
Int. J. Appl. Math. Comput. Sci., 2001, Vol.11, No.5, 1151–1171 1151

REDUCTION OF LARGE CIRCUIT MODELS

VIA LOW RANK APPROXIMATE GRAMIANS

Jing-Rebecca LI
∗, Jacob WHITE∗∗

We describe a model reduction algorithm which is well-suited for the reduc-
tion of large linear interconnect models. It is an orthogonal projection method
which takes as the projection space the sum of the approximate dominant con-
trollable subspace and the approximate dominant observable subspace. These
approximate dominant subspaces are obtained using the Cholesky Factor ADI
(CF–ADI) algorithm. We describe an improvement upon the existing implemen-
tation of CF–ADI which can result in significant savings in computational cost.
We show that the new model reduction method matches moments at the nega-
tive of the CF–ADI parameters, and that it can be easily adapted to allow for
DC matching, as well as for passivity preservation for multi-port RLC circuit
models which come from modified nodal analysis.

Keywords: model reduction, Lyapunov equations, Cholesky–Factor ADI, mo-

ment matching, passivity

1. Introduction

If modified nodal analysis (MNA) is used to generate a system of equations for a
multi-port, coupled RLC network, the system will have the form

Lẋ = −Gx+Nu, (1)

y = Cx, (2)

where

L =
[

E 0

0 L

]

, G =
[

G M

−MT 0

]

, x =

[

v

i

]

. (3)

The vectors y and u denote the port currents and voltages, respectively. The square
matrices E, L, and G are all symmetric, and denote the nodal capacitance, induc-
tance, and conductance matrices, respectively. We further assume that E and L are
non-singular. The rectangular matrix M is the incidence matrix associated with the
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inductor currents. The matrix N indicates where the voltage sources are, and the
matrix C specifies where the port currents are measured.

Model reduction methods for such systems usually proceed by projection, which
can be either orthogonal, involving only one orthonormal projection matrix, or
oblique, involving two bi-orthogonal projection matrices.

The new model reduction algorithm is chosen to be an orthogonal projection
method, because orthogonal projection has certain advantages over oblique projection
in the context of the reduction of large circuit models. The new method chooses its
projection matrix to include columns which form an orthonormal basis for the sum of
the approximate dominant eigenspaces of the system controllability and observability
gramians.

The approximate dominant gramian eigenspaces are obtained via an efficient
Lyapunov equation solver, the Cholesky-Factor ADI (CF–ADI) algorithm (Li et al.,
1999). We describe an improvement upon the existing implementation of CF-ADI
in (Li et al., 1999), which can result in significant savings in computational cost, in
the case when an iterative Krylov subspace method such as GMRES is used to solve
shifted linear systems. We show how to convert shifted linear systems with different
right-hand sides in CF–ADI to ones with the same right-hand side, and how to solve
all these systems with only one Krylov subspace. The solution of shifted systems was
discussed in detail in (Freund, 1993b).

We then show that the new model reduction algorithm which uses CF–ADI to
obtain the approximate dominant gramian eigenspaces produces a reduced system
whose transfer function matches the moments of the original transfer function at the
negatives of the CF–ADI parameters.

However, including only the sum of the dominant gramian eigenspaces in the
projection matrix will not, in general, produce a reduced model whose transfer func-
tion matches moments of the original transfer function around s = 0. In other words,
the steady state response of the reduced system is not guaranteed to be the same as
that of the original one. To remedy this, we augment the projection matrix by several
Arnoldi vectors to obtain the new projection matrix. Orthogonal projection via the
augmented matrix achieves transfer function matching at s = 0, and appears to have
no detrimental effect on the quality of the approximation in the rest of the frequency
domain.

Odabasioglu et al. (1998) showed that for multi-port RLC circuits from modified
nodal analysis, if L and G are each projected separately via an orthogonal projection
matrix, then the reduced system preserves passivity. This result holds for general
orthogonal projection matrices, including the augmented projection matrix described
in this paper.

This paper is organized in the following way. Section 2 gives background on
model reduction. Section 3 describes the CF–ADI algorithm and a more efficient
way of implementing it. Section 4 describes the new model reduction algorithm and
proves its moment matching property. Section 5 gives numerical results. Section 6
addresses the issues of DC matching and passivity preservation. Section 7 contains
the conclusions.
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2. Model Reduction

We rewrite the system (1, 2) in the standard state space form

ẋ = Ax+Bu, (4)

y = Cx, (5)

where A = −L−1G and B = L−1N . The matrices A ∈ �
n×n , B ∈ �

n×p , C ∈ �
q×n

are called the system matrix, the input matrix and the output matrix, respectively.
In single-input, single-output (SISO) systems, p = 1, q = 1. Even in multiple-input,
multiple-output (MIMO) systems, p and q are both very small compared with the
number of state variables n.

