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THE ASYMPTOTICAL STABILITY OF A DYNAMIC SYSTEM
WITH STRUCTURAL DAMPING
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A dynamic system with structural damping described by partial differential equations is investigated. The system is first
converted to an abstract evolution equation in an appropriate Hilbert space, and the spectral and semigroup properties of
the system operator are discussed. Finally, the well-posedness and the asymptotical stability of the system are obtained by
means of a semigroup of linear operators.
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1. Introduction

We shall be concerned with the following system of par-
tial differential equations with initial and boundary condi-
tions:

∂2u(x, t)
∂t2

+ η
∂5u(x, t)
∂t∂x4

+
∂2

∂x2

(
p(x)

∂2u(x, t)
∂x2

)
= f(t, u),

∂2u(x, t)
∂x2

∣∣∣
x=0,l

=
∂

∂x

(
p(x)

∂2u(x, t)
∂x2

)∣∣∣
x=0,l

= 0,

u(x, 0) = ϕ0(x),
∂u(x, t)
∂t

∣∣∣
t=0

= ψ0(x).

(1)

So far, we have been concerned with clamped beam equa-
tions in (Hou and Tsui, 1998; 1999; 2000; 2003), in which
the systems are different from (1). The system (1) stands
for a typical beam equation with two free ends (Komkov,
1978; Köhne, 1978; Li and Zhu, 1988), whereu(x, t) is
the transverse displacement of the pointx at the timet,
l is the length of the beam,p(x) is the bending rigidity at
the pointx, andf(t, u) represents the controlled moment
of the system.

Suppose thatp(x) ∈ C2[0, l], and 0 < p0 ≤ p(x) ≤
p1 < +∞, where p0 and p1 are constants. Now, we
takeL2[0, l] as the state space, with the inner product and
norm respectively defined as follows:

〈f, g〉0 =
∫ l

0

f(x)g(x) dx, f, g ∈ L2[0, l],

‖f‖20 =
∫ l

0

|f(x)|2 dx, f ∈ L2[0, l].

Let H1 = span {1, x}. Then L2[0, l] = H1 ⊕
H2, whereH2 is the orthogonal complement ofH1 in
L2[0, l]. Suppose thatP1 is the operator of projection
onto H1 and I − P1 is the operator of projection onto
H2, so that the system (1) can be rewritten as

∂2u(x, t)
∂t2

= P1f(t, u),

u(x, 0) = P1ϕ0,
∂u(x, t)
∂t

∣∣∣
t=0

= P1ψ0.

(2)

It is clear that the solution of (2) can be described as

u(1)(x, t) = a1 + a2x+ a3t+ a4tx, (3)

where a1, a2, a3 and a4 are determined byP1ϕ0,
P1ψ0, andP1f(t, u).

For the system (1) inH2, we have

∂2(x, t)
∂t2

+ η
∂5u(x, t)
∂t∂x4

+
∂2

∂x2

(
p(x)

∂2u(x, t
∂x2

)
= (I − P1)f(t, u),

∂2u(x, t)
∂x2

∣∣∣
x=0,l

=
∂

∂x

(
p(x)

∂2u(x, t)
∂x2

)∣∣∣
x=0,l

= 0,

u(x, 0) = (I − P1)ϕ0,
∂u(x, t)
∂t

∣∣∣
t=0

= (I − P1)ψ0.

(4)
If we denote byu(2)(x, t) the solution of (4), then the
solution of the system (1) can be represented as

u(x, t) = u(1)(x, t)⊕ u(2)(x, t). (5)
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It should be noted that the form ofu(1)(x, t) is given
by (3), andu(2)(x, t) will play a key role in investigat-
ing the solution of the system (1).

We now define differential operatorsA and T as
follows:

Aϕ =
(
p(x)ϕ′′(x)

)′′
, ϕ ∈ D(A),

D(A) =
{
ϕ | ϕ ∈ H2, ϕ

′′(0) = ϕ′′(l) = 0,(
p(x)ϕ′′

)′∣∣
x=0,l

= 0,
(
p(x)ϕ′′(x)

)′′ ∈ H2

}
,

Tϕ = ηϕ′′′′(x), ϕ ∈ D(T ), D(T ) = D(A).

