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Repetitive processes constitute a distinct class of 2D systems, i.e., systems characterized by information propagation in
two independent directions, which are interesting in both theory and applications. They cannot be controlled by a direct
extension of the existing techniques from either standard (termed 1D here) or 2D systems theories. Here we give new results
on the design of physically based control laws. These results are for a sub-class of discrete linear repetitive processes with
switched dynamics in both independent directions of information propagation.
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1. Introduction

The essential unique characteristic of a repetitive process
(also termed a multipass process in the early literature) can
be illustrated by considering machining operations where
the material or workpiece involved is processed by a series
of sweeps, or passes, of the processing tool. Assuming
the pass length α < +∞ to be constant, the output vec-
tor, or pass profile, yk(p), p = 0, 1, . . . , (α − 1) (p being
the independent spatial or temporal variable), generated
on the pass k acts as a forcing function on, and hence con-
tributes to, the dynamics of the new pass profile yk+1(p),
p = 0, 1, . . . , (α − 1), k = 0, 1, . . . .

Industrial examples of repetitive processes include
long-wall coal cutting operations and metal rolling oper-
ations (see the original papers cited in, e.g., (Rogers and
Owens, 1992)). Also, a number of the so-called algorith-
mic examples exist where adopting a repetitive process
setting for analysis has clear advantages over alternative
approaches to systems related analysis. These include
iterative learning control schemes (Amann et al., 1998;
Longman, 2003) and iterative solution algorithms for dy-

namic nonlinear optimal control problems based on the
maximum principle (Roberts, 2002). In the former case,
the sub-classes of the so-called differential and discrete
linear repetitive processes form the basis for a rigorous
analysis of a powerful class of such algorithms. In the lat-
ter, the repetitive process setting for analysis has led to the
development of numerically reliable and computationally
efficient solution algorithms.

Another possible area of application for repetitive
processes regards the so-called spatially interconnected
systems, which have already found numerous important
physical applications, see, e.g., (D’Andrea and Dullerud,
2003) and the references therein. This arises from the fact
that some of the state-space models in this area can be
rewritten in the form of those for certain classes of dis-
crete linear repetitive processes.

The unique control problem for these processes is
that the output sequence of pass profiles generated can
contain oscillations that increase in amplitude in the pass
to pass (i.e., k) direction. Such behaviour is easily gen-
erated in simulation studies and in experiments on scaled
models of industrial processes such as long-wall coal cut-
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ting. In this particular case, these oscillations are caused
by the machine’s weight as it comes to rest on the newly
cut floor profile ready for the start of the next pass of the
coal face.

The fact that the pass length is finite (and hence infor-
mation in this direction only occurs over a finite duration)
is a key difference with other classes of 2D discrete linear
systems. Another is the fact that the pass initial condi-
tions are reset before the start of each new pass and these
can include explicit contributions from the previous pass.
This feature has no 2D discrete linear systems counterpart,
and overall large parts of the established systems theory
for 2D discrete linear systems described by, in particular,
the Roesser and Fornasini Marchesini state-space models
either cannot be applied at all or only after appropriate
modifications have been made. Hence there is a need to
develop a systems theory for these processes for onward
translation (where appropriate) into numerically reliable
algorithms.

A rigorous stability theory for linear repetitive
processes has been developed. This theory (Rogers and
Owens, 1992) is based on an abstract model in a Ba-
nach space setting which includes a wide range of such
processes as special cases. Also, the results of applying
this theory to a broad range of cases have been reported.
This has resulted in stability tests for some sub-classes of
practical interest that can, if desired, be implemented by a
direct application of well known 1D linear systems tests.
This theory consists of two distinct concepts termed as-
ymptotic stability and stability along the pass, where the
former is a necessary condition for the latter.

Much of the work currently available on repetitive
processes has focused on the definitions and characteri-
zations of systems theoretic properties, but recently the
design of control schemes has become an active research
area. For example, it is physically meaningful to define
the current pass error as the difference, at each point along
the pass, between a specified reference trajectory for that
pass, which in most cases will be the same on each pass,
and the actual pass profile produced. Then it is possible to
define the so-called current pass error actuated controller
which uses the generated error vector to construct the cur-
rent pass control input vector. In this context, preliminary
work, see, e.g., (Benton, 2000), has shown that, except
in a few very restrictive special cases, the controller used
must be actuated by a combination of the current pass in-
formation and ‘feedforward’ information from the previ-
ous pass to guarantee even stability along the pass closed-
loop. (Note also that in the iterative learning control appli-
cation area the previous pass (or trial) output is an obvious
signal to use as feedforward action in the overall control
law.) Design algorithms for such control laws applied to
discrete linear repetitive processes can be found in, e.g.,
(Gałkowski et al., 2002).

Consider again the metal rolling operation. Here a
number of passes may be completed under one regime
and then the dynamics change to allow further process-
ing to take place. One way of modelling such a case is by
switching the dynamics from one state-space model to an
alternative (or alternatives). More generally, there are (at
least) two distinct possibilities for switching dynamics to
occur in repetitive processes; either the switching occurs
from pass to pass or along a pass. This paper continues the
development of tools for the analysis of these two cases.
Both of these are practically motivated, e.g., switching
from pass to pass can occur when handling multiple op-
eration robot arms or multiple metal rolling systems, and
along the pass switching can arise in the analysis of iter-
ative learning control applied to processes with periodic
dynamics.

The previous work (Bochniak et al., 2006) devel-
oped significant results in the areas of applicable stability
tests and the design of control laws activated by informa-
tion measured on the current and previous passes. This
assumes that there is no uncertainty associated with the
models used to model the dynamics but there will clearly
be cases when this is not true, even for initial control re-
lated analysis. Hence, in this paper, the analysis of repet-
itive processes with switched dynamics in the presence of
uncertainty in the models used is begun. As in other ar-
eas, the basic route is to assume that the uncertainty can be
described by polytopic or norm bounded structures. The
resulting design algorithms can be computed using Linear
Matrix Inequalities (LMIs), and two examples are given
to highlight such computations and, in particular, to show
that they can be numerically reliable.

Throughout this paper, the null matrix and the iden-
tity matrix with the required dimensions are denoted by 0
and I , respectively. Moreover, M > 0 (< 0) denotes a
real symmetric positive (negative) definite matrix.

2. Background

The basic form of the state-space model for discrete linear
repetitive processes is given by

xk+1(p + 1) = Axk+1(p) + Buk+1(p) + B0yk(p),

yk+1(p) = Cxk+1(p)+Duk+1(p)+D0yk(p), (1)

p = 0, 1, . . . , (α − 1), k = 0, 1, . . .

Here, on the pass k, xk(p) is the n × 1 state vector, yk(p)
is the m × 1 pass profile vector, and uk(p) is the r × 1
control input vector. To complete the process descrip-
tion, it is necessary to specify the boundary conditions,
i.e., the initial state vector on each pass and the initial pass
profile. Here no loss of generality arises from assuming
xk+1(0) = dk+1, k ≥ 0, and y0(p) = f(p), where the
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n× 1 vector dk+1 has known constant entries and f(p) is
an m × 1 vector whose entries are known functions of p.

The abstract model based stability theory (Rogers
and Owens, 1992) for linear repetitive processes consists
of two distinct concepts termed asymptotic stability and
stability along the pass. Noting again the unique con-
trol problem for these processes, this theory demands that
bounded sequences of inputs produce bounded sequences
of pass profiles, where ‘bounded’ is defined in terms of the
norm on the underlying function space. The essential dif-
ference between them is that asymptotic stability demands
this property over the finite pass length whereas stability
along the pass is stronger in that it demands this property
uniformly, i.e., independent of the pass length.

In the case of processes described by (1), it can be
shown (Rogers and Owens, 1992) that asymptotic stabil-
ity holds if, and only if, r (D0) ≤ 1, where r (·) de-
notes the spectral radius of its matrix argument. Also,
if the example under consideration is asymptotically sta-
ble and the control input sequence applied {uk}k≥1 con-
verges strongly to u∞ as k → ∞, then the resulting out-
put pass profile sequence {yk}k≥1 converges strongly to
y∞—the so-called limit profile—defined (with D = 0 for
ease of presentation) over p = 0, 1, . . . , (α − 1), by

x∞(p + 1) = (A + B0(I − D0)−1C)x∞(p)

+ Bu∞(p),

y∞(p) = (I − D0)−1Cx∞(p).

In effect, this result states that if a process is as-
ymptotically stable then its repetitive dynamics can, af-
ter a ‘sufficiently large’ number of passes, be replaced
by those of a 1D discrete linear system. Note, how-
ever, that this property does not guarantee that the limit
profile is stable in the 1D linear systems sense, i.e.,
r
(
A + B0(Im − D0)−1C

) ≤ 1—a point which is eas-
ily illustrated by, e.g., the case when A = −0.5, B = 0,
B0 = 0.5 + b0, C = 1, D = D0 = 0, and the real scalar
b0 is chosen such that |b0| ≥ 1.

Stability along the pass prevents cases such as the
simple example above from arising (by demanding that
the bound is independent of the pass length), and the
following characterization is known (Rogers and Owens,
1992).

Theorem 1. A discrete linear repetitive process described
by (1) is stable along the pass if and only if the so-called
2D characteristic polynomial

C (z1, z2) := det

[
I − z1A −z1B0

−z2C I − z2D0

]
�= 0 in U

2
,

(2)

where U
2

= {(z1, z2) : |z1| ≤ 1, |z2| ≤ 1} .

In theory, a repetitive process evolves over a semi-
infinite strip in the positive quadrant of the 2D domain,
i.e., over p = 0, 1, . . . , (α − 1), k ≥ 0. Stability along
the pass, however, treats the process as evolving over the
complete positive quadrant, i.e., both p and k are of un-
bounded duration. For this reason, stability along the pass
can be too strong in some cases of practical interest—see,
e.g., (Smyth, 1992) for a further discussion of this point
and illustrative examples.

Previous works, see, e.g. (Gałkowski et al., 2002),
have used an LMI setting to design control laws of the
following form for p = 0, 1, . . . , (α − 1), k = 0, 1, . . .
for processes described by (1):

uk+1(p) = K1xk+1(p) + K2yk(p)

=
[

K1 K2

] [
xk+1(p)
yk(p)

]
, (3)

where K1 and K2 are appropriately dimensioned matri-
ces to be designed. In effect, this control law uses the
feedback of the current state vector (which is assumed to
be available for use) and the ‘feedforward’ of the previ-
ous pass profile vector. Note that in repetitive processes
the term ‘feedforward’ is used to describe the case where
state or pass profile information from the previous pass (or
passes) is used as (part of) the input to a control law used
on the current pass, i.e., to information which is propa-
gated in the pass to pass (k) direction.

Next we give some well known results which will be
extensively used in the analysis of this paper.

Lemma 1 (Schur’s complement). (Gałkowski et al.,
2002; Boyd et al., 1994) Let W, L and V be given ma-
trices of appropriate dimensions with W = W

T , V > 0.
Then the matrix inequality

W + L
T

VL < 0 (4)

holds if, and only if,[
W L

T

L −V
−1

]
< 0. (5)

Lemma 2. (Bachelier et al., 1999) Let W, L and V be
given matrices of appropriate dimensions with W = W

T ,
V > 0. Then the matrix inequality (4) holds if, and only
if, [

W L
T G

GT
L V − G − GT

]
< 0, (6)

where G is an arbitrary matrix of the same dimensions
as V.
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Lemma 3. (Du and Xie, 1999) Let Σ and F be known and
unknown real matrices of appropriate dimensions, respec-
tively, where F satisfies ‖F‖ ≤ 1, i.e., F T F ≤ I. Then,
for any scalar ε > 0, the matrix inequality

ΣT

[
0 F

FT 0

]
Σ ≤ ΣT

[
εI 0
0 ε−1I

]
Σ (7)

holds.

