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In this work, we examine, through the observation of a class of linear distributed systems, the possibility of reducing the
effect of disturbances (pollution, etc.), by making observations within a given margin of tolerance using a control term.
This problem is called enlarged exact remediability. We show that with a convenient choice of input and output operators
(actuators and sensors, respectively), the considered control problem has a unique optimal solution, which will be given.
We also study the relationship between the notion of remediability, introduced in previous works, and that of enlarged exact
remediability.

Keywords: distributed systems, remediability, control, actuators, sensors

1. Introduction

In this work, motivated by environmental problems, we
study, through the observation of a class of disturbed lin-
ear systems the possibility of reducing in finite timeT
the effect of a disturbance (pollution, etc.) by taking an
observation in a given region of tolerance using a control
term. This constitutes an extension of previous works on
remediability (Afifi et al., 1998; 1999; 2000) or distur-
bance rejection and decoupling (Otsuka, 1991; Rabah and
Malabare, 1997).

With no loss of generality, we consider a class of dis-
turbed linear systems described by the following equation:{

ż(t) = Az(t) + f(t) + Bu(t), 0 < t < T,

z(0) = z0,
(1)

where A generates a strongly continuous semigroup
(s.c.s.g.) (S(t))t≥0 on the spaceX, B ∈ L(U ;X),
u ∈ L2(0, T ; U) is the control,X and U are two real
Hilbert spaces. Moreover,z0 ∈ D(A), a dense subspace
of X (Curtain and Zwart, 1995). The termf (represent-
ing pollution, infection, etc.) is supposed to be unknown
and the system (1) is augmented by the output equation

y(t) = Cz(t), (2)

where C ∈ L(X, Y ), Y being the observation space (a

Hilbert space). The solution to (1) is given by

zu,f (t) = S(t)z0 +
∫ t

0

S(t− s)Bu(s) ds

+
∫ t

0

S(t− s)f(s) ds.

If we denote byyu,f the corresponding observation,
then in the case wheref = 0 and u = 0 (normal case),
the observation is given by

y0,0(t) = CS(t)z0.

But if the system is disturbed by a termf , the observation
becomes

y0,f (t) = CS(t)z0 +
∫ t

0

CS(t− s)f(s) ds 6= CS(t)z0.

Then we introduce a control termBu in order to reduce
the effect of this disturbance by taking the observation at
final time T within a given region of toleranceC, i.e.

yu,f (T ) = CS(T )z0 +
∫ T

0

CS(T − s)f(s) ds

+
∫ T

0

CS(T − s)Bu(s) ds ∈ C, (3)

where C is a nonempty, convex and closed subset ofY
such thatCS(T )z0 ∈ C. This will be called enlarged
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exact remediability. The actuators and sensors are re-
spectively the input and output parameters of the system.
For a disturbancef ∈ L2(0, T ;X), actuators ensuring
the existence of a controlu satisfying (3) are termedC-
efficient. In the particular case whereC is the closed ball
B(CS(T )z0, ε) ⊂ Y , centred atCS(T )z0 and with a ra-
dius ε > 0, these actuators are said to beε-efficient.

Exact remediability is a strong notion and its realiza-
tion is difficult. We then introduce the notion of enlarged
exact remediability, which is weaker and more practical.
We give its characterization, particularly in the case of a
ball B(CS(T )z0, ε) ⊂ Y . We study the optimal con-
trol problem (Lee and Marcus, 1967), and we show, under
the weak remediability hypothesis, that the cost is reduced
compared with the exact remediabilty case. Finally, we
study some particular situations.

This paper is organized as follows. In Section 2, we
briefly recall the notions of remediability and efficient ac-
tuators, and we give the principal results, which will be
used later in this work. In Section 3, we define and char-
acterize the notion of enlarged exact remediability, define
C-efficient actuators and give their characterization par-
ticularly in the case whereC = B(CS(T )z0, ε). We
also study the relationship between the notions of reme-
diability and enlarged exact remediability, and hence be-
tween efficient actuators andC-efficient actuators. In Sec-
tion 4, we study the problem of enlarged exact remediabil-
ity with minimal energy, using an extension of the Hilbert
Uniqueness Method (H.U.M.) (Lions, 1988). Finally, in
Section 5, we examine particular situations related to the
choice ofC.

2. The Notion of Remediability

In this part, we recall the notions of exact and weak reme-
diabilities and efficient actuators, as well as the principal
characterization results (Afifiet al., 1998; 1999; 2000).
We consider the system described by (1), augmented by
the output equation (2). LetH and R be the linear oper-
ators defined by

H :
L2(0, T ;U) −→ X,

u 7−→ Hu =
∫ T

0

S(T − s)Bu(s) ds

(4)
and

R :
L2(0, T ;X) −→ Y,

f 7−→ Rf =
∫ T

0

CS(T − s)f(s) ds.

(5)
We have

yu,f (T ) = CS(T )z0 + CHu + Rf. (6)

2.1. Definitions and Characterizations

Let us recall the following definitions.

Definition 1. (i) We say that a disturbancef is exactly
remediable on[0, T ] if there existsu ∈ L2(0, T ;U) such
that

yu,f (T )− CS(T )z0 = 0. (7)

(ii) We say that (1), augmented by (2), is exactly reme-
diable on [0, T ] if any disturbancef ∈ L2(0, T ;X) is
exactly remediable on[0, T ].

Definition 2. (i) A disturbancef is called weakly re-
mediable on[0, T ] if for any ε > 0 there existsu ∈
L2(0, T ;U) such that

‖yu,f (T )− CS(T )z0‖ < ε. (8)

(ii) The system (1), augmented by (2), is said to be weakly
remediable on[0, T ] if any disturbancef ∈ L2(0, T ;X)
is weakly remediable on[0, T ].