From the definitions ofA and T it can be seen that
H1 = span {1, x} is the null space ofA, and bothA and
T are positive definite self-adjoint operators inH2, and
there is a greatest positive numberλ such that

〈Aϕ,ϕ〉0 ≥ λ‖ϕ‖20, ϕ ∈ D(A). (6)

It is easy to show that

p0

η
T ≤ A ≤ p1

η
T. (7)

In fact, integrating by parts and taking account of the def-
initions of A and T as well as the boundary conditions,
we have

〈Aϕ,ϕ〉0 =
∫ l

0

(p(x)ϕ′′(x))′′ϕ(x) dx

=
∫ l

0

(p(x)ϕ′′(x))′ϕ′(x) dx

=
∫ l

0

p(x)ϕ′′(x)ϕ′′(x) dx.

From the inequalities0 < p0 ≤ p(x) ≤ p1 < ∞ it
follows that

p0

∫ l

0

ϕ′′(x)ϕ′′(x) dx ≤ 〈Aϕ,ϕ〉0

≤ p1

∫ l

0

ϕ′′(x)ϕ′′(x) dx.

In other words,

p0‖ϕ′′‖20 ≤ 〈Aϕ,ϕ〉0 ≤ p1‖ϕ′′‖20.

Similarly, we have

〈Tϕ, ϕ〉0 = 〈ηϕ′′′′, ϕ〉0 = 〈ηϕ′′′, ϕ′〉0

= 〈ηϕ′′, ϕ′′〉0 = η‖ϕ′′‖20

and

ϕ′′‖20 =
1
η
〈Tϕ, ϕ〉0.

Hence 〈p
η
Tϕ, ϕ

〉
0
≤ 〈Aϕ,ϕ〉0 ≤

〈p1

η
Tϕ, ϕ

〉
0

and therefore
p0

η
T ≤ A ≤ p1

η
T.

In terms of the operatorsA and T we can rewrite
the system (4) as follows:

d2u

dt2
+

d
dt

(Tu) +Au = (I − P1)f(t, u),

u(0) = (I − P1)ϕ0,
du(x, t)

dt

∣∣∣
t=0

= (I − P1)ψ0.

(8)

Let us now introduce the Hilbert spaceH = H2 ×
H2 equipped with the general inner product. Set

~u =
[
u1

u2

]
, u1 = A

1
2u, u2 =

du
dt
,

A =

[
0

−A 1
2

A
1
2

−T

]
, D(A) = D(A

1
2 )×D(A),

~F (t, ~u) =
[

0
(I − P1)f(t, u)

]
,

~u0 =
[
u1(0)
u2(0)

]
=

[
A

1
2 (I − P1)ϕ0

(I − P1)ψ0

]
.

Then the evolution equation (8), or the original sys-
tem (1), is equivalent to the following first-order evolution
equation: 

d~u(t)
dt

= A~u(t) + ~F (t, ~u),

~u(0) = ~u0,

(9)

and the corresponding equation is given by
d~u(t)

dt
= A~u(t),

~u(0) = ~u0.

(10)

2. Main Results

We shall first discuss the semigroup properties of the op-
erator A, and then investigate the well-posedness and
asymptotical stability of the system (1). The following
results will be obtained:

Theorem 1. The linear operatorA in the system (9) is
the infinitesimal generator of aC0 semigroupT (t) sat-
isfying

‖T (t)‖ ≤Me−δt, t ≥ 0,

whereM and δ are positive constants.
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Theorem 2. If f(t, u) : [0, T ] × L2[0, l] → L2[0, l]
is continuous int for any T > 0 on [0, T ] and uni-
formly Lipschitz continuous inu on L2[0, l], then for
every ~u0 ∈ H, the evolution equation (9) has a unique
weak solution inC([0, T ];H). Moreover, the mapping
~u0 → ~u is Lipschitz continuous.

Theorem 3. Suppose thatf(t, u) meets the conditions of
Theorem 2 with the Lipschitz constantN satisfying

N <
δ

M

√
λ,

where M and δ are the same as those in Theorem 1,
and λ is the same as that in the equality (6). Then the
solution of the system (9) (and therefore the solution of
the system (1)) is exponentially stable.

3. Proofs of the Main Results

In this section, we shall prove Theorems 1–3. To prove
Theorem 1, we shall first prove the following lemmas.

Lemma 1. If λ is a complex number with Reλ ≥ 0, then
(λ2 + λT +A)−1 exists and is bounded.