3. Processes with Dynamics Switched from
Pass to Pass

All of the work which has been reported on the analysis
and control of discrete repetitive processes either assumes
that, once the state-space model is obtained, it remains
fixed for the complete duration of passes, or (more re-
cently) that it is subject to well defined uncertainty struc-
tures. In some cases, however, a more realistic scenario
is that there are a number of regimes of operation, each of
which has a state-space model description, and the process
switches between them according to some given schedule.
For example, in metal rolling it may be required to pass the
workpiece through a series of passes which are described
by different state-space models, i.e., complete a number
of passes with one model in place and then switch to com-
plete another number of passes described by a different
model, and so on.

The dynamics in the scenario described above switch
in the pass to pass direction and we now summarize some
previously obtained (Bochniak et al., 2006) relevant re-
sults on this case, where it is assumed that the process dy-
namics are described as follows for p = 0, 1, . . . , (α− 1):

xl+1(p + 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A1xl+1(p)+B1ul+1(p)+B01yl(p),

for l = 0, 2, . . . , i.e., l = 2k,

A2xl+1(p)+B2ul+1(p)+B02yl(p),
for l = 1, 3, . . . , i.e., l = 2k + 1,

(8)

yl+1(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C1xl+1(p)+D1ul+1(p)+D01yl(p),

for l = 0, 2, . . . , i.e., l = 2k,

C2xl+1(p)+D2ul+1(p)+D02yl(p),
for l = 1, 3, . . . , i.e., l = 2k + 1,

where xl(p) is the n × 1 state vector, yl(p) is the m × 1
pass profile vector, and ul(p) is the r×1 control input vec-
tor. The boundary conditions are defined as for processes
described by (1).

This model assumes that the dynamics switch on the
completion of each pass profile. This is clearly not the
most general case but, given the absence of any previous
results in this area, it will act as a starting point with the
possibility that the experience gained will lead to straight-
forward generalizations to other cases.

One obvious approach to the analysis of the process
model given above is to attempt to transform it into an
equivalent model of the form (1) and then directly apply
the existing results. Introduce, therefore, the following
new state, pass profile and input vectors:

Xl+1(p) =

[
x2k+1(p)
x2k+2(p)

]
, Ul+1(p) =

[
u2k+1(p)
u2k+2(p)

]
,

Yl(p) = y2k(p), Yl+1(p) = y2k+2(p).

Then the equivalent model of the form (1) for processes
described by (8) is

Xl+1(p + 1) = ÂXl+1(p)+B̂Ul+1(p)+B̂0Yl(p),
(9)

Yl+1(p) = ĈXl+1(p)+D̂Ul+1(p)+D̂0Yl(p),

where

Â =

[
A1 0

B02C1 A2

]
, B̂ =

[
B1 0

B02D1 B2

]
,

B̂0 =

[
B01

B02D01

]
, Ĉ =

[
D02C1 C2

]
,

D̂ =
[

D02D1 D2

]
, D̂0 = D02D01.

Now it is possible to give the conditions for sta-
bility along the pass of processes described by (8). Of
the numerous sets of conditions which have been devel-
oped, the most relevant here is the following one (see also
(Gałkowski et al., 2002)) based on the use of LMIs. This
condition is a sufficient one but, unlike necessary and suf-
ficient alternatives, it leads easily to control law design
algorithms (as shown below). As a preliminary step, it
is convenient to introduce the following matrices relating
to (9):

Φ̂ =

[
Â B̂0

Ĉ D̂0

]
, Π̂ =

[
B̂

D̂

]
. (10)

The matrices Φ̂ and Π̂ are termed the augmented process
matrix and the augmented input matrix, respectively.

The following sufficient condition for stability along
the pass of processes described by (9) can now be stated.

Theorem 2. (Rogers and Owens, 1992; Gałkowski et al.,
2002) A discrete linear repetitive process whose state-
space model can be written in the form (9) is stable along
the pass if there exist matrices W1 > 0 and W2 > 0 such
that

Φ̂T W Φ̂ − W < 0 (11)

holds, where W = W1 ⊕ W2, with ⊕ denoting the direct
sum, i.e., W = diag (W1, W2).
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Note also that (11) is (one formulation of) the
so-called 2D Lyapunov equation for these processes
(Gałkowski et al., 2002).

To apply a control action to these processes of the
above form, consider a switched control law of the form

ul+1(p) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

K1
1xl+1(p) + K1

2yl(p),
for l = 0, 2, . . . , i.e., l = 2k,

K2
1xl+1(p) + K2

2yl(p),
for l = 1, 3, . . . , i.e., l = 2k + 1,

(12)
or

Ul+1(p) = K̂1Xl+1(p) + K̂2Yl(p), (13)

where

K̂1 =

[
K1

1 0
K2

2(C1 + D1K
1
1) K2

1

]
,

K̂2 =

[
K1

2

K2
2(D01 + D1K

1
2 )

]
.

On applying this control law to (9), the resulting con-
trolled process state-space model can be written as

Xl+1(p + 1) = ÂnewXl+1(p) + B̂0newYl(p),
(14)

Yl+1(p) = ĈnewXl+1(p) + D̂0newYl(p),

where

Ânew = Â + B̂K̂1

=

[
A1+B1K

1
1 0

(B02+B2K
2
2 )(C1+D1K

1
1) A2+B2K

2
1

]
,

B̂0new = B̂0 + B̂K̂2

=

[
B01+B1K

1
2

(B02+B2K
2
2 )(D01+D1K

1
2 )

]
,

Ĉnew = Ĉ + D̂K̂1

=
[
(D02+D2K

2
2 )(C1+D1K

1
1 ) C2+D2K

2
1

]
,

D̂0new = D̂0 + D̂K̂2

= (D02 + D2K
2
2 )(D01 + D1K

1
2).

The augmented process matrix for this last state-space
model can be written in the following form:

Φ̂new =

[
Ânew B̂0new

Ĉnew D̂0new

]

=

[
Â B̂0

Ĉ D̂0

]
+

[
B̂

D̂

] [
K̂1 K̂2

]
= Φ̂ + Π̂K̂, (15)

and we can now rewrite (15) as

Φ̂new = Φ1 + Φ1
2Φ

2
2, (16)

where

Φ1 =

⎡⎢⎣A1+B1K
1
1 0 B01+B1K

1
2

0 A2+B2K
2
1 0

0 C2+D2K
2
1 0

⎤⎥⎦
= Ā1 + B̄1K̄1,

Φ1
2 =

⎡⎢⎣ 0 0 0
B02+B2K

2
2 0 B02+B2K

2
2

D02+D2K
2
2 0 D02+D2K

2
2

⎤⎥⎦
= Ā1

2 + B̄1
2K̄2,

Φ2
2 =

⎡⎢⎣C1 + D1K
1
1 0 0

0 0 0
0 0 D01+D1K

1
2

⎤⎥⎦
= Ā2

2 + B̄2
2K̄1,

and

Ā1 =

⎡⎢⎣A1 0 B01

0 A2 0
0 C2 0

⎤⎥⎦ , B̄1 =

⎡⎢⎣B1 0 B1

0 B2 0
0 D2 0

⎤⎥⎦ ,

Ā1
2 =

⎡⎢⎣ 0 0 0
B02 0 B02

D02 0 D02

⎤⎥⎦ , B̄1
2 =

⎡⎢⎣ 0 0 0
B2 0 B2

D2 0 D2

⎤⎥⎦ ,

Ā2
2 =

⎡⎢⎣C1 0 0
0 0 0
0 0 D01

⎤⎥⎦ , B̄2
2 =

⎡⎢⎣D1 0 0
0 0 0
0 0 D1

⎤⎥⎦ ,

K̄1 =

⎡⎢⎣K1
1 0 0

0 K2
1 0

0 0 K1
2

⎤⎥⎦ , K̄2 =

⎡⎢⎣K2
2 0 0

0 K2
2 0

0 0 K2
2

⎤⎥⎦ .
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Now we are in a position to give the following re-
sult, which is a less conservative form of that in (Bochniak
et al., 2006).

Theorem 3. Suppose that a a control law of the form (13)
is applied to a discrete linear repetitive process whose
state-space model can be written in the form (9). Then
the resulting closed-loop process is stable along the pass
if there exist a matrix X > 0, non-singular matrices V̄ ,
Z̄ , and rectangular matrices L̄, N̄ such that⎡⎢⎢⎣

−X Ā1
2Z̄ + B̄1

2N̄ ĀV̄ + B̄L̄

Z̄T Ā1T
2 +N̄T B̄1T

2 −Z̄ − Z̄T Ā2
2V̄ + B̄2

2 L̄

V̄ T ĀT + L̄T B̄T V̄ T Ā2T
2 +L̄T B̄2T

2 X − V̄ − V̄ T

⎤⎥⎥⎦
< 0, (17)

where

X =

[
X1 0
0 X2

]
, V̄ =

⎡⎢⎣ V1 0 0
0 V2 0
0 0 V3

⎤⎥⎦ ,

Z̄ =

⎡⎢⎣ Z 0 0
0 Z 0
0 0 Z

⎤⎥⎦ , L̄ =

⎡⎢⎣ L1 0 0
0 L2 0
0 0 L3

⎤⎥⎦ ,

N̄ =

⎡⎢⎣ N 0 0
0 N 0
0 0 N

⎤⎥⎦ . (18)

If this condition holds, the control law matrices are given
by

K̄1 = L̄V̄ −1 =

⎡⎢⎣ K1
1 0 0

0 K2
1 0

0 0 K1
2

⎤⎥⎦ ,

(19)

K̄2 = N̄Z̄−1 =

⎡⎢⎣ K2
2 0 0

0 K2
2 0

0 0 K2
2

⎤⎥⎦ .

Proof. A sufficient condition for the stability along the
pass of the controlled process is, cf. Theorem 2, the exis-
tence of positive definite matrices X1 > 0, X2 > 0 such
that

Φ̂newXΦ̂T
new − X < 0,

where Φ̂new given by (16). Also

Φ̂newXΦ̂T
new−X =

(
Φ1+Φ1

2Φ
2
2

)
X

(
Φ1+Φ1

2Φ
2
2

)T −X

=
[
I Φ1

2

] [
−X+Φ1XΦT

1 Φ1
2Z̄+Φ1XΦ2T

2

Z̄T Φ1T
2 +Φ2

2XΦT
1 Φ2

2XΦ2T
2 −Z̄−Z̄T

]

×
[

I

Φ1T
2

]
< 0,

where Z̄ is a compatibly dimensioned nonsymmetric and
nonsingular matrix. Hence[

−X + Φ1XΦT
1 Φ1

2Z̄ + Φ1XΦ2T
2

Z̄T Φ1T
2 + Φ2

2XΦT
1 Φ2

2XΦ2T
2 − Z̄ − Z̄T

]
< 0,

i.e.,[
−X Φ1

2Z̄

Z̄T Φ1T
2 −Z̄−Z̄T

]
+

[
Φ1

Φ2
2

]
X

[
ΦT

1 Φ2T
2

]
<0.

