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EXTERNALLY AND INTERNALLY POSITIVE SINGULAR
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Notions of externally and internally positive singular discrete-time linear systems are introduced. It is shown that a singular
discrete-time linear system is externally positive if and only if its impulse response matrix is non-negative. Sufficient
conditions are established under which a single-output singular discrete-time system with matrices in canonical forms is
internally positive. It is shown that if a singular system is weakly positive (all matricesE, A, B, C are non-negative),
then it is not internally positive.
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1. Introduction

Singular (descriptor) discrete-time linear systems were
considered in many papers and books (Cobb, 1984; Dai,
1989; Kaczorek, 1993; 1998b; Klamka, 1991; Lewis,
1984; 1986; Luenberger, 1977; 1978; Mertzios and Le-
wis, 1989; Ohtaet al., 1984). The properties of funda-
mental matrices of singular discrete-time linear systems
were established and their solution was derived in (Le-
wis, 1986; Mertzios and Lewis, 1989). The reachabil-
ity and controllability of singular and positive linear sys-
tems were considered in (Cobb, 1984; Dai, 1989; Fanti
et al., 1990; Kaczorek, 1993; Klamka, 1991; Ohtaet al.,
1984). The notions of weakly positive discrete-time and
continuous-time linear systems were introduced in (Ka-
czorek, 1997; 1998a; 1998b).

In the present paper a new class of externally and in-
ternally positive discrete-time linear systems will be intro-
duced. Necessary and sufficient conditions will be estab-
lished under which singular discrete-time linear systems
are externally and internally positive. It will be shown that
the singular weakly positive linear system is not internally
positive.

2. Preliminaries

Let Z+ be the set of non-negative integers,Rn×m be the
set of n × m real matrices andRm := Rm×1. The set
of m × n real matrices with non-negative entries will be
denoted byRm×n

+ and Rm
+ := Rm×1

+ .

Consider the singular discrete-time linear system

Exi+1 = Axi + Bui, (1a)

yi = Cxi, (1b)

where i ∈ Z+. Here xi ∈ Rn, ui ∈ Rm, yi ∈ Rp

are the state, input and output vectors, respectively, and
E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. It is assumed
that det E = 0 and

det[Ez −A] 6= 0 (2)

for some z ∈ C (the field of complex numbers). If (2)
holds, then (Kaczorek, 1993; Lewis, 1984)

[Ez −A]−1 =
∞∑

i=−µ

Φiz
−(i+1), (3)

where µ is the nilpotence index and theΦi’s are the
fundamental matrices satisfying the relations (Kaczorek,
1993; Lewis, 1984)

EΦi−AΦi−1 = ΦiE−Φi−1A =

{
I for i = 0,

0 for i 6= 0,
(4)

and EΦ−µ = 0,Φi = 0 for i < −µ, I and 0 being the
identity and zero matrices, respectively.

The solutionxi to (1a) with admissible initial con-
ditions is given by (Kaczorek, 1993; Lewis, 1984)

xi = ΦiEx0 +
i+µ−1∑

k=0

Φi−k−1Buk (5)
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and the outputyi is determined by the formula

yi = CΦiEx0 +
i+µ−1∑

k=0

CΦi−k−1Buk. (6)

Let gk ∈ Rp×m, k = 1 − µ, 2 − µ, . . . , 0, 1, . . . be the
impulse response of the system (1). Applying the super-
position principle and substituting

uk =

{
1 for k = 0,

0 for k > 0

and x0 = 0 into (6), we obtain

gi = CΦi−1B for i = 1− µ, . . . , 0, 1, . . . . (7)

Using (7), we may write (6) in the form

yi = CΦiEx0 +
i+µ−1∑

k=0

gi−kuk. (8)

The transfer matrix of (1) is given by

T (z) = C[Ez −A]−1B. (9)

From (3), (9) and (7) we obtain

T (z) =
∞∑

i=−µ

CΦiBz−(i+1) =
∞∑

j=1−µ

gjz
−j . (10)

From (10) it follows that the impulse response matrixgj

can be found by expansion ofT (z).

