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In this paper, the behavior of structural concrete linear bar members was studied using numerical model 
implemented in a computer program written in MATLAB. The numerical model is based on the modified version 
of the procedure developed by Oukaili. The model is based on real stress-strain diagrams of concrete and steel 
and their secant modulus of elasticity at different loading stages. The behavior presented by normal force-axial 
strain and bending moment-curvature relationships is studied by calculating the secant sectional stiffness of the 
member. Based on secant methods, this methodology can be easily implemented using an iterative procedure to 
solve non-linear equations. A comparison between numerical and experimental data, illustrated through the strain 
profiles, stress distribution, normal force-axial strain, and moment-curvature relationships, shows that the 
numerical model has good numerical accuracy and is capable of predicting the behavior of structural concrete 
members with different partially prestressing ratios at serviceability and ultimate loading stages. 
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1. Introduction 
 

Prestressed concrete beams have been widely used in structural engineering especially in the field of 
bridge engineering due to the need for long span structures. It is worth mentioning that fully prestressed 
concrete has better mechanical properties than ordinary reinforced concrete, but it has less ductility, making 
it less alarming because of smaller deflection and cracking [1]. Partially prestressed concrete beams came as 
an intermediate solution between fully prestressed concrete and ordinary reinforced concrete, making it a 
desirable choice for concrete designs [2]. 

An analysis of prestressed concrete members can be performed based on either cross-sectional 
concept methods or by discrete methods. The finite element method, which is considered one of the powerful 
discrete methods, has been used to accurately predict the behavior of ordinary and prestressed concrete 
members [3, 4, 5]. A simpler approach can be adopted by studying the member cross-sections rather than the 
full member. Several researchers have investigated the strength of structural concrete cross-sections, 
including Oukaili [6, 7], Kawakami et al. [8, 9] and Rodríguez-Gutiérrez et al. [10]. Oukaili presented an 
terative methodology of analysis based on the secant sectional stiffness rather than the tangential sectional 
stiffness. Secant stiffness methods can be easily implemented and have more numerical stability than 
tangential stiffness methods. The secant sectional stiffness is calculated by area integration of secant 
modulus of elasticity of the materials in the cross-section. In Oukaili’s works [6, 7], the constitutive 
relationships of materials and the secant moduli of elasticity were adopted from the model suggested by 
Karpenko et al. [11], which is capable of showing full non-linear behavior of concrete in compression and 
tension and also for steel. Oukaili’s methodology has been implemented in a computer program written in 
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FORTRAN language [6] and applied after modifications to solve different structural analyzing problems 
(i.e., strength, cracking and deformability) including ordinary reinforced concrete, partially and fully 
prestressed concrete members and GFRP bar reinforced concrete beams [12, 13].  

The objective of this study is to investigate the behavior of structural concrete linear bar members, 
using the methodology presented by Oukaili [7], and taking into consideration the decreasing effect of the 
prestressing force due to the progress of the nonlinearity of this steel with the progress of the applied load. 
To achieve this goal, the computer FORTRAN program which was written by Oukaili [6] should be 
modified and re-written in MATLAB. The modified program will use the same numerical model based on 
the methodology presented by Oukaili [7]. The adopted numerical model will be compared to the available 
experimental data mentioned in Oukaili [6]. 
 
2. Numerical model 
 

The numerical model consists of two parts: the stress-strain model and the force vector-strain vector 
model. Karpenko model [11] was used to simulate the stress-strain diagrams of concrete and steel and to 
determine their secant modulus of elasticity. 

The force vector-strain vector model finds the relationship between the section forces vector (i.e., 
axial force and biaxial moments) with the strain vector (axial strain and curvature in both directions). It is 
based on the secant sectional stiffness. The methodology requires integration of the resisting forces of all the 
involved cross-sectional components based on their secant modulus of elasticity of the participating materials 
in the cross-section, and it also requires iterations to solve the non-linear equations in order to find the 
components of the strain vector. 
 
