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The functionally graded plates (FGP) with two new porosity distributions are examined in this paper. In this 
work the plate is modeled using the higher-order shear deformation plate principle. The shear correction variables 
are neglected. To evaluate the equations of motion, the Hamilton method will be used herein. Therefore, the free 
vibration analysis of FG plate is developed in this work. For porous smart plates with simply-supported sides, 
natural frequencies are obtained and verified with the established findings in the literature. The impact of the 
porosity coefficient on the normal frequencies of the plate for various thickness ratios, geometric ratios, and 
material properties was investigated in a thorough numerical analysis. 
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1. Introduction 
 
 A heterogeneous composite material that exhibits a continuous variation of mechanical properties 
from one point to another is a functionally graded material. This substance is created by combining a certain 
volume ratio with two or more materials. This sort of substance is developed by combining two or more 
materials with a graded distribution of the volume fractions of the components as discussed by Koizumi et 
al.[1], such that the FGM is appropriate for different applications, such as thermal barrier coatings for 
ceramic motors, electrical equipment, energy transformation, biomedical engineering, optics, etc. presented 
in Refs [2, 12]. 
 To examine the vibration of functionally graded surfaces, many experiments have been carried out. 
A three-dimensional specific solution for free and forced vibrations of dynamically graded rectangular plates 
which are simply supported was presented by Ferreira et al. [13]. Using a global collocation system, the first 
and third-order shear deformation plate theories were used to study the free vibrations of dynamically graded 
plates mentioned in Qian et al. [14]. Latest experiments have used higher-order shear and standard 
deformable plate theory to examine static deformations and free vibration of dense rectangular and clearly 
supported plates with dynamically graded elastic plate [15-18]. A three dimensional vibration approach for 
functionally graded rectangular plates was presented by Matsunaga [19]. Taking into account the effects of 
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transverse shear and normal deformations and rotational inertia, natural frequencies and buckling stresses of 
plates made of dynamically graded materials were analyzed by Rezaei et al. [20]. Askari et al.[21], Merdaci 
et al. [22], Rezaei et al. [38] and Reddy [39], studied the impact of porosity on the normal frequency of thick 
porous cellular plates was studied. The researchers investigated the impact of porosity on FGM sandwich 
plates using the principle of high order shear deformation (Benachour et al. [23]). 

A model developed by Belabed et al. [24] for the free vibration of FGM plates with an arbitrary 
coefficient was based on the same principle developed by Ait Yahia et al. [25]. In other terms, between the 
volume fraction used to measure Young's modulus and that for density, two separate power indices were 
taken. Wave propagation in porosity-containing FG plates has recently been studied using various high-order 
theories and presented by Ebrahimi et al. [7] and Zhao et al. [26]. The analytical solution was suggested in 
Merdaci et al. [27, 30] and Zhu et al. [31] for the vibration of FGM porosity plates. 

In FGM manufacturing, however, micro-porosities or voids may occur inside the products during the 
sintering phase. This is because of the significant disparity between substance constituents in the 
temperatures of solidification. It was studied by Wattanasakulpong et al. [32]. Porosities created by a 
sequential multi-step infiltration process inside FGM specimens was studied by Merdaci [33]. The impact of 
porosity in the architecture of FGM structures subjected to static was analyzed by Zenkour [34], Merdaci et 
al. [35], Wattanasakulpong et al. [36], Rezaei et al. [37] studied dynamic loads and reported that they should 
be taken into account. Consequently, more and more attention has been paid in recent years to studies 
dedicated to the static and dynamic behavior of FGM material structures. 

This current research focuses on the efficiency of free vibration analysis of clearly supported by porous 
functionally graded plates (FGP) for various porosity distributions based on the HSPT theory of higher-order 
plates. Even porosity and irregular porosity are thought to be two new forms of porosity distributions, from the 
thickness direction of the plate. According to the power-law which is adjusted to approximate material 
characteristics to recognize the effect of porosities, the material characteristics of the FG plate are to be 
continuously varied throughout the thickness direction. The results of both the bending and shear stresses are 
superimposed by this theory and a higher-order modification of the axial displacement across the depth of the 
plate causes that this theory does not include any shear correction element. To deduce the equations of motion 
from the Hamilton theorem, the four obscure shear deformation theory is used. Hamilton 's theory and the 
formulation of a Navier-type analytical solution was used to evaluate the P-FGP's motion equations. Compared to 
other findings produced with the plate hypothesis, the consistency of this hypothesis is confirmed. Several 
findings are provided to explain the effects of different basic parameters on the natural frequencies of simply 
supported P-FGP, such as the content index, the fraction of porosity amount, porosity distribution, and length to 
thickness ratios. 

