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Finite element and response surface methods were utilized to investigate the stress concentration factor 
induced in isotropic rectangular plates with two identical countersunk rivet holes due to uniaxial tension. In this 
investigation, the finite element model was constructed using ANSYS software and used to produce stress 
concentration factor (SCF) data. Additionally, the response surface method (RSM) was implemented to 
characterize the influence of the problem geometric parameters on the SCF. Besides, RSM combined with least 
squares regression methods were employed to formulate a simple and effective equation to mathematically 
compute the stress concentration factor tK  value. This equation was consequently verified with finite element 
analysis (FEA) results. Lastly, an optimum plate and holes configuration that minimizes the SCF was suggested 
and hence recommended. 
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1. Introduction 
 
 Riveting is a common and widely used method of joining mechanical and structural components. 
Countersunk holes are common footprint resulting from rivet joints. The presence of such geometric 
irregularities acts as stress risers throughout the thickness of the joined structure, i.e. elastic plates, which 
further complicates the stress distributions resulting in stress concentration regions. Stress concentrations are 
often described using the measures of stress concentration factors (SCF). The stress concentration factor 

tK  is mathematically defined as the ratio between the maximum stress max  and the average or nominal 
stress value nom , as 
 

 max
t

nom
K . (1.1) 

 

 In real-life engineering applications, rivets are generally drilled in multiple and in non-similar 
configurations which further adds to the complexity of the stress concentration analysis in the neighborhood 
of the countersunk holes. In literature data, stress concentration factors have been widely studied and 
numerous data on the SCF induced in different stress risers under various loading conditions are available [1, 
2]. A common and simple stress riser problem is the centrally-drilled circular hole in plates subjected to 
uniaxial loading. For this problem, Shivakumar et al. [3, 4] used the finite element analysis (FEA) to 
investigate the SCF in central circular holes in thick and thin plates with uniaxial tension. The results showed 
that the region of stress concentration is located near the hole edge normal to the loading direction for both 
thin and thick plate systems. Several experimental, numerical and analytical investigations are reported in 
literature for the area of the SCF in circular holes under different loading environments [5-9]. 
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 For the investigation of the SCF in countersunk holes, Whaley [10] and Cheng [11] performed 
experimental analysis to study the stress distributions at the top and bottom as well as in the interior of the 
countersunk holes showing that the local maximum stress occurs at the sinking edge of the hole. Bhargava et 
al. [12] and Shivakumar et al. [13, 14] performed thorough three-dimensional FEA studies on the SCF in 
uniaxially loaded isotropic and orthotropic plates with central countersunk holes. Their simulation results 
showed that the stress concentration is commonly located at the sinking edge of the hole and they further 
used the numerical data to formulate an empirical formulas to mathematically compute tK  in countersunk 
holes based on the geometry of the hole. Later, Gharaibeh et al. [15] and Darwish et al. [16, 17] provided 
improved formulas for the SCF in countersunk holes in isotropic and orthotropic plates subjected to uniaxial 
tensile loadings. Hayajneh et al. [18] and Bhargava et al. [19] investigated the strain concentration factor 
(SeCF) in countersunk holes under uniaxial tension. Both showed that the SeCF, similar to the SCF, occurs 
at the sinking edge of the hole. Additionally, they found that the SeCF is mathematically related to the SCF. 
Also, Bhargava et al. [19] provided an empirical formula to compute SeCF in countersunk holes in an 
isotropic plate subjected to remote uniaxial tensile loading. For the plate with double countersunk holes, 
Darwish et al. [20] employed FEA simulations to produce a parametric study on the effect of the plate and 
the holes geometries on the SCF in uniaxially-loaded plate with two identical countersunk holes. 
 The present paper aims to utilize the finite element method (FEM) and response surface methods (RSM) 
to study and investigate the stress concentration factor induced in a plate with two identical countersunk holes 
subjected to uniaxial tension that is perpendicular to the holes line. In this investigation, a simple and precise 
second order equation to calculate tK  in the double-holes configuration is formulated and validated accordingly. 
Finally, an optimal geometric design of the holes and the plate is recommended and hence verified. 
 
2. Configuration and material 
 
The geometric details of a plate with two identical countersunk holes are presented in Fig.1. This figure 
defines the geometric parameters of the present problem as: the plate length (2L), width (2w) and thickness 
(t). Note that the plate consists of two parts: the straight shank thickness (b) and the sinking depth sC , such 
that st b C . Also, the straight shank radius is (r) and the countersink angle is c  and the separating 
distance between the centers of the holes is h2w . 
 

