‖A‖ 1
2n
1 = inf

n∈N

sup
A∈Σn

S

‖A‖ 1
2n .

Thus,
ρ(Σ) ≤ inf

n∈N

sup
A∈Σn

S

‖A‖ 1
2n . (5)

On the other hand,

ρ(Σ) = inf
n∈N

sup
A∈Σn

‖A‖ 1
n ,

which does not depend on the choice of the matrix norm,
either, so

inf
n∈N

sup
A∈Σn

‖A‖ 1
n = inf

n∈N

sup
A∈Σn

‖A‖ 1
n
3

= inf
n∈N

sup
A∈Σn

(
‖A‖ 1

2n
3

)2

.

Therefore,

inf
n∈N

sup
A∈Σn

(
‖A‖ 1

2n
3

)2

=
(

inf
n∈N

sup
A∈Σn

‖A‖ 1
2n
3

)2

=
(

inf
n∈N

sup
A∈Σn

‖A‖ 1
2n
3

) (
inf
n∈N

sup
A∈Σn

‖A‖ 1
2n
3

)
.

The norm ‖ · ‖3 is defined as the maximum of the
sums of absolute values of elements in individual rows of
some matrix. The norm ‖ · ‖4 is defined as the maximum

of the sums of absolute values of elements in individual
columns of some matrix. Therefore, it is clear that

‖A‖3 = ‖AT ‖4,

and thus we obtain(
inf
n∈N

sup
A∈Σn

‖A‖ 1
2n
3

) (
inf
n∈N

sup
A∈Σn

‖A‖ 1
2n
3

)

=
(

inf
n∈N

sup
A∈Σn

‖A‖ 1
2n
3

) (
inf
n∈N

sup
A∈Σn

‖AT ‖ 1
2n
4

)
.

But the value of the expression containing the norm ‖ · ‖ 4

does not depend on the choice of the matrix norm, whence

(
inf
n∈N

sup
A∈Σn

‖A‖ 1
2n
3

) (
inf
n∈N

sup
A∈Σn

‖AT ‖ 1
2n
4

)

=
(

inf
n∈N

sup
A∈Σn

‖A‖ 1
2n
3

) (
inf
n∈N

sup
A∈Σn

‖AT ‖ 1
2n
3

)
.

Now we have(
inf
n∈N

sup
A∈Σn

‖A‖ 1
2n
3

) (
inf
n∈N

sup
A∈Σn

‖AT ‖ 1
2n
3

)
= inf

n∈N

sup
A∈Σn

(
‖A‖ 1

2n
3 ‖AT ‖ 1

2n
3

)
,

which implies

inf
n∈N

sup
A∈Σn

(
‖A‖ 1

2n
3 ‖AT ‖ 1

2n
3

)
≥ inf

n∈N

sup
A∈Σn

‖AAT ‖ 1
2n
3 .

Once again, the fact that the value of the above expression
does not depend on the choice of the matrix norm yields

inf
n∈N

sup
A∈Σn

‖AAT ‖ 1
2n
3 = inf

n∈N

sup
A∈Σn

‖AAT ‖ 1
2n .

Using the definition of the set Σn
s , we get

inf
n∈N

sup
A∈Σn

‖AAT ‖ 1
2n = inf

n∈N

sup
A∈Σn

s

‖A‖ 1
2n .

Thus
ρ(Σ) ≥ inf

n∈N

sup
A∈Σn

s

‖A‖ 1
2n . (6)

From (5) and (6), we conclude that

ρ(Σ) = inf
n∈N

sup
A∈Σn

s

‖A‖ 1
2n . (7)

From (Gripenberg, 1996), we know that

ρ(Σ) = sup
n∈N

sup
A∈Σn

ρ(A)
1
n .

Now we show that there exists a simple dependence be-
tween the spectral radius of the set Σ and a positive sym-
metric set of matrices that is constructed from the set Σ.
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Theorem 3. For any nonempty and bounded set Σ of real
l × l matrices, we have

ρ(Σ) = sup
n∈N

sup
A∈Σn

s

ρ(A)
1
2n .

Proof. By Part (2) of Lemma 1 and the definition of the
set Σn

s , we have

sup
n∈N

sup
A∈Σn

s

ρ(A)
1
2n = sup

n∈N

sup
A∈Σn

s

(
inf
‖·‖

‖A‖
) 1

2n

= sup
n∈N

sup
A∈Σn

(
inf
‖·‖

‖AAT ‖
) 1

2n

.

By the property of the matrix norms we obtain

sup
n∈N

sup
A∈Σn

(
inf
‖·‖

‖AAT ‖
) 1

2n

≤ sup
n∈N

sup
A∈Σn

(
inf
‖·‖

(‖A‖‖AT‖)) 1
2n

.