Proof. Clearly, the result is true forλ = 0. If λ 6= 0,
then for anyx ∈ D(A), we let λ = σ + iτ , σ ≥ 0.
Consequently,∥∥∥(

λ+ T +
1
λ
A

)
x
∥∥∥ ‖x‖

≥
∣∣∣〈(

λ+ T +
1
λ
A

)
x, x

〉∣∣∣ ∣∣∣σ‖x‖2 + 〈Tx, x〉

+
σ

σ2 + τ2
〈Ax, x〉+ i[τ‖x‖2

− τ

σ2 + τ2
〈Ax, x〉]

∣∣∣ ≥ 〈Tx, x〉 ≥ ω‖x‖2,

whereω > 0 is the smallest eigenvalue ofT .

Sincex ∈ D(A), it can be seen that〈(
λ+ T +

1
λ
A

)
x, x

〉
= σ‖x‖2 + 〈Tx, x〉+

σ

σ2 + τ2
〈Ax, x〉

+ i
[
τ‖x‖2 − τ

σ2 + τ2
〈Ax, x〉

]
,

and

Re
〈
−

(
λ+ T +

1
λ
A

)
x, x

〉
≤ −〈Tx, x〉 ≤ −ω‖x‖2.

It follows that the numerical range of−(λ+T + 1
λA) has

the form

V
(
−

(
λ+ T +

1
λ
A

))
=

{
−

〈(
λ+ T +

1
λ
A

)
x, x

〉
: ‖x‖ = 1,

x ∈ D
(
λ+ T +

1
λ
A

)}
⊆

{
λ | Reλ ≤ −ω

}
.

This implies that0 ∈ ρ(−(λ + T + 1
λA)) (see (Bal-

askrishnan, 1981)), and so0 ∈ ρ(λ2 + λT + A). Thus,
(λ2 + λT +A)−1 exists and is bounded.

Lemma 2. If λ is a complex number withReλ ≥ 0,
λ 6= 0, then ( 1

λ + λA−1 + A−
1
2TA−

1
2 )−1 exists and is

bounded.

Proof. First, it should be noted thatA−
1
2TA−

1
2 can be

extended to a bounded linear operator onH2, for every
x ∈ H2, λ = σ + iτ , σ ≥ 0. Since∥∥∥( 1

λ
+ λA−1 +A−

1
2TA−

1
2

)
x
∥∥∥‖x‖

≥
∣∣∣〈( 1

λ
+ λA−1 +A−

1
2TA−

1
2

)
x, x

〉∣∣∣
=

∣∣∣ σ

σ2 + τ2
‖x‖2 + σ〈A−1x, x〉+ 〈A− 1

2TA−
1
2x, x〉

+ i
[ −τ
σ2 + τ2

‖x‖2 + τ〈A−1x, x〉
]∣∣∣

≥ σ

σ2 + τ2
‖x‖2 + σ〈A−1x, x〉+ 〈A− 1

2TA−
1
2x, x〉

≥ η

p1
‖x‖2,

the operator1λ + λA−1 + A−
1
2TA−

1
2 is invertible. We

also see that its image is dense inH2. In fact, if y0 ∈ H2,
then〈( 1

λ
+ λA−1 +A−

1
2TA−

1
2

)
x, y0

〉
= 0, x ∈ H2.

Noticing that 1
λ +λA−1 +A−

1
2TA−

1
2 is self-adjoint, we

have〈
x,

( 1
λ

+ λA−1 +A−
1
2TA−

1
2

)
y0

〉
= 0, x ∈ H2.

Since 1
λ +λA−1 +A−

1
2TA−

1
2 is invertible, y0 = 0, and

therefore the range of( 1
λ +λA−1+A−

1
2TA−

1
2 ) is dense

in H2. Thus, ( 1
λ + λA−1 +A−

1
2TA−

1
2 )−1 exists and is

bounded.

Lemma 3. If λ is a complex number withReλ ≥ 0,
λ 6= 0, then the resolvent ofA can be expressed by

R(λ,A) =
1
λ

[
R11, R12

R21, R22

]
,
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where

R11 = I − 1
λ2

( 1
λ2

+A−1 +
1
λ
A−

1
2TA−

1
2

)−1

,

R12 =
1
λ

( 1
λ2

+A−1 +
1
λ
A−

1
2TA−

1
2

)−1

A−
1
2

R21 = − 1
λ
A−

1
2

(
λ2

+A−1 +
1
λ
A−

1
2TA−

1
2

)−1

,

R22 = A−
1
2

( 1
λ2

+A−1 +
1
λ
A−

1
2TA−

1
2

)−1

A−
1
2 .