 
 

Fig.1. Configuration of the double countersunk hole. 
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 In the current analysis, homogenous isotropic and linear elastic properties of the plate system with a 
modulus of elasticity of ( )E 70GPa  and Poisson’s ratio of ( . )0 3  were considered. For such material 
system, the stress and strain concentration values are independent of E [21].  
 Utilizing finite element (FE) and response surface methods, a comprehensive analysis is performed 
to investigate the tK  values in the double countersunk holes at different countersink angles ( c ), thickness 
to radius ratio ( /t r ), countersink depth to plate thickness ratio ( /sC t ) and radius to width ratio ( /r w ) as 
well as normalized separating distance ( /hw w ). To exclude the influence of the plate length on tK , the 
plate length to the radius ratio is kept constant at ( /L r 15 ) throughout the analysis. Using the FEA data 
and using nonlinear regression, an empirical formula for tK  is developed and hence validated.  
 
3. Finite element modeling 
 
 ANSYS Mechanical version 19.0 was used to build the finite element model, define geometric and 
material parameters and to apply loading and boundary conditions of the present problem and to execute the 
analysis. Per the symmetry of the problem, only one symmetric half model was considered. In this half 
model, symmetric boundary conditions were specified by setting the displacement in the y - direction to zero 

yu 0  on the y=0 plane of symmetry. Additionally, two nodes located at ,x w y l  and z=0 were 

restrained in the z - direction zu 0  to prevent the out-of-plane motion. For load application, a unity 
remote stress o 1  was imposed on y=l surface, as depicted in Fig.2. 
 

 
 

Fig.2. Loading and boundary conditions applied on the symmetric half model. 
 
 For the FEA mesh design, only three dimensional hexahedron elements, defined as SOLID185 in 
ANSYS, were adopted to generate the mapped FEA mesh. Additionally, care was taken to have a finer mesh 
near the hole and a relatively coarser mesh elsewhere, as shown in the figure. This was done to ensure best 
stress solution accuracy at the area of interest with minimum FE model solution time. Furthermore, the finite 
element mesh adequacy was tested in order to ensure best strain results accuracy with minimum solution 
time. This model contained 95,400 elements and 105,222 nodes. 
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Fig.3. The final FEA mesh configuration. 
 
4. Stress concentration factor analysis using RSM 
 
 The response surface methodology (RSM) is often defined as an aggregation of mathematical and 
statistical expressions that are helpful for the analysis of engineering problems in which a particular response 
(output) of interest is generally a function of several independent variables (inputs) and the main goal is 
optimize, i.e. maximize or minimize, this particular response. Generally, the RSM is used to fit a second 
order response surface. Additionally, the RSM characterizes the main and the interaction effects of the 
independent input variables on the output response based on a minimum number of experimental and/or 
numerical runs. Here, the RSM was utilized to investigate and optimize, i.e. minimize, the stress 
concentration factor in a plate with two identical countersunk holes under uniaxial tension. 
 In the present analysis, MINITAB Release 19.1 was used to implement the RSM design and to 
execute the optimization process. As summarized in Table 1, five independent variables, including the radius 
to width (r/w) ratio, thickness to radius (t/r) ratio, countersinking depth to thickness ( /sC t ) ratio, 
countersink angle c and normalized separating distance ( ) were spread over three consecutive levels: 
low level (-1), middle level (0) and high level (+1). A central composite design (CCD) with half-factorial 
design / n1 2 2 , axial points (2n) and central points, where n is the number of independent input variables 

(n=5), was conducted. In this CCD analysis, 32 FEA runs were necessary per the general equation 
/ n1 2 2 2n 6 32  in which the FEA runs were improved by 6 replicate runs at the central design 

point, as recommended by MINITAB. In order to obtain and fit a second order surface equation of ( tK ), the 
following expression was considered 
 

n n
2

t o i i ij i j ii ii
i ji 1 i 1

K a a X a X X a X e  (4.1) 

 

where iX  and jX are the independent variables; oa  is the constant coefficient; ia , iia  and ija  are the 
interaction coefficients of the linear, quadratic and second order terms, respectively; and e is the random 
relative error.  
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Table 1. The CCD of the five independent variables. 
 