 
2. Theoretical formulations 
 
2.1. Description of the Model 
 

Consider, along with the adopted coordinate scheme, a dense rectangular plate FG of length a, width 
b and thickness h made of functionally graded material, as seen in Fig.1.  
 

 
 

Fig.1. Plate FG dimensional configuration of porosity. 
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 As can be seen in Fig.2a and Fig.2b, due to the influence of even and uneven porosities in the 
distribution of material properties, the embedded FG plate becomes an imperfect FG plate. The material 
properties of the FG plate are believed to be a component of the volume fraction of the constituent 
components, such as Young's modulus E. Due to the progressive volume fraction of the components of the 
products (ceramic and metal), the properties of the FGM differ constantly, usually in the direction of 
thickness. To explain these differences in the properties of materials, the function of the P-FGM power rule 
is widely used. The expression given below describes the volume fraction profile. 
 

 
(a) Even porosity (b) Uneven porosity 

 
Fig.2. Distributions porosity models.

 
2.2. Functionally graded materials porosity-dependent 
 
2.2.1. Functionally imperfect graded substance of even porosity 

 
 Assume that a combination of metal and ceramic is produced out of the FG layer. It is apparent that 
with the substrate composition (ceramic and metal) in the direction of thickness, the material properties of 
the FG plate (i.e., Young's modulus E, Poisson's ratio υ and mass density ρ) are constantly altered. Iron is 
considered to be the bottom side of the rectangular plate and the top surface is composed of ceramic. In 
addition, the effect of porosities that may occur during processing within the FG plate materials is also 
included. For a two-phase FG plate with even porosity, the updated mixture rule is as follows: 

 

  

 

( )   m cE z E 1 V E V
2 4
ξ ξ   = − − + −   

   
      and      

p1 zV
2 h

 = + 
 

,   (2.1) 

 
in which the subscripts c and m reflect, respectively, ceramic and metal, p is also the volume fraction index 
(power-law index) that determines the characterization of material variance across the thickness of the plate, 
and the porosity volume fraction is shown by ( ) 0 1ξ ≤ ξ ≤ . The material properties of the ceramic and the 
metal, respectively, are cE   and mE .  
 In Eq.(2.1) it is necessary to rewrite the material properties of an incomplete FG plate with even 
porosity (the plan of this model is shown in Fig.2.a) as follows:  
 

  ( ) ( ) ( )
p

m c m c m
1 zE z E E E E E

4 2 h
ξ  = − + + − + 

 
,   (2.2a) 

 

  ( ) ( )( )
p

m c m c m
1 zz

4 2 h
ξ  ρ = ρ − ρ + ρ + ρ − ρ + 

 
.  (2.2b) 
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2.2.2. Imperfect material of uneven porosity, functionally graded 
 
 For the second distribution model, along the thickness direction (known as uneven distribution) of the FG 
plate, the porosities may be functionally distributed (the plan of this model is shown in Fig 2(b)) as follows: 

 

  ( ) ( )( )
p

m c m c m
2 z 1 zE z E E E 1 E E

4 h 2 h
 ξ  = − + − + − +   

  
,   (2.3a) 

 

  ( ) ( )( )
p

m c m c m
2 z 1 zz 1

4 h 2 h
 ξ  ρ = ρ − ρ + ρ − + ρ − ρ +   

  
.  (2.3b) 

 
 The FG plate is composed of a combination of two elements, such as metal and ceramics. It is presumed 
that the properties of the plate FG content differ continuously throughout the thickness of the plate. The imperfect 
plate is believed in this analysis to have porosities distributed in thickness due to fault during processing. 