Using (4) it can be shown that (Mertzios and Lewis,
1989)

Φ0AΦi =

{
Φi+1 for i ≥ 0,

0 for i < 0
(11a)

and

−Φ−1EΦi =

{
0 for i ≥ 0,

Φi−1 for i < 0.
(11b)

From (11a) we haveΦ1 = Φ0(AΦ0), Φ2 = Φ0AΦ1 =
Φ0(AΦ0)2 and

Φi = Φ0(AΦ0)i for i ≥ 1. (12a)

Similarily, from (11b) we obtainΦ−2 = −Φ−1EΦ−1,
Φ−3 = Φ−1EΦ−2 = (−Φ−1E)2Φ−1 and

Φ−j = (−Φ−1E)j−1Φ−1 for j ≥ 1. (12b)

3. Externally Positive Singular Systems

Definition 1. The singular system (1) is calledexternally
positiveif for any input sequenceui ∈ Rm

+ , i ∈ Z+ and
the zero initial conditionx0 = 0 we haveyi ∈ Rp

+ for
i ∈ Z+.

Theorem 1. The system (1) is externally positive if and
only if

gi ∈ Rp×m
+ for i = 1− µ, . . . , 0, 1, . . . . (13)

Proof. The necessity follows immediately from Defini-
tion 1. To prove the sufficiency, note that forx0 = 0 and
uk ∈ Rm

+ , k ∈ Z+, from (8) we obtain

yi =
i+µ−1∑

k=0

gi−kuk ∈ Rp
+

since (13) holds.

To simplify the notation, we shall assume thatm =
p = 1 and

E =

[
In−1 0

0 0

]
∈ Rn×n,

A =

 0
|

|

|

In−1

−−−−−−
a

 ∈ Rn×n,

a = [a0 a1 · · · ar−1 − 1 0 · · · 0] ,

B =


0
...

0
1

 ∈ Rn,

C = [b0 b1 · · · bn−1] ∈ R1×n.

(14)

Theorem 2. If the matricesE, A, B, C have the canon-
ical form (14),

ai ≥ 0, i = 0, 1, . . . , r − 1
and

bj ≥ 0, j = 0, 1, . . . , n− 1,
(15)

then

ΦkB ∈ Rn
+ for k = −µ, 1− µ, . . . , (16)

Φi ∈ Rn×n
+ for i ∈ Z+, (17)

gj ∈ Rp×m
+ for j = 1− µ, 2− µ, . . . . (18)



Externally and internally positive singular discrete-time linear systems 199

Proof. If E, A and B have the canonical form (14), then
it is easy to show that

[Ez −A]adB =


1
z
...

zq

 = HqBzq

+ · · ·+ H1Bz + H0B, (19a)

where

HqB =


0
...

0
1

 , . . . , H0B =


1
0
...

0

 . (19b)

From (A4) (see the Appendix) and (19) it follows that
ΦkB ∈ Rn

+, k = −µ, 1−µ, . . . , r−1 sinceHkB ∈ Rn
+,

k = −µ, 1− µ, . . . , r − 1 and qk ≥ 0 for k = 1, 2, . . . .

From (A6) we have

Φr+kB =
r∑

j=1

ar−jΦr+k−jB ∈ Rn
+ for k = 0, 1, . . .

(20)

since by (15) we haveai ≥ 0 for i = 0, 1, . . . , r − 1.

From (A4), (A8) and (A9) we get

Φ0 = qµHq + qµ−1Hq−1 + · · ·+ q0Hr−1

=



......

......
0

Ir

......

......

...
......

......
0

......
......

............
0

......
q0

W
......

......
q1

......

......

...
......