If A is stable, the controllability gramian P and the observability gramian Q of
the system (4), (5) are the unique, symmetric solutions of the following two Lyapunov
equations (Chandrasekharan, 1996; Sontag, 1998):

AP + PAT +BBT = 0, (6)

ATQ+QA+ CTC = 0. (7)

The gramians provide information about the controllability and observability of the
system, and are needed in optimal Hankel-norm or Truncated Balanced Realization-
type model reductions (Enns, 1984; Glover, 1984; Moore, 1981; Pernebo and Silver-
man, 1982). Eigenvectors of P with the largest eigenvalues are the modes which are
the most controllable, and eigenvectors ofQ with the largest eigenvalues are the modes
which are the most observable.

The system in (4), (5) is characterized by its transfer function G(s), where

G(s) = C(sI −A)−1B, Y (s) = G(s)U(s), (8)

and Y (s) and U(s) are the Laplace transforms of the output y and the input u,
respectively. Model order reduction seeks to obtain a smaller system

ẋr = Arxr +Bru, (9)

yr = Crxr (10)

such that the number of state variables of this new system is much smaller than n,
and the transfer function of the new system, Gr(s),

Gr(s) = Cr(sI −Ar)−1Br, Yr(s) = Gr(s)Ur(s) (11)

is close to the original.

2.1. Projection Methods

Most model reduction methods are projection methods. These methods choose two
projection matrices, the right projection matrix, Uk ∈

�
n×k , and the left projection
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matrix, Vk ∈
�
n×k . The system (4), (5) is then reduced according to the projection

equations,

Ark = Vk
TAUk, (12)

Brk = Vk
TB, Crk = CUk. (13)

2.2. Moment Matching Methods

One main category of model reduction methods comprises moment matching methods,
wherein the transfer function of the reduced model matches a number of moments
of the original transfer function. Moment matching is usually done implicitly, via
Krylov subspaces (Feldmann and Freund, 1995; Freund, 1999; Gallivan et al., 1994;
1996a; 1996b; Grimme et al., 1996). The moments themselves are never calculated.

An example of an oblique moment matching method which uses Krylov subspaces
is one which chooses the left projection matrix Vk and the right projection matrix
Uk to be bi-orthogonal, via the Lanczos process, and where

span(Uk)= span
{

A−1B, . . . , A−kB
}

= Kk(A−1, A−1B), (14)

span(Vk)= span
{

(AT )
−1
CT , . . . , (AT )

−k
CT
}

=Kk(A−T , A−TCT ). (15)

This approach produces a reduced system whose transfer function matches 2k mo-
ments of the original at s = 0. Since Lanczos bi-orthogonalization can have break-
downs, “look-ahead” Lanczos is usually implemented (Freund, 1993a).

Moment matching can also be done via orthogonal projection, in which case the
left and right projection matrices are the same. The single projection matrix Uk = Vk
can be chosen to be orthonormal and to satisfy either (14) or (15). The Arnoldi process
can be used to produce this projection matrix. The approach which uses the Arnoldi
process avoids Lanczos breakdowns, but in general it only matches k moments around
s = 0.

Moments can also be matched at points other than 0, in which case the projection
matrices will span the sum of rational Krylov subspaces. For example, Uk can be
chosen so that

span(Uk) =

m
∑

i=1

span
{

(A− piI)−1B, (A− piI)−2B, . . . , (A− piI)−kiB
}

,

=

m
∑

i=1

Kki
(

(A− piI)−1, (A− piI)−1B
)

,

k = k1 + k2 + · · ·+ km.

Moments will be matched at the points {p1, p2, . . . , pm}. The left projection matrix
Vk can be the same as Uk, or it can span the sum of rational Krylov subspaces based
on AT and CT .
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Moment matching methods require only matrix-vector products or linear system
solves, and hence are very efficient. However, there is no uniform error bound for the
reduced system’s transfer function. The error will be small at points where moments
are matched, but it is difficult to guarantee that the error will also be small elsewhere.

2.3. Truncated Balanced Realization

The “Truncated” Balanced Realization (TBR) (Enns, 1984; Moore, 1981; Pernebo and
Silverman, 1982) produces a guaranteed stable reduced model, and has a frequency
domain L∞-error bound. There is no theoretical result concerning the optimality or
near optimality of the TBR reduction in the L∞ norm. However, TBR produces in
general a reduced model with globally accurate frequency response approximation.
This reduced model is usually superior to the models produced by moment matching
methods.

The Square Root method of implementing TBR is proposed in (Safonov and
Chiang, 1989; Tombs and Postlethwaite, 1987). It has better numerical properties
than the implementation in (Glover, 1984). When referring to ‘the TBR algorithm’
in future chapters, the implementation in Algorithm 1 is assumed.