Independent Variables 
RSM Levels 

Low level (-1) Middle level (0) High level (+1) 
Radius to width ratio /r w  0.1 0.2 0.3 

Thickness to radius ratio /t r  1 2 3 
Countersink depth to thickness 

ration ( /sC t ) 0.1 0.3 0.5 

Countersink angle ( c ) 80° 100° 120° 
Normalized separating distance ( ) 0.25 0.5 0.75 

 

5. Results and discussions 
 

5.1. Central composite design 
 

As mentioned earlier, the main objective of this investigation was to analyze and optimize the SCF in double 
countersunk holes configuration. The minimization of the SCF is generally favorable for safe structural 
designs. The simulation results of the 32 CCD runs performed in this analysis are listed in  
Appendix 1. As shown in this appendix, the highest value ( .tK 6 013 ) is achieved in run #32 were (

/ .r w 0 3 , /t r 3 , / .sC t 0 5 , c 120  and .0 75 ). Hence, these geometric parameters of the double 
countersunk holes problem are highly not recommended.  
 

5.2. Regression and residuals analysis 
 

 In this work, the first proposed form of the ( tK ) equation included all the previously described 
independent variables, as 
 

  ( )

2 2
s

t 0 1 2 3 4 c 5 11 22

2
2 2s s

33 44 c 55 12 13 14 c

s
15 23 24

r t C r tK a a a a a a a a
w r t w r

C r t r C ra a a a a a
t w r w t w
r t C ta a a
w r t r

,s s
c 25 34 c 35 45 c

t C Ca a a a
r t t

(5.1) 

 

which included 21 equation terms. However, to reduce model complexity without affecting model accuracy, 
model reduction was necessary and achieved by eliminating the insignificant terms. Thus, the final form of 

tK  equation is given by 
 

  
. . . . .

. . . . . . .

s
t c

2 s s
c c c

r t CK 6 634 6 88 0 164 3 68 0 029
w r t

r C r C5 33 3 07 11 21 0 07 0 041 0 018
w t w t

 (5.2) 

 

It is important to mention here that the above equation has only 11 terms with achieving a coefficient of 
determination value of . %2R 95 83  which strongly indicates high accuracy of the reduced model of 
Eq.(5.2). A comparison between Eq.(5.2) calculations and FEA data is included in Appendix 1. From this 

comparison, it can be concluded that, based on the 
. 

% * %
FEA Eq 4

Error 100
FEA

 values, the fitted 

formula of Eq.(5.2) can accurately predict the tK  value. Additionally, in order to have a valid RSM model, it 
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is required for the residuals (errors between FEA and predicted results) to be normally distributed, 
uncorrelated to each other and have a constant variance. To prove this, Fig.4 shows the graphs for the 
residuals of Eq.(5.2). Residual graphs prove that the residuals are normally distributed (Fig.4a), uncorrelated 
to each other (Fig.4b) and have constant variance (Fig.4c). This means that the assumptions of the least 
squares method that was used to fit Eq.(5.2) are fully satisfied. 
 

 
 

 
 

 
 

Fig.4. Residuals plots for tK  response. 
 

(a) 

(b) 

(c) 
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5.3. Main effects of the geometric parameters 
 
 
Fig.5 depicts the effect of ( /r w , /t r , /sC t , c  and ) geometric factors on the tK  value. It can be seen 
from this figure that the tK  response increases as /r w , /t r , /sC t  and c  increase. Additionally, the 
effects of /r w  and /sC t  are much more significant than the other factors as appears from the higher slopes 
in the /r w  and /sC t  subplots. For the effect of the normalized separating distance ( ), it appears that at 
small values .0 25  the value of tK  is the highest while for .0 5  the value of tK  is the lowest. 
However, for .0 75  the tK  value is slightly higher than that of .0 5  but much lower than that of 

.0 25 . 
 

 
 

Fig.5. Main effects of the nondimensional geometric parameters on the tK  value. 
 
At this stage of the RSM analysis, it is very convenient to obtain the non-dimensional geometric parameters 
of the plate and the double countersunk holes configuration that optimize (minimize) the SCF value. This is 
mathematically achieved by deriving Eq.(5.2) with respect to each independent variable and by equating the 
resultant equations to zero. Thus, five equations are achieved. By solving these equations simultaneously the 
optimal design is reached as ( / . , / , _ / .r w 0 1 t r 1 C s t 0 1 , c 80  and .0 5 ) and the resultant 
minimum SCF value is .tK 3 352 . The tK  results of this optimal configuration are compared to FEA 
findings as listed in Table 2. This comparison shows that the optimal results of FEA and Eq.(5.2) both are 
within the specified confidence interval ( %CI 95 ) bounds, which additionally confirms the adequacy of 
Eq.(5.2) prediction model. The stress contour plot from FEA simulations of this optimal system is presented 
in  
Fig.6. This plot shows that the nominal stress value in the plate is  nom 1Pa  and the maximus stress, 
located at the sinking edge of the hole, is .  max 3 202Pa . Using Eq.(1), it can be easily calculated that 

.tK 3 202 . 
 
Table 2. tK  Optimization results. 
 