 
3. Kinematics and strains relations 
 
 The displacement fields can be described based on the assumptions made in the preceding section: 

 

  

( , , , ) ( , , ) ( ) ,

( , , , ) ( , , ) ( ) ,

( , , , ) ( , , ) ( , , )

b s
0

b s
0

b s

w wu x y z t u x y t z f z
x x

w wv x y z t v x y t z f z
y y

w x y z t w x y t w x y t

∂ ∂
= − +

∂ ∂

∂ ∂
= − +

∂ ∂

= +

 (3.1) 

 
where 0u  and 0v   mean the displacement functions of the middle surfaces of the plate, in which t  represents 
time. The representative form feature which denotes the distribution of transverse shear stress or strain along 
the thickness of the plate is also ( )f z . We have in this study: 

 

  ( ) sinf z z z
h 2h
π π = + 

 
      and      

cos
( )( ) '( )

z
df z hg z f z

dz h 2h

π π  π = = = − . (3.2) 

 
 With the following conclusions, the HSDPT principle takes into consideration transverse shear strain 
in the formulation.  
• The displacements are minimal relative to the thickness of the plate, and the strains concerned are also 

infinitesimal.  
• The transverse displacement w comprises two elements of bending ( )bw , and shear ( ).sw  The bending 

and shear components are functions of the ,x y  and t  coordinates only, and the , ,x y t  and z  
coordinates are functions of the stretching component.  

• In-plane displacements (u and v) are classified into contraction, bending and shear sections in the x and 
y coordinates. The in-plane displacements are seen to be , ,x y t  and z  functions in which the bending 
components are identical to those given by CPT, and the shear components are aligned with the 
hyperbolic combinations of shear strains.  
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The stress-strain relations are written in the following form for a linear elastic and isotropic plate 
 

  ,
x 11 12 x

yz yz44
y 12 22 y

55zx zx
66xy xy

Q Q 0
Q 0

Q Q 0
0 Q

0 0 Q

   σ ε  τ γ                σ = ε =          τ γ           τ γ       

,   (3.3a) 

 

  ( )
( )  ( ) ( ), ,11 22 12 44 55 662 2

E z E z E zQ Q Q Q Q Q
2 11 1

ν= = = = = =
+ ν− ν − ν

  (3.3b) 

 
where ( ), , , ,x y xy yz yxσ σ τ τ τ  and ( ), , , ,x y xy yz zxV V Vε ε  are the stress and strain components, respectively. 

 
4. Equations of movement 
 
 To obtain the equations of motion, the Hamilton principle is used herein. In an empirical form, we obtain: 

 

  ( )
T

0

U K dt 0δ − δ =   (4.1) 

 
 

where Uδ  is the strain energy variation; Kδ  is the kinetic energy variation. The variance of the plate's strain 
energy is determined by 

 

  
/

/

      
h 2

x x y y xy xy yz yz xz xzA
h 2

U dA dz
−

 δ = σ δ ε + σ δ ε + τ δ γ + τ δ γ + τ δ γ   ,  (4.2a) 
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 (4.2b) 

 
where " "A  is the top surface, and ,N M  and S  are defined by the resulting stress: 
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/

/ /
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  (4.3) 

 
It is possible to write the variation of kinetic energy of the plate as 
 

  
/

/

( )( )
h 2

A
h 2

K z u u v v w w dAdz
−

δ = ρ δ + δ + δ       (4.4) 
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where the convention of the dot-superscript indicates the distinction with respect to the time variable t ; and 
( ),  ,  ,  ,  ,  1 2 3 4 5 6I I I I I I  are mass inertias defined as 

 

  ( ) ( )
/

/

, , , , , , , , ( ), ( ), ( ) ( )
h 2

2 2
1 2 3 4 5 6

h 2

I I I I I I 1 z z f z zf z f z z dz
−

= ρ .  (4.5) 

 
The equilibrium equations associated with the modern principle of shear deformation are: 

 

   :    xyx b s
1 0 2 4

NN w wu u I
x y x x

∂∂ ∂ ∂
δ + = Ι − Ι −
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  ,   (4.6a) 

 

   :    xy y b s
1 0 2 4

N N w wv v I
x y y y

∂ ∂ ∂ ∂
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  ,   (4.6b) 
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2 b 2 b2 b
xy yx

b 2 2

2 2 2 2
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M MMw 2
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∂ ∂∂ ∂
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  (4.6c) 
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s 2 2

2 2 2 2
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1 b s 4 5 62 2 2 2
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  (4.7d) 

 
The resultants of stress are given as: 
 

  ,

s

b s b s

s s s s s

N A B B

M A D D k S A

M B D H k

  ε   
    

= = γ    
    
     

  (4.8) 

 
where the plate stiffness is defined by ,  ,ij ijA B  etc. 
 