Let B?, R?, S?(·) and C? be the adjoint operators
of B, R, S and C, respectively. Furthermore, letX ′,
U ′ and Y ′ be the dual spaces ofX, U and Y , respec-
tively. The operatorR? is given by

R? :
Y ′ −→ L2(0, T ;X ′),

θ 7−→ R?θ = S?(T − ·)C?θ.
(9)

We have the following characterization.

Proposition 1. (i) A disturbancef is exactly remediable
on [0, T ] if and only if

Rf ∈ Im(CH). (10)

(ii) The system (1), augmented by (2), is exactly remedia-
ble on [0, T ] if and only if there existsγ > 0 such that

‖R?θ‖L2(0,T ;X′) ≤ γ‖B?R?θ‖L2(0,T ; U ′), ∀ θ ∈ Y ′.
(11)

For weak remediability, we have the following result.

Proposition 2. (i) A disturbancef is weakly remediable
on [0, T ] if and only if

Rf ∈ Im(CH). (12)

(ii) The system (1), augmented by (2), is weakly remedia-
ble on [0, T ] if and only if

ker(B?R?) = ker(R?). (13)
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2.2. Efficient Actuators

Let Ω be an open and bounded subset ofRn, with a suf-
ficiently regular boundaryΓ = ∂Ω, Ω being the geomet-
rical support of the analysed system (1). We assume that
the spaceX = L2(Ω) has an orthonormal basis of eigen-
functions {ϕnj} for n ≥ 1 and j = 1, rn of A such
that

ϕnj = λnϕnj for j = 1, . . . , rn, n ≥ 1

with λn ↘ −∞. The semigroup(S(t))t≥0 generated by
A is defined by

S(t)z =
∑
n≥1

eλnt
rn∑

j=1

〈z, ϕnj〉ϕnj . (14)

This is the case ifA is a selfadjoint operator onX with
compact resolvent(sI −A)−1.

In the case ofp actuators(Ωi, gi)i=1,p we have
U = Rp, and the operatorB is defined by (Curtain and
Pritchard, 1978; El Jai and Pritchard, 1988)

B :
Rp −→ L2(Ω),

u(t) 7−→ Bu(t) =
p∑

i=1

giui(t),

where u = (u1, . . . , up)tr ∈ L2(0, T ; Rp) and gi ∈
L2(Ωi) with Ωi = supp(gi) ⊂ Ω for i = 1, p and
Ωi ∩ Ωj = ∅ for i 6= j. We have

B?z =
(
〈g1, z〉, . . . , 〈gp, z〉

)tr
for z ∈ X ′,

where in the general caseM tr is the transpose ofM and
〈·, ·〉X ≡ 〈·, ·〉 is the inner product onX. If the support of
k ∈ X is D = supp(k), we have〈k, ·〉X = 〈k, ·〉L2(D).

Let us remark that in the case of pointwise actuators,
the operatorB is unbounded, but the results are analogu-
ous by replacing the state spaceX by a spaceV such that
V ′ ⊂ X ⊂ V , with continuous injections (X is identified
with its dual).

Definition 3. Actuators (Ωi, gi)i=1,p ensuring the weak
remediability of the system (1), augmented by (2), are said
to be efficient.

If the output of the system is given byq sensors
(Di, hi)i=1,q with hi ∈ X, Di = supp(hi) ⊂ Ω for
i = 1, q and Di ∩ Dj = ∅ for i 6= j (Curtain and
Pritchard, 1978; El Jai and Pritchard, 1988), the operator
C is defined by

C :
L2(Ω) −→ Rq,

z 7−→ Cz =
(
〈h1, z〉, . . . , 〈hq, z〉

)tr
,

and

C?θ =
q∑

i=1

θihi for θ = (θ1, . . . , θq)tr ∈ Rq.

In the case of actuators (Ωi, gi)i=1,p, sensors
(Di, hi)i=1,q and the s.c.s.g. given by (14), the charac-
terization of efficient actuators is given by the following
proposition.

Proposition 3. Actuators(Ωi, gi)i=1,p, are efficient if and
only if ⋂

n≥1

ker(MnGtr
n ) = {0} (15)

with

Mn =
(
〈gi, ϕnj〉

)
i=1,p
j=1,rn

, Gn =
(
〈hi, ϕnj〉

)
i=1,q
j=1,rn

.

Let us note that if there existsn0 such that

rank(Mn0G
tr
n0

) = q, (16)

then the actuators(Ωi, gi)i=1,p are efficient.

Example 1.Consider the following system:

∂z

∂t
(x, t) = ∆z(x, t) + g1(x)u1(t) + f(x, t)

in ]0, 1[×]0, T [,

z(x, 0) = z0 in ]0, 1[,

z(x, t) = 0 on {0, 1}×]0, T [,

augmented by the output equation

y = Cz = 〈h1, z〉

with u1 ∈ L2(0, T ; R), g1 ∈ L2(Ω1), h1 ∈ L2(D1),
Ω1 = supp(g1), D1 = supp(h1) ⊂ Ω and f ∈
L2(0, T ;L2(Ω)). The eigenvectors of the Laplacian∆
are defined by

ϕn(ξ) =
√

2 sin(nπξ), ∀n ≥ 1,

and the associated eigenvalues are simple and given by

λn = −n2π2, ∀n ≥ 1.

In the case of one sensor(D,h), with D =
supp(h) ⊂]0, 1[, let n0 be such that〈h, ϕn0〉 6= 0. An
actuator(Ω1, g1) is efficient if 〈g1, ϕn0〉 6= 0, or∫

Ω1

g1(ξ) sin(n0πξ) dξ 6= 0.