It is then clear that

sup
n∈N

sup
A∈Σn

(
inf
‖·‖

(‖A‖‖AT‖)) 1
2n

= sup
n∈N

sup
A∈Σn

(
inf
‖·‖

(
‖A‖ 1

2n ‖AT ‖ 1
2n

))
.

Now, we can write

sup
n∈N

sup
A∈Σn

(
inf
‖·‖

(
‖A‖ 1

2n ‖AT ‖ 1
2n

))

= sup
n∈N

sup
A∈Σn

(
inf
‖·‖

‖A‖ 1
2n

)
sup
n∈N

sup
A∈Σn

(
inf
‖·‖

‖AT ‖ 1
2n

)
.

It is obvious that

ρ(A) = ρ(AT ).

Hence
inf
‖·‖

‖A‖ = inf
‖·‖

‖AT ‖,

and therefore

sup
n∈N

sup
A∈Σn

(
inf
‖·‖

‖A‖ 1
2n

)
sup
n∈N

sup
A∈Σn

(
inf
‖·‖

‖AT ‖ 1
2n

)

= sup
n∈N

sup
A∈Σn

(
inf
‖·‖

‖A‖ 1
2n

)
sup
n∈N

sup
A∈Σn

(
inf
‖·‖

‖A‖ 1
2n

)

= sup
n∈N

sup
A∈Σn

(
inf
‖·‖

‖A‖ 1
2n

)2

= sup
n∈N

sup
A∈Σn

inf
‖·‖

‖A‖ 1
n = sup

n∈N

sup
A∈Σn

ρ(A)
1
n = ρ(Σ).

Thus,
sup
n∈N

sup
A∈Σn

s

ρ(A)
1
2n ≤ ρ(Σ). (8)

Now we can use Lemma 1 and write

sup
n∈N

sup
A∈Σn

s

ρ(A)
1
2n = sup

n∈N

sup
A∈Σn

ρ(AAT )
1
2n

= sup
n∈N

sup
A∈Σn

(‖AT ‖2
5

) 1
2n

= sup
n∈N

sup
A∈Σn

(‖AT ‖5

) 1
n

≥ sup
n∈N

sup
A∈Σn

(
lim

k→∞
‖ (

AT
)k ‖ 1

k
5

) 1
n

.

By the definition of the spectral radius of a single
matrix, the last expression is equal to

sup
n∈N

sup
A∈Σn

ρ(AT )
1
n = sup

n∈N

sup
A∈Σn

ρ(AT )
1
n

= sup
n∈N

sup
A∈Σn

ρ(A)
1
n = ρ(Σ).

Thus,
sup
n∈N

sup
A∈Σn

s

ρ(A)
1
2n ≥ ρ(Σ). (9)

From (8) and (9), we conclude that

sup
n∈N

sup
A∈Σn

s

ρ(A)
1
2n = ρ(Σ). (10)

One can find in the literature two other formulas for
the spectral radius of the set Σ:

ρ(Σ) = lim
n→∞ sup

A∈Σn

ρ(A)
1
n ,

and
ρ(Σ) = lim

n→∞ sup
A∈Σn

‖A‖ 1
n .

Let us formulate a similar result that will let us express the
spectral radius by the spectral radius and norm of a set of
symmetric nonnegative matrices.

Theorem 4. For any nonempty and bounded set
∑

of real
l × l matrices, we have

ρ(Σ) = lim
n→∞ sup

A∈Σn
s

ρ(A)
1
2n = lim

n→∞ sup
A∈Σn

‖A‖ 1
2n .

This theorem can be proved in the same way as Theo-
rems 1 and 2. Now, we can gather the results of Theorems
2–4 to write

inf
n∈N

sup
A∈Σn

s

‖A‖ 1
2n = sup

n∈N

sup
A∈Σn

s

ρ(A)
1
2n

= lim
n→∞ sup

A∈Σn
s

ρ(A)
1
2n

= lim
n→∞ sup

A∈Σn

‖A‖ 1
2n = ρ(Σ).
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In much the same way, one can prove the following
version of (11) for the spectral subradius:

Theorem 5. For any nonempty set
∑

of real l × l matri-
ces, we have

ρ(Σ) = inf
n∈N

inf
A∈Σn

s

‖A‖ 1
2n = inf

n∈N

inf
A∈Σn

s

ρ(A)
1
2n

= lim
n→∞

inf
A∈Σn

s

ρ(A)
1
2n = lim

n→∞ inf
A∈Σn

‖A‖ 1
2n .

3. Examples

3.1. Theoretical Example. Consider the finite set

Σ =
{

A =
[

a b
−b a

]
: a, b ∈ R, a �= 0, b �= 0, detA = 1

}
.

It is easy to show that, for an arbitrary matrix A ∈ Σ, we
have

AAT = I.

For

B =
n∏

i=1

Ai, (Ai ∈ Σ),

we obtain

B =

[
an bn

−bn an

]
, (an, bn ∈ R, detB = 1).

