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The present paper deals with a weakly nonlinear stability problem under an imposed time-periodic thermal
modulation. The temperature has two parts: a constant part and an externally imposed time-dependent part. We
focus on stationary convection using the slow time scale and quantify convective amplitude through the real
Ginzburg-Landau equation (GLE). We have used the classical fourth order Runge-Kutta method to solve the real
Ginzburg-Landau equation. The effect of various parameters on heat transport is discussed through GLE. It is
found that heat transport analysis is controlled by suitably adjusting the frequency and amplitude of modulation.
The applied magnetic field (effect of Ha) is to diminish the heat transfer in the system. Three different types of
modulations thermal, gravity, and magnetic field have been compared. It is concluded that thermal modulation is
more effective than gravity and magnetic modulation. The magnetic modulation stabilizes more and gravity
modulation stabilizes partially than thermal modulation.
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1. Introduction

In this paper, we study the impact of time-periodic oscillations on Rayleigh-Benard convection in the
presence of an applied magnetic field by weakly nonlinear analysis. We derive the Ginzburg-Landau
equation focusing on stationary finite amplitude convection. We study heat transfer through GLE and discuss
the impact of thermal modulation on heat transport. An excellent review of the studies related to magneto
convection is presented by Yu et al. [1], Thomson [2] and Chandrasekhar [3]. The effect of thermal
modulation on linear instability of Rayleigh Benard convection is reported by Venezian [4]. The shift in the
critical Rayleigh number has been calculated as a function of frequency modulation and wavenumber. It has
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been reported that frequency of modulation has a significant effect on instability of the layer with its proper
tuning.

Among the early studies on thermal modulation, Venezian [4] and Greshuni et al. [5] using small
amplitude approximation studied the effect of thermal modulation in a fluid layer. They showed that the
system could be stabilized by three different types of modulation with periodically varying temperature of
the plane. They also investigated unsteady equilibrium nature of a layer. Double diffusive convection under
an applied magnetic field is reported by Rudraiah et al. [6]. They showed that the magnetic field acts like
third diffusing component to suppress onset convection. In general, the effect of thermal modulation is of
three forms:

1. In-phase modulation (6=0)
2. Out of phase modulation (6=m)
3. Only lower boundary modulation (6=-/0)

where 0 is the phase angle. Most of the published studies considered only these three different types of
thermal modulation on convective flows. The effect of thermal modulation on different models related to
linear or nonlinear problems was well documented and reported by Bhadauria [7-10] and Bhadauria et al.
[11-19]. In their studies, the effect of thermal modulation was investigated on different fluid models either
for linear or nonlinear theory.

The study of gravity modulation on Rayleigh Benard convection was made by Gresho and Sani [20].
A linearized stability analysis was performed to show stability limits of the system under gravity modulation.
The effect of gravity modulation on RBC with rigid, isothermal boundaries was investigated by Clever et al.
[21]. The effect of resonance ranging from /00 to 3000 and Pr from 0.7] to 50 on thermal instability was
presented. It was concluded that both synchronous and subharmonic modes of convection are identified. The
effect of gravity modulation for oscillatory mode of convection for fluid and porous media was investigated
by Bhadauria and Kiran [22, 23]. It was concluded that oscillatory modes enhance heat transfer more than
stationary modes. A number of studies have been devoted to gravity modulation on different models, e.g., on
chaotic convection [24,25], on throughflow [26], on rotating nanofluid convection [27], rotating oscillatory
convection [28], on throughflow and double diffusive oscillatory convection [29]. The effect of gravity
modulation was extensively investigated on different fluid or porous convection.

Other models of magnetic field modulation were investigated by Aniss et al. [30, 31]. These authors
proposed theoretical and experimental investigations of RBC confined in a horizontal annular Hele—Shaw
cell and subjected to radial temperature and magnetic field modulation. With their geometrical configuration,
the possibility of magneto convection and its control by an external magnetic field gradient in the absence of
gravity was shown. Their studies are restricted to only linear models. The effect of magnetic field
modulation on a weakly nonlinear thermal instability was investigated by Bhadauria and Kiran [32] for
stationary mode convection. The comparison of thermal, gravity, and magnetic field modulation was
investigated. They concluded that magnetic modulation reduces heat transfer and stabilizes the system. The
same problem has been extended to oscillatory mode of thermal convection by Kiran and Bhadauria [33]. It
was concluded that oscillatory flows produce better heat transfer results.