Hence, e.g., ifg1 = ϕn0 , (Ω1, g1) is efficient.

In the case of pointwise sensors, the operatorC is
unbounded. Then the results are the same if the domain
D(C) of the output operatorC is contained inX and
invariant by the semigroup(S(t))t≥0.



L. Afifi et al.470

2.3. Exact Remediability with Minimal Energy

For z0 in X and f ∈ L2(0, T ;X), is there an optimal
control u ∈ L2(0, T ; U) such thatyu,f (T ) = CS(T )z0,
i.e. a control which minimizes the functionJ(v) = ‖v‖2
on the set{v ∈ L2(0, T ; U) | yv,f (T ) = CS(T )z0}?
This problem can be solved using an extension of the ap-
proach H.U.M.

For θ ∈ Y ′ ≡ Y , let

‖θ‖F =

[∫ T

0

‖B?S?(T − s)C?θ‖2U ′ ds

] 1
2

, (17)

whereF is a space which will be precised later,‖ · ‖F is
a semi-norm.

If ker(C?) = {0}, then the system (1), augmented
by (2), is weakly remediable on[0, T ] if and only if ‖·‖F
is a norm onY . We suppose that‖ · ‖F is a norm. Let
F be the completion of the spaceY with respect to the
norm ‖ · ‖F . F is denoted by

F = Y
‖·‖F

. (18)

(F , 〈·, ·〉F ) is a Hilbert space with the inner product

〈θ, σ〉F =
∫ T

0

〈
B?S?(T − s)C?θ, B?S?(T − s)C?σ

〉
ds,

∀ θ, σ ∈ F . (19)

Y is contained inF with continuous injection. LetΛ be
the operator defined by

Y −→ Y,
Λ = CHH?C? : (20)

θ 7−→ Λθ =
∫ T

0

CS(T − s)

×BB?S?(T − s)C?θ ds,

for θ ∈ Y ′ ≡ Y.

We have

〈Λθ, σ〉Y = 〈θ, σ〉F , ∀ θ, σ ∈ Y. (21)

Let F ′ be the dual space ofF . Λ has a unique
extension as an isomorphismΛ: F −→ F ′ such that

〈Λθ, σ〉Y = 〈θ, σ〉F , ∀ θ, σ ∈ F (22)

and
‖Λθ‖F ′ = ‖θ‖F , ∀ θ ∈ F . (23)

We have the following result.

Proposition 4. If the observationRf ∈ F ′, then there
exists a uniqueθf ∈ F such thatΛθf = −Rf , and the
control

uθf
(t) = B?S?(T − t)C?θf (24)

satisfies
yuθf

,f (T )− CS(T )z0 = 0. (25)

Moreover,uθf
is optimal and

‖uθf
‖L2(0,T ; U) = ‖θf‖F . (26)

3. Notion of Enlarged Exact Remediability

3.1. Enlarged Exact Remediability

In this part, we introduce enlarged exact remediability,
which is a more general notion than exact remediability,
and consists in studying the possibility of taking an obser-
vation at the final time, in a region of toleranceC, where
C is a given closed and convex subset ofY . We exam-
ine the case whereC is a closed ballB(CS(T )z0, ε),
and then we introduce and characterize the notion ofC-
efficient andε-efficient actuators.

Definition 4. A disturbancef ∈ L2(0, T ;X) is called
C-remediable on[0, T ] if there exists a controlu ∈
L2(0, T ;U) such that

yu,f (T ) ∈ C. (27)

It is easy to show the following characterization re-
sult.

Proposition 5. The statments below are equivalent:
(i) f is C-remediable on[0, T ],
(ii)

Im(CH) ∩ C1 6= ∅, (28)

whereC1 = C − CS(T )z0 −Rf .

Let us note that ifC = {CS(T )z0}, we have a
problem of exact remediability, and ifCS(T )z0 is an
interior point of C, then weak remediability impliesC-
remediability, but the converse is not true. The following
section is focused on the case whereC is a closed ball.

3.2. Case ofC=B(CS(T )z000, εεε)

Definition 5. A disturbance f is B(CS(T )z0, ε)-
remediable orε-remediable on[0, T ] if there exists a con-
trol u ∈ L2(0, T ;U) such that

‖CHu + Rf‖ ≤ ε. (29)

If F is a closed subspace ofY and PF is the or-
thogonal projection onF , we have the following result.
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Proposition 6. The statments below are equivalent:
(i) f is ε-remediable on[0, T ],
(ii)

Im(CH) ∩ B(Rf, ε) 6= ∅, (30)

(iii)
‖Pker(B?R?) (Rf)‖ < ε. (31)

Proof. The equivalence between (i) and (ii) follows from
Definition 5. In turn, the equivalence between (ii) and (iii)
results from the fact that

(ii) ⇐⇒ d
(
Rf, Im(CH)

)
< ε

as
Im(CH)⊕ ker(H?C?) = Y.

Since

Rf = Rf1 + Rf2 with Rf1 ∈ Im(CH)

and

Rf2 = Pker(H?C?) (Rf) ∈ ker(H?C?),

for w ∈ Im(CH) we have

d(Rf,w)2 = ‖w −Rf‖2 = ‖w −Rf1‖2 + ‖Rf2‖2.

As 〈w −Rf1, Rf2〉 = 0, we get

d
(
Rf, Im(CH)

)2

= inf
w∈Im(CH)

d(Rf,w)2

= ‖Rf2‖2 + inf
w∈Im(CH)

‖w −Rf1‖2

= ‖Rf2‖2 = ‖Pker(H?C?) (Rf)‖2

becauseRf1 ∈ Im(CH). Using H?C? = B?R?, we
have the desired conclusion.