Thus for an arbitrary product B, we get

BBT = I.

Let choose the matrix norm

‖A‖3 = max
1≤i≤n

2∑
j=1

|aij |.

For all n ∈ N,

sup
A∈Σn

s

‖A‖ 1
2n
3 = sup

A∈Σn
s

‖I‖ 1
2n
3 = 1

1
2n = 1.

Therefore,

ρ(Σ) = inf
n∈N

sup
A∈Σn

s

‖A‖ 1
2n
3 = inf

n∈N

1 = 1.

On the other hand,

ρ(Σ) = inf
n∈N

sup
A∈Σn

‖A‖ 1
n
3 ,

but the only thing that we know about the value of ‖A‖ ∗
in this case is

‖A‖3 ≥ 1.

Thus,
sup

A∈Σn

‖A‖1/n
3 ≥ 1,

too, and it complicates the process of finding the spectral
radius of Σ according to the formula

ρ(Σ) = inf
n∈N

sup
A∈Σn

‖A‖ 1
n .

3.2. Practical Example. It is well known that any dis-
crete time-varying linear system that is connected with the
set Σ is unstable when ρ(Σ) > 1. Thus, when we want to
check if it is unstable, we do not have to know the exact
value of ρ(Σ). All we have to know is that this value is
greater than one. Therefore, we do not have to calculate
the value of ρ(Σ) using the formulas

ρ(Σ) = sup
n∈N

sup
A∈Σn

s

ρ(A)
1
2n

and
ρ(Σ) = sup

n∈N

sup
A∈Σn

ρ(A)
1
n .

The only thing we have to do is to try to find numbers p
and q such that

sup
A∈Σp

s

ρ(A)
1
2p > 1

or

sup
A∈Σq

ρ(A)
1
q > 1.

If this can be done, then we can be sure that the given
system is unstable.

A natural consequence of the above is that if we de-
fine two functions

f(n) = sup
k∈{1,2,...,n}

sup
A∈Σk

ρ(A)
1
k

and
g(n) = sup

k∈{1,2,...,n}
sup

A∈Σk
s

ρ(A)
1
2k ,

then the better function is that which grows faster than the
other. Therefore, we decided to write a computer program
to calculate the estimates of the spectral radius by using
both functions described above. In the first phase, the pro-
gram formed the set Σ that consisted of two matrices with
random entries. In the second phase, the program created
text files that included the products of all sequences of
matrices taken from the set Σ such that their length varied
from 1 to m (m ≥ 1). Next, the suprema of functions
f(n) and g(n) were calculated. The above test was re-
peated 1000 times for a set Σ that included two 10 × 10
random matrices with real elements. The results show that
estimate of the spectral radius that was calculated with the
procedure that uses symmetric matrices grows faster than
the one calculated by the procedure that uses nonsymmet-
ric matrices. Table 1 shows some estimates of the spectral
radius of Σ for m = 15.

As the procedure that uses symmetric matrices to cal-
culate the estimates has to multiply the matrices and their
transpositions, and then has to find their tridiagonal forms,
the resulting time of computations is very similar to that
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Table 1. Results of numerical simulations.

‘Non symmetrical’ estimates of ρ(Σ) ‘Symmetric’ estimates of ρ(Σ) Difference

5.0759532436 5.4977026931 8.3087733324%

5.2080473674 5.6922435597 9.2970773538%

5.7268488324 5.8506126114 2.1611148223%

5.0375119183 5.6316129380 11.7935407267%

6.2237710148 6.4388735096 3.4561440998%

4.8632082624 5.1817106903 6.5492245199%

5.8747584083 6.2546162919 6.4659319955%

5.0924269191 5.3351337170 4.7660339911%

5.3789582337 5.6207988577 4.4960494870%

5.0864498206 5.3297698549 4.7836908437%

obtained in the case when we use nonsymmetric matri-
ces, and it depends on the chosen numerical algorithms.
Therefore, the main advantage of this method in this case
is that it gives at the same time better estimates of the value
that we look for.

4. Conclusions

In this paper we propose new formulas for the generalized
spectral radius of a set of matrices. The main advantage of
our formulas is that they express the generalized spectral
radius of any set of matrices in terms of a set of symmetric
nonnegative definite matrices. It allows us to compute bet-
ter estimates of the spectral radius of a finite nonempty set
of matrices by using any faster or much simpler algorithm
that was designed to calculate the eigenvalues of symmet-
ric matrices. The only price we must pay for this is that
we have to multiply the given matrix and its transposi-
tion. Finally, let us notice that in the theory of stochastic
linear systems, the substitution of any matrices by sym-
metric ones allows us to obtain a very elegant proof of the
Oseledets ergodic theorem, cf. (Gol’dsheid and Margulis,
1989). Generalizations for linear time-varying inclusions
constitute the subject of our further investigations.
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