  { } ( ) ( )
/

/

, , , , , , , ,
h 2

2
ij ij ij ij

h 2
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−
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5. Analytical solutions for FG plates 
 

In general, rectangular plates are defined according to some of the support used. The exact solution 
for a simply supported FG plate is discussed in this article. For the side margins, the following boundary 
conditions are imposed: 

 

    ,   b sb s
0 b s x x x

w wv w w N M M 0 and x 0 a
y y

∂ ∂
= = = = = = = = =

∂ ∂
,   (5.1a) 

 

  , ,   b sb s
0 b s y y y

w wu w w 0 N M M 0 and y 0 b
x x

∂ ∂
= = = = = = = = =

∂ ∂
.  (5.1b) 

 

 
 

Fig.3. Simply supported FG plate. 
 

We assume the following form of solution for ( ), , ,b su v w w  following the Navier solution method 
that meets the boundary conditions provided in Eqs 5.1. 

 

  

cos(  )sin(  )

sin(  )cos(  )

sin(  )sin(  )

sin(  )sin(  )

i t
mn

i t
mn

i tb m 1 n 1 bmn
i ts smn

U e x yu
v V e x y

w W e x y
w W e x y

ω

ω∞ ∞

ω
= =

ω

 λ μ     λ μ   =   
λ μ   

     λ μ 

   (5.2) 

 
where ,  ,   and mn mn bmn smnU V W W  are arbitrary parameters and can be combined into a system  
of equations as:  

 
  [ ] [ ]( ){ } { }2K M 0− ω Δ =   (5.3) 
 
where [ ]K  and [ ],M  are stiffness and mass matrices, respectively, and are represented as: 
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1 2 4

1 2 4

2 2 1 3 5
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,  (2.18) 
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6. Numerical results and discussion 
 

Some numerical examples are and addressed here to illustrate the utility and precision of the 
proposed hypothesis in the static bending and free vibration responses of isotropic homogeneous and FG 
plates that are simply assisted. Non-dimensional entities were used: 

 
  /c ch Eβ = ω ρ ,      /m mh Eβ = ω ρ ,     ² / /c ca h Eω = ω ρ .  (6.1) 

  
The numerical results and a thorough discussion are provided here, based on the equations of the 

scheme and the solution process in the previous section. An / 2 3Al Al O  functionally graded FGP plate 
consisting of aluminum (as metal) and alumina (as ceramic) is considered. The aluminum Young modulus and 
density is mE 70GPa=  and / 3

m 2702kg mρ = , respectively, and that of Alumina cE 380GPa=  and 

/ 3
c 3800kg mρ = . It is presumed that the Poisson ratio of the plate is stable in the thickness and equal to . .0 3  

Different frequencies of the square plate for clearly supported FGP presented in Tab.1. are used to 
test the consistency and efficacy of the above technique. Compared to the data available in the literature 
(Hosseini-Hashemi et al. [17], Matsunaga [19], Askari et al.[21], Benachour et al. [23], Belabed et al.[24] 
and Rezaei et al. [37]), the frequencies obtained from this analysis are a fine fit for FGP plates. In Tab.2., 
Rezaei et al. [37, 38] and Askari et al. [22] compared 4 fundamental frequencies of a simply supported 
rectangular FGP plate with two distinct even and uneven porosity distributions to their counterparts. A strong 
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agreement between the observations indicates the consistency of the new method. A further comparison is 
provided in Tab.3. of the simple natural frequencies of a rectangular / 2 3Al Al O  plate ( )b 2a= . The same 
finding was noted. In other terms, an excellent agreement must be observed [30] between the findings of this 
model and those of the literature. It should be remembered that the data presented in the three tables are 
derived from the FG plate for validation purposes. In the above, and after numerous comparisons of the 
findings, we may conclude that for the analysis of the plates presenting output defects to the current 
approach is accurate to study porosity. 
 