Given a stable system in the standard state space form (4), (5), Algorithm 1
produces the k-th order TBR reduction.

Algorithm 1. The Square Root method to calculate the k-th order TBR reduction.

1. Find the Cholesky factors ZB and ZC of the solutions P and Q to (6), (7),

P = ZB(ZB)T , Q = ZC(ZC)T . (16)

2. Calculate the singular value decomposition of (ZC)TZB ,

ULΣ(UR)T = (ZC)TZB , (17)

where

UR =
[

uR1 · · · uRn
]

, UL =
[

uL1 · · · uLn
]

, Σ =









σ1 · · · 0
...
. . .

...

0 · · · σn









. (18)

3. If σk > σk+1, let

SB = ZB
[

uR1 , . . . , u
R
k

]









1/
√
σ1 · · · 0
...

. . .
...

0 · · · 1/√σk









, (19)
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and

SC = ZC
[

uL1 , . . . , u
L
k

]









1/
√
σ1 · · · 0
...

. . .
...

0 · · · 1/√σk









. (20)

4. The k-th order Truncated Balanced Realization is given by

Atbrk = (S
C)TASB , Btbrk = (S

C)TB, Ctbrk = CS
B . (21)

The controllability and observability gramians of the k-th order reduced system
(Atbrk , B

tbr
k , C

tbr
k ) are diagonal and equal,

P tbrk = Q
tbr
k = Σ1 = diag(σ1, σ2, . . . , σk). (22)

The resulting transfer function Gtbrk (s) has L
∞-error bound,

‖G(jw)−Gtbrk (jw)‖L∞ := sup
w
‖G(jw)−Gtbrk (jw)‖2

≤ 2(σk+1 + σk+2 + · · ·+ σn). (23)

TBR is a projection method with left projection matrix SC and right projection
matrix SB , such that (SC)TSB = Ik×k and

colsp(SB) ⊆ colsp(ZB), colsp(SC) ⊆ colsp(ZC). (24)

A merit of the Square Root method is that it relies on the Cholesky factors ZB

and ZC of the gramians P and Q rather than the gramians themselves, which has
advantages in terms of numerical stability.

The vast majority of the work involved in Algorithm 1 comes from Step 1 to
obtain ZB and ZC , and from Step 2, the balancing singular value decomposition.
Both Steps 1 and 2 are O(n3) if done exactly, even if the system matrix A is sparse,
which makes Algorithm 1 impractical for problems with more than a few hundred
components in the state vector. For this reason, TBR has long been considered too
expensive to apply to large problems.

3. Cholesky Factor ADI

The Cholesky Factor ADI (CF–ADI) algorithm, shown as Algorithm 2, solves Lya-
punov equations only approximately. The CF–ADI approximation to

AX +XAT +BBT (25)

is given by XcfadiJ = ZcfadiJ (ZcfadiJ )T , and the algorithm iterates on the Cholesky factor
ZcfadiJ of the approximate solution XcfadiJ . The CF–ADI algorithm is closely related
to another low rank reformulation of the ADI algorithm which was independently
proposed in (Penzl, 1999b). However, in that version, the work required to produce a
k-th rank approximation to X increases as O(k2), whereas for the CF–ADI algorithm
the work increases as O(k).
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Algorithm 2. The Cholesky Factor ADI Algorithm.
INPUT: A, B.
0. Choose CF–ADI parameters, {p1, . . . , pJmax}, Re{pi} < 0, (real or complex conju-
gate pairs).

Define: Pi =

(√−2pi+1√−2pi

)

[I − (pi+1 + pi)(A+ pi+1I)−1].

1a. z1 =
(

√

−2p1
)

(A+ p1I)
−1B, (26)

1b. Zcfadi1 =
[

z1

]

,

FOR j = 2, 3, . . . , Jmax

2a. zj = Pj−1zj−1, (27)

2b. If (‖zj‖2 > tol1 or ‖zj‖2/‖Zj−1‖2 > tol2) and (j ≤ Jmax)

Zcfadij =
[

Zcfadij−1 zj

]

. (28)

Otherwise, J = j − 1, stop.
END
OUTPUT: ZcfadiJ ∈ � n×Jp , ZcfadiJ (ZcfadiJ )T ∈ �

n×n , XcfadiJ := ZcfadiJ (ZcfadiJ )T ≈ X .

It can be seen from Algorithm 2 that the columns of ZcfadiJ span a rational Krylov
subspace, KJ(R(A), w1), with successive matrix products by non-identical rational
functions of A.