Applying Lemma 2 to this last expression, we obtain⎡⎢⎣ −X Φ1
2Z̄ Φ1V̄

Z̄T Φ1T
2 −Z̄ − Z̄T Φ2

2V̄

V̄ T ΦT
1 V̄ T Φ2T

2 X − V̄ − V̄ T

⎤⎥⎦ < 0,

where V̄ is a compatibly dimensioned nonsymmetric and
nonsingular matrix.

Finally, the use of

Φ1V̄ = Ā1V̄ + B̄1K̄1V̄ = Ā1V̄ + B̄1L̄,

Φ1
2Z̄ = Ā1

2Z̄ + B̄1
2K̄2Z̄ = Ā1

2Z̄ + B̄1
2N̄ , (20)

Φ2
2V̄ = Ā2

2V̄ + B̄2
2K̄1V̄ = Ā2

2V̄ + B̄2
2L̄

leads to (17) with the control law matrices given by (19),
and the proof is complete.

3.1. Robustness Analysis. In what follows, we extend
the analysis of the control law design given above to cases
where the uncertainty associated with the process state-
space model is of the polytopic or norm-bounded type.

Consider first the polytopic form. Here we assume
that the matrices which define the sub-processes in the
state-space model of (9) belong to a polytope of matrices
(the convex hull of a finite set of matrices), i.e.,⎡⎢⎢⎢⎣

A1 B1 B01

A2 B2 B02

C1 D1 D01

C2 D2 D02

⎤⎥⎥⎥⎦

∈ Co

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

Ai
1 Bi

1 Bi
01

Ai
2 Bi

2 Bi
02

Ci
1 Di

1 Di
01

Ci
2 Di

2 Di
02

⎤⎥⎥⎥⎦ , i = 1, . . . , P

⎫⎪⎪⎪⎬⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P∑
i=1

�i

⎡⎢⎢⎢⎣
A1 B1 B01

A2 B2 B02

C1 D1 D01

C2 D2 D02

⎤⎥⎥⎥⎦ : �i≥0,

P∑
i=1

�i =1

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (21)
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The matrices Ai
j , Bi

j , Bi
0j for j = 1, 2 and i = 1, . . . , P

are assumed known and are termed the vertices of the
polytope, the non-negative numbers � i for i = 1, . . . , P
are termed the polytopic coordinates, where P denotes the
number of the polytope vertices. Note that here the uncer-
tainties for odd k, i.e., in the matrices

[
A1 B1 B01
C1 D1 D01

]
and

even k, i.e., in the matrices
[

A2 B2 B02
C2 D2 D02

]
are embedded

into the joint polytope.

Now, we have the following result.

Theorem 4. An uncertain discrete linear repetitive
process described by (9) in the presence of uncertainty
which can be modelled by (21) is stable along the pass if
there exist a matrix X > 0, nonsingular matrices V̄ and
Z̄ such that for all i = 1, . . . , P (i.e., for each vertex of
the polytope),⎡⎢⎢⎣

−X Ā1i
2 Z̄ Āi

1V̄

Z̄T Ā1iT
2 −Z̄ − Z̄T Ā2i

2 V̄

V̄ T ĀiT
1 V̄ T Ā2iT

2 X − V̄ − V̄ T

⎤⎥⎥⎦ < 0, (22)

where

X =

[
X1 0
0 X2

]
and

Āi
1 =

⎡⎢⎣ Ai
1 0 Bi

01

0 Ai
2 0

0 Ci
2 0

⎤⎥⎦, Ā1i
2 =

⎡⎢⎣ 0 0 0
Bi

02 0 Bi
02

Di
02 0 Di

02

⎤⎥⎦,

Ā2i
2 =

⎡⎢⎣ Ci
1 0 0

0 0 0
0 0 Di

01

⎤⎥⎦ . (23)

Proof. Interpreting Theorem 2 in this case gives stability
along the pass if there exist X1 > 0, X2 > 0 such that

Φ̂XΦ̂T − X < 0,

with X = diag (X1, X2) and Φ̂ ∈ Co
{
Φ̂i, i = 1,

. . . , P
}

. This last matrix inequality is equivalent to

Φ̂iXΦ̂iT − X < 0, i = 1, 2, . . . , P.

Using steps analogous to Theorem 3, we prove stability
along the pass of each vertex of the polytope and the proof
is complete.

Suppose now that a control law of the form (12) is
applied. Then the uncertainty in the model matrices C1,

D01 and D1 requires us to use the form of (13) with

K̂1 ∈ Co
{
K̂i

1, i = 1, . . . , P
}

,

K̂i
1 =

[
K1

1 0
K2

2 (Ci
1 + Di

1K
1
1 ) K2

1

]
,

(24)

K̂2 ∈ Co
{
K̂i

2, i = 1, . . . , P
}

,

K̂i
2 =

[
K1

2

K2
2 (Di

01 + Di
1K

1
2 )

]
.

The resulting controlled process state-space model can be
written in the form

Xl+1(p + 1) = ÂnewXl+1(p) + B̂0newYl(p),
(25)

Yl+1(p) = ĈnewXl+1(p) + D̂0newYl(p),

where

Ânew ∈ Co
{
Âi

new, i = 1, . . . , P
}

,

B̂0new ∈ Co
{
B̂i

0new, i = 1, . . . , P
}

,

Ĉnew ∈ Co
{
Ĉi

new, i = 1, . . . , P
}

,

D̂0new ∈ Co
{
D̂i

0new, i = 1, . . . , P
}

,

Âi
new = Âi + B̂iK̂i

1

=

[
Ai

1 + Bi
1K

1
1 0

(Bi
02+ Bi

2K
2
2 )(Ci

1+Di
1K

1
1 ) Ai

2+Bi
2K

2
1

]
,

B̂i
0new = B̂i

0 + B̂iK̂i
2

=

[
Bi

01 + Bi
1K

1
2

(Bi
02 + Bi

2K
2
2)(Di

01 + Di
1K

1
2)

]
,

Ĉi
new = Ĉi + D̂iK̂i

1

=
[
(Di

02+Di
2K

2
2)(Ci

1+Di
1K

1
1 ) Ci

2+Di
2K

2
1

]
,

D̂i
0new = D̂i

0 + D̂iK̂i
2

= (Di
02 + Di

2K
2
2 )(Di

01 + Di
1K

1
2 ).
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Also, the augmented process matrix in this case can be
written as

Φ̂i
new =

[
Âi

new B̂i
0new

Ĉi
new D̂i

0new

]

=

[
Âi B̂i

0

Ĉi D̂i
0

]
+

[
B̂i

D̂i

] [
K̂i

1 K̂i
2

]
= Φ̂i + Π̂iK̂i, (26)

or
Φ̂i

new = Φi
1 + Φ1i

2 Φ2i
2 (27)

for i = 1, 2, . . . , P , where

Φi
1 =

⎡⎢⎣ Ai
1 + Bi

1K
1
1 0 Bi

01 + Bi
1K

1
2

0 Ai
2 + Bi

2K
2
1 0

0 Ci
2 + Di

2K
2
1 0

⎤⎥⎦
= Āi

1 + B̄i
1K̄1,

Φ1i
2 =

⎡⎢⎣ 0 0 0
Bi

02 + Bi
2K

2
2 0 Bi

02 + Bi
2K

2
2

Di
02 + Di

2K
2
2 0 Di

02 + Di
2K

2
2

⎤⎥⎦
= Ā1i

2 + B̄1i
2 K̄2,

Φ2i
2 =

⎡⎢⎣ Ci
1 + Di

1K
1
1 0 0

0 0 0
0 0 Di

01 + Di
1K

1
2

⎤⎥⎦
= Ā2i

2 + B̄2i
2 K̄1,

where Āi
1, Ā1i

2 , Ā2i
2 are as in (23), and

B̄i
1 =

⎡⎢⎣ Bi
1 0 Bi

1

0 Bi
2 0

0 Di
2 0

⎤⎥⎦ , B̄1i
2 =

⎡⎢⎣ 0 0 0
Bi

2 0 Bi
2

Di
2 0 Di

2

⎤⎥⎦ ,

B̄2i
2 =

⎡⎢⎣ Di
1 0 0

0 0 0
0 0 Di

1

⎤⎥⎦ ,

K̄i
1 =

⎡⎢⎣K1
1 0 0

0 K2
1 0

0 0 K1
2

⎤⎥⎦ , K̄2 =

⎡⎢⎣K2
2 0 0

0 K2
2 0

0 0 K2
2

⎤⎥⎦ .

Now we have the following result, which enables the
control law considered here to be designed for stability
along the pass.

Theorem 5. Suppose that a a control law of the form (12)
is applied to a discrete linear repetitive process whose

state-space model can be written in the form (9) in the
presence of uncertainty modelled by (21). Then the re-
sulting controlled process is stable along the pass if there
exist a matrix X > 0, nonsingular matrices V̄ and Z̄, and
rectangular matrices L̄, N̄ such that for all i = 1, . . . , P
(i.e., for each vertex of the polytope),⎡⎢⎣ −X Ā1i

2 Z̄+B̄1i
2 N̄ Āi

1V̄ +B̄i
1L̄

Z̄T Ā1iT
2 +N̄T B̄1iT

2 −Z̄−Z̄T Ā2i
2 V̄ +B̄2i

2 L̄

V̄ T ĀiT
1 +L̄T B̄iT

1 V̄ T Ā2iT
2 +L̄T B̄2iT

2 X − V̄ −V̄ T

⎤⎥⎦
< 0, (28)

where the matrices X , V̄ , Z̄, L̄ and N̄ are given in (18). If
these conditions hold, the control law matrices are given
by (19).

Proof. Interpreting Theorem 2 in terms of the controlled
process (25) shows that it is stable along the pass if there
exist matrices X1 > 0 and X2 > 0 such that

Φ̂newXΦ̂T
new − X < 0,

where X = diag (X1, X2) and Φ̂new ∈ Co
{
Φ̂i

new, i =
1, . . . , P

}
. This last matrix inequality is equivalent to

Φ̂i
newXΦ̂iT

new − X < 0, i = 1, . . . , P.

Following the same steps as in the proof of Theorem 3
shows that all vertices of the polytope, and hence all con-
vex combinations of them, are stable along the pass and
the proof is complete.

3.1.1. Norm-Bounded Uncertainty. In what follows,
we consider an uncertain discrete linear repetitive process
with dynamics switched from pass to pass described by
the following state-space model over p = 0, 1, . . . , (α−1)
and l = 0, 1, . . . :

Xl+1(p+1) = (Â+ΔÂ)Xl+1(p)+(B̂+ΔB̂)Ul+1(p)

+ (B̂0 + ΔB̂0)Yl(p),
(29)

Yl+1(p) = (Ĉ+ΔĈ)Xl+1(p)+(D̂+ΔD̂)Ul+1(p)

+ (D̂0 + ΔD̂0)Yl(p),

where

Â+ΔÂ =

[
A1+ΔA1 0

(B02+ΔB02)(C1+ΔC1) A2+ΔA2

]
,

B̂+ΔB̂ =

[
B1 + ΔB1 0

(B02+ΔB02)(D1+ΔD1) B2+ΔB2

]
,

B̂0+ΔB̂0 =

[
B01 + ΔB01

(B02+ΔB02)(D01+ΔD01)

]
,
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Ĉ+ΔĈ =
[
(D02+ΔD02)(C1+ΔC1) C2+ΔC2

]
,

D̂+ΔD̂ =
[
(D02+ΔD02)(D1+ΔD1) D2+ΔD2

]
,

D̂0 + ΔD̂0 =(D02 + ΔD02)(D01 + ΔD01).