Table 1. Fundamental frequency comparison ( )β  for a simply supported FGP and ( ).a b 1= =   
 

h/a Method p 
0 1 4 

0.05 

Benachour et al. [23] 0, 0148 0, 0113 0, 0098 
Belabed et al. [24] 0, 0148 0, 0113 0, 0098 
Rezaei et al. [37] 0, 0148 0, 0113 0, 0098 
Askari et al. [21] 0, 0148 0, 0113 0, 0098 
Hosseini-Hashemi et al. [17] 0.0148 0.0113 0.0098 
Present 0, 0148 0, 0113 0, 0098 

0.1 

Benachour et al. [23] 0, 0576 0, 0441 0, 0380 
Belabed et al. [24] 0, 0578 0, 0449 0, 0389 
Rezaei et al. [37] 0, 0578 0, 0442 0, 0383 
Askari et al. [21] 0, 0577 0, 0442 0, 0380 
Matsunaga [19] 0.0577 0.0443 0.0381 
Hosseini-Hashemi et al. [17] 0.0577 0.0442 0.0382 
Present 0, 0577 0, 0442 0, 0381 

0.2 

Benachour et al.[23] 0, 2112 0, 1628 0, 1375 
Belabed et al.[24] 0, 2121 0, 1640 0, 1383 
Rezaei et al.[37] 0, 2127 0, 1630 0, 1405 
Askari et al.[21] 0, 2112 0, 1631 0, 1377 
Matsunaga [19] 0.2121 0.1640 0.1383 
Hosseini-Hashemi et al.[17] 0.2112 0.1631 0.1397 
Present 0, 2113 0, 1631 0, 1378 

 
The dimensionless natural frequency would decrease as the power index grows for FG plates. The 

variance curves of the natural frequency of the first mode of different dynamically graded plates perfect and 
imperfect were shown in figures, for the two porosity distributions, even and uneven as a result of the 
parameter " "p  of the material strength index, for different porosity factor values. It can be shown that the 
rise in the porosity parameter allows the normal frequency of the first mode to rise. The impact of the 
thickness ratio (a/h) on the dimensionless natural frequency parameter of perfect FG plates ( )0ξ =  and 
imperfect plates ( ).  and  .0 1 0 2ξ =  for the distribution of porosity is seen in Fig.4. It can be shown that the 
ratio ( )/a h  has a major impact on the natural frequency of the FGM plate, which consequently decreases 
with the rise in this ratio. 
 The variance of the dimensionless natural frequency as a feature of the geometric ratio (b/a) for the 
two porosity distributions (even and uneven) is studied in Fig.6. The dimensionless natural frequency is 
increased by decreasing the said ratio. In addition to the above-mentioned observation, which notes that the 
rise in the ratio (b/a) decreases the natural frequency without dimensions, it is noted that the ratio (b/a) has 
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no effect on the natural frequency variance. This parameter often has virtually no effect on natural 
frequencies for the ratio ( )/b a 3=  and for the two porosity distributions (even and uneven).  

 
Table 2. Fundamental frequency ( )β  for a simply supported square FG plate ( ) and  / . .p 1 h a 0 05= =   
 

Distribution ξ Method  Mode (m, n) 
(1, 1) (1, 2) (2, 2) (1, 3) 

(Even) 

ξ=0.1 
Rezaei et al.[37, 38] 0, 0217 0, 0538 0, 0851 0, 1057 
Askari et al.[21] 0, 0217 0, 0537 0, 0850 0, 1055 
Present 0, 0213 0, 0527 0, 0833 0, 1034 

ξ=0.2 
Rezaei et al.[37, 38] 0, 0210 0, 0520 0, 0824 0, 1024 
Askari et al.[21] 0, 0210 0, 0520 0, 0823 0, 1022 
Present 0, 0203 0, 0502 0, 0794 0, 0985 

(Uneven) 

ξ=0.1 
Rezaei et al.[37, 38] 0, 0224 0, 0553 0, 0874 0, 1085 
Askari et al.[21] 0, 0223 0, 0552 0, 0873 0, 1083 
Present 0, 0208 0, 0514 0, 0814 0, 1010 

ξ=0.2 
Rezaei et al.[37, 38] 0, 0225 0, 0555 0, 0879 0, 1091 
Askari et al.[21] 0, 0224 0, 0554 0, 0877 0, 1087 
Present 0, 0191 0, 0472 0, 0747 0, 0927 

 
Table 3. Natural frequencies ( )ω  for a rectangular plate ./ 2 3Al Al O   
 

a/h Method p=1 
ξ=0 ξ=0.1 ξ=0.2 

5 Mouaici et al.[30] 2, 64760 2, 59340 2, 51500 
Present 2, 64753 2, 54205 2, 42474 

10 Mouaici et al.[30] 2, 79370 2, 73280 2, 64520 
Present 2, 79367 2, 68017 2, 55388 

 

 
Fig.4. Dimensionless natural frequency parameter ( )ω  of FG plates according to the power index “ ”p  and 

porosity factor; Mode 1, a b=  and / .a h 10=   
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Fig.5. Influence of the thickness ratio ( )/a h  on the dimensionless natural frequency parameter of the 

perfect and imperfect FGM plate for even distribution of porosity.
 