The dominant eigenspace of the approximate Lyapunov solution X cfadiJ can be
easily found from the singular value decomposition of ZcfadiJ . The SVD, ZcfadiJ =
UJΛJV

T
J , ΛJ = diag(λ1, . . . , λJ ), can be obtained cheaply because ZJ contains only

Jp columns, where p is the number of columns in B. The approximate Lyapunov
solution XcfadiJ = ZcfadiJ (ZcfadiJ )T then has eigen-decomposition, XcfadiJ = UJΛ

2
JU
T
J .

The dominant eigenvectors of XcfadiJ are simply the dominant left singular vectors of
ZcfadiJ .

The choice of CF–ADI parameters is a rational min-max problem,

min
p1,p2,...,pJ

max
x∈spec(A)

∣

∣

∣

∣

J
∏

j=1

(pj − x)
(pj + x)

∣

∣

∣

∣

,

and a discussion of parameter selection can be found in (Ellner and Wachspress,
1991; Lu and Wachspress, 1991).

Approximate gramians can be obtained via the CF–ADI algorithm as

P ≈ P cfadiJ := ZBJ (Z
B
J )
T , Q ≈ QcfadiJ := ZCJ (Z

C
J )
T ,

ZBJ = cf–adi
(

A,B, J, {p1, . . . , pJ}
)

,

ZCJ = cf–adi
(

AT , CT , J, {q1, . . . , qJ}
)

.
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Note that A = −L−1G implies (A+ pI)−1w = (pL− G)−1Lw, so A = −L−1G does
not need to be explicitly calculated in the CF–ADI algorithm. Similarly, AT does
not need to be explicitly calculated either.

3.1. Dominant Eigenspace Approximation

Because of cost considerations, CF–ADI is run only a small number of steps, J � n.
Hence the CF–ADI approximations P cfadiJ ≡ ZBJ (ZBJ )T and QcfadiJ ≡ ZCJ (ZCJ )T are
necessarily low rank. Ideally, these low approximations should capture the dominant
eigenspaces of the exact gramians. This is, in a sense, the most one could expect out
of low rank approximations.

3.2. Numerical results

This section provides numerical results on how well CF–ADI approximates the domi-
nant eigenspace of the exact solution X . The matrix whose columns are the j exact
dominant eigenvectors of X is denoted by U optj = [u

opt
1 , . . . , u

opt
j ], since the columns

of Uoptj span the range of Xoptj , the optimal rank j approximation to X .

Figure 1 illustrates a dominant eigenspace approximation for an example which
comes from inductance extraction of an on-chip planar square spiral inductor suspend-
ed over a copper plane. The original order 500 system was symmetrized according to
(Miguel Silveira et al., 1996). The matrix A is a symmetric 500× 500 matrix, and
the input coefficient matrix B ∈ � 500 has only one column.

Figure 1 shows the numerical results after 20 CF–ADI iterations. The relative
error after 20 iterations is ‖X −Xcfadij ‖2/‖X‖2 = 10−8.
Figure 1(a) measures the closeness of the twenty-dimensional dominant

eigenspaces of X and Xcfadi20 . This measure is provided by the concept of princi-
ple angles between subspaces (Golub and van Loan, 1996). Let S1 and S2 be two
subspaces, of dimensions d1 and d2, respectively, and assume that d1 ≥ d2. Then
the d2 principle angles are defined as θ1, . . . , θd2 such that

cos(θj) = max
u1∈S1,‖u1‖=1

max
u2∈S2,‖u2‖=1

(u1)Tu2 = (u1j )
Tu2j (29)

under the constraints

(u1)Tu1i = 0, (u
2)Tu2i = 0, i = 1, . . . , j − 1. (30)

If the columns of U1 are an orthonormal basis for S1, and the columns of U2 an
orthonormal basis for S2, and (U2)TU1 has a singular value decomposition,

(U1)TU2 = UΣV T , (31)

then

cos(θj) = Σ(j, j), u
1
j = U

1U(:, j), u2j = U
2V (:, j). (32)

Thus these two bases, {u11, . . . , u1d2} and {u21, . . . , u2d2}, are mutually orthogonal,
(u1i )

Tu2j = 0, if i 6= j. Here (u1i )Tu2i = cos(θi) indicates the closeness of u1i and
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u2i . If S
1 = S2, then cos(θj) = 1, j = 1, . . . , d1 = d2. If S

1 ⊥ S2, then cos(θj) = 0,
j = 1, . . . , d2. A basis for the intersection of S

1 and S2 is given by those basis vectors
whose principle angle is 0,

range(S1) ∩ range(S2) = span{u11, . . . , u1s} = span{u21, . . . , u2s}, (33)

1 = cos(θ1) = · · · = cos(θs) > cos(θs+1). (34)

Thus the closeness of two subspaces is measured by how many of their principle angles
are close to 0.