The perturbations in each sub-process state-space
model, which may vary with t, are assumed to satisfy the
norm bounded structure

⎡⎢⎢⎢⎣
ΔA1 ΔB01 ΔB1

ΔA2 ΔB02 ΔB2

ΔC1 ΔD01 ΔD1

ΔC2 ΔD02 ΔD2

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
H1

H2

H3

H4

⎤⎥⎥⎥⎦F
[

E11 E12 E2

]
, (30)

where F is some unknown real matrix which satisfies

‖F‖ ≤ 1, i.e., F T F ≤ I, (31)

and H1, H2, H3, H4 and E11, E12, E2 are known real
constant matrices of compatible dimensions.

The augmented process matrix (Φ̂ + ΔΦ̂) for the un-
controlled process here is

Φ̂ + ΔΦ̂ =

[
Â + ΔÂ B̂0 + ΔB̂0

Ĉ + ΔĈ D̂0 + ΔD̂0

]

= (Ā1 + ΔĀ1)

+ (Ā1
2 + ΔĀ1

2)(Ā
2
2 + ΔĀ2

2), (32)

where

ΔĀ1 =

⎡⎢⎣ ΔA1 0 ΔB01

0 ΔA2 0
0 ΔC2 0

⎤⎥⎦ = H̄1F̄ Ē1
1 ,

ΔĀ1
2 =

⎡⎢⎣ 0 0 0
ΔB02 0 ΔB02

ΔD02 0 ΔD02

⎤⎥⎦ = H̄3F̄ Ē2
1 , (33)

ΔĀ2
2 =

⎡⎢⎣ ΔC1 0 0
0 0 0
0 0 ΔD01

⎤⎥⎦ = H̄2F̄ Ē1
1 ,

with

H̄1 =

⎡⎢⎣H1 0 H1

0 H2 0
0 H4 0

⎤⎥⎦ , H̄2 =

⎡⎢⎣H3 0 0
0 0 0
0 0 H3

⎤⎥⎦ ,

H̄3 =

⎡⎢⎣ 0 0 0
H2 0 H2

H3 0 H3

⎤⎥⎦ , F̄ =

⎡⎢⎣F 0 0
0 F 0
0 0 F

⎤⎥⎦ ,

Ē1
1 =

⎡⎢⎣E11 0 0
0 E11 0
0 0 E12

⎤⎥⎦ , Ē2
1 =

⎡⎢⎣E12 0 0
0 E12 0
0 0 E12

⎤⎥⎦ .

Now, we can state the following sufficient condi-
tion for stability along the pass of uncertain processes de-
scribed by (29).

Theorem 6. An uncertain discrete linear repetitive
process whose state-space model (29), with the uncer-
tainty structure modelled by (30), is stable along the pass
if there exist a matrix X > 0, non-singular matrices V̄
and Z̄ and scalars ε1 > 0, ε2 > 0 such that⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X Ā1
2Z̄ ε1H̄3 0 Ā1V̄ ε2H̄1 0

Z̄T Ā1T
2 −Z̄ − Z̄T 0 Z̄T Ē2T

1 Ā2
2V̄ ε2H̄2 0

ε1H̄
T
3 0 −ε1I 0 0 0 0

0 Ē2
1Z̄ 0 −ε1I 0 0 0

V̄ T ĀT
1 V̄ T Ā2T

2 0 0 X − V̄ − V̄ T 0 V̄ T Ē1T
1

ε2H̄
T
1 ε2H̄

T
2 0 0 0 −ε2I 0

0 0 0 0 Ē1
1 V̄ 0 −ε2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (34)

where X = diag (X1, X2).

Proof. Theorem 2 applied to this case gives stability along
the pass if there exist matrices X1 > 0 and X2 > 0 such
that

(Φ̂ + ΔΦ̂)X(Φ̂ + ΔΦ̂)T − X < 0,

with the matrix (Φ̂ + ΔΦ̂) given by (32).
Using Theorem 3, we have[

−X + (Ā1 + ΔĀ1)X(Ā1 + ΔĀ1)T

Z̄T (Ā1
2 + ΔĀ1

2)
T + (Ā2

2 + ΔĀ2
2)X(Ā1 + ΔĀ1)T

(Ā1
2 + ΔĀ1

2)Z̄ + (Ā1 + ΔĀ1)X(Ā2
2 + ΔĀ2

2)
T

(Ā2
2 + ΔĀ2

2)X(Ā2
2 + ΔĀ2

2)
T − Z̄ − Z̄T

]

< 0,
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where Z̄ is given by (18) and Z is a nonsingular, possibly
nonsymmetric, matrix of compatible dimensions. Also,
this last condition can be rewritten as[

−X + (Ā1 + ΔĀ1)X(Ā1 + ΔĀ1)T

Z̄T Ā1T
2 + (Ā2

2 + ΔĀ2
2)X(Ā1 + ΔĀ1)T

Ā1
2Z̄ + (Ā1 + ΔĀ1)X(Ā2

2 + ΔĀ2
2)

T

(Ā2
2 + ΔĀ2

2)X(Ā2
2 + ΔĀ2

2)T − Z̄ − Z̄T

]

+

[
0 (ΔĀ1

2)Z̄
Z̄T (ΔĀ1

2)
T 0

]
< 0,

or[
−X + (Ā1 + ΔĀ1)X(Ā1 + ΔĀ1)T

Z̄T Ā1T
2 + (Ā2

2 + ΔĀ2
2)X(Ā1 + ΔĀ1)T

Ā1
2Z̄ + (Ā1 + ΔĀ1)X(Ā2

2 + ΔĀ2
2)

T

(Ā2
2 + ΔĀ2

2)X(Ā2
2 + ΔĀ2

2)
T − Z̄ − Z̄T

]

+

[
H̄3 0

0 Z̄T Ē2T
1

][
0 F̄

F̄T 0

][
H̄T

3 0

0 Ē2
1 Z̄

]
< 0.

Applying Lemma 3 to this last expression and then
Lemma 1 to the result gives⎡⎢⎢⎢⎢⎢⎣

−X Ā1
2Z̄ H̄3 0

Z̄T Ā1T
2 −Z̄ − Z̄T 0 Z̄T Ē2T

1

H̄T
3 0 −ε−1

1 I 0

0 Ē2
1 Z̄ 0 −ε1I

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
Ā1+ΔĀ1

Ā2
2+ΔĀ2

2

0

0

⎤⎥⎥⎥⎥⎥⎦
× X

[
(Ā1 + ΔĀ1)T (Ā2

2 + ΔĀ2
2)T 0 0

]
< 0

or, using Lemma 2,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X Ā1
2Z̄ H̄3 0 Ā1V̄

Z̄T Ā1T
2 −Z̄−Z̄T 0 Z̄T Ē2T

1 Ā2
2V̄

H̄T
3 0 −ε−1

1 I 0 0

0 Ē2
1 Z̄ 0 −ε1I 0

V̄ T ĀT
1 V̄ T Ā2T

2 0 0 X−V̄ −V̄ T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 ΔĀ1V̄

0 0 0 0 ΔĀ2
2V̄

0 0 0 0 0

0 0 0 0 0

V̄ T ΔĀT
1 V̄ T ΔĀ2T

2 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

where V̄ is a nonsymmetric and nonsingular matrix of
compatible dimensions.

This last inequality can be rewritten in the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X Ā1
2Z̄ H̄3 0 Ā1V̄

Z̄T Ā1T
2 −Z̄−Z̄T 0 Z̄T Ē2T

1 Ā2
2V̄

H̄T
3 0 −ε−1

1 I 0 0

0 Ē2
1 Z̄ 0 −ε1I 0

V̄ T ĀT
1 V̄ T Ā2T

2 0 0 X−V̄ −V̄ T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

H̄1 0

H̄2 0

0 0

0 0

0 V̄ T Ē1T
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

[
0 F̄

F̄T 0

][
H̄T

1 H̄T
2 0 0 0

0 0 0 0 Ē1
1 V̄

]
< 0.

The application of Lemma 3 and then Lemma 1 to the
result now yields⎡⎢⎢⎢⎢⎢⎢⎢⎣

−X Ā1
2Z̄ H̄3 0 Ā1V̄ H̄1 0

Z̄T Ā1T
2 −Z̄−Z̄T 0 Z̄T Ē2T

1 Ā2
2V̄ H̄2 0

H̄T
3 0 −ε−1

1 I 0 0 0 0

0 Ē2
1 Z̄ 0 −ε1I 0 0 0

V̄ T ĀT
1 V̄ T Ā2T

2 0 0 X−V̄ −V̄ T 0 V̄ T Ē1T
1

H̄T
1 H̄T

2 0 0 0 −ε−1
2 I 0

0 0 0 0 Ē1
1 V̄ 0 −ε2I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0.

Finally, premultiplying and postmultiplying this last in-
equality by diag (I, I, ε1I, I, I, ε2I, I) yields (34), and
the proof is complete.

Consider now the application of a control law of the
form (12) but, because of the uncertainty in the process
state-space model, modified (via (13)) to the form

Ul+1(p)

= (K̂1 + ΔK̂1)Xl+1(p) + (K̂2 + ΔK̂2)Yl(p), (35)

where

K̂1+ΔK̂1 =

[
K1

1 0

K2
2(C1+ΔC1+(D1+ΔD1)K1

1 ) K2
1

]
,

(36)

K̂2+ΔK̂2 =

[
K1

2

K2
2(D01+ΔD01+(D1+ΔD1)K1

2 )

]
.
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On the application of this control law, the resulting
controlled process state-space model is

Xl+1(p + 1) = (Ânew + ΔÂnew)Xl+1(p)

+ (B̂0new + ΔB̂0new)Yl(p),
(37)

Yl+1(p) = (Ĉnew + ΔĈnew)Xl+1(p)

+ (D̂0new + ΔD̂0new)Yl(p),

where

Ânew + ΔÂnew

=

⎡⎢⎢⎣
A1+ΔA1+(B1+ΔB1)K1

1(
B02+ΔB02+(B2+ΔB2)K2

2

)
×(

C1+ΔC1+(D1 + ΔD1)K1
1

)
0

A2+ΔA2+(B2+ΔB2)K2
1

⎤⎦,

B̂0new + ΔB̂0new

=

⎡⎢⎢⎣
B01+ΔB01+(B1+ΔB1)K1

2(
B02+ΔB02+(B2+ΔB2)K2

2

)
× (

D01+ΔD01+(D1+ΔD1)K1
2

)
⎤⎥⎥⎦ ,

Ĉnew + ΔĈnew

=

[ (
D02+ΔD02+(D2+ΔD2)K2

2

)
× (

C1+ΔC1+(D1+ΔD1)K1
1

)
C2+ΔC2+(D2+ΔD2)K2

1

]
,

D̂0new + ΔD̂0new =
(
D02+ΔD02+(D2+ΔD2)K2

2

)
×(

D01+ΔD01+(D1+ΔD1)K1
2

)
.