Let us remark that iff is ε-remediable, thenf is
ε′-remediable for anyε′ ≥ ε. The converse is not true.
Indeed, ifΩ1 = D1 =]0, 1[, h = ϕn1 and g = ϕn2 with
n1 6= n2, then ker(B?R?) = R, and the result is true for
any f such thatε < |Rf | < ε′.

3.3. εεε-Efficient Actuators

In this section, we introduce and characterizeC-
efficient actuators, essentially in the case whereC =
B(CS(T )z0, ε).

Definition 6. For a fixed disturbancef ∈ L2(0, T ;X),
actuators(Ωi, gi)i=1,p ensuring theC-remediability off

are said to beC-efficient. If C = B(CS(T )z0, ε), these
actuators are calledε-efficient.

In the case ofp actuators(Ωi, gi)i=1,p and an out-
put given byq sensors(Di, hi)i=1,q, the characterization
of ε-efficient actuators is given by the following result.

Proposition 7. Actuators(Ωi, gi)i=1,p are ε-efficient for
a fixedf ∈ L2(0, T ;X) if and only if

‖PF (Rf)‖ < ε, (32)

whereF =
⋂

n≥1 ker(MnGtr
n ).

Proof. The result follows from Proposition 6 and the fact
that ker(B?R?) = F .

If the system (1), augmented by (2), is weakly reme-
diable on [0, T ], then any disturbancef ∈ L2(0, T ;X)
is ε-remediable on[0, T ] for any ε > 0. Then ef-
ficient actuators areε-efficient for every ε > 0 and
f ∈ L2(0, T ;X). But actuators can beε-efficient for a
given f ∈ L2(0, T ;X) without being efficient. This is
illustrated by the following example.

Example 2.As in Example 1, we consider the system

∂z

∂t
(x, t) = ∆z(x, t) + g1(x)u1(t) + f(x, t)

in ]0, 1[×]0, T [,

z(x, 0) = z0 in ]0, 1[,

z(x, t) = 0 on {0, 1}×]0, T [,

augmented by the output equation

y = Cz = 〈h1, z〉

with u1 ∈ L2(0, T ; R), g1 ∈ L2(Ω1), h1 ∈ L2(D1),
Ω1 = supp(g1), D1 = supp(h1) ⊂ Ω and f ∈
L2(0, T ;L2(Ω)). Then, with the same notation and for
Ω1 = D1 =]0, 1[, h = ϕn1 and g = ϕn2 with n1 6= n2,
the actuator(Ω1, g1) is not efficient, but forf defined by
f(·, s) = e(−1−α)λn1 (T−s)ϕn1 , (Ω1, g1) is ε-efficient
for a convenientα.

In the following proposition, we show that there
is equivalence between weak remediablity andε-
remediability for anyf ∈ L2(0, T ;X).

Proposition 8. The system (1), augmented by (2), is
weakly remediable on[0, T ] if and only if there exists
ε > 0 such that anyf ∈ L2(0, T ;X) is ε-remediable
on [0, T ].

Proof. Let ε > 0 be such that (1), augmented by (2), is
ε-remediable on[0, T ] for any f ∈ L2(0, T ;X). Then

‖Pker(B?R?) (Rf)‖ < ε, ∀ f ∈ L2(0, T ;X).
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Consequently,Pker(B?R?)(Im R) = {0}, since Im(R)⊕
ker(R?) = Y . Then, necessarily,ker(B?R?) ⊂
ker(R?), and hence we obtain weak remediability.

The converse follows immediatly from the definition
of weak remediability.

4. Enlarged Exact Remediability with
Minimal Energy

Let C be a nonempty closed convex subset ofY , z0 ∈ X
and f ∈ L2(0, T ;X). We consider the following problem
of enlarged exact remediability with minimal energy:

(P )

{
min J(u) with J(u) = ‖u‖2

subject to yu,f (T ) ∈ C.
(33)

If the disturbancef is C-remediable, the problem(P ) is
well defined and has a unique solution in the set of admis-
sible controls defined by

Uad =
{
u ∈ L2(0, T ;U) | yu,f (T ) ∈ C

}
.

The solution to(P ), denoted byv?, is characterized by

J ′(v?)(v − v?) ≥ 0, ∀ v ∈ Uad, (34)

i.e.
〈v?, v − v?〉 ≥ 0, ∀ v ∈ Uad.

Let us note that(P ) is a generalization of the fol-
lowing exact remediability problem:

(P1)

{
min ‖u‖2

subject to yu,f (T ) = CS(T )z0,

since in this case we haveC = {CS(T )z0}. If u? is the
solution to (P1), we have

‖v?‖ ≤ ‖u?‖.

Hence the optimal cost of(P ) is reduced with respect to
Problem(P1).

Problem (P ) is also a generalization ofε-
remediability one, since it is sufficient to considerC =
B(CS(T )z0, ε). If C1 and C2 are two nonempty, closed
and convex subsets ofY such thatC1 ⊂ C2, thenC1-
remediability impliesC2-remediability, and the cost is de-
creasing whenC is increasing.

Next, we will solve Problem(P ) using an extension
of the H.U.M. approach and a penalization method (Bel
Fekih, 1990; Bergounioux, 1994). First, let us show pre-
liminary results, which will be used to demonstrate the
main result of this section.

We consider the following criterion:

Jα(y, v) =
1
α
‖yv,f (T )− y‖2 + ‖v‖2 (35)

with y ∈ Y, v ∈ L2(0, T ;U) and α > 0, and the
minimization problem

(Pα)

{
min Jα(y, v),

(y, v) ∈ C × L2(0, T ;U).
(36)

We have the following existence result.