In Fig. 1(a), the cosines of the principle angles between U cfadi20 and Uopt20 are
plotted. The cosines of 18 of the principle angles are 1, and the cosines of the last
two are above 0.85, indicating a close match for all dominant eigenvectors. This is not
surprising since ‖X −Xcfadi20 ‖/‖X‖ is less than 10−8.
Because the eigenvectors of Xopt20 associated with larger eigenvalues are more

important than the eigenvectors of Xopt20 associated with smaller (non-zero) eigen-
values in view of a later application to model reduction, as they indicate the more
controllable or observable modes among the top twenty, it is worthwhile to see how
well each eigenvector of Xopt20 is individually matched by U

cfadi
20 . This is measured

by the norm of the projection of the exact dominant eigenvector, uoptj , onto U
cfadi
20 .

The direction uoptj is contained in the column span of U cfadi20 if ‖(uoptj )TU cfadi20 ‖2 = 1.
This is a different criterion than the one based on principle angles, as uoptj may not
be one of the vectors in the orthogonal basis in (32).

As can be seen in Fig. 1(b), and not from Fig. 1(a), uopt20 is better represented
by the vectors in U cfadi20 than uopt19 . Everything being equal, it is preferable for u

opt
19

to be better represented than uopt20 , because u
opt
19 is more important in terms of

controllability or observability.
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Fig. 1. Results for a symmetric matrix, n = 500, 20 CF–ADI iterations, convergence.
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In contrast to Figs. 1, Figs. 2 and 3 demonstrate a dominant subspace approxi-
mation when CF–ADI is not run to convergence.

Figure 2 is the same spiral inductor example as in Figure 1, but CF–ADI is only
run for 7 steps. In Fig. 2(a), ‖zcfadi7 ‖ is small but ‖X −Xcfadij ‖2 has stagnated. The
relative error ‖X −Xcfadi7 ‖2/‖X‖2 is between 10−2 and 10−3, whereas the relative
error of the optimal 7-th rank approximation is 10−5. However, it can be seen from
Fig. 2(b) that the intersection of the column span of U cfadi7 and the column span of
Uopt7 has dimension 6, since the cosines of 6 principle angles are 1. In Fig. 2(c), it can
be seen that the top five dominant eigenvectors of X , the five most important modes,
are contained entirely in the column span of U cfadi7 . The norm of the projection of
uopt6 onto U cfadi7 is around 0.9, while that of uopt7 is around 0.5.

Thus dominant eigenspace information about X can emerge, even when CF–ADI
has not converged.
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Fig. 2. Results for a symmetric matrix, n = 500, 7 CF–ADI iterations, without convergence.
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Figure 3 shows another example of running CF–ADI only a small number of
steps, before convergence occurs. It comes from the discretization of a transmission
line using the formulation in (Marques et al., 1998). The system matrix A is 256×256,
the input matrix B has one column, the output matrix C has one row.

Figure 3 contains results for the solutions to the two Lyapunov equations (6),
(7). The solution to (6) is denoted by P , and the solution to (7) is denoted by Q.
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Fig. 3. Results for a non-symmetric matrix, n = 256, 15
CF–ADI iterations, without convergence.

When compared with the Lyapunov solution associated with the spiral inductor
example, whose system matrix is symmetric, the two Lyapunov solutions associated
with the non-symmetric matrix A in this example have slower eigenvalue decay.
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Since the eigenvalues of a non-symmetric matrix can be in an arbitrary region in the
open left half plane, the problem of parameter selection is also more difficult for this
example than for the symmetric example. The selection procedure in (Wachspress,
1995) was followed, and the resulting parameters are complex.

Figures 3(a) and 3(b) show that the CF–ADI error is not decreasing at all during
15 iterations. The relative error stagnates at 1. However, Fig. 3(c) shows that the
intersection of the span of the fifteen dominant eigenvectors of P and the span of the
fifteen dominant eigenvectors of the CF–ADI approximation has dimension 10 (almost
11). Similarly, the intersection of the span of the fifteen dominant eigenvectors of Q
and the span of the fifteen dominant eigenvectors of the CF–ADI approximation has
dimension 10.

Figure 3(d) provides an interesting picture. Recall that eigenvectors of P or Q
associated with larger eigenvalues are more important than the eigenvectors associ-
ated with smaller eigenvalues. In Fig. 3(d), a lower index indicates a more important
eigenvector. It can be seen that the five most important eigenvectors of P (Q) are

represented almost completely in span(U
cfadi−P (Q)
15 ). What is interesting is that the

9-th and 10-th eigenvectors of Q are also completely represented, even though eigen-
vectors 7 and 8 are not. The eigenvectors of P display similar, if not as dramatic,
behavior, whereby some middle eigenvectors are not as well captured as the eigenvec-
tors to their left and right.

This example demonstrates that even if the CF–ADI error is large, some infor-
mation about the dominant eigenspace can still emerge, although there may also be
missing information.