2.1. Stress-strain model 
 

The model of Karpenko et al. [11] for concrete and steel is adopted in this study. The model takes 
the following form 
 
  m m m mE v    (2.1) 

 
in which ( m mE v ) represents the secant modulus of elasticity at the nonlinear portion of the stress-strain 

curve, while  mv  equals (1) in the linear portion and less than (1) in the nonlinear portion of the stress-

strain curve. Karpenko derived the following expression for  mv  in the nonlinear portion 
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where: m  ‒ the subscript assigns the type of material; ˆ m  ‒ the ultimate strength of material; ˆm  ‒ the 

material strain corresponding to  ̂ m ; mE  ‒ the initial modulus of elasticity; ˆmv  ‒ the value of mv  which 
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corresponds to the stress ˆ m ; m  ‒ the material strain level; ,m el  ‒ the maximum elastic stress of the 

material; ,1m 2me e  ‒ the actors depend on material type; ov  ‒ the factor depending on the stress level. 

The value ( mv ) is calculated by finding the two roots of Eq.(2.2) and choosing the highest value of 

them. The factors ,1m 2me e  and ov  are explained in detail in Karpenko. 
 
2.2. Force vector-strain vector model 
 

The force vector-strain vector model, which was rewritten in MATLAB, was used to analyze 
structural concrete linear bar members. This method is based on the secant sectional stiffness. It is a modified 
version of the methodology presented by Oukaili [7]. The main difference involves that the modified version 
takes into account the reduction of prestressing force due to the nonlinearity of the behavior of this steel 
beyond the proportionality limit. This method requires the iterative process to solve non-linear equations. It 
is based on the following assumptions: 

1) Strain distribution across the section is proportional to the distance from the global reference axes in 
accordance with Bernoulli-Navier’s hypothesis “cross section shall remain plane after bending”. 

2) Shear and torsion stresses are ignored.  
3) The analytical constitutive relationships of steel and concrete are considered to follow Karpenko 

model, where all stresses in concrete and steel are related to the secant modulus of elasticity.  
4) A perfect bond exists between the concrete and the internal reinforcement, where the strain of the 

nonprestressed steel and the strain increment of the bonded prestressed steel due to the applied load 
are compatible with the strain of the concrete fiber which exists at their centers of gravity.  

5) The concrete region is divided into a group of small bar elements having cross-sectional sizes related 
to the required accuracy conditions. Meanwhile, the steel bars, wires, or strands act as a system of 
linear elements exposed to axial compression or tension. 
Using Karpenko model and applying equilibrium conditions to the member cross-section, the 

following equations can be written 
 

  
pr

ci c ci ci sj s sj sj
i 1 j 1

N E v A E v A
 

     , (2.4) 

 

  
pr

x ci c ci ci ci sj s sj sj sj
i 1 j 1

M E v A y E v A y
 

     , (2.5) 

 

  
pr

y ci c ci ci ci sj s sj sj sj
i 1 j 1

M E v A x E v A x
 

      (2.6) 

 
where: , ,x yN M M  ‒ the axial force, the moment around x - axis and moment around the y - axis, 

respectively; ,i j  ‒ subscripts assign concrete and steel elements; , ci sj   ‒ the strain of concrete and steel 

elements, respectively; ,c sE E  ‒ the modulus of elasticity of concrete and steel, respectively; ,ci sjv v  ‒ the 

secant modulus of elasticity factors of concrete and steel which are functions of ci ,  sj  per Karpenko 

model; ,ci cix y  ‒ the distance from the area center gravity of the concrete bar element to the arbitrary 