Lemma 1. (Pα) admits a solution(yα, vα) ∈ C ×
L2(0, T ;U) characterized by

〈dα, y − yα〉 ≥ 0, ∀ y ∈ C, (37)

vα(t) = B?pα(t), 0 < t < T, (38)

wheredα is given by

dα =
1
α

[
yα − yvα,f (T )

]
∈ Y (39)

and pα is the solution of the adjoint equation{
− p′α(t) = A?pα(t), 0 < t < T,

pα(T ) = C?dα.
(40)

Proof. Let (y(k)
α , v

(k)
α )k≥0 be a minimizing sequence, so

that

Jα(y(k)
α , v(k)

α ) ↘ inf
(y,v)∈C×L2(0,T ;U)

Jα(y, v) ask ↗ +∞.

The sequence(Jα(y(k)
α , v

(k)
α ))k≥0 is bounded because it

is convergent and

‖v(k)
α ‖2 ≤ Jα(y(k)

α , v(k)
α ) ≤ C1, ∀ k ≥ 0.

Then (v(k)
α )k≥0 is bounded inL2(0, T ;U). Since the

mappingv ∈ L2(0, T ;U) −→ yv,f (T ) − y0,f (T ) is lin-
ear and continuous, there exists a constantC2 > 0 such
that

‖yv,f (T )− y0,f (T )‖ ≤ C2‖v‖, ∀ v ∈ L2(0, T ;U).

Hence,(y
v
(k)
α ,f

(T ))k≥0 is bounded. Since

‖y
v
(k)
α ,f

(T )−yk
α‖2 ≤ αJα

(
y(k)

α , v(k)
α

)
≤ αC1, ∀ k ≥ 0,

(yk
α)k≥0 is bounded inY . Hence there exists a subse-

quence which converges to an element(yα, vα). Using
the continuity ofJα on Y × L2(0, T ;U), we have

Jα(yα, vα) ≤ lim inf
k→+∞

Jα

(
y(k)

α , v(k)
α

)
= inf

(y,v)∈C×L2(0,T ;U)
Jα(y, v).

C is closed,(yα, vα) ∈ C × L2(0, T ;U) and hence

Jα(yα, vα) ≥ inf
(y,v)∈C×L2(0,T ;U)

Jα(y, v).

Consequently,(yα, vα) is a solution to(Pα).
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On the other hand,(yα, vα) satisfies the following
necessary condition:

1
2
J ′α(yα, vα) ·

(
(y, v)− (yα, vα)

)
≥ 0,

∀ (y, v) ∈ C × L2(0, T ;U).

We have

J ′α(yα, vα) · (y, v)

=
2
α

[〈
yvα,f (T )− yα, yv,f (T )− CS(T )z0 −Rf

〉
−

〈
yvα,f (T )− yα, y

〉]
+ 2〈vα, v〉.

Then

J ′α(yα, vα)(y − yα, v − vα)

=
2
α

[〈
yvα,f (T )− yα, yv,f (T )− yvα,f (T )

〉
−

〈
yvα,f (T )− yα, y − yα

〉]
+ 2〈vα, v − vα〉.

The necessary condition can be written as

1
α

〈
yvα,f (T )− yα, yv,f (T )− yvα,f (T )

〉
− 1

α

〈
yvα,f (T )− yα, y − yα

〉
+ 〈vα, v − vα〉 ≥ 0,

∀ (y, v) ∈ C × L2(0, T ;U). (41)

By replacingv and y in (41) by vα and yα, respectively,
we have the following inequalities, where the elementdα

given by (39) appears:

1
α

〈
yα − yvα,f (T ), y − yα

〉
≥ 0, ∀ y ∈ C,

− 1
α

〈
yα − yvα,f (T ), yv,f (T )− yvα,f (T )

〉
+ 〈vα, v − vα〉 ≥ 0, ∀ v ∈ L2(0, T ;U). (42)

Consider the adjoint equation (40). By integration by
parts we have〈

z′v,f (·)−Azv,f (·), pα(·)
〉
−

〈
zv,f (·),−p′α(·)−A?pα(·)

〉
=

〈
zv,f (T ), pα(T )

〉
−

〈
zv,f (0), pα(0)

〉
or, equivalently,〈

Bv(·) + f(·), pα(·)
〉

=
〈
zv,f (T ), pα(T )

〉
−

〈
z0, pα(0)

〉
. (43)

With v = vα and by considering the difference with (43),
we have〈
B

(
v(·)−vα(·)

)
, pα(·)

〉
=

〈
zv,f (T )−zvα,f (T ), pα(T )

〉
,

∀ v ∈ L2(0, T ;U).

Then〈
B

(
v(·)− vα(·)

)
, pα(·)

〉
=

1
α

〈
yv,f (T )− yvα,f (T ), yα − yvα,f (T )

〉
. (44)

Using this relation in (42), we obtain
〈dα, y − yα〉 ≥ 0, ∀ y ∈ C,

−
〈
v − vα, B?pα(·)

〉
+ 〈vα, v − vα〉 ≥ 0,

∀ v ∈ L2(0, T ;U).

The last inequality impliesvα(t) = B?pα(t).