Proof. From Lemma 2 we know thatR(λ,A) is a
bounded linear operator onH and the expression for
R(λ,A) can be obtained by a direct calculation.

Lemma 4. If λ is complex number withReλ ≥ 0 and
λ 6= 0, the family of the operators with the parameterλ

F (λ) =
1
λ

( 1
λ2

+A−1 +
1
λ
A−

1
2TA−

1
2

)−1

=
( 1
λ

+ λA−1 +A−
1
2TA−

1
2

)−1

is uniformly bounded.

Proof. Let

Zλ =
( 1
λ

+ λA−1 +A−
1
2TA−

1
2

)−1

x, x ∈ H2.

Then {‖Zλ‖} is bounded for allλ. Otherwise, there is a
λ0 such that

lim
λ→λ0

‖Zλ‖ = +∞.

As regards the inner product of the sequenceyλ =
Zλ/‖Zλ‖ with λ = σ + iτ , we have〈( 1

λ
+ λA−1 +A−

1
2TA−

1
2

)
yλ, yλ

〉
=

σ

σ2 + τ2
+ σ〈A−1yλ, yλ〉+ 〈A− 1

2TA−
1
2 yλ, yλ〉

+ i
[ −τ
σ2 + τ2

+ τ〈A−1yλ, yλ〉
]
. (11)

Obviously, the real part of the right-hand side (11) is
greater thanη/p0 > 0. On the other hand,

lim
λ→λ0

( 1
λ

+ λA−1 +A−
1
2TA−

1
2

)
yλ = lim

λ→λ0

x

‖Zλ‖
= 0,

so that a contradiction occurs. Hence{‖Zλ‖} is uni-
formly bounded for everyx ∈ H2, and the result of this
lemma follows from the Principle of Uniform Bounded-
ness.

Lemma 5. If λ is complex number withReλ ≥ 0, λ 6=
0, and there is aλ0 > 0 such that if |λ| ≥ λ0, then
( 1

λ + TA−1 + λA−1)−1 is uniformly bounded.

Proof. For everyx ∈ H2, it is easy to see that∥∥∥( 1
λ

+ TA−1 + λA−1
)
x
∥∥∥2

=
〈( 1

λ
+ TA−1 + λA−1

)
x,

( 1
λ

+ TA−1 + λA−1
)
x
〉

=
1
|λ|2

‖x‖2 +
λ

λ
〈x,A−1x〉+

λ

λ̄
〈A−1x, x〉

+ |λ|2‖A−1x‖2 + λ〈TA−1x,A−1x〉

+ +λ〈A−1x, TA−1x〉+
1
λ
〈x, TA−1x〉

+
1
λ
〈TA−1x, x〉+ ‖TA−1x‖2

≥ 1
λ
〈x, TA−1〉+

1
λ
〈TA−1x, x〉+ ‖TA−1x‖2. (12)

SinceTA−1 is bounded, there is aλ0 > 0, such that
if |λ| ≥ λ0, the right-hand side of the above inequality has
the form

1
λ
〈x, TA−1x〉+

1
λ
〈TA−1x, x〉+ ‖TA−1x‖2

≥ 1
4
‖TA−1x‖2 ≥ 1

4
δ20‖x‖2, (13)

where δ0 > 0, and the last inequality is due to the invert-
ibility of TA−1. This follows from∥∥∥( 1

λ
+ TA−1 + λA−1

)
x
∥∥∥ ≥ 1

2
δ0‖x‖. (14)

Hence( 1
λ + TA−1 + λA−1) is invertible.

Next, we shall show by contradiction that the range
of ( 1

λ + TA−1 + λA−1) is dense inH2. If the range
of ( 1

λ + TA−1 + λA−1) is not dense inH2, there is a
y0 ∈ H2, y0 6= 0 such that〈( 1

λ
+ TA−1 + λA−1

)
x, y0

〉
= 0, x ∈ H2.

This implies〈(A
λ

+ T + λ
)
y, y0

〉
= 0, y ∈ D(A),

wherey = A−1x.