In situations like radioactive decay or relative weak exothermic reactions the fluid layer
offers its own internal heat generation (IHG). Due to internal heat generation a thermal gradient is formed
between interior and exterior layers of the earth's crust with multi component liquids. Other important and
relevant applications can be seen in geophysics, reactor safety analyses, fire and combustion
studies. However, there are few studies on internal heating of the convective flow, some of them have been
published by Tveitereid et al. [34, 35], Tasaka et al. [36], Takashima [37], Bhadauria ef al. [38-40], Kiran et
al. [41, 42, 61]. No data have been reported on thermal convection in the presence of an applied magnetic
field and internal heat generation.

An unsteady flow of an incompressible fluid an infinite vertical channel in the presence of an applied
magnetic field was investigated by Rao et al. [43]. They considered viscous dissipate heat along with the free
convection currents. It is reported that variations of velocity field, temperature field and skin friction are
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influenced by the applied magnetic field. The study of heat transfer in the presence of magneto convection is
reported by Bhadauria et al. [16]. It is reported that under the effect of magnetic field modulation heat
transfer can be suppressed more than that of thermal and gravity modulation. Recently Keshri et al. [44]
studied the effect of solutal and gravity modulation on thermal instability in a fluid layer under applied
magnetic field. They concluded that the effect of the applied magnetic field is to suppress the mass transfer
irrespective of the modulation. The effect of concentration modulation on weakly nonlinear thermal
instability in a rotating porous media has been investigated by Kiran [45]. The investigation on stability
analysis of RBC under an applied magnetic field and internal heat source has not been carried out yet.

To the best of the authors' knowledge, there is no nonlinear study available in the literature in which
the effect of thermal modulation has been considered in a magnetic fluid layer with internal heating. This
motivated us to make a nonlinear stability analysis and study the combined effect of internal heating and
thermal modulation. Further, three types of different modulations, thermal, gravity and magnetic field
modulations are investigated and the results compared.

2 Governing equations

We consider two infinite horizontal and parallel planes at z = 0, z = d and between these two planes
there is an electrically conducting liquid of depth ‘d’. We have taken Cartesian coordinates with the z axis
vertically upwards and the origin at the bottom of the layer. The layer is heated and salted from below to

maintain a variable temperature across the layer.

Z—axis

z=d upper cold plate

Newtonian fluid layer

z= lower hot plate X—axis

Fig.1. Physical configuration of the problem.

. . AT . . .
The surfaces are maintained at a constant gradient — and a constant magnetic field ;K is applied

across the liquid region (as shown in Fig.1). Under the Boussinesq approximation, the dimensional
governing equations for the study of applied magneto-convection in a fluid layer are

V.q=0, 2.1)

a 1
Ay (qV)g=—V,+ gL vy _oulBly, (2.2)
ot Po Po Po
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0 1

—q+(q.V)q=—Vp-I—ig—ivzq—cuing, 2.3)
ot Po Po Po

P=P0[1_BT(T_T0)] (2.4)

where ¢ is velocity (u, v, w),u is the viscosity, Kr is the thermal diffusivity tensor, T is temperature, Bt is
the thermal expansion coefficient, 7y is the ration of heat capacity. For simplicity y is taken to be unity in this
paper, p is density, g = (0, 0, -g) is the gravitational acceleration, while p, is the reference density, p, is

the magnetic permeability, B is the strength of the applied magnetic field. The externally imposed thermal
boundaries considered in this paper are given by Venezian [4] and Kiran et al. [10, 12, 18, 41, 56, 61].