Lemma 2. From the sequence(yα, vα, dα)α>0, we can
extract a subsequence which converges to an element
(y?, v?, d?) characterized as follows:

(i) y? = yv?,f (T ),

(ii) v? is the solution to(P ),

(iii) the sequence(Jα(yα, vα))α>0 is bounded and de-
creasing with a limit‖v?‖2 and (vα)α>0 converges
strongly tov? in L2(0, T ;U),

(iv) the controlv? is given by

v?(t) = B?p(t), 0 < t < T, (45)

where p(t) is the solution to the following adjoint
equation: − p′(t) = A?p(t), 0 < t < T,

p(T ) = C?d?,
(46)

(v) the elementd? is characterized by〈
d?, y − yv?,f (T )

〉
≥ 0,

∀ y ∈ C ∩
(
CS(T )z0 + Rf + F ′

)
. (47)

Proof. First show that the sequence(yα, vα, dα)α>0 is
bounded. Indeed, under theC-remediability hypothesis,
there existsû ∈ L2(0, T ;U) such thatyû,f (T ) ∈ C.
By noting that ŷ = yû,f (T ), we have (ŷ, û) ∈ C ×
L2(0, T ;U), and hence

Jα(yα, vα) ≤ Jα(ŷ, û) = ‖û‖2, ∀α > 0.
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Then

‖yvα,f (T )− yα‖2 ≤ αJα(yα, vα)

≤ αJα(ŷ, û) = α‖û‖2, ∀α > 0.

Consequently, limα→0 ‖yvα,f (T ) − yα‖ = 0 and
(Jα(yα, vα))α>0 is bounded.

If β ≤ α, then Jα(y, v) ≤ Jβ(y, v), ∀ (y, v) ∈
C × L2(0, T ;U), and hence

Jα(yα, vα) ≤ Jα(yβ , vβ) ≤ Jβ(yβ , vβ). (48)

(vα)α>0 is then bounded, since

‖vα‖2 ≤ Jα(yα, vα) ≤ Jα(ŷ, û) = ‖û‖2.

The mapv ∈ L2(0, T ;U) → yv,f (T ) ∈ Y is affine and
continuous. We have

‖yv,f (T )− CS(T )z0 −Rf‖ ≤ K‖v‖,

∀ v ∈ L2(0, T ;U), K > 0. (49)

Then (yvα,f (T ))α>0 is bounded inY . This shows that
yα = (yα − yvα,f (T )) + yvα,f (T ) is bounded inY .

In the general case,(dα)α>0 is not bounded, but it is
with respect to the norm‖.‖F becausepα(t) = S?(T −
t)C?dα, and hence

‖vα‖2 = ‖B?S?(T − ·)C?dα‖2 = ‖dα‖2F .

Accordingly, we get thatdα is bounded inF . Finally,
(yα, vα, dα)α>0 is bounded inY × L2(0, T ;U)×F .

Now, let us consider a subsequence of
(yα, vα, dα)α>0, also denoted by (yα, vα, dα)α>0

and converging to an element(y?, v?, d?), which will be
characterized hereafter.

(i) The weak convergence of(vα)α>0 to v? im-
plies the convergence of(yvα,f (T ))α>0 to yv?,f (T ) (us-
ing (49)). Then

y? = lim
α→0

yα = lim
α→0

(yα − yvα,f (T )) + lim
α→0

yvα,f (T )

= yv?,f (T ).

(ii) Since C is closed,yv?,f (T ) = lim
α→0

yα ∈ C. On

the other hand, ifv ∈ L2(0, T ;U), then

‖vα‖2 ≤ Jα(yα, vα) ≤ Jα

(
yv,f (T ), v

)
= ‖v‖2. (50)

As α → 0, we have

‖v?‖2 ≤ lim inf
α→0

‖vα‖2 ≤ ‖v‖2.

Then v? is a solution to Problem(P ).

(iii) Using (48), it is easy to see that the sequence
(Jα(yα, vα))α>0 is bounded and decreasing, so it con-
verges. Using (50) withv = v?, we have

‖vα‖2 ≤ lim inf
α→0

‖vα‖2 ≤ lim
α→0

Jα(yα, vα) ≤ ‖v?‖2.

Then lim
α→0

Jα(yα, vα) = ‖v?‖2. On the other hand, the

same inequality implies

‖vα‖2 ≤ lim inf
α→0

‖vα‖2 ≤ lim sup
α→0

‖vα‖2 ≤ ‖v?‖2.

Then ‖vα‖2 converges to‖v?‖2, which implies, using
the weak convergence of(vα)α>0 to v?, that (vα)α>0

converges strongly inL2(0, T ;U).

(iv) Using (38), we have

vα(t) = B?pα(t) = B?S?(T − ·)C?dα.

Then for w ∈ L2(0, T ;U), we get

〈vα, w〉 =
〈
dα,

∫ T

0

CS(T − t)Bw(t) dt
〉

=
〈
dα, yw,f (T )− CS(T )z0 −Rf

〉
.

Sinceyw,f (T ) − CS(T )z0 − Rf ∈ F , the weak
convergence ofvα to v? in L2(0, T ;U) and that ofdα

to d? in F imply

〈v?, w〉 =
〈
d?, yw,f (T )− CS(T )z0 −Rf

〉
=

〈
d?,

∫ T

0

CS(T − t)Bw(t) dt
〉

=
∫ T

0

〈
B?S?(T − t)C?d?, w(t)

〉
dt,

and hence

v?(t) = B?S?(T − t)C?d? = B?p(t).

(v) Inequality (37) can be written as〈
dα, yα − CS(T )z0 −Rf

〉
≤

〈
dα, y − CS(T )z0 −Rf

〉
, ∀ y ∈ C, (51)

and, using (39), we have

Jα(yα, vα) =
〈
dα, yα − yvα,f (T )

〉
+ ‖vα‖2.

Then

〈dα, yα〉 =
〈
dα, yvα,f (T )

〉
−‖vα‖2 + Jα(yα, vα). (52)



Enlarged exact compensation in distributed systems 475

But〈
dα, yvα,f (T )

〉
=

〈
dα, CS(T )z0 + Rf

〉
+

〈
dα,

∫ T

0

CS(T − t)Bvα(t) dt
〉

=
〈
dα, CS(T )z0 + Rf

〉
+

∫ T

0

〈
B?S?(T − t)C?dα, vα(t)

〉
dt

=
〈
dα, CS(T )z0 + Rf

〉
+ ‖vα‖2.