3.3. Shifted Linear Systems with the Same RHS

In this section we exploit the structure of the CF–ADI approximation ZJ to obtain a
more efficient algorithm when the shifted solves in (27) are obtained iteratively using
a Krylov subspace method such as GMRES.

Recall that

z1 =
√

−2p1(A+ p1I)−1B, (35)

Mi =

√−2pi+1√−2pi
[

I − (pi+1 + pi)(A + pi+1I)−1
]

. (36)

Then

ZJ =
[

z1,M1z1,M2M1z1, . . . ,MJ−1MJ−2 . . .M1z1
]

. (37)

ZJ in (37) is obtained after J matrix-vector solves, where the right-hand side of each
solve is the solution of the previous solve.
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Now we show how to convert (37) to J linear systems with the same right-hand
side B. Writing ZJ out explicitly, we get

ZJ =
[
√

−2p1(A+ p1I)−1B,
√

−2p2
[

I − (p2 + p1)(A+ p2I)−1
]

(A+ p1I)
−1B,

...
√

−2pJ
[

I − (pJ + pJ−1)(A+ pJI)−1
]

· · ·

· · ·
[

I − (p2 + p1)(A+ p2I)−1
]

(A+ p1I)
−1B
]

, (38)

and for simplicity, assume that the ADI parameters, p1, . . . , pJ are not repeated,
p1 6= p2 6= · · · 6= pJ . Taking out scalar multiplications and additions by the identity
matrix from (3.3), and expanding

∏j

i=1 (A+ piI)
−1 into partial fractions, we get

j
∏

i=1

(A+ piI)
−1 =

j
∑

i=1

(

∏

k 6=i

1

pk − pi

)

(A+ piI)
−1. (39)

ZJ then becomes

ZJ = VJMJ×JDJ×J , (40)

where

VJ ≡
[

(A+ p1I)
−1B, (A+ p2I)

−1B, . . . , (A+ pJI)
−1B
]

, (41)

MJ×J ≡

















m11 m12 · · · m1J
0 m22 · · · m2J
...

. . .
...

0 0 · · · mJJ

















, (42)

m11 = 1, (43)

mii = −
i−1
∑

j=1

mi−1,j
pi−1 + pi
pj − pi

, (44)

mj,i = mj,i−1
pj + pi−1
pj − pi

, j 6= i, (45)

and

DJ×J =













√−2p1 0 · · · 0

0
√−2p2 · · · 0

...
. . . 0

0 0 · · · √−2pJ













. (46)
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The matrices MJ×J and DJ×J are determined completely by the parameters
p1, . . . , pJ , and cost very little to compute. Thus the cost of calculating ZJ via (40)
comes almost entirely from the calculation of VJ in (41).

3.4. Sharing of Krylov Vectors

Columns of VJ in (41) can be obtained either exactly, using J LU factorizations, or
approximately, using J iterative linear system solves,

VJ =
[

v1, v2, . . . , vJ
]

, (47)

(A+ piI)vi = B, i = 1, . . . , J. (48)

If an iterative Krylov subspace method such as GMRES is used, and if none of the
solves in (48) is too difficult, the columns of VJ can be obtained in a much more
efficient way than by doing J separate solves. The solution of shifted systems is
discussed in detail in (Freund, 1993b).

An iterative Krylov subspace method such as GMRES solves the system Ax = B
by finding an approximate solution xm in the m-dimensional Krylov subspace

xm ∈ Km(A, r0) ≡ span
{

r0, Ar0, . . . , A
m−1r0

}

. (49)

GMRES chooses r0 = B−Ax0. The difficulty of solving a system in (48), or in other
words, the dimension of the Krylov subspace required to find a satisfactory solution,
depends on the shift pi.

If zero is used as the initial guess for all system solves in (48), the Krylov subspace
associated with each system is the same, namely, Km(A,B), since shifts of A do not
affect the Krylov subspace,

Km(A+ piI, B) = span
{

B, (A+ piI)B, . . . , (A+ piI)
m−1B

}

≡ Km(A,B).

Hence one needs only one set of Krylov vectors for all solves in (48), which can be
stored from solve to solve. When a more difficult shift is encountered, one simply adds
to the list of stored Krylov vectors.

What is different for each solve in (48) is that decompositions of different Hes-
senberg matrices are needed. If H̃m denotes the Hessenberg matrix which comes
from m steps of the Arnoldi process with the matrix A, for the system Ax = B,
then H̃m + [

−piIkk
0
] is the Hessenberg matrix associated with the shifted system

(A + piI)xi = B. For each system in (48), the decomposition of a different Hessen-
berg matrix is needed. But if none of the systems in (48) is too difficult, or in other
words, if they all can be solved in Krylov subspaces whose dimension is small when
compared with the size of A, then the cost of decomposing small Hessenberg matrices
will be low compared with the cost of generating Krylov vectors, and hence the cost
of solving J shifted systems would be only marginally higher than the cost of doing
one most difficult solve.