......
qn−r



∈ Rn×n
+ , (21)

whereW = [wij ] ∈ R(n−r)×r

+ , wij =
j∑

l=1

aj−lqi−l and

AΦ0 = qµAHq + qµ−1AHq−1 + · · ·+ q0AHr−1

= A (qµHq−1 + qµ−1Hq−2 + · · ·+ q0Hr−2)

=



0
|
|
|

|
|
|

|
|
|

0
...

|
|
|

Ir−1
|
|
|

|
|
|

...

0
|
|
|

|
|
|

0
|
|
|

0
−−−−−−−− |

|
|

|
|
|

q0

W
|
|
|

|
|
|

...
|
|
|

|
|
|

qn−r−−−−−−−−
0 · · · 0

|
|
|

|
|
|

0


∈ Rn×n

+ . (22)

From (12a) and (22) we have

Φi = Φ0(AΦ0)i ∈ Rn×n
+ for i = 1, 2, . . . . (23)

Using (7) and (16), we obtain

gj = CΦj−1B ∈ Rp×m
+ for j = 1− µ, 2− µ, . . . .

(24)

4. Internally Positive Singular Systems

Definition 2. The system (1) is calledinternally positive
if for any admissible initial conditionsx0 ∈ Rn

+ and all
input sequencesui ∈ Rm

+ , i ∈ Z+ we havexi ∈ Rn
+

and yi ∈ Rp
+ for i ∈ Z+.

From the comparison of Definitions 1 and 2 it fol-
lows that if the system (1) is internally positive, then it is
always externally positive, but if the system (1) is exter-
nally positive, it may not be internally positive.

Theorem 3.The system (1) with (14) is internally positive
if relations (15) hold.

Proof. By Theorem 2, if (15) hold, thenΦi ∈ Rn×n
+

for i ∈ Z+ and ΦkB ∈ Rn
+ for k = −µ, 1 − µ, . . . .

Hence, using (5), we obtainxi ∈ Rn
+ for i ∈ Z+ for any

x0 ∈ Rn
+ and all ui ∈ Rm

+ . Similarly, taking into account
that gj ∈ Rp×m

+ for j = 1 − µ, 2 − µ, . . . , from (8) we
obtain yi ∈ Rp

+ for i ∈ Z+.

Consider the system (1) with

E =

[
In−1 0

0 0

]
∈ Rn×n, A =

[
A1

A2

]
, B =

[
B1

B2

]
,

(25)
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where A1 ∈ R(n−1)×n, A2 ∈ R1×n, B1 ∈ Rn−1,
B2 ∈ R and C ∈ R1×n. From (1a) for i = 0 and (25)
we have

0 = A2x0 + B2u0. (26)

Equation (26) determines the set of admissible initial con-
ditions for a given input sequenceui, i ∈ Z+.

Note that the assumption (2) implies thatA2 is not a
zero row and the singularity of the system implies that at
least one entry ofA2 is zero.

From (26) for u0 = 0 it follows that the equation
A2x0 = 0, x0 ∈ Rn

+, x0 6= 0 can be satisfied ifA2 con-
tains at least one positive entry and at least one negative
entry. Hence we have the following important corollaries:

Corollary 1. The singular system (1) with (25) is not in-
ternally positive ifA ∈ Rn×n

+ .

Corollary 2. The singular weakly positive (Kaczorek,
1998a; 1998b) system (1) with (25) is not internally posi-
tive.

5. Example

Consider the singular system (1) with

E =

 1 0 0
0 1 0
0 0 0

 , A =

 0 1 0
0 0 1
a −1 0

 ,

B =

 0
0
1

 , C = [b0b1b2] ,

(27)

and a ≥ 0, bi ≥ 0, i = 0, 1, 2. In this casen = 3, r =
1, µ = n− r = 2 and

[Ez −A]−1 =

 z −1 0
0 z −1
−a 1 0


−1

=
1

z − a

 1 0 1
a 0 z

az a− z z2


= Φ−2z + Φ−1 + Φ0z

−1 + Φ1z
−2 + · · · ,

where

Φ−2 =

 0 0 0
0 0 0
0 0 1

 , Φ−1 =

 0 0 0
0 0 1
a −1 a

 ,

Φ0 =

 1 0 1
a 0 a

a2 0 a2

 , AΦ0 =

 a 0 a

a2 0 a2

0 0 0

 ,

Φi = Φ0(AΦ0)i, i ≥ 1.