T=T, +A—2T(1+ e’ 8, cos(r)) at  z=0,
(2.5)
T=T, —AZ—T(I— &’ 8, cos(wt +0)) at z=d

where &, is the small amplitude of temperature modulation, A7 is the temperature difference across the

fluid layer, ®» is modulation frequency and 0 is the phase difference. The basic state is assumed to be
quiescent and the quantities in the state are given by

%

q, =0, p=py(z,0), T =Ty(z,t), (2.6)
0

L=-pg, 2.7)

z

%—kTaz—Tb+Q(T T, (2.8)
ot aZZ b 0/ .
Py =Poll =PBr (T, —Ty)]. (2.9)

The solution of Eq.(2.8), subjected to the boundary conditions Eq.(2.5), is given by
Ty(z, t) = T,(z) +€ 8, Re[T;(z, 1)] (2.10)

where T (z) is the study temperature field and 7, (Z, t) is the oscillating part while Re stands for the real
part. We assume finite amplitude perturbations on the basic state in the form.

q=q,+q,p=py+p, p=p,+p,T=T,+T (2.11)

where primes denote the quantities at the perturbations. Substituting Eq.(2.11) in Egs (2.1)-(2.4) and using
the basic state results, we obtain

V4 =0, (2.12)
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ai+(q'.V)q =LVp’—&gk+vV2q'+—cu§qu’ai, (2.13)
ot Po Po Oz

a ., (¢ V)T + w'%kTva' +0T, (2.14)
ot Oz

P =poBrT. (2.15)

Further, we consider only two dimensional disturbances in our study and hence the stream functionsy are

introduced as (u,w) = (Z—‘P,—(’;—Tj We eliminate density and pressure terms from Eqs (2.12)-(2.15), and
4 X
the resulting systems can be dimensionless through the following transformations:
2
(x',y’,z’) = d(x*,y*,z*), Y= kT\y*, t= Z—t*, q = %q*, T'=ATT", and ® =§—TZ o". For simplicity we drop
T
the asterisk. Then the non-dimensionalized governing system is
2
or 19 1 a(w’V \v)
VN +Ha’Vy+R,p—=——"—Viy+——m L 2.16
v Y+ far ox Pr ot v Pr a(x,z) ( )
WV o7, T o(V¥Y,T
_a_a_b_(V2+Ri)T:_a_+_( ) 2.17)
ox 0 ot ﬁ(x,z)

The non-dimensional parameters in the above equations are given in the nomenclature. Equation (2.17)

shows that the basic state solution influences the stability problem through the factor aa—b which is given by
z

T i+ 5[ 13(20)] (2.18)

where

__ R )
fl(z)—ZSin\/E(cos\/E(] z)+cos\/E(z)), (2.19)

fE=R[ f(2)e™ ], (220)

—i0 —-m
f(2)= [A(m)emz +A(—m)e_mz}, A(m) :%M m=+A’-R and A’ =—iw.

_ 2 1
Cr

We assume small variations of time and re-scale it as t =€ ¢ to study the stationary convection of
the system Eqs (2.16)-(2.17). We use the following boundary conditions to solve the above system. The
stress free and isothermal boundary conditions are given by Kiran et al. [10, 16, 22, 28], Bhadauria and
Kiran [32], Manjula et al. [47], Bhadauria et al. [22, 32]

2
_ov_,

=57 at z=0, z=1. (2.21)
4

)
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3. Finite amplitude equation and heat transport for stationary instability

We now introduce the following asymptotic expansions (Malkus and Veronis [46], Manjula et al.
[47, 58], Kiran et al. [48, 49, 57]) in the system Eqs (2.16)-(2.17)

RaT = R06‘+ 62 R2+ 64 R4 + ceey

3.1)

WZE\V]“FEZ \V2+€3 \|f3 +,
T = eTj+&’ T+ Ty +...

where Ry is the critical value of the Rayleigh number at which the onset of convection takesplace in the
absence of temperature modulation. Now we solve the system for different orders of <.