Figure 4 shows the speed-up in the calculation of the CF–ADI approximation
ZJ , which comes from storing the Krylov vectors between solves. The matrix A
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is 500 × 500, and its eigenvalues are well-distributed for fast GMRES convergence.
The flops required to generate ZJ , as a function of J , are plotted. Doing J solves
separately and not storing the Krylov vectors is denoted by +, generating VJ by
storing Krylov vectors is represented as ×, the total cost of obtaining ZJ from VJ ,
including the generation of the matrices MJ×J and DJ×J in (40), is shown as ◦.

Flops

0 5 10 15
0

1

2

3

4

5

6
x 10

7 Reuse of Krylov Basis. 500 order system. full matrix

Dimension of the Reduction

flo
ps

Old Method
New Gmres
New Total

CF–ADI approximation order

Fig. 4. Negligible cost of additional solves.

Disregarding the jumps at J = 3 and J = 9 for the moment, it can be seen that
when Krylov vectors are not stored, the cost of generating ZJ grows linearly with
J , whereas if the Krylov vectors are stored, the cost of generating ZJ increases very
little as J increases. The cost of generating Z8 is only slightly higher than the cost
of generating Z3. The jump at J = 3 occurred because p3 is a more difficult shift, so
the solution of (A+ p3I)vi = B required more Krylov vectors than the previous two
solves. But after the extra Krylov vectors were generated, more solves after J = 3
cost very little, until the next difficult shift at J = 9.

4. Reduction via the Sum of Dominant Gramian Eigenspaces

Because balancing the gramians requires knowledge of the entire eigenspaces of both
gramians, it is in general not possible to approximate a Truncated Balanced Realiza-
tion without good approximations to the full eigenspaces of both the gramians.

If the CF–ADI errors from solving both (6) and (7) are small after a small number
of iterations, then both the gramians are low rank and have been well approximated
by CF–ADI. In this case, a low rank implementation of the Square Root method
to produce the TBR reduction can be used. This approach was proposed in (Penzl,
1999a).
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However, if the CF–ADI errors from solving (6) and (7) are not small, then we
only have approximations to the dominant eigenspaces of the two gramians. We have
no information on the remaining gramian eigenspaces.

Since, in general, only the dominant eigenspaces of the controllability and ob-
servability gramians are obtainable cheaply, we seek a model reduction method which
utilizes all the available information. We propose projecting the original system onto
the sum of the two dominant eigenspaces. A preliminary version of this approach can
be found in (Li and White, 1999).

Algorithm 3. ADI–CTOB

1. Set ZBJ = CF–ADI (A,B, J, {p1, . . . , pJ}).

2. Set ZCJ = CF–ADI (A
T , CT , J, {q1, . . . , qJ}).

3. Calculate SVD: ZBJ = U
B
n×JD

B
J×J (V

B
J×J )

T , ZCJ = U
C
n×JD

C
J×J(V

C
J×J )

T .

4. Choose k ≤ J , 2k being the desired reduction order, and find

U ctobm = qr
([

UBn×J(:, 1 : k), U
C
n×J(:, 1 : k)

])

.

Note that k ≤ m = rank(U ctobm ) ≤ 2k.

5. Reduce the system

Arm = (U
ctob
m )TAU ctobm , Brm = (U

ctob
m )TB, Crm = CU

ctob
m . (50)

4.1. Moment Matching

If k = J in the fourth step of the ADI–CTOB algorithm, then the projection matrix
U ctobm contains the sum of the column spans of ZBJ and Z

C
J . From (40) and (41), it

can be seen that

colsp(ZBJ ) =

j
∑

i=1

Kki
(

(A+ piI)
−1, (A+ piI)

−1B
)

,

colsp(ZCJ ) =

l
∑

i=1

Kni
(

(AT + qiI)
−1, (AT + qiI)

−1CT
)

,

where {p1, . . . , pj} is a list of distinct CF–ADI parameters used in generating ZBJ ,
ki being the number of times pi appears in the list, and {q1, . . . , ql} is the list of
distinct CF–ADI parameters used in generating ZCJ , ni being the number of times
qi appears.

Then by Theorem 3.1 in (Grimme, 1997), the transfer function of the reduced
system in (50) will match moments of the original transfer function, at the negatives of
the CF–ADI parameters, {−p1,−p2, . . . ,−pj} and {−q1,−q2, . . . ,−ql}. The number
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of moments matched at pi is ki, and the number matched at qi is ni, unless there
are i and j such that pi = qj , as then the number of moments matched at pi = qj
is ki + nj .