In view of Lemma 1,( 1
λA+T +λ)−1 is a bounded

linear operator, and its range is dense inH2. Hencey0 =
0, but this contradictsy0 6= 0. Thus the range of( 1

λ +
TA−1 + λA−1) is dense inH2. If |λ| ≥ λ0, Reλ 6= 0,
and for a fixedx ∈ H2 we set

Zλ =
( 1
λ

+ λA−1 + TA−1
)−1

x, |λ| ≥ λ0,
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then it can be shown that{‖Zλ‖} is bounded. Otherwise,
there is a sequence{λn} with |λn| ≥ λ0 andReλn ≥ 0
such that

lim
n→∞

‖Zλn
‖ = ∞,

and( 1
λn

+λnA
−1+TA−1

) Zλn

‖Zλn‖
=

x

‖Zλn‖
→ 0, n→∞.

Let yn = Zλn
/‖Zλn

‖. From (13) it follows that∥∥∥( 1
λn

+ TA−1 + λnA
−1

)
yn

∥∥∥ ≥ δ0
2
‖yn‖ =

δ0
2
> 0,

which contradicts (15). Hence{‖Zλ‖} is bounded, for
every x ∈ H2. From the Principle of Uniform Bounded-
ness it follows that( 1

λ + λA−1 + TA−1)−1 is uniformly
bounded for|λ| ≥ λ0 and Reλ ≥ 0.

Lemma 6. Under the condition of Lemma 5, if|λ| ≥ λ0

and Reλ ≥ 0, the family of operators withλ

A−
1
2

( 1
λ2

+A−1 +
1
λ
A−

1
2TA−

1
2

)−1

A−
1
2

=
( 1
λ2
A+

1
λ
T + I

)−1

is uniformly bounded.

Proof. If |λ| ≥ λ0 and Reλ ≥ 0, from Lemma 5 we
have( 1
λ2
A+

1
λ
T + I

)−1

= A−1
( 1
λ2

+
1
λ
TA−1 +A−1

)−1

.

Thus, the result of Lemma 6 is concluded by virtue of
Lemma 5.

Proof of Theorem 1.Since

A =

[
0 A

1
2

−A 1
2 −T

]

andA and T are positive definite self-adjoint operators,
we can easily verify that(iA)∗ = iA. From the cele-
brated Stone Theorem (Pazy, 1983) it follows thatA is
the infinitesimal generator of aC0 semigroupT (t) on
H. On the other hand, we can see that0 ∈ ρ(A) gives us

A−1 =

[
−A− 1

2TA−
1
2

A
1
2

−A− 1
2

0

]
.

If Reλ ≥ 0 and λ 6= 0, we can show that the resolvent
R(λ,A) of A satisfies

‖R(λ,A)‖ ≤ M

|λ|
, 1 ≤M <∞. (15)

In fact, from Lemma 3 we deduce thatR(λ,A)
is an analytic function ofλ on the right-half complex
plane. According to the analyticity ofR(λ,A), it suf-
fices to show that if|λ| ≥ λ0 > 0 and Reλ ≥ 0, then
‖R(λ,A)‖ ≤ M1/|λ|. However, this can be easily ob-
tained by Lemmas 4–6.

Sinceρ(A) ⊃ {λ | Reλ ≥ 0}, ρ(A) being an open
set on the complex plane, there is a constantε > 0 such
that

σ(A) ⊂
{
λ | Reλ ≤ −ε

}
and therefore from the stability theorem of the analytic
semigroup (Pazy, 1983) we conclude that there is a con-
stant δ > 0 such that

‖T (t)‖ ≤Me−δt, t ≥ 0.

The proof of Theorem 1 is thus complete.

Proof of Theorem 2. For ~F (t, ~u) = [0, (I −
P1)f(t, u)]T ∈ H in (9), we have‖~F (t, ~u‖ = ‖(I −
P1)f(t, u)‖. Since I − P1 is a bounded linear opera-
tor, and f(t, u) is continuous int on [0, T ] and uni-
formly Lipschitz continuous inu on L2[0, l], ~F (t, ~u) has
the same properties asf(t, u). Applying Theorem 1.2 of
(Pazy, 1983) yields Theorem 2.

In order to prove Theorem 3, we first introduce a
continuous function spaceC[0,+∞) equipped with the
norm

‖g‖m = max
t≥0

|g(t)| < +∞, g ∈ C[0,+∞),

and define the linear operatorK through

Kg(t) =
∫ t

0

e−δ(t−s)g(s) ds,

where δ is the same as in Theorem 1.