The augmented process matrix corresponding to this
last model is given by

Φ̂new+ΔΦ̂new =

[
Ânew+ΔÂnew B̂0new+ΔB̂0new

Ĉnew+ΔĈnew D̂0new+ΔD̂0new

]
(38)

or

Φ̂new + ΔΦ̂new

= Φ1 + ΔΦ1 + (Φ1
2 + ΔΦ1

2)(Φ
2
2 + ΔΦ2

2), (39)

where

ΔΦ1 =

⎡⎢⎢⎣
ΔA1+ΔB1K

1
1 0 ΔB01+ΔB1K

1
2

0 ΔA2+ΔB2K
2
1 0

0 ΔC2+ΔD2K
2
1 0

⎤⎥⎥⎦
= ΔĀ1+ΔB̄1K̄1,

ΔΦ1
2 =

⎡⎢⎢⎣
0 0 0

0 ΔB02 + ΔB2K
2
2 0

0 0 ΔD02 + ΔD2K
2
2

⎤⎥⎥⎦
= ΔĀ1

2 + ΔB̄1
2K̄2,

ΔΦ2
2 =

⎡⎢⎢⎣
0 0 0

ΔC1 + ΔD1K
1
1 0 ΔD01 + ΔD1K

1
2

ΔC1 + ΔD1K
1
1 0 ΔD01 + ΔD1K

1
2

⎤⎥⎥⎦
= ΔĀ2

2 + ΔB̄2
2K̄1,

where ΔĀ1, ΔĀ1
2, ΔĀ2

2 are as in (33), and

ΔB̄1 =

⎡⎢⎣ ΔB1 0 ΔB1

0 ΔB2 0
0 ΔD2 0

⎤⎥⎦ = H̄1F̄ Ē2,

ΔB̄1
2 =

⎡⎢⎣ 0 0 0
ΔB2 0 ΔB2

ΔD2 0 ΔD2

⎤⎥⎦ = H̄3F̄ Ē2, (40)

ΔB̄2
2 =

⎡⎢⎣ ΔD1 0 0
0 0 0
0 0 ΔD1

⎤⎥⎦ = H̄2F̄ Ē2,

with

Ē2 =

⎡⎢⎣ E2 0 0
0 E2 0
0 0 E2

⎤⎥⎦ .

Now we have the following result.

Theorem 7. Suppose that a a control law of the form (12)
is applied to a discrete linear repetitive process described
by (29) with an uncertainty structure satisfying (30). Then
the resulting controlled process is stable along the pass if
there exist a matrix X > 0, nonsingular matrices V̄ and
Z̄ , rectangular matrices L̄ and N̄ , and scalars ε1 > 0,
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ε2 > 0 such that⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X Ā1
2Z̄+B̄1

2N̄ ε1H̄3

Z̄T Ā1T
2 +N̄T B̄1T

2 −Z̄−Z̄T 0
ε1H̄

T
3 0 −ε1I

0 Ē2
1 Z̄+Ē2N̄ 0

V̄ T ĀT
1 +L̄T B̄T

1 V̄ T Ā2T
2 +L̄T B̄2T

2 0
ε2H̄

T
1 ε2H̄

T
2 0

0 0 0

0 Ā1V̄+B̄1L̄ ε2H̄1 0
Z̄T Ē2T

1 +N̄T ĒT
2 Ā2

2V̄+B̄2
2L̄ ε2H̄2 0

0 0 0 0
−ε1I 0 0 0

0 X−V̄−V̄ T 0 V̄ T Ē1T
1 +L̄T ĒT

2

0 0 −ε2I 0
0 Ē1

1 V̄+Ē2L̄ 0 −ε2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (41)

where the matrices X , V̄ , Z̄, L̄ and N̄ are given in (18).
If this condition holds, the control law matrices are given
by (19).

Proof. Theorem 2 applied to this case gives that stability
along the pass holds if there exist matrices X1 > 0 and
X2 > 0 such that

(Φ̂new + ΔΦ̂new)X(Φ̂new + ΔΦ̂new)T − X < 0

with the matrix (Φ̂new + ΔΦ̂new) given by (39).
We can rewrite the above inequality (see Theorem 3)

as[
−X+(Φ1+ΔΦ1)X(Φ1+ΔΦ1)T

Z̄T (Φ1
2+ΔΦ1

2)
T +(Φ2

2 + ΔΦ2
2)X(Φ1+ΔΦ1)T

(Φ1
2+ΔΦ1

2)Z̄+(Φ1+ΔΦ1)X(Φ2
2+ΔΦ2

2)T

(Φ2
2+ΔΦ2

2)X(Φ2
2+ΔΦ2

2)
T −Z̄−Z̄T

]

< 0,

where Z̄ is given by (18) and Z is a nonsingular, possibly
nonsymmetric, matrix of compatible dimensions. Equiva-
lently, we have that[

−X + (Φ1 + ΔΦ1)X(Φ1 + ΔΦ1)T

Z̄T Φ1T
2 + (Φ2

2 + ΔΦ2
2)X(Φ1 + ΔΦ1)T

Φ1
2Z̄ + (Φ1 + ΔΦ1)X(Φ2

2 + ΔΦ2
2)

T

(Φ2
2 + ΔΦ2

2)X(Φ2
2 + ΔΦ2

2)
T − Z̄ − Z̄T

]

+

[
0 (ΔΦ1

2)Z̄

Z̄T (ΔΦ1
2)

T 0

]
< 0,

or[
−X + (Φ1 + ΔΦ1)X(Φ1 + ΔΦ1)T

Z̄T Φ1T
2 + (Φ2

2 + ΔΦ2
2)X(Φ1 + ΔΦ1)T

Φ1
2Z̄ + (Φ1 + ΔΦ1)X(Φ2

2 + ΔΦ2
2)

T

(Φ2
2 + ΔΦ2

2)X(Φ2
2 + ΔΦ2

2)
T − Z̄ − Z̄T

]

+

[
H̄3 0

0 Z̄T (Ē2T
1 + K̄T

2 ĒT
2 )

] [
0 F̄

F̄T 0

]

×
[

H̄T
3 0

0 (Ē2
1 + Ē2K̄2)Z̄

]
< 0.

Applying Lemma 3 to this last expression and then
Lemma 1 to the result yields⎡⎢⎢⎢⎢⎢⎣

−X Φ1
2Z̄ H̄3 0

Z̄T Φ1T
2 −Z̄−Z̄T 0 Z̄T (Ē2T

1 +K̄T
2 ĒT

2 )

H̄T
3 0 −ε−1

1 I 0

0 (Ē2
1 +Ē2K̄2)Z̄ 0 −ε1I

⎤⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
Φ1+ΔΦ1

Φ2
2+ΔΦ2

2

0
0

⎤⎥⎥⎥⎦X
[
(Φ1+ΔΦ1)T (Φ2

2+ΔΦ2
2)

T 0 0
]
<0.

Using Lemma 2, we now have that⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X Φ1
2Z̄ H̄3

Z̄T Φ1T
2 −Z̄ − Z̄T 0

H̄T
3 0 −ε−1

1 I

0 (Ē2
1 + Ē2K̄2)Z̄ 0

V̄ T ΦT
1 V̄ T Φ2T

2 0

0 Φ1V̄

Z̄T (Ē2T
1 + K̄T

2 ĒT
2 ) Φ2

2V̄

0 0
−ε1I 0

0 X − V̄ −V̄ T

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 ΔΦ1V̄

0 0 0 0 ΔΦ2
2V̄

0 0 0 0 0
0 0 0 0 0

V̄ T ΔΦT
1 V̄ T ΔΦ2T

2 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦<0,

where V̄ is given by (18) and V1, V2 and V3 are nonsin-
gular, possibly nonsymmetric, matrices of compatible di-
mensions.
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Now, rewrite the last inequality as⎡⎢⎢⎢⎢⎢⎢⎢⎣

−X Φ1
2Z̄ H̄3 0 Φ1V̄

Z̄T Φ1T
2 −Z̄−Z̄T 0 Z̄T (Ē2T

1 +K̄T
2 ĒT

2 ) Φ2
2V̄

H̄T
3 0 −ε−1

1 I 0 0

0 (Ē2
1+Ē2K̄2)Z̄ 0 −ε1I 0

V̄ T ΦT
1 V̄ T Φ2T

2 0 0 X − V̄−V̄ T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

H̄1 0

H̄2 0

0 0

0 0

0 V̄ T (Ē1T
1 + K̄T

1 ĒT
2 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

0 F̄

F̄T 0

]

×
[

H̄T
1 H̄T

2 0 0 0

0 0 0 0 (Ē1
1 + Ē2K̄1)V̄

]
< 0.

The application of Lemma 3 to this last expression and
Lemma 1 to the result yields⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X Φ1
2Z̄ H̄3 0

Z̄T Φ1T
2 −Z̄−Z̄T 0 Z̄T (Ē2T

1 +K̄T
2 ĒT

2 )

H̄T
3 0 −ε−1

1 I 0

0 (Ē2
1+Ē2K̄2)Z̄ 0 −ε1I

V̄ T ΦT
1 V̄ T Φ2T

2 0 0

H̄T
1 H̄T

2 0 0

0 0 0 0

Φ1V̄ H̄1 0

Φ2
2V̄ H̄2 0

0 0 0

0 0 0

X − V̄−V̄ T 0 V̄ T (Ē1T
1 +K̄T

1 ĒT
2 )

0 −ε−1
2 I 0

(Ē1
1+Ē2K̄1)V̄ 0 −ε2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0.

Next, premultiplying and postmultiplying this inequality
by diag (I, I, ε1I, I, I, ε2I, I) gives⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X Φ1
2Z̄ ε1H̄3 0

Z̄T Φ1T
2 −Z̄−Z̄T 0 Z̄T (Ē2T

1 +K̄T
2 ĒT

2 )

ε1H̄
T
3 0 −ε1I 0

0 (Ē2
1+Ē2K̄2)Z̄ 0 −ε1I

V̄ T ΦT
1 V̄ T Φ2T

2 0 0

ε2H̄
T
1 ε2H̄

T
2 0 0

0 0 0 0

Φ1V̄ ε2H̄1 0

Φ2
2V̄ ε2H̄2 0

0 0 0

0 0 0

X − V̄−V̄ T 0 V̄ T (Ē1T
1 +K̄T

1 ĒT
2 )

0 −ε2I 0

(Ē1
1+Ē2K̄1)V̄ 0 −ε2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0.

Finally, using

Φ1V̄ = Ā1V̄ + B̄1K̄1V̄ = Ā1V̄ + B̄1L̄,

Φ1
2Z̄ = Ā1

2Z̄ + B̄1
2K̄2Z̄ = Ā1

2Z̄ + B̄1
2N̄ ,

Φ2
2V̄ = Ā2

2V̄ + B̄2
2K̄1V̄ = Ā2

2V̄ + B̄2
2L̄,

(Ē1
1 + Ē2K̄1)V̄ = Ē1

1 V̄ + Ē2K̄1V̄ = Ē1
1 V̄ + Ē2L̄,

(Ē2
1 + Ē2K̄2)Z̄ = Ē2

1 Z̄ + Ē2K̄2Z̄ = Ē2
1 Z̄ + Ē2N̄

(42)

leads to (41) with the control law matrices given by (19),
and the proof is complete.

The following example provides an application of
Theorem 7.