3.1. Lowest order system

The lowest order system case is similar to the problem of linear system. At this order we get the
following relation

VZ’Ha’ -V* —ROCi vl |0
ox

IT. 5 = |. (3.2)
b= (V4R
dz Ox ( D LT, 0
The solutions of the lowest order system subjected to the boundary conditions Eq.(2.21) are
y; = B(1)sin(k.x)sin(nz),
T —LB(T)COSUC x)sin (rz) (3.3)
" 82 (4n’ - R)) ¢ : :
where 87= k2 +n?, 85=87-R.

The critical value of the Rayleigh number for the onset of magneto-convection in the absence of
temperature modulation is

8% (87 + Ha’s”)(47° - R,)

R
Oc=
47t2k62

34

when R;=0, Ha=0 the classical results of Chandrasekhar [3] are obtained.

3.2. Second order system

The second order system is obtained based on the first order system. Because the nonlinear Jacobian
term in Eq.(17) is clearly dependent on the previous solutions, thus we have.
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VZHa? -V* —Raci Vo | | Ry
ox

P = , (3.5
b= (V4R
dz Ox ( DT ] LRa
Ry =0, (3.6)
oy, 0T; 0y, oT;
- R e & By B 3.7
27w 0z 0z ox 3.7
The second order solutions subjected to the boundary conditions Eq.(2.21) is obtained as follows
v, =0, (3.8)
3,2
T, =— 2"k p2(t)sin(2nz). (3.9)
ng (4712 - R[-)

3.3. Estimation of heat transport in terms of the Nusselt number

The horizontally averaged Nusselt number Nu (r) for the stationary mode of convection is given by

(Bhaduria and Kiran [39, 40], Kiran [41, 42, 45], Keshri et al. [44], Manjula et al. [47])

kC

2n

2n
ke

I

oty
Oz

o

Nu(t)=1+%
kC’

2n
kC

(3.10)

ke (%jdx
2ndo \ oz
8n4k62sin\/?i

82 (47:2 - Rl-)z \/E(cos\/RT-+1

Here one can notice that f, (z, T ) is effective at second order and affects the above Nusselt number
Eq.(3.11), through factor B( T ) because this amplitude is obtained from GLE.

dz=0

Nu(t) =1+ B (7). (3.11)

3.4. Third order system

In this order we get the following system, where the modulation effect will take place. We restrict
ourselves up to 3" order system and find the finite amplitude. Thus the third order system is given by

V?Ha? -v* —ROCi Vi | | Ry
ox

= . (3.12)

dT, 0o
——b = (V’+R)|| T, | |Rs

dz Ox
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The terms in the RHS of Eq.(33), i.e. R;; and R;,, are given by

10, 8T, . o,
Ry =———(V2y,)- Ry, =2 R, L, 3.13
31 Pr ar( Vi) =Ry, 2Ty ( )
Riy=T 5,12y WL QW1 0T W, Oy (3.14)

ot Oox ox Oz ox Oz

where the second term in Eq.(3.14) represents the modulation term. Substitutingy,, 7; and 7> into Eqs

(3.13)-(3.14), we can obtain expressions for R;;, Rj;easily. Now by applying the solvability condition for the
existence of third order solution, we get the Ginzburg-Landau equation (Bhaduria and Kiran [39, 40, 54],
Kiran [41, 42, 45, 61], Keshri et al.[44], Manjula et al.[47],) for stationary convection with time-periodic
coefficients in the form

2 2,2 2 2,2 2 2 4.4
S 447; kcf(kkc dB(‘c)+ 4:11 kcf()ckc ) Rozkc 8,1, |B(t)+ LROCZ B(z)’ =0 (3.15)
Pr 5R(47’~' - Rl.) drt O (4n - R,») O 83’3(4112 - R,-)

1
where [, = J‘o fz(z,t)sinz(nz)dz.

The Ginzburg Landau equation given in Eq.(3.15) is a Bernoulli equation and obtaining its analytical
solution is difficult, due to its non-autonomous nature. So it is solved numerically using the in-built function
NDSolve of Mathematica, subjected to the initial condition B(0) = by; where b, is the chosen initial
amplitude of convection. In our calculations we may use R, = Ry.; to keep the parameters to the minimum.
We assume that R, = Rj. which shows that the nonlinear influence considered in this paper are in the
neighborhood of critical state of convection onset.

4. GLE in the presence of non-uniform gravity field

The effect of gravity modulation is discussed in the studies of (Gresho and Sani [20], Bhadauria and
Kiran [22-24], Kiran et al.[28], Manjula et al. [29]). The momentum equation takes the form

% +(q.V)q = in + igo <I+ e’ dy cos((ogt)) —ivzq - Guﬁng “4.n
ot p Po

0 Po

where 9 ,,9d ,, are the amplitude and frequency of the applied magnetic field.
Similarly, the finite amplitude (GLE) equation is given by

4 2 2\;12
£+(8 +Hd“a )kc dB(T)+

Pr 82 dt
2,4 (x4 2 2 4.2)
2 2 'k, (8" +H6 a
R”"“Zk 1+ 421n 84 cos(w,1) |B(1)+ 2< 5 ) B(z)’ =0.
5% (47 - R,) 283 (47° - R,)

There are many studies on gravity modulation well documented in [50]-[55].
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5. GLE in the presence of non-uniform applied magnetic field

According to the studies of Bhadauria and Kiran [32], Kiran and Bhadauria [33], under the effect of
magnetic modulation the momentum equation takes the form

0 1
" (qV)g=—Vp +£g —ivzq — G},LiBoz(]-i- e’ 5, cos(m,,t))q (5.1)

ot Po Po Po

where d,and 9§, are the amplitude and frequency of the applied magnetic field.
Similarly, the finite amplitude (GLE) equation is given by

4 2 2\;.2
ﬁ (8 +Hod a )kc dB(t)+

Pr+ 82 dt
R
5.2
4n’k?*R , n2k5(54+H52a2) ; -2
4—200‘3+Ha 8, cos(m,,t) | B(t)+ > B(t)’ =0.
8% (47" - R,) 283 (47° - R,)

6. Results and discussions

In this paper, we discuss the effect of thermal modulation and internal heating on RBC in the
presence of an applied magnetic field. The magnetic field and thermal modulation are applied externally to
the system. Using the method of GLM the finite amplitude of convection is quantified regarding the Nusselt
number. The systems of nonlinear partial differential equations are simplified using perturbation analysis.
The GLE is derived under the solvability condition. Three types of temperature modulations (i) out of phase
modulation (OPM) (ii) in phase modulation (IPM) (iii) and lower boundary modulations are considered.

We have also discussed three different modulations; (i) thermal modulation (ii) gravity modulation
(ii1) applied magnetic field modulation. These three different modulations have been compared and presented
in the results. The effect of various system parameter values on heat transport has been presented. The values
of parameters are considered within the range of the solutions. The Nusselt number Eq.(3.11) is obtained at
second order.

Variations of Nu with slow time for various parameters are presented in Figs 2-7. Here the Nusselt
number oscillates with slow time t. The solution of the Ginzburg-Landau equation gives the amplitude of
convection which helps to quantify heat transfer through the Nusselt number. Before interpreting the results
we assume R,=R,. which means that the disturbances are near to critical state of convection onset.

Because we solve the nonlinear system at every order, every order depends on the previous solution.
Thus, our analysis is not a direct solution to the nonlinear model problem. Since our study is related to slow
convective flow we consider the slow time as /=y2 t. We present our results in the case of OPM only for
convenience and later we compare three different types of modulation.

The effect of internal heat source and sink is presented in Figs 2a and 2b. From the figures we
observe that the effect of internal heating on thermal instability is destabilizing, as heat transport increases on
increasing R;. The heat transport is greater at higher positive values of R; Fig.2a. This confirms the results
obtained most recently by Kiran et al. [15, 16, 52, 61]. The effect of heat sink, i.e. negative values of R;, is to
diminish heat transport and shows a stabilizing effect. Thus, one needs to understand that any composite
mixture of material stabilizes or destabilizes the system. The stability criteria are very important in many
chemical experiments or reactions