(reference) global axes, respectively; ,sj sjx y  ‒ the distance from the center of the steel bar element to the 

arbitrary global axes, respectively; , ci sjA A  ‒ the cross-sectional area of the concrete bar element and the 
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steel bar element, respectively; , r p  ‒ the number of concrete bar elements and steel bar elements in the 

general cross-section, respectively. 
The strain values depend on the strain vectors as shown in the following equation 

 
  ci o x ci y ciK y K x     , (2.7) 

 
  sj o x sj y sjK y K x      (2.8) 

 
where: o  ‒ the axial strain; xK  ‒ the curvature of the member longitudinal axis in the OYZ plane; yK  ‒ 

the curvature of the member longitudinal axis in the OYX plane. 
Substitute Eq.(2.7) and Eq.(2.8) in Eq.(2.4), Eq.(2.5), and Eq.(2.6) to get 

 

     
pr

o x ci y ci c c ci o x sj y sj s s sj
i 1 j 1

N K y K x E v A K y K x E v A
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pr

y o x ci y ci c c ci ci o x sj y sj s s si sj
i 1 i 1

M K y K x E v A x K y K x E v A x
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Decompose the above equations and arrange them in a matrix form between forces vector F , strain 

vector   and secant stiffness matrix  C  can be expressed as follows 

 
   *F C  . (2.12) 

 
This expression is detailed as follows 
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where the elements of the secant stiffness matrix are shown below 
 

  
pr

11 c ci ci s sj sj
i 1 j 1

C E v A E v A
 

   , (2.14) 

 

  
pr

12 21 c ci ci ci s sj sj sj
i 1 j 1

C C E v A y E v A y
 

    , (2.15) 
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    , (2.16) 



Analysis of structural concrete bar members ...  5 

  
pr

2 2
22 c ci ci ci s sj sj sj

i 1 j 1

C E v A y E v A y
 

   , (2.17) 

 

  
pr

2 2
33 c ci ci ci s sj sj sj

i 1 j 1

C E v A x E v A x
 

   , (2.18)  

 

  
pr

23 32 c ci ci ci ci s sj sj sj sj
i 1 j 1

C C E v A x y E v A x y
 

    . (2.19) 

 

For prestressed concrete sections, an additional term psj  should be added to Eq.(2.8) to include the 

initial strain of prestressed steel strands as shown below 
 

  sj o x sj y sj psjK y K x       . (2.20) 

 
Substitute Eq.(2.20) in Eq.(2.4), Eq.(2.5), and Eq.(2.6) to get 
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pr

o x ci y ci c c ci o x sj y sj psj s s sj
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N K y K x E v A K y K x E v A
 
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     
pr

y o x ci y ci c c ci ci o x sj y sj psj s s sj sj
i 1 j 1

M K y K x E v A x K y K x E v A x
 
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After decomposing and rearranging, we get terms independent of the strain vector. Equation (2.12) 
shall be modified into 
 

   * psF C F    (2.24) 

where 
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ps

p

y s sj psj sj sj
j 1

M E v A x


  . (2.28) 

 

Since psF  components depend on sjv  values, the value remains constant at the linear range and then 

starts to decrease when the steel strand enters the inelastic range. This term takes into account the decreasing 
effect of the axial force and moment of prestressing tendons due to the progress of the nonlinearity of this 
steel with the progress of the applied load. Figure 1 shows the change of psN  of a single strand with its 

strain. 

The matrix  C  and vector psF  are functions of the strain vector. Accordingly, Eq.(2.24) can be 

rewritten in the following form 
 

       *      
1

psC F F


     . (2.29) 

 

Equation (2.29) is a non-linear expression which requires an iterative solution. In the first iteration, 
the strain vector is assumed equal to the initial value which is usually zero. So, the stiffness matrix can be 
calculated easily. Equation (2.30) is used then to evaluate the strain vector resulted from the first iteration. 
For further iterations, the stiffness matrix will be updated according to the strain vector calculated from the 
previous iteration as shown below 
 

        *     
1

psk k 1 k 1
C F F



       (2.30) 

 

where subscript ( k ) represents iteration number. 
 

 
 

Fig.1. Variation of psN  with strain for a single strand. 
 