Thus, in trying to approximate the Truncated Balanced Realization, we have
returned to moment matching. The advantages of the ADI–CTOB algorithm over a
purely moment matching approach include the existence of methods for picking good
CF–ADI parameters (Ellner and Wachspress, 1991; Lu and Wachspress, 1991) and
the fact that ZBJ and Z

C
J contain more information than the projection matrices

from moment matching. The singular values of ZBJ (Z
C
J ) indicate how controllable

(observable) a mode is. This information can be used in error estimation and compact
model generation.

5. Numerical Results

The new model reduction method was tested and compared with TBR and moment
matching around s = 0 via Lanczos. The figures in this section come from the same
discretized transmission line example as shown in Fig. 3, and illustrate the general
case when the dominant eigenspaces of the two gramians are different.

Figure 5(a) shows that projection via the union of the most controllable modes
and the most observable modes is a good idea. It compares projection by the sum of
the exact dominant eigenspaces (CT U OB) with Truncated Balanced Realization.
Both the reductions are of order 10. CT5 U OB5 is obtained by calculating the
exact solutions to Lyapunov equations (6), (7), and by using the sum of the two five-
dimensional exact dominant eigenspaces. It does not use any CF–ADI approximations.
It can be seen that, for this transmission line example, projection by the sum of the
exact dominant eigenspaces produces a reduced model that is almost indistinguishable
from TBR.
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Fig. 5. Dominant Gramian Eigenspaces method.
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Figure 5(b) compares CT5 U OB5 with projection by either the ten-dimensional
dominant controllable subspace only (CT-10), or the ten-dimensional dominant ob-
servable subspace only (OB-10). Neither CT-10 nor OB-10 alone comes close to cap-
turing the frequency response behavior of the original system as well as using the sum
of 5 and 5.

Figure 6 makes a comparison using CF–ADI to calculate the dominant gramian
eigen-spaces (ADIctob), with finding them exactly (CT5 U OB5). Both are of order
10. The two five-dimensional dominant eigenspaces used in ADIctob-10(15) are each
obtained by 15 iterations of CF-ADI. The frequency responses are close except at
the last two peaks. CT5 U OB5 follows the next to last peak and then flattens out,
whereas ADIctob–10(15) misses the next to last peak and finds the last one.
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Fig. 6. Dominant Gramian Eigenspaces via CF–ADI.

Figure 6 compares moment matching via Lanczos (MMlanz) with ADIctob. The MM-
lanz reduction is of order 18, requiring 34 matrix-vector solves, while ADIctob is of
order 10, requiring 30 matrix-vector solves. ADIctob clearly captures the global fre-
quency response behavior much better than MMlanz. It captured all but the next to
last sharp peak and averages the first tiny peak and a couple of small bumps between
sharp peaks. This keeps the L∞ error small without having to follow every topo-
graphical feature exactly. MMlanz matches the exact frequency response extremely
well near s = 0, where the moments were matched, but completely loses accuracy
after the first sharp peak.

6. DC Matching and Passivity

Simply projecting the original system via the congruence transformation in (50) will
not, in general, guarantee moment matching at s = 0. But it is very important in
the reduction of large circuit models that DC response is preserved in the reduced
system.
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We propose augmenting U ctobm with several Arnoldi vectors to achieve matching
at s = 0 (DC). Let Udcl be a matrix whose columns form an orthonormal basis for
Kl(A−1, A−1B). We then augment the projection matrix U ctobm by Udcl . Let U

red be
a matrix whose columns form an orthonormal basis for [Udcl , U

ctob
m ], we then project

the system using the augmented projection matrix, U red.

Figures 7(a) and 7(b) show the effect of including three Arnoldi vectors in the ten-
dimensional projection matrix (ADIctob-10+3). It can be seen that including three
Arnoldi vectors resulted in good matching near s = 0, without detrimental effect on
the quality of the approximation in the rest of the frequency domain.
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Fig. 7. DC match with no detrimental effect on the rest of the frequency domain.

Odabasioglu et al. (1998) showed that for multi-port RLC circuits which come from
modified nodal analysis, where C = NT in (1) and (2), if L and G are each projected
separately via an orthogonal projection matrix, U red,

Lred = (U red)TLU red,

Gred = (U red)TGU red,

Bred = (U red)TB, Cred = CU red, (51)

then the reduced system preserves passivity. This result holds for general orthogo-
nal projection matrices, including the augmented projection matrix described in the
previous section.

7. Conclusions

We have presented a model reduction algorithm that is well-suited for the reduction
of large interconnect models. It is efficient and utilizes all the gramian information
available from performing cheap operations, such as linear system solves. It is an
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orthogonal projection method which can easily be adapted to allow for DC matching
and passivity preservation.
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