 
 
Fig.6. Dimensionless natural frequency as a function of the geometric ratio ( )/b a  for the two 

distributions of porosity (even and uneven).
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The variance of the dimensionless natural frequency is expressed in Fig.7. as a function of the 
thickness ratio ( )/a h  for the two porosity distributions (even and uneven). For low ratio values ( )/a h  

( )i.e. for  /a h 10<  (for plates called dense), there is a great difference in the frequency. Exceeding this ratio, 
whatever the distribution, the dimensionless natural frequencies sustain a more or less steady rate. 
Furthermore, it should be remembered that the porosity of the distribution (even) provides higher values 
compared to the other (uneven). 
 

 
 
Fig.7. Variation of the dimensionless natural frequency as a function of the thickness ratio ( )/a h  for the 

two distributions of porosity (even and uneven).
 

7. Conclusions  
 

In this article, an analytical study of a square and rectangular porous functionally graded FGP plate 
was mode for free vibration examination. A summary of the most relevant observations is presented here as 
follows: 
• In this investigation, according to the thickness of the layer, the FG plate is believed to have two new 

porosity distributions, even and uneven. 
• To obtain the governing equations of motion, Hamilton 's theory is used. 
• This theory's accuracy is verified by contrasting it with other results. 
• Some examples are given out to illustrate the impact of the strength index, porosity factor, length to 

thickness ratios and geometric ratio on the natural frequency of a functionally graded FGP plate. 
• It has been shown that the present analytical formulations can reliably model (even and uneven) 

natural frequencies of FG plates with porosity as compared to other results of Rezaei et al.[37, 38] 
and Askari et al.[21] 

• It is concluded that the influence of volume fraction distributions, slenderness ratio and porosity on the 
dimensionless natural frequency is important. 

 
Nomenclature  
 
 a  − length of the plate 
 A  − top surface 
   ijA  − rigidity terms in membrane of the plate 

 s
ijA , s

ijB , s
ijD , s

ijH  − rigidity terms of the plate in shear 
 b  − width of the plate 
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   ijB  − rigidity terms of coupling the plate 
 E  − Young's modulus 
   ijD  − rigidity terms of bending the plate  
 cE   − material properties of the ceramic 
 mE   − material properties of the metal 
 ( ) f z  − warping function (transverse shear function) 

 ( ) f z′  − first derivative of the warp function with respect to z 
 h  − total thickness of the plate 
  ,  i j  − natural numbers 
 ,  ,  ,  ,  ,  1 2 3 4 5 6I I I I I I  − mass inertias  
 [ ] K  − symmetrical matrix 
 ,  m n  − mode numbers. 
   bM  − moments of pure bending 
  sM  − additional bending moment due to transverse 
  N  − normal membrane efforts 
 p   − power-law index 
   ijQ  − stiffness coefficients 
   S  − pure shearing effort 
  t  − time 
 ,  ,  u v w  − displacement in the ,   and x y z   directions, respectively 
 ,  ,  o o ou v w  − mid-plane displacements in ,   and x y z  directions  
 V  − volume fraction 
 ,  ,  xy yz zxV V V  − distortion deformation 
 w  − transverse displacement  
 bw  − bending components 
  sw  − shear components  
 ,  ,  ,  x y t z  − coordinates  
 ,  x yε ε  − deformation in the x, y direction 
 Uδ  − strain energy variation;  
  Kδ  − kinetic energy variation.  
 { }Δ  − vector of generalized displacements 
 ν  − Poisson's ratio  
 ξ   − porosity volume fraction  
 ρ  − mass density  
 ,  x yσ σ  − normal stresses 

 ,  ,  xy yz yxτ τ τ  − shear stress 
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