Example 1. Consider the following discrete linear repet-
itive process state-space model where all but the matrices
B01, B02, D01 and D02 have been obtained from a 1D dif-
ferential linear system of one axis of a gantry robot used
in iterative learning control experiments (Ratcliffe et al.,
2005) with a sample time Ts = 0.01 sec:

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5707 · 10−1 1 0

−0.2446 −0.5707 · 10−1 −0.6013

0 0 0.1384

0 0 −0.7884

0 0 0

0 0 0

0 0 0

0 0 0 0

0.1625 0.3896 0.3688 0.7939

1 0 0 0

0.1384 0.3850 0.3645 0.7845

0 0.6236 1 0

0 −0.3977 0.6236 0.6758

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B01 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.10
−0.30
−0.20

0.10
−0.10

0.40
0.30

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, C1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.1505
−0.2620
−3.0157

0.8150
1.9542
1.8499
3.9819

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,

D1 = 0, D01 = 1.20,

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2653 1 0
−0.1375 0.2653 0.3123

0 0 0.6635 · 10−2

0 0 −0.1396 · 10−1

0 0 0
0 0 0
0 0 0

0 0 0 0
−0.8535 1.4479 1.0859 1.2343

1 0 0 0
0.6635 · 10−2 0.8637 0.6478 0.7363

0 1 1.0321 1.1731
0 0 1 0.8798
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B2 = 10−2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

0.3906

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B02 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.40
0.30

−0.10
0.20
0.30

−0.20
0.10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C2 = 10−2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1623
−0.5927

0.1260
−0.3443

0.5840
0.4380
0.4979

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, D2 = 0, D02 = 0.60,

and the uncertainty structure modelled by

H =

⎡⎢⎢⎢⎣
H1

H2

H3

H4

⎤⎥⎥⎥⎦ =
[

0.1
]
(2n+2m)×1

,

E =
[

E11 E12 E2

]
=

[ [
0.01

]
1×n

0.01 0.01
]
.

Using the MATLAB LMI Control Toolbox, we can
check that the stabilization condition of Theorem 7 holds
with (43) and

L1 =
[

52.9058 −25.0560 −19.4657 54.6730

39.8828 28.1598 −101.7701
]
,

L2 =
[
−936.9583 −893.6913 −513.6079 −633.7263

−559.0882 911.8489 −824.8886
]
,

L3 = −8.1018,

Z = 57.6722, N = −745.3623,

ε1 = 17.7970, ε2 = 19.6019,

and

eig (X) =
{

0.7158, 1.1292, 37.5499,

44.3078, 72.0117, 79.3489,

150.2692, 170.3241, 314.2136,

327.6514, 351.9829, 558.9057,

667.8880, 928.4967, 1255.5043
}
,

where eig (·) denotes the eigenvalues of its matrix argu-
ment, which confirms that matrix X is positive definite.

The only remaining potential numerical difficulty is
associated with forming the inverses of the square matri-
ces V̄ and Z̄ of (18) to compute the control law gain ma-
trices. The condition numbers of these matrices are given
by

cond
(
V̄

)
= 1184.3982, cond

(
Z̄

)
= 1.0000

and hence no difficulties of this type arise. Finally, the
control law matrices are given by

K1
1 =

[
0.0050 −0.1983 0.0612 0.1804

−0.0438 −0.2085 −0.3628
]
,

K2
1 =

[
−0.0547 1.8972 0.2814 −0.0144

−17.8868 −120.3157 −357.2174
]
,

K1
2 = −0.1826, K2

2 = −12.9241,

which produces the final controlled switched process sta-
ble along the pass. The respective simulation results are
shown in Fig. 1.
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X1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

265.0370 3.2621 124.5642 19.9530 −7.9962 22.9728 −127.6870
3.2621 242.0984 −11.9722 144.3611 −17.1366 23.5575 −29.0969

124.5642 −11.9722 368.4182 −51.3197 177.8854 −116.7439 158.2551
19.9530 144.3611 −51.3197 246.5962 8.7653 97.9338 −146.7649
−7.9962 −17.1366 177.8854 8.7653 475.9322 −110.0790 −37.4967
22.9728 23.5575 −116.7439 97.9338 −110.0790 341.3245 −233.4411

−127.6870 −29.0969 158.2551 −146.7649 −37.4967 −233.4411 378.8219
−17.4785 34.4636 73.3648 −42.7514 40.9310 −68.4696 95.7716
−0.5425 −20.9129 −20.4005 27.4117 6.3315 31.5829 −40.5744

−12.7266 11.8933 33.0491 −13.0525 26.5892 −26.5117 39.1009
−2.7633 −15.5503 −13.1771 19.5248 7.2460 21.5341 −26.9603
−1.2564 −21.8787 −28.1982 29.1214 0.2742 36.2554 −47.8465

1.7970 12.8103 14.7954 −17.5577 −3.1597 −20.4317 27.0030
−0.7897 −3.5208 −3.5859 4.9810 1.6899 5.3847 −7.1344

−17.4785 −0.5425 −12.7266 −2.7633 −1.2564 1.7970 −0.7897
34.4636 −20.9129 11.8933 −15.5503 −21.8787 12.8103 −3.5208
73.3648 −20.4005 33.0491 −13.1771 −28.1982 14.7954 −3.5859

−42.7514 27.4117 −13.0525 19.5248 29.1214 −17.5577 4.9810
40.9310 6.3315 26.5892 7.2460 0.2742 −3.1597 1.6899

−68.4696 31.5829 −26.5117 21.5341 36.2554 −20.4317 5.3847
95.7716 −40.5744 39.1009 −26.9603 −47.8465 27.0030 −7.1344

986.3738 54.9630 336.3364 75.6992 38.5814 12.0750 −1.8076
54.9630 465.3885 57.1786 217.5740 225.1623 −92.2416 25.0249

336.3364 57.1786 501.0665 128.1086 80.4877 −32.9451 11.8289
75.6992 217.5740 128.1086 269.6901 202.8584 −80.1919 20.8023
38.5814 225.1623 80.4877 202.8584 281.1896 −109.5404 26.1347
12.0750 −92.2416 −32.9451 −80.1919 −109.5404 84.0842 −26.1693
−1.8076 25.0249 11.8289 20.8023 26.1347 −26.1693 9.9700

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (43a)

X2 = 44.3078, (43b)

V1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

261.7018 4.7001 110.5979 2.2956 −27.8408 17.3028 −119.8872
3.0288 253.2669 16.6811 94.2706 −21.7773 −9.8883 20.4174

120.4596 1.8425 306.3218 −73.5666 122.7114 −108.3803 141.7747
14.7726 126.4219 19.3522 251.0069 65.0976 74.3826 −106.1499
−6.3846 −12.3672 96.4814 −18.0123 399.1164 −83.6090 −69.5487
16.7381 7.3868 1.2933 91.3309 −27.0557 297.9124 −157.4820

−125.1051 −8.8567 94.9489 −140.1001 −77.9619 −214.4360 337.7773

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (43c)

V2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

690.1699 33.7436 107.5294 37.1964 60.2176 5.2953 −2.5731
−7.7851 444.6480 6.5624 155.6922 203.7368 −83.4781 23.3039
292.8675 41.3942 382.8377 99.8370 91.3793 −35.8418 11.5799
13.1630 208.9687 39.8069 258.0101 198.3998 −77.1550 19.9475
−66.6670 230.9958 −41.5460 160.2523 269.9527 −101.4096 23.6145
36.5857 −101.7159 12.8268 −65.2533 −102.3273 80.5270 −25.2972
−6.2784 27.5752 −0.4838 16.6175 23.6500 −25.0667 9.7797

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (43d)

V3 = 44.3791, (43e)
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Fig. 1. Pass profile sequence of the model of Example 1
before (left plot) and after (right plot) stabiliza-
tion. The boundary conditions are y0(p) = 0,
and each entry in xl+1(0) is equal to unity.

4. Processes with Dynamics Switched Along
the Pass

The analysis of the previous section can be adopted for
application to discrete linear repetitive processes with
switching in the along the pass direction as described by

xk+1(s+1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A1xk+1(s)+B1uk+1(s)+B01yk(s),

for s=0, 2, . . . , i.e., s=2p,

A2xk+1(s)+B2uk+1(s)+B02yk(s),
for s=1, 3, . . . , i.e., s=2p+1,

(44)

yk+1(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C1xk+1(s)+D1uk+1(s)+D01yk(s),

for s=0, 2, . . . , i.e., s=2p,

C2xk+1(s)+D2uk+1(s)+D02yk(s),
for s=1, 3, . . . , i.e., s=2p+1,

where s = 0, 1, . . . , (α−1) denotes points along the pass,
p = 0, 1, . . . , (α − 2)/2, and all other symbols have the

meaning assigned to them in the previous section. Alter-
natively, we can use the state-space model

Xk+1(s+1) = ǍXk+1(s)+B̌Uk+1(s)+B̌0Yk(s),
(45)

Yk+1(s) = ČXk+1(s)+ĎUk+1(s)+Ď0Yk(s),

where

Xk+1(s) = xk+1(2p), Xk+1(s+1) = xk+1(2p+2),

Uk+1(s) =

[
uk+1(2p)

uk+1(2p+1)

]
, Yk+1(s) =

[
yk+1(2p)

yk+1(2p+1)

]

and

Ǎ=A2A1, B̌=
[
A2B1 B2

]
, B̌0 =

[
A2B01 B02

]
,

Č =

[
C1

C2A1

]
, Ď=

[
D1 0

C2B1 D2

]
, Ď0 =

[
D01 0

C2B01 D02

]
.

For stability along the pass we have the following re-
sult, which follows immediately if we interpret Theorem 2
in terms of this last state-space model.

Theorem 8. (Gałkowski et al., 2002; Rogers and Owens,
1992) A discrete linear repetitive process which can be
written in the form (44) is stable along the pass if there
exist matrices W1 > 0 and W2 > 0 such that

Φ̌T W Φ̌ − W < 0, (46)

where the augmented process matrix Φ̌ is given by

Φ̌ =

[
Ǎ B̌0

Č Ď0

]
(47)

and W = diag (W1, W2).

Consider also the use of a switched control law of the
form

uk+1(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K1

1xk+1(s) + K1
2yk(s),

for s = 0, 2, . . . , i.e., s = 2p,

K2
1xk+1(s) + K2

2yk(s),
for s = 1, 3, . . . , i.e., s = 2p + 1,

(48)

or
Uk+1(s) = Ǩ1Xk+1(s) + Ǩ2Yk(s), (49)

where

Ǩ1 =

[
K1

1

K2
1 (A1 + B1K

1
1 )

]
,

Ǩ2 =

[
K1

2 0
K2

1 (B01 + B1K
1
2 ) K2

2

]
.
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The resulting controlled process state-space model
can be written as

Xk+1(s + 1) = ǍnewXk+1(s) + B̌0newYk(s),
(50)

Yk+1(s) = ČnewXk+1(s) + Ď0newYk(s),

where

Ǎnew = Ǎ + B̌Ǩ1 =
[

(A2 + B2K
2
1)(A1 + B1K

1
1 )

]
,

B̌0new = B̌0 + B̌Ǩ2

=
[
(A2+B2K

2
1 )(B01+B1K

1
2) B02+B2K

2
2

]
,

Čnew = Č + ĎǨ1 =

[
C1 + D1K

1
1

(C2 + D2K
2
1)(A1 + B1K

1
1 )

]
,

Ď0new = Ď0 + ĎǨ2

=

[
D01+D1K

1
2 0

(C2+D2K
2
1 )(B01+B1K

1
2 ) D02+D2K

2
2

]
.