(28)

Using (7), we obtain

g−1 = CΦ−2B = b2,

g0 = CΦ−1B = b1 + b2a,

g1 = CΦ0B = b0 + b1a + b2a
2,

g2 = CΦ1B = b0a + b1a
2 + b2a

3,

gi = ai−1g1, i ≥ 2.

(29)

From (28) and (29) it follows that for the system (1)
with (27), the conditions (16)–(18) are satisfied.

The transfer function of (1) with (27) has the form

T (z) = C[Ez −A]−1B =
b2z

2 + b2
1 + b0

z − a
. (30)

Expansion of (30) yields

T (z) = g−1z + g0 + g1z
−1 + g2z

−2 + · · · ,

where

g−1 = b2, g0 = b1 + b2a, g1 = b0 + b1a + b2a
2

and gk = ak−1g1 for k ≥ 2.
(31)

This result agrees with (29).

By Theorem 1, the system (1) with (27) is externally
positive sincegj ≥ 0 for j = −1, 0, 1, . . . . By Theo-
rem 3, the system (1) with (27) is also internally positive.

6. Concluding Remarks

The notions of externally and internally positive singular
discrete-time linear systems have been introduced. It has
been shown that:

1. The singular discrete-time linear system (1) is exter-
nally positive if and only if its impulse response ma-
trix gi ∈ Rp×m

+ for i > −µ.

2. The singular system (1) with (14) is internally posi-
tive if the conditions (15) are satisfied.
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3. If the singular system (1) with (25) is weakly posi-
tive, then it is not internally positive.

The consideration presented for single-input single-
output discrete-time linear systems can be easily extended
to multi-input multi-output singular discrete-time linear
systems.

An extension to singular continuous-time linear sys-
tems is also possible. A generalization of this approach
to singular two-dimensional linear systems (Kaczorek,
1993) will be considered in a separate paper.
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Appendix

Lemma 1. Let

p(z) : = det[Ez −A]

= zr − ar−1z
r−1 − · · · − a1z − a0, (A1)

[Ez −A]ad = Hqz
q + · · ·+ H1z + H0, (A2)

and

[Ez −A]−1 =
∞∑

i=−µ

Φiz
−(i+1). (A3)

Then

Φ−µ

Φ1−µ

Φ2−µ

...

Φr−1

 =


1 0 0 · · · 0 0
q1 1 0 · · · 0 0
q2 q1 1 · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . .

qn−1 qn−2 qn−3 · · · q1 1





Hq

Hq−1

Hq−2

...

H0

 ,

(A4)
wheren = r + µ, q = n− 1,

qk :=
k∑

i=1

ar−iqk−i for k = 1, 2, . . . (q0 := 1), (A5)

and

Φr+k =
r∑

j=1

ar−jΦr+k−j for k = 0, 1, . . . . (A6)

Proof. Using the well-known equality[Ez − A]ad =
(det[Ez −A]) [Ez−A]−1, and (A1), (A2) with (A3), we
can write(

Hqz
q + Hq−1z

q−1 + · · ·+ H1z + H0

)
=

(
zr − ar−1z

r−1 − · · · − a1z − a0

)
×

(
Φ−µzµ−1 + Φ1−µzµ−2 + · · ·

+ Φ−1 + Φ0z
−1 + Φ1z

−2 + · · ·
)
. (A7)

The comparison of the coefficients at the same powers of
zk for k = q, q − 1, . . . , 0 of (A7) yields

Φ−µ = Hq, Hq−1 = Φ1−µ − ar−1Φ−µ,

Φ1−µ = Hq−1 + ar−1Hq,

Hq−2 = Φ2−µ − ar−1Φ1−µ − ar−2Φ−µ,

Φ2−µ = Hq−2 + ar−1Φ1−µ + ar−2Φ−µ

= Hq−2 + ar−1Hq−1 +
(
a2

r−1 + ar−2

)
Hq

= Hq−2 + q1Hq−1 + q2Hq

and (A4), whereqk is defined by (A5).
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Comparing the coefficients of (A7) atz−1, z−2, . . . ,
we obtain

Φr = ar−1Φr−1 + ar−2Φr−2 + · · ·+ a0Φ0,

Φr+1 = ar−1Φr + ar−2Φr−1 + · · ·+ a0Φ1,

and the formula (A6).