The procedure is repeated until the convergence of the strain vector satisfies the following condition 
 

  
k k 1      (2.31) 

 

where (  ) represents the convergence limit for the strain vector which is usually a very small value. The 
flow chart of the iterative procedure is shown in Fig.2. 
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Since it is based on secant methods, this procedure can be easily implemented and can give good 
numerical accuracy and stability. 
 
3. Verification of the numerical model 
 

Four simply supported partially prestressed concrete beams were tested by Oukaili [9]. These beams 
were subjected to four-point bending up to failure using two concentrated loads at the middle third of the 
span. All beams are with rectangular cross-section with 3000 mm clear span. Two types of reinforcement 
were implemented: nonprestressed and prestressed steel. Two beams have identical reinforcement as shown 
in Fig.3. Beams 3 and 4 have similar top reinforcement to Beam 1 and 2 but higher bottom reinforcement, 
higher prestressing forces and higher partially prestressing ratio. Strains were measured by installing strain 
gauges at midspan section across the depth. In order to ensure accuracy, three strain gauges were installed at 
the same level and the average of the three readings was considered. The failure midspan moments where 
120 kN.m, 120 kN.m, 140 kN.m and 145 kN.m for Beams 1, 2, 3 and 4, respectively. 
 

 
 

Fig.2. Flow chart of the iterative procedure. 
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a) Beam 1 

 
b) Beam 2 

 
c) Beam 3 

 
d) Beam 4 

 

Fig.3. Beam dimensions (mm) and reinforcement details of the specimens. 
 

All materials which were used in the fabrication of the experimental beams were tested to determine 
their physical-mechanical properties. Table 1 shows the ultimate tensile strength, yield strength, modulus of 
elasticity and ultimate tensile strain of steel bars and strands. Also, Tab.2 shows the ultimate compressive 
strength, modulus of rupture, modulus of elasticity and ultimate compressive strain. 
 

Table 1. Mechanical properties of steel bars and strands. 
 

Steel Type 
Ultimate Tensile 
Strength, (MPa) 

Yield Strength, 
(MPa) 

Modulus of 
Elasticity, (GPa) 

Ultimate 
Tensile Strain 

10  Bars 620 420 200 0.2 

Strands ( .  2
sA 0 96 cm ) 1846.55 1437.85 165.35 0.06 

Strands ( .  2
sA 1 40 cm ) 1645 1293 178.65 0.0356 

14  Bars 1199 998 191.40 0.0720 
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Table 2. Concrete mechanical properties. 
 

Concrete Type 
Ultimate 

Compressive 
Strength, (MPa) 

Modulus of 
Rupture, 

(MPa) 

Modulus of 
Elasticity, 

(GPa) 

Ultimate 
Compressive 

Strain 
C50 (Beams 1 and 2) 50.6 4.22 32.9 0.003 
C51 (Beams 3 and 4) 51.9 4.33 35.75 0.003 

 
4. Comparison between numerical model and experimental data 
 

Numerical stress-strain diagrams of steel and concrete were generated using Karpenko model based 
on the materials parameters in Tabs 1 and 2. Figure 4 shows the stress-strain curves of both materials. As 
shown, the model is capable of showing compressive hardening and softening, tension softening in concrete, 
hardening in steel and yield plateau in steel bars. 
 

 
Fig.4.a. Stress-strain diagrams of concrete, steel bars and steel strands per Karpenko model: Stress-

strain diagram of C50 concrete. 

 
Fig.4.b. Stress-strain diagrams of concrete, steel bars and steel strands per Karpenko model: Stress-

strain diagram of 10  bar. 
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Fig.4.c Stress-strain diagrams of concrete, steel bars and steel strands per Karpenko model: Stress-

strain diagram of steel strand with .  2
sA 0 96 cm . 