Also, introduce

Φ̌new =

[
Ǎnew B̌0new

Čnew Ď0new

]

=

[
Ǎ B̌0

Č Ď0

]
+

[
B̌

Ď

] [
Ǩ1 Ǩ2

]
. (51)

Then we can rewrite (51) in the following form:

Φ̌new = Φ1 + Φ1
2Φ

2
2, (52)

where

Φ1 =

⎡⎢⎣ 0 0 B02 + B2K
2
2

C1 + D1K
1
1 D01 + D1K

1
2 0

0 0 D02 + D2K
2
2

⎤⎥⎦
= Ã1 + B̃1K̃1,

Φ1
2 =

⎡⎢⎣ A2 + B2K
2
1 0 0

0 0 0
0 0 C2 + D2K

2
1

⎤⎥⎦
= Ã1

2 + B̃1
2K̃2,

Φ2
2 =

⎡⎢⎣ A1 + B1K
1
1 B01 + B1K

1
2 0

0 0 0
A1 + B1K

1
1 B01 + B1K

1
2 0

⎤⎥⎦
= Ã2

2 + B̃2
2K̃1,

and

Ã =

⎡⎢⎣ 0 0 B02

C1 D01 0
0 0 D02

⎤⎥⎦ , B̃ =

⎡⎢⎣ 0 0 B2

D1 D1 0
0 0 D2

⎤⎥⎦ ,

Ã1
2 =

⎡⎢⎣A2 A2 0
0 0 0
C2 C2 0

⎤⎥⎦ , B̃1
2 =

⎡⎢⎣B2 B2 0
0 0 0

D2 D2 0

⎤⎥⎦ ,

Ã2
2 =

⎡⎢⎣A1 0 0
0 B01 0
0 0 0

⎤⎥⎦ , B̃2
2 =

⎡⎢⎣B1 0 0
0 B1 0
0 0 0

⎤⎥⎦ ,

K̃1 =

⎡⎢⎣K1
1 0 0

0 K1
2 0

0 0 K2
2

⎤⎥⎦ , K̃2 =

⎡⎢⎢⎣
K2

1 0 0

0 K2
1 0

0 0 K2
1

⎤⎥⎥⎦ .

Now we are in a position to establish the following
result:

Theorem 9. Suppose that a control law of the form (49)
is applied to a discrete linear repetitive process which can
be written in the form (45). Then the resulting controlled
process is stable along the pass if there exist a matrix
X > 0, nonsingular matrices Ṽ and Z̃ , and rectangular
matrices L̃ and Ñ such that⎡⎢⎢⎣

−X Ã1
2Z̃+B̃1

2Ñ ÃṼ +B̃L̃

Z̃T Ã1T
2 +ÑT B̃1T

2 −Z̃−Z̃T Ã2
2Ṽ +B̃2

2L̃

Ṽ T ÃT +L̃T B̃T Ṽ T Ã2T
2 +L̃T B̃2T

2 X − Ṽ −Ṽ T

⎤⎥⎥⎦
< 0, (53)

where

X =

[
X1 0
0 X2

]
, Ṽ =

⎡⎢⎣ V1 0 0
0 V2 0
0 0 V3

⎤⎥⎦ ,

L̃ =

⎡⎢⎣ L1 0 0
0 L2 0
0 0 L3

⎤⎥⎦ , Ñ =

⎡⎢⎣ N 0 0
0 N 0
0 0 N

⎤⎥⎦ ,

Z̃ =

⎡⎢⎣ Z 0 0
0 Z 0
0 0 Z

⎤⎥⎦ . (54)
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If this condition holds, the control law matrices are given
by

K̃1 = L̃Ṽ −1 =

⎡⎢⎣ K1
1 0 0

0 K1
2 0

0 0 K2
2

⎤⎥⎦ ,

(55)

K̃2 = ÑZ̃−1 =

⎡⎢⎣ K2
1 0 0

0 K2
1 0

0 0 K2
1

⎤⎥⎦ .

Proof. The proof proceeds using steps identical to those
of Theorem 3, with

Φ1Ṽ = ÃṼ + B̃K̃1Ṽ = ÃṼ + B̃L̃,

Φ1
2Z̃ = Ã1

2Z̃ + B̃1
2K̃2Z̃ = Ã1

2Z̃ + B̃1
2Ñ , (56)

Φ2
2Ṽ = Ã2

2Ṽ + B̃2
2K̃1Ṽ = Ã2

2Ṽ + B̃2
2 L̃,

and hence the details are omitted here.

Theorem 9 is a modification of a result in (Bochniak
et al., 2006), where the degree of conservativeness is re-
duced to a chance of numerical difficulties.

4.1. Robustness Analysis. Here we expand the robust-
ness analysis developed so far in this paper to the case of
dynamics switching along the pass. In the case of poly-
topic uncertainty, we first have the following result.

Theorem 10. Consider a discrete linear repetitive
process described by (45), with the uncertainty structure
modelled by (21). Then the stability along the pass holds
if there exist a matrix X > 0 and nonsingular matrices Ṽ
and Z̃ such that for all i = 1, . . . , P , i.e., for each vertex
of the polytope, we have⎡⎢⎢⎣

−X Ã1i
2 Z̃ Ãi

1Ṽ

Z̃T Ã1iT
2 −Z̃ − Z̃T Ã2i

2 Ṽ

Ṽ T ÃiT
1 Ṽ T Ã2iT

2 X − Ṽ − Ṽ T

⎤⎥⎥⎦ < 0, (57)

where

X =

[
X1 0
0 X2

]
and

Ãi
1 =

⎡⎢⎣ 0 0 Bi
02

Ci
1 Di

01 0
0 0 Di

02

⎤⎥⎦ , Ã1i
2 =

⎡⎢⎣ Ai
2 Ai

2 0
0 0 0
Ci

2 Ci
2 0

⎤⎥⎦ ,

Ã2i
2 =

⎡⎢⎣ Ai
1 0 0

0 Bi
01 0

0 0 0

⎤⎥⎦ . (58)

Proof. Up to routine changes, the proof proceeds in the
same way as that of Theorem 4, and hence the details are
omitted here.

In what follows, we consider the application of a con-
trol law of the form (49) but, because of the the uncertainty
in the process state-space model, modified (via (49)) to the
form

Ǩ1 ∈ Co
{
Ǩi

1, i = 1, . . . , P
}

,

Ǩi
1 =

[
K1

1

K2
1(Ai

1 + Bi
1K

1
1)

]
,

(59)
Ǩ2 ∈ Co

{
Ǩi

2, i = 1, . . . , P
}

,

Ǩi
2 =

[
K1

2 0
K2

1(Bi
01 + Bi

1K
1
2) K2

2

]
.

The resulting controlled discrete linear repetitive process
is given by (50) with

Ǎnew ∈ Co
{
Ǎi

new, i = 1, . . . , P
}

,

B̌0new ∈ Co
{
B̌i

0new, i = 1, . . . , P
}

,

Čnew ∈ Co
{
Či

new, i = 1, . . . , P
}

,

Ď0new ∈ Co
{
Ďi

0new, i = 1, . . . , P
}

,

Ǎi
new = Ǎi + B̌iǨi

1 = (Ai
2 + Bi

2K
2
1 )(Ai

1 + Bi
1K

1
1 ),

B̌i
0new = B̌i

0 + B̌iǨi
2

=
[
(Ai

2+Bi
2K

2
1)(Bi

01+Bi
1K

1
2 ) Bi

02+Bi
2K

2
2

]
,

Či
new = Či + ĎiǨi

1

=

[
Ci

1 + Di
1K

1
1

(Ci
2 + Di

2K
2
1 )(Ai

1 + Bi
1K

1
1 )

]
,

Ďi
0new = Ďi

0 + ĎiǨi
2

=

[
Di

01 + Di
1K

1
2 0

(Ci
2+Di

2K
2
1 )(Bi

01+Bi
1K

1
2 ) Di

02+Di
2K

2
2

]
.

The associated augmented process matrix is given by

Φ̌i
new =

[
Ǎi

new B̌i
0new

Či
new Ďi

0new

]

=

[
Ǎi B̌i

0

Či Ďi
0

]
+

[
B̌i

Ďi

] [
Ǩi

1 Ǩi
2

]
= Φ̌i + Π̌iǨi, (60)
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which can be written in the form

Φ̌i
new = Φi

1 + Φ1i
2 Φ2i

2 (61)

for i = 1, 2, . . . , P , where

Φi
1 =

⎡⎢⎣ 0 0 Bi
02+Bi

2K
2
2

Ci
1+Di

1K
1
1 Di

01+Di
1K

1
2 0

0 0 Di
02+Di

2K
2
2

⎤⎥⎦
= Ãi

1 + B̃i
1K̃1,

Φ1i
2 =

⎡⎢⎣ Ai
2 + Bi

2K
2
1 Ai

2 + Bi
2K

2
1 0

0 0 0
Ci

2 + Di
2K

2
1 Ci

2 + Di
2K

2
1 0

⎤⎥⎦ ,

= Ã1i
2 + B̃1i

2 K̃2,

Φ2i
2 =

⎡⎢⎣ Ai
1 + Bi

1K
1
1 0 0

0 Bi
01 + Bi

1K
1
2 0

0 0 0

⎤⎥⎦
= Ã2i

2 + B̃2i
2 K̃1,

where Ãi
1, Ã1i

2 , Ã2i
2 are given by (58), and

B̃i
1 =

⎡⎢⎣ 0 0 Bi
2

Di
1 Di

1 0
0 0 Di

2

⎤⎥⎦ , B̃1i
2 =

⎡⎢⎣ Bi
2 Bi

2 0
0 0 0

Di
2 Di

2 0

⎤⎥⎦ ,

B̃2i
2 =

⎡⎢⎣ Bi
1 0 0

0 Bi
1 0

0 0 0

⎤⎥⎦ ,

K̃1 =

⎡⎢⎣ K1
1 0 0

0 K1
2 0

0 0 K2
2

⎤⎥⎦ , K̃2 =

⎡⎢⎣ K2
1 0 0

0 K2
1 0

0 0 K2
1

⎤⎥⎦.

Now we have the following result.

Theorem 11. Suppose that a control law of the form (48)
is applied to a discrete linear repetitive process written
in the form (45), with the uncertainty structure modelled
by (21). Then the resulting uncertain controlled process
is stable along the pass if there exist a matrix X > 0,
nonsingular matrices Ṽ and Z̃ , and rectangular matrices
L̃, Ñ such that for all i = 1, . . . , P (i.e., for each vertex
of the polytope) we have⎡⎢⎣ −X Ã1i

2 Z̃+B̃1i
2 Ñ Ãi

1Ṽ +B̃i
1L̃

Z̃T Ã1iT
2 +ÑT B̃1iT

2 −Z̃−Z̃T Ã2i
2 Ṽ +B̃2i

2 L̃

Ṽ T ÃiT
1 +L̃T B̃iT

1 Ṽ T Ã2iT
2 +L̃T B̃2iT

2 X−Ṽ −Ṽ T

⎤⎥⎦
< 0, (62)

where the matrices X , Ṽ , Z̃ , L̃ and Ñ are given in (54).
If this condition holds, the control law matrices are again
given by (55).

Proof. The proof follows the steps of that for Theorem 5,
and hence is omitted here.