We see thatK is a bounded linear operator on
C[0,+∞). In fact,

|Kg(t)| ≤
∫ t

0

eδ(t−s)|g(s)|ds ≤ ‖g‖m

∫ t

0

e−δ(t−s) ds

= ‖g‖m
1
δ
(1− e−δt) ≤ 1

δ
‖g‖m

for any t ≥ 0. Thus we have

‖Kg‖m = max
t≥0

|Kg(t)| ≤ 1
δ
‖g‖m,

and

‖K‖m ≤ 1
δ
. (16)

Proof of Theorem 3.From Theorem 1 and (Pazy, 1983) we
know that the evolution equation (9) has a unique solution
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~u(x, t), and hence the system (4) has a unique solution
~u(x, t). We now decomposeu(x, t) as follows:

~u(x, t) = ~ξ(x, t) + ~η(x, t),

where ~ξ(x, t) and ~η(x, t) satisfy

∂2~ξ(x, t)
∂t2

+ η
∂5~ξ(x, t)
∂t∂x4 +

∂2

∂x2

(
p(x)

∂2~ξ(x, t)
∂x2

)
= 0,

∂2~ξ(x, t)
∂x2

∣∣∣
x=0,l

=
∂

∂x

(
p(x)

∂2~ξ(x, t)
∂x2

)∣∣∣
x=0,l

= 0,

~ξ(x, 0) = (I − P1)ϕ0,
∂~ξ(x, t)
∂t

∣∣∣
t=0

= (I − P1)ψ0,

(17)

and

∂2~η(x, t)
∂t2

+ η
∂5~η(x, t)
∂t∂x4 +

∂2

∂x2

(
p(x)

∂2~η(x, t)
∂x2

)
= (I − P1)f(t, u(x, t)),

∂2~η(x, t)
∂x2

∣∣∣
x=0,l

=
∂

∂x

(
p(x)

∂2~ξ(x, t)
∂x2

)∣∣∣
x=0,l

= 0,

~η(x, 0) = 0,
∂~η(x, t)
∂t

∣∣∣
t=0

= 0,
(18)

respectively. Hereu(x, t) in f(t, u) is the solution of the
system (4).

From Theorem 1 it should be noted that the sys-
tem (17) in H is equivalent to the system (10), whose
solution ~ξ(x, t) = T (t)~ξ0 satisfies

‖~ξ(x, t)‖ ≤Me−δt‖~ξ0‖. (19)

It is obvious that the system (18) inH is equivalent
to the system

d~η(t)
dt

= A~η(t) + ~F (t, ~u),

~η(0) = ~η0 = 0,

where

~η = (η1, η2)T , η1 = A
1
2 η, η2 =

dη
dt

and

~F (t, ~u) =
[
0, (1−P1)f(t, u)

]T =
[
0, (I−P1)f(t, ξ+η)

]T
.

SinceA generates aC0 semigroupT (t) on H and
~η0 = 0, we have

~η(x, t) =
∫ t

0

T (t− s)~F
(
s, ~u(s)

)
ds,

and from Theorem 1 it follows that

‖~η(x, t)‖ ≤ M

∫ t

0

e−δ(t−s) ‖~F (s, ~u(s)‖dx

= M

∫ t

0

e−δ(t−s)‖(I − P1)f(x, u(s))‖0 ds

≤ M

∫ t

0

e−δ(t−s)‖f(s, u(s))‖0 ds

≤ MN

∫ t

0

e−δ(t−s)‖u(s)‖0 ds

≤ MN

∫ t

0

e−δ(t−s)(‖ξ(s)‖0

+ ‖η(s)‖0) ds. (20)

By virtue of (6) and the definition of the inner prod-
uct described before, we have

‖~ξ‖2 = 〈ξ1, ξ1〉+ 〈ξ2, ξ2〉 =
〈
A

1
2 ξ,A

1
2 ξ

〉
0

+ ‖ξ2‖2

= 〈Aξ, ξ〉0 + ‖ξ2‖2 ≥ λ‖ξ‖20 + ‖ξ2‖2 ≥ λ‖ξ‖20,

and so

‖ξ‖0 ≤
1√
λ
‖~ξ‖. (21)

Similarly, it can be shown that‖~η‖2 ≥ λ‖η‖20 and

‖η‖0 ≤
1√
λ
‖~η‖. (22)