 
The beams cross-sections in Fig.3 were modeled using the method explained in Section 2.2. The 

beams models were subjected to different values of uniaxial bending moment at major direction ( xM ) and 

compared to the corresponding experimental data. In Fig.5 and Fig.6, strain profiles are shown at two levels 
of loadings: xM 30 kNm (elastic range) and xM 90 kNm (inelastic range). 

In Fig.5, the strain profiles are shown for the beams subjected to xM 30 kNm. The dots represent 

experimental strain values at this loading stage subtracted from the initial strain value and will be called 
“strain increment”. Solid lines represent first order regression of the strain increment values. The slope of 
this line with respect to the vertical line represents the curvature increment, which is the value of curvature at 
this loading stage subtracted from the initial curvature value and will be denoted as 

 
 

ExpxK . The strain profile 

predicted by the model is shown by the dashed lines in the figure. The values of curvature predicted from the 
numerical model are also subtracted from the initial curvature of the model and denoted as 

NumxK . The 

values of 
 ExpxK  and  

NumxK  of the beams are shown in the figure. The values of experimental data and 

numerical results were compared and the discrepancy between 
 

 
ExpxK  and  

NumxK  values are 6.6%, 21.4%, 

2.6% and 20.7% for beams 1, 2, 3 and 4, respectively. The average discrepancy for beam 1 and 2 is 14 % and 
for beams 3 and 4 is 10.7%. The average value of the four beams is 12.4%. 

Figure 6 shows strain profiles for both experimental and numerical results at xM 90  kNm. For 

experimental results, the strain gauges located at a crack position at tension zone were excluded from the 
comparison due to inaccuracy. For this loading stage, the discrepancy between 

 ExpxK  and 
NumxK  are 13.8%, 

25.5%, 11% and 1.7% for beams 1, 2, 3 and 4, respectively. The average discrepancy for beams 1 and 2 is 
19.7% and for beams 3 and 4 is 6.4%. The average value of the four beams is 13.1%. 

Figure 7 shows the moment-curvature relationship for the numerical model and experimental data 
subjected to incremental loading. As beams 1 and 2 have lower reinforcement and lower partially 
prestressing ratios than beams 3 and 4, the figures show that their moment-curvature behavior is governed by 
strand yielding (tension controlled). It shows also that they have higher curvature values than beams 3 and 4. 

It can be seen from the figures that the proposed model seems to have a higher stiffness than the 
experimental model. This slight difference can be attributed to different reasons. This first reason could be 
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related to concrete cracking induced by the drying shrinkage in the experimental model which contributes to 
the reduction in the stiffness of the tested beams. The assumption of perfect bond between the concrete and 
the reinforcing steel and the absence of prestress losses and slip in the numerical model make it stiffer than 
the experimental model. Creep could be another factor that explains the discrepancy between the behavior of 
the tested beams and the numerical model [14-20]. 

 

 
 

Fig.5.a. Strain profiles at xM 30 kNm (elastic range): Beam 1 
 

.  ,  .
Exp Numx x

1 1
K 0 0017 K 0 00182

m m
   
 

. 

 

 
 

Fig.5.b. Strain profiles at xM 30 kNm (elastic range): Beam 2 
 

.  ,  .
Exp Numx x

1 1
K 0 00228 K 0 00179

m m
   
 

. 

 

 
 

Fig.5.c Strain profiles at xM 30 kNm (elastic range): Beam 3 
 

.  ,  .
Exp Numx x

1 1
K 0 0018 K 0 00181

m m
   
 
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Fig.5.d. Strain profiles at xM 30 kNm (elastic range): Beam 4 
 

.  ,  .
Exp Numx x

1 1
K 0 00145 K 0 00175

m m
   
 

. 

 

 
 

Fig.6.a. Strain profiles at xM 90 kNm (inelastic range): Beam 1
 

.  ,  .
Exp Numx x

1 1
K 0 029 K 0 0250

m m
   
 

. 