For the norm-bounded uncertainty case, we start
with the state-space model over k = 0, 1, . . . , s =
0, 1, . . . , (α − 1):

Xk+1(s + 1) = (Ǎ+ΔǍ)Xk+1(s)+(B̌+ΔB̌)Uk+1(s)

+ (B̌0 + ΔB̌0)Yk(s),

Yk+1(s) = (Č+ΔČ)Xk+1(s)+(Ď+ΔĎ)Uk+1(s)

+ (Ď0 + ΔĎ0)Yk(s), (63)

where

Ǎ+ΔǍ =(A2 + ΔA2)(A1 + ΔA1),

B̌+ΔB̌ =
[
(A2+ΔA2)(B1+ΔB1)(B2+ΔB2)

]
,

B̌0+ΔB̌0 =
[
(A2+ΔA2)(B01+ΔB01) (B02+ΔB02)

]
,

Č+ΔČ =

[
(C1 + ΔC1)

(C2 + ΔC2)(A1 + ΔA1)

]
,

Ď+ΔĎ =

[
(D1 + ΔD1) 0

(C2+ΔC2)(B1+ΔB1) (D2+ΔD2)

]
,

Ď0+ΔĎ0 =

[
(D01 + ΔD01) 0

(C2+ΔC2)(B01+ΔB01) (D02+ΔD02)

]
,

and (30) and (31) also apply. Hence the augmented
process matrix (Φ̌ + ΔΦ̌) in this case can be written as

Φ̌ + ΔΦ̌ =

[
Ǎ + ΔǍ B̌0 + ΔB̌0

Č + ΔČ Ď0 + ΔĎ0

]

= (Ã1 + ΔÃ1) + (Ã1
2 + ΔÃ1

2)(Ã
2
2 + ΔÃ2

2),

(64)

where

ΔÃ1 =

⎡⎢⎣ 0 0 ΔB02

ΔC1 ΔD01 0
0 0 ΔD02

⎤⎥⎦ = H̃1F̃ Ẽ1
1 ,

ΔÃ1
2 =

⎡⎢⎣ ΔA2 ΔA2 0
0 0 0

ΔC2 ΔC2 0

⎤⎥⎦ = H̃3F̃ Ẽ2
1 , (65)

ΔÃ2
2 =

⎡⎢⎣ ΔA1 0 0
0 ΔB01 0
0 0 0

⎤⎥⎦ = H̃2F̃ Ẽ1
1 ,
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with

H̃1 =

⎡⎢⎣ 0 0 H2

H3 H3 0
0 0 H4

⎤⎥⎦ , H̃2 =

⎡⎢⎣ H1 0 0
0 H1 0
0 0 0

⎤⎥⎦ ,

H̃3 =

⎡⎢⎣ H2 H2 0
0 0 0

H4 H4 0

⎤⎥⎦ , F̃ =

⎡⎢⎣ F 0 0
0 F 0
0 0 F

⎤⎥⎦ ,

Ẽ1
1 =

⎡⎢⎣ E11 0 0
0 E12 0
0 0 E12

⎤⎥⎦ , Ẽ2
1 =

⎡⎢⎣ E11 0 0
0 E11 0
0 0 E11

⎤⎥⎦ .

Now we have the following result.

Theorem 12. A discrete linear repetitive process de-
scribed by (63) with the uncertainty structure modelled
by (30) is stable along the pass if there exist a matrix
X > 0, nonsingular matrices Ṽ and Z̃, and scalars
ε1 > 0 and ε2 > 0 such that⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X �A1
2
�Z ε1

�H3 0 �A1
�V ε2

�H1 0
�ZT

�A1T
2 − �Z−�ZT 0 �ZT

�E2T
1

�A2
2
�V ε2

�H2 0

ε1
�HT

3 0 −ε1I 0 0 0 0

0 �E2
1
�Z 0 −ε1I 0 0 0

�V T
�AT
1

�V T
�A2T
2 0 0 X−�V−�V T 0 �V T

�E1T
1

ε2
�HT

1 ε2
�HT

2 0 0 0 −ε2I 0

0 0 0 0 �E1
1
�V 0 −ε2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (66)

where X = diag (X1, X2).

Proof. The proof proceeds as that of Theorem 6, and
hence the details are omitted here.

Consider now the control law

Uk+1(s) = (Ǩ1 + ΔǨ1)Xk+1(s)

+ (Ǩ2 + ΔǨ2)Yk(s), (67)

where

Ǩ1 + ΔǨ1

=

[
K1

1

K2
1 (A1 + ΔA1 + (B1 + ΔB1)K1

1 )

]
,

(68)
Ǩ2 + ΔǨ2

=

[
K1

2 0
K2

1 (B01 + ΔB01 + (B1 + ΔB1)K1
2 ) K2

2

]
.

The resulting controlled process state-space model can be
written as

Xk+1(s + 1) = (Ǎnew + ΔǍnew)Xk+1(s)

+ (B̌0new + ΔB̌0new)Yk(s),
(69)

Yk+1(s) = (Čnew + ΔČnew)Xk+1(s)

+ (Ď0new + ΔĎ0new)Yk(s),

where

Ǎnew + ΔǍnew =
(
A2 + ΔA2 + (B2 + ΔB2)K2

1

)
× (

A1 + ΔA1 + (B1 + ΔB1)K1
1

)
,

B̌0new + ΔB̌0new

=

[ (
A2 + ΔA2 + (B2 + ΔB2)K2

1

)
× (

B01 + ΔB01 + (B1 + ΔB1)K1
2

)
B02 + ΔB02 + (B2 + ΔB2)K2

2

]
,

Čnew + ΔČnew

=

⎡⎢⎢⎣
C1 + ΔC1 + (D1 + ΔD1)K1

1(
C2 + ΔC2 + (D2 + ΔD2)K2

1

)
× (

A1 + ΔA1 + (B1 + ΔB1)K1
1

)
⎤⎥⎥⎦ ,

Ď0new + ΔĎ0new

=

⎡⎢⎢⎣
D01 + ΔD01 + (D1 + ΔD1)K1

2(
C2 + ΔC2 + (D2 + ΔD2)K2

1

)
× (

B01 + ΔB01 + (B1 + ΔB1)K1
2

)
0

D02 + ΔD02 + (D2 + ΔD2)K2
2

⎤⎦ ,

and the associated augmented process matrix as

Φ̌new + ΔΦ̌new

=

[
Ǎnew + ΔǍnew B̌0new + ΔB̌0new

Čnew + ΔČnew Ď0new + ΔĎ0new

]
, (70)

or

Φ̌new + ΔΦ̌new

= Φ1 + ΔΦ1 + (Φ1
2 + ΔΦ1

2)(Φ
2
2 + ΔΦ2

2), (71)
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where

ΔΦ1

=

⎡⎢⎣ 0 0 ΔB02+ΔB2K
2
2

ΔC1+ΔD1K
1
1 ΔD01+ΔD1K

1
2 0

0 0 ΔD02+ΔD2K
2
2

⎤⎥⎦
= ΔÃ + ΔB̃K̃1,

ΔΦ1
2

=

⎡⎢⎣ ΔA2 + ΔB2K
2
1 ΔA2 + ΔB2K

2
1 0

0 0 0
ΔC2 + ΔD2K

2
1 ΔC2 + ΔD2K

2
1 0

⎤⎥⎦
= ΔÃ1

2 + ΔB̃1
2K̃2,

ΔΦ2
2

=

⎡⎢⎣ ΔA1 + ΔB1K
1
1 0 0

0 ΔB01 + ΔB1K
1
2 0

0 0 0

⎤⎥⎦
= ΔÃ2

2 + ΔB̃2
2K̃1,

and ΔÃ1, ΔÃ1
2, ΔÃ2

2 are given by (65), and

ΔB̃1 =

⎡⎢⎣ 0 0 ΔB2

ΔD1 ΔD1 0
0 0 ΔD2

⎤⎥⎦ = H̃1F̃ Ẽ2,

ΔB̃1
2 =

⎡⎢⎣ ΔB2 ΔB2 0
0 0 0

ΔD2 ΔD2 0

⎤⎥⎦ = H̃3F̃ Ẽ2, (72)

ΔB̃2
2 =

⎡⎢⎣ ΔB1 0 0
0 ΔB1 0
0 0 0

⎤⎥⎦ = H̃2F̃ Ẽ2,

with

Ẽ2 =

⎡⎢⎣ E2 0 0
0 E2 0
0 0 E2

⎤⎥⎦ .

Now we have the following result.

Theorem 13. Suppose that a control law of the form (48)
is applied to a discrete linear repetitive process described
by (63), with the uncertainty structure modelled by (30).

Then the resulting closed-loop process is stable along the
pass if there exist a matrix X > 0, nonsingular matrices
Ṽ and Z̃, rectangular matrices L̃, Ñ , and scalars ε1 > 0,
ε2 > 0 such that⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X �A1
2
�Z+ �B1

2
�N ε1

�H3

�ZT
�A1T
2 + �NT

�B1T
2 − �Z− �ZT 0

ε1
�HT

3 0 −ε1I

0 �E2
1
�Z+ �E2

�N 0

�V T
�AT
1 +�LT

�BT
1

�V T
�A2T
2 +�LT

�B2T
2 0

ε2
�HT

1 ε2
�HT

2 0

0 0 0

0 �A1
�V+�B1

�L ε2
�H1 0

�ZT
�E2T

1 +�NT
�ET
2

�A2
2
�V+�B2

2
�L ε2

�H2 0

0 0 0 0

−ε1I 0 0 0

0 X−�V−�V T 0 �V T
�E1T

1 +�LT
�ET
2

0 0 −ε2I 0

0 �E1
1
�V+�E2

�L 0 −ε2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (73)

where the matrices X , Ṽ , Z̃ , L̃ and Ñ are given by (54).
If this condition holds, the control law matrices are again
given by (55).

Proof. The proof is similar to that of Theorem 7 and hence
the details are omitted here.

5. Conclusions and Future Work

We have developed LMI based control law design algo-
rithms for uncertain discrete linear repetitive processes
with switching in the dynamics either from pass to pass
or along the pass. This general problem area is of sig-
nificant theoretical and practical importance and is much
more complicated than the corresponding problems in the
absence of switching. The main source of difficulty here is
the fact that even if the uncertainty present in the switched
dynamics can be represented by convex uncertainty re-
gions, these regions for the overall process are nonconvex.
The methods developed in this paper provide appropriate
approximations and allow a process within this general
class to be stabilized.

The results here have been obtained under the as-
sumption that a constant uncertainty independent Lya-
punov function (the basis of LMI stability conditions
which have not been covered explicitly in this paper) and
static control laws can be used, but at the cost of some
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conservativeness. One possible means of reducing the ef-
fects of this is to use a parameter variable Lyapunov func-
tion and control law. This is the subject of ongoing work
and will be reported in due course. Also, there is a clear
need to extend the design for stability along the pass to this
fundamental property plus performance objectives, distur-
bance rejection or attenuation and tracking given refer-
ence signals. It is also possible to use the pass to pass
switching model to describe the dynamics of the so-called
bi-directional processes, where, instead of resetting before
the start of each new pass, the process produces the next
pass in the reverse direction, and so on. Such processes
occur in industrial examples, e.g., in distillation columns
(Edwards, 1974), and cannot be studied by uni-directional
models, which have been the focus of attention in the cur-
rently available literature.
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