 RSM Model Results FEA Predictions 95% CI low 95% CI high 
tK  3.352 2.95025 3.45328 3.202 
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Fig.6. FEA results for stress concentration value of the optimal design. 
 
 In the summary of this discussion, the RSM results and data presented in this paper are reasonably 
accurate and able to predict precisely the stress concentration factor value in a uniaxially loaded isotropic 
rectangular plate with double countersunk rivet holes. 
 
Conclusions 
 
 This present paper introduced a study on the stress concentration factor induced in a plate with two 
identical countersunk holes under uniaxial tension using finite element and response surface methods. An 
extensive analysis on the influence of the five nondimensional geometric parameters ( /r w , /t r , /sC t , c  
and ) on the stress concentration factor value was conducted. By using the means of response surface and 
ordinary least squares methods, an efficient and precise second order equation of tK  was achieved and 
hence validated with finite element analysis data. The findings presented in this paper recommend the design 
of thin plates with two well-separated countersunk holes having small countersink angles and depth as well 
as small radii to minimize the stress concentration induced due uniaxial tensile loading conditions. 
 
Nomenclature 
 
 b  − straight shank thickness 

 sC  − countersink depth 

 , E  − modulus of elasticity and Poisson’s ratio 
 FEA − finite element analysis 

 tK  − stress concentration factor 
 L  − plate half-length 
 r  − straight shank radius 
 RSM − response surface methodology 
 SCF − stress concentration factor 
 SeCF − strain concentration factor 
 t  − plate thickness 
 w  − plate half-width 

 hw  − half the separating distance between the centers of the countersunk holes 

 , ,x y z  − Cartesian coordinate system 

 c  − countersink angle 

  − normalized separating distance between the countersunk holes 

Average stress 
( 1avgσ  Pa ) 

Max stress 
 ( .3 202maxσ  Pa ) 
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Appendix 1. Central composite design results. 
 
Run 

# 
Independent Variables tK  Response 

%Error 
r/w t/r Cs/t Cθ  λ  FEA RSM Eq.(5.2) 

1 0.2 2 0.5 100 0.5 4.393 4.465 -1.65 
2 0.1 1 0.1 120 0.25 3.352 3.143 6.23 
3 0.2 3 0.3 100 0.5 4.074 4.097 -0.57 
4 0.1 2 0.3 100 0.5 3.753 3.576 4.71 
5 0.2 2 0.3 100 0.5 3.89 3.933 -1.11 
6 0.3 1 0.1 120 0.75 3.667 3.655 0.33 
7 0.1 3 0.5 120 0.25 4.287 4.416 -3.01 
8 0.3 3 0.1 80 0.75 3.725 3.576 3.99 
9 0.2 2 0.3 100 0.75 3.925 4.015 -2.31 

10 0.3 2 0.3 100 0.5 4.298 4.289 0.19 
11 0.2 2 0.3 100 0.5 3.89 3.933 -1.11 
12 0.1 1 0.5 120 0.75 4.015 4.050 -0.89 
1 0.2 2 0.3 100 0.5 3.89 3.933 -1.11 

14 0.2 2 0.3 100 0.5 3.89 3.933 -1.11 
15 0.1 1 0.5 80 0.25 3.881 3.955 -1.92 
16 0.1 3 0.5 80 0.75 4.057 3.883 4.28 
17 0.2 2 0.1 100 0.5 3.366 3.401 -1.03 
18 0.2 2 0.3 100 0.5 3.89 3.933 -1.11 
19 0.3 1 0.5 120 0.25 5.483 5.532 -0.90 
20 0.3 3 0.5 80 0.25 5.226 5.162 1.21 
21 0.2 2 0.3 80 0.5 3.744 3.798 -1.45 
22 0.2 2 0.3 100 0.5 3.89 3.933 -1.11 
23 0.1 3 0.1 80 0.25 3.914 3.995 -2.08 
24 0.2 2 0.3 100 0.25 4.458 4.234 5.02 
25 0.3 1 0.1 80 0.25 3.632 3.648 -0.46 
26 0.3 1 0.5 80 0.75 4.249 4.433 -4.33 
27 0.2 2 0.3 120 0.5 4.021 4.067 -1.16 
28 0.3 3 0.1 120 0.25 3.876 4.020 -3.72 
29 0.1 3 0.1 120 0.75 3.314 3.435 -3.66 
30 0.2 1 0.3 100 0.5 4.074 3.768 7.49 
31 0.1 1 0.1 80 0.75 3.175 3.265 -2.86 
32 0.3 3 0.5 120 0.75 6.013 5.824 3.14 
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