 

 
 

Fig.6.b Strain profiles at xM 90 kNm (inelastic range): Beam 2
 

.  ,  .
Exp Numx x

1 1
K 0 033 K 0 0246

m m
   
 

. 
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Fig.6.c. Strain profiles at xM 90 kNm (inelastic range): Beam 3 
 

.  ,  .
Exp Numx x

1 1
K 0 0136 K 0 0121

m m
   
 

. 

 

 
 

Fig.6.d. Strain profiles at xM 90 kNm (inelastic range): Beam 4 
 

.  ,  .
Exp Numx x

1 1
K 0 0119 K 0 0117

m m
   
 

. 

 

 
 

Fig.7.a. Moment-curvature diagrams: Beam 1. 
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Fig.7.b. Moment-curvature diagrams: Beam 2.

 
 

Fig.7.c. Moment-curvature diagrams: Beam 3.

 
 

Fig.7.d. Moment-curvature diagrams: Beam 4.
 
 

5. Conclusion 
 

In the current study, the behavior of partially prestressed concrete beams was studied using a 
computer program written in MATLAB. The model is based on real stress-strain diagrams of concrete and 
steel and their secant modulus of elasticity. The beam sections behavior presented by force vector-strain 
vector relationship is studied by calculating the secant sectional stiffness of the beams. The model requires 
an iterative procedure to solve non-linear equations. The numerical model is based on a modified version of 
the methodology presented by Oukaili [7]. The numerical model is compared with experimental data of 
loading four partially prestressed beams subjected to flexure. It was shown that the numerical model was 
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capable of predicting the performance of the prestressed concrete beams at different loading stages. 
Meanwhile, the model can deal with structural beams with different values of reinforcement and partially 
prestressing ratios.  

 
Nomenclature  
 

 m   ‒ material strain level 

 mE   ‒ initial modulus of elasticity 

 mv   ‒ secant modulus of elasticity factor 

 m   ‒ material stress level 

 m   ‒ subscript assigns the type of material 

 ˆ m   ‒ ultimate strength of material 

 ˆm   ‒ material strain corresponding to ˆ m  

 ˆmv   ‒ value of mv  which corresponds to the stress ˆ m  

 ,1m 2me e   ‒ factors depending on material type 

 ov   ‒ factor depending on the stress level 

 
, ,x yN M M

 
 ‒ axial force, the moment around the x-axis and moment around the y-axis, respectively 

 ,i j   ‒ subscripts assign concrete and steel elements, respectively 

 
, ci sj 

 
 ‒ strain of concrete and steel elements, respectively 

 ,c sE E   ‒ modulus of elasticity of concrete and steel, respectively 

 
,ci sjv v

 
 ‒ secant modulus of elasticity factors of concrete and steel, respectively 

 ,ci cix y   ‒ distance from the area center gravity of the concrete bar element to the arbitrary (reference) global 

axes, respectively 

 
,sj sjx y

 
 ‒ distance from the center of the steel bar element to the arbitrary global axes, respectively 

 
, ci sjA A

 
 ‒ cross-sectional area of the concrete bar element and the steel bar element, respectively 

 , r p   ‒ number of concrete bar elements and steel bar elements in the general cross-section, respectively 

 o   ‒ axial strain 

 xK   ‒ curvature of the member longitudinal axis in the OYZ plane 

 yK
 

 ‒ curvature of the member longitudinal axis in the OYX plane 

 
F

 
 ‒ forces vector 

 


  
‒ strain vector 

  C
 

 ‒ secant stiffness matrix 

 psj
  

‒ prestrain of the steel element 

 
psF

  
‒ prestressed forces vector 

, ,
ps psps x yN M M

  
‒ prestressed axial force, the moment around thex-axis and moment around the y-axis, respectively 

 k   ‒ subscript represents iteration number 

    ‒ convergence limit for the strain vector 

  ExpxK
  

‒ experimental value of curvature at loading stage subtracted from the initial curvature value  

 NumxK
  

‒ numerical value of curvature at loading stage subtracted from the initial curvature value  
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