By using (52) this gives

〈dα, yα〉 =
〈
dα, CS(T )z0 + Rf

〉
+ Jα(yα, vα).

Then

lim
α→0

〈
dα, yα − CS(T )z0 −Rf

〉
= lim

α→0
Jα(yα, vα) = ‖v?‖2

=
∫ T

0

〈
B?S?(T − t)C?d?, v?(t)

〉
dt

=
〈
d?,

∫ T

0

CS(T − t)Bv?(t) dt
〉

=
〈
d?, yv?,f (T )− CS(T )z0 −Rf

〉
.

For y −CS(T )z0 −Rf ∈ F ′ and asα → 0 in (51), we
obtain〈

d?, yv?,f (T )− CS(T )z0 −Rf
〉

≤
〈
d?, y − CS(T )z0 −Rf

〉
,

∀ y ∈ C ∩
(
CS(T )z0 + Rf + F ′

)
or, equivalently,〈
d?, y−yv?,f (T )

〉
≥ 0, ∀ y ∈ C∩

(
CS(T )z0+Rf+F ′

)
.

In the following result, which is a generalization of
Proposition 4, we give a solution to Problem(P ).

Proposition 9. If C is a nonempty, closed and convex set
of Y , and

C ∩
(
CS(T )z0 + Rf + F ′

)
6= ∅, (53)

then

(i) there exists a uniqueθf ∈ F such that

Λθf + CS(T )z0 + Rf ∈ C

and〈
θf , y − Λθf − CS(T )z0 −Rf

〉
≥ 0,

∀ y ∈ C ∩
(
CS(T )z0 + Rf + F ′

)
, (54)

(ii) the control

uθf
(t) = B?S?(T − t)C?θf , 0 < t < T (55)

is the unique solution to(P ). Moreover,uθf
is op-

timal and

‖uθf
‖2 = ‖θf‖2F

=
〈
yuθf

,f (T )− CS(T )z0 −Rf, θf

〉
. (56)

Proof. Let θf = d?, uθf
= v? and yv?,f (T ) =

Λθf + CS(T )z0 + Rf . Then the existence ofθf and
uθf

follows from Lemma 2.

For the unicity, letθf and σf ∈ F be such that〈
θf , y − Λθf − CS(T )z0 −Rf

〉
≥ 0,〈

σf , y − Λσf − CS(T )z0 −Rf
〉
≥ 0,

∀ y ∈ C ∩
(
CS(T )z0 + Rf + F ′

)
.

Then, for y = Λθf + CS(T )z0 + Rf ∈ C, from the
second inequality we deduce that

〈σf ,Λθf − Λσf 〉 ≥ 0,

and using the first inequality withy = Λσf +CS(T )z0 +
Rf ∈ C, we have

〈θf ,Λσf − Λθf 〉 ≥ 0.

Then

〈σf ,Λθf − Λσf 〉+ 〈θf ,Λσf − Λθf 〉

= −
〈
θf − σf ,Λ(θf − σf )

〉
= −‖θf − σf‖2F ≥ 0,

and henceθf = σf .

In the next section, we examine some particular situ-
ations concerning the choice ofC.

5. Particular Cases

5.1. Case of Classic Exact Remediability

For C = {CS(T )z0} and Rf ∈ F ′, the inequality (54)
is trivial. Therefore, in order to haveθf , it is suffi-
cient to solve the equationΛθf = −Rf , and hence
the solution to the optimal control is given byuθf

(t) =
B?S?(T − t)C?θf . We then obtain the solution given by
Proposition 4 in the case of the exact remediability prob-
lem.
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5.2. Case of Linear Constraints

In this part, we consider the case of linear constraints,
which is frequent in optimization theory. More pre-
cisely, without loss of generality, we consider the case
where C is a closed subspace ofY . Since yuθf ,f

(T ) =
CS(T )z0 + Rf + Λθf , the inequality (54) becomes〈

θf , y − yuθf
,f (T )

〉
≥ 0,

∀ y ∈ C ∩
(
CS(T )z0 + Rf + F ′

)
or, equivalently,〈

θf , yuθf ,f
(T )

〉
≤ 〈θf , y〉,

∀y ∈ C ∩
(
CS(T )z0 + Rf + F ′

)
.

If y = yu,f (T ) with u ∈ L2(0, T ;U), then y describes
the whole setCS(T )z0 + Rf + F ′ when u describes
L2(0, T ;U), and hence〈

θf , yuθf ,f
(T )

〉
≤

〈
θf , yu,f (T )

〉
, (57)

for all u such thatyu,f (T ) ∈ C.

Let

UC =
{
u ∈ L2(0, T ;U) | yu,f (T ) ∈ C

}
and

L :
L2(0, T ;U) −→ Y,

u 7−→ Lu = CHu.

For w0 ∈ L2(0, T ;U) such thatLw0 = CS(T )z0 +Rf ,
we have

UC = −w0 + L−1(C),

where L−1(C) = {u ∈ L2(0, T ;U) | L(u) ∈ C}.
Indeed,

u ∈ UC ⇐⇒ CS(T )z0 + Rf + Lu ∈ C

⇐⇒ Lw0 + Lu ∈ C ⇐⇒ L(u + w0) ∈ C

⇐⇒ u ∈ −w0 + L−1(C).