Combining (19)–(22) leads to

‖~η(x, t)‖ ≤ MN

∫ t

0

e−δ(t−s)
(
‖ξ(s)‖0 + ‖η(s)‖0

)
ds

≤ MN√
λ

∫ t

0

e−δ(t−s)‖~ξ(s)‖ds

+
MN√
λ

∫ t

0

e−δ(t−s)‖~η(s)‖ds

≤ M2N√
λ
e−δt‖~ξ0‖

+
MN√
λ

∫ t

0

e−δ(t−s)‖~η(s)‖ds

=
M2N√

λ
te−δt‖~ξ0‖+

MN√
λ
K

(
‖~η(s)‖

)
,

and therefore(
I − MN√

λ
K

)
‖~η(s)‖ ≤ M2N√

λ
te−δt‖~ξ0‖. (23)
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Looking at (21) with the assumption thatN < δ
√
λ/M

and (16), we find ∥∥∥MN√
λ
K

∥∥∥
m
< 1.

Hence(I − MN√
λ
K) is invertible, and

(
I − MN√

λ
K

)−1

=
∞∑

n=0

(MN√
λ

)n

Kn. (24)

Analysing the definition ofK, we see thatK is a mono-
tonically increasing operator onC[0,+∞), and so is
(I − MN√

λ
K)−1 based on (24). Now, multiply two sides

of (23) by (I − MN√
λ
K)−1 to find

‖~η‖ ≤ M2N√
λ
‖~ξ0‖

∞∑
n=0

(MN√
λ

)n

Kn(te−δt).

Since

K(teδt) =
∫ t

0

e−δ(t−s)se−δs ds

= e−δt

∫ t

0

sds =
t2

2!
e−δt,

it can be shown by induction that

Kn(te−δt) =
tn+1

(n+ 1)!
e−δt.

Thus

‖~η(x, t)‖ ≤ M2N√
λ
‖~ξ0‖

∞∑
n=0

(MN√
λ

)n tn+1

(n+ 1)!
e−δt

=
M2N√

λ

√
λ

MN
‖~ξ0‖

∞∑
n=0

(MN√
λ

)n+1 tn+1

(n+1)!
e−δt

< M‖~ξ0‖e−δt e
MN√

λ
t = M‖~ξ0‖e−(δ−MN√

λ
)t
.

Since

N <
δ

M

√
λ, δ − MN√

λ
> 0,

let

α = δ − MN√
λ
.

Then

‖~η(x, t)‖ ≤M‖~ξ0‖e−αt. (25)

As for ~u(x, t) = ~ξ(x, t) + ~η(x, t), we have

~u = (u1, u2)T =
(
A

1
2u,

du
dt

)T

=
(
A

1
2 (ξ + η),

dξ
dt

+
dη
dt

)T

=
(
A

1
2 ξ,

dξ
dt

)T

+
(
A

1
2 η,

dξ
dt

)T

= (ξ1, ξ2)T + (η1, η2)T = ~ξ + ~η

and

‖~u(x, t)‖=‖~ξ(x, t) + ~η(x, t)‖ ≤ ‖~ξ(x, t)‖+‖~η(x, t)‖.

Combining (19) and (25) gives

‖~u(x, t)‖ ≤M‖~ξ0‖e−δt +M‖~ξ0‖e−αt.

Since0 < α < δ , we have

‖~u(x, t)‖ ≤ 2M‖~ξ0‖e−αt, t ≥ 0.

From ~ξ0 = ~u0 it follows that

‖~u(x, t)‖ ≤ 2M‖~u0‖e−αt, t ≥ 0.

This implies that the solution~u(x, t) to the evolution
equation (9) is exponentially stable, and thus the solution
to the original system (1) is also exponentially stable. The
proof is complete.

4. Conclusion

The beam equation with two free ends (1) was studied by
means of functional analysis and semigroups of linear op-
erators. First, the system (1) was converted to an abstract
evolution equation (9). Second, the properties of the sys-
tem operatorA were investigated and a significant result
thatA generates aC0-semigroupT (t) with exponential
decay property that‖T (t)‖ ≤ Me−δt (M > 0, δ > 0)
was derived (Theorem 1). Then, the well-posedness of
the system (1) was discussed (Theorem 2) using the semi-
group technique. Finally, the exponential stability of the
system (1) was proved under appropriate conditions (The-
orem 3). In further research, concrete designs of the con-
trollers for this system to be asymptotically stable would
be quite significant.
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