Lemma 2. Let Hk, k = 0, 1, . . . , q be defined by (A2)
and let the matrices E,A have the canonical form (14).
Then

AHk =


EHk−1 + akIn for k = 1, . . . , r − 1,

EHr−1 − In for k = r,

EHk−1 for k = r + 1, . . . , q,
(A8)

H0 =


−a(0)

......

. . . . .
......

e1

a0Iq

......

 ,

a(0) := [a1 a2 · · · ar−1 − 1 0 · · · 0] ,

Hi =



−a(1)
......

...
......

−a(i+1)
......

ei+1

ā(1)
......

...
......

ā(q−i)
......



for i = 1, . . . , r − 1,

a(i) =

 i−1︷ ︸︸ ︷
0 · · · 0 ai+1 · · · ar−1 − 1 0 · · · 0

 ,

ā(j) :=

 j−1︷ ︸︸ ︷
0 · · · 0 a0 · · · ai 0 · · · 0

 , j = 1, . . . , q− i,

Hi =



0 · · · 0 0
. . . . . . . . . . . . .

0 · · · 0 0
0 · · · 0 1
. . . . . . . . . . . . .

â(1)
...

â(i−1)



 n− i + 1

for i = r, . . . , n−2,

â(j) :=

 j−1︷ ︸︸ ︷
0 · · · 0 a0 a1 · · · ar−1 − 1 0 · · · 0

 ,

j = 1, . . . , i− 1,

Hn−1 =


0 · · · 0 0
. . . . . . . . . . . . .

0 · · · 0 0
0 · · · 0 1

 . (A9)

Here ei is the i-th column of the identity matrixIn and
ai, i = 0, 1, . . . , r− 1 are the coefficients of the polyno-
mial (A1).

Proof. Using the equality [Ez − A][Ez − A]ad =
In det[Ez −A] and (A1), (A2), we may write

[Ez −A]
[
Hqz

q + Hq−1z
q−1 + · · ·+ H1z + H0

]
= In

(
zr − ar−1z

r−1 − · · · a1z − a0

)
. (A10)

The comparison of the coefficients at the same powers of
z of (A10) yields

AH0 = Ina0, AH1 = EH0 + a1In, · · · ,

AHr−1 = EHr−2 + ar−1In, AHr = EHr−1 − I,

AHr+1 = EHr, · · · , AHq = EHq−1, EHq = 0.

It is easy to check that it satisfies the equalityAH0 =
Ina0.

Using the canonical form ofE and A, it is easy to
show that

[Ez −A]ad

=



m11 m12 · · · 0 0 1

a0 m22 · · · 0 0 z

a0z a1z + a0 · · · 0 0 z2

a0z
2 z(a1z + a0) · · · 0 0 z3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a0z

n−3 zn−4(a1z + a0) · · · −p(z) 0 zn−2

a0z
n−2 zn−3(a1z + a0) · · · −zp(z) −p(z) zn−1


= Hqz

q + Hq−1z
q−1 + · · ·+ H1z + H0, (A11)

where m11 = zr−1 − ar−1z
r−2 − · · · − a1, m12 =

= zr−2 − ar−1z
r−3 − · · · − a2, m22 = z(zr−2 −

ar−1z
r−3 − · · · −a2), p(z) being defined by (A1).

The comparison of the coefficients at the same pow-
ers ofzk for k = 0, 1, . . . , q of (A11) yields (A9).

Received: 2 October 2001