Since yu,f (T ) = Lw0 + Lu, the inequality (57) can be
written as

〈θf ,Lw0 + Luθf
〉 ≤ 〈θf ,Lw0 + Lu〉, ∀u ∈ UC ,

i.e.
〈θf ,Luθf

〉 ≤ 〈θf ,Lu〉, ∀u ∈ UC
or, equivalently, withu = −w0 + v, wherev ∈ L−1(C),

〈θf ,Luθf
〉 ≤ 〈θf ,−Lw0 + Lv〉, ∀ v ∈ UC .

By settingy = Lv, (57) becomes

〈θf ,Luθf
+ Lw0〉 ≤ 〈θf , y〉, ∀ y ∈ C ∩ ImL.

For y = 0, we have 〈θf ,Luθf
+ Lw0〉 ≤ 0, and by

replacingy by −y, we have

〈θf ,Luθf
+ Lw0〉 ≤ − 〈θf , y〉, ∀ y ∈ C ∩ ImL.

Then

〈θf ,Luθf
+ Lw0〉 ≤ 〈θf , y〉 ≤ −〈θf ,Luθf

+ Lw0〉,

∀ y ∈ C ∩ ImL,

|〈θf , y〉| ≤ −〈θf ,Luθf
+ Lw0〉, ∀ y ∈ C ∩ ImL

and 〈θf , y〉 = 0, ∀ y ∈ C ∩ ImL, because fory ∈ C we
have 〈θf , y〉 6= 0. Then αy ∈ C,∀α, and hence

|α| ≥
− 〈θf ,Luθf

+ Lw0〉
|〈θf , y〉|

, ∀α,

which is impossible. Thenθf ∈ (C ∩ ImL)⊥. Since
Luθf

+Lw0 = yuθf
,f −Rf , we get〈θf ,Luθf

+Lw0〉 =
〈θf , yuθf

,f 〉 = 0 becauseyuθf
,f ∈ C.

Corollary 1. If there exists a uniqueθf ∈ F such that

θf ∈ (C ∩ ImL)⊥, CS(T )z0 + Λθf + Rf ∈ C, (58)

where (C ∩ ImL)⊥ = {φ ∈ F | 〈φ, y〉 = 0, ∀ y ∈
C ∩ ImL}, the corresponding control is the optimal one
ensuring the enlarged exact remediability with respect to
the subspaceC.

Note that, using (58), we have〈θf , CS(T )z0 +
Λθf + Rf〉 = 0. Then

J(uθf
) = ‖θf‖2F = 〈θf ,Λθf 〉 = −

〈
θf , CS(T )z0+Rf

〉
.

The orthogonality is considered as a duality betweenF
andF ′.

5.3. Case of the Constraint of “Bounded Observation”

Let C = B(CS(T )z0, ε). We haveyu,f (T ) ∈ C ⇐⇒
‖CHu + Rf‖ ≤ ε, and if ‖Rf‖ ≤ ε, it is sufficient to
consider the zero control. Assume then that‖Rf‖ > ε.
For a > 0, consider the operatorΓa : y ∈ Y −→ (aI +
Λ)y ∈ Y . We have

〈Γay, y〉 =
〈
(aI + Λ)y, y

〉
= a‖y‖2 + ‖y‖2F .

Γa is then an isomorphismY −→ Y . By settingya ∈ Y ,
the unique solution to the equation

(aI + Λ)ya = Rf, (59)

we have the following result.
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Corollary 2. ya is the solution to (54), if and only if
a‖ya‖ ≥ ε.

Proof. Using (59), we havey−CS(T )z0−Λya−Rf =
y − CS(T )z0 + aya. Then〈

ya, y − CS(T )z0 − Λya −Rf
〉

=
〈
ya, y − CS(T )z0 + aya

〉
=

〈
ya, y − CS(T )z0

〉
+ a‖ya‖2, (60)

and for y ∈ C ∩ (CS(T )z0 + Rf + F ′) we have

〈ya, y − CS(T )z0〉 ≥ −ε‖ya‖.

Then〈
ya, y−CS(T )z0−Λya−Rf

〉
≥ ‖ya‖

(
a‖ya‖−ε

)
. (61)

The condition is sufficient because ifa‖ya‖ ≥ ε, thenya

satisfies (54).

This condition is also necessary, because using the
hypothesis we have〈

ya, y − CS(T )z0 − Λya −Rf
〉
≥ 0,

∀ y ∈ C ∩
(
CS(T )z0 + Rf + F ′

)
. (62)

Sinceya ∈ Y , the inner product is defined fory ∈ Y . On
the other hand, since the affine spaceCS(T )z0+Rf+F ′
is dense in Y, the inequality (54) is true fory ∈ C.

Let
y = CS(T )z0 − ε

ya

‖ya‖
∈ C.

Using (60), we have〈
ya, y − CS(T )z0 − Λya −Rf

〉
=

〈
ya, y − CS(T )z0

〉
+ a‖ya‖2

= ‖ya‖(a‖ya‖ − ε) ≥ 0,

and hencea‖ya‖ ≥ ε.

6. Conclusion

In this work, we defined and characterized the notion of
enlarged exact remediability, which is a generalization
of the notion of exact remediability, introduced in previ-
ous works, and also the notion ofC-efficient actuators.
Then we studied the relationship between weak remedi-
ability andC-remediability, and hence between efficient
actuators andC-efficient actuators in the case of a ball
C = B(CS(T )z0, ε).

Using an extension of the H.U.M. approach as well
as penalization and optimization techniques, we showed
how to determine the optimal control ensuring enlarged
exact remediability, and that the cost is reduced with re-
spect to the problem of exact remediability. As an appli-
cation, we examined particular cases related to the choice
of the constraints or the region of toleranceC.

Finally, let us note that this work can be extended to
the problem of regional enlarged remediability and also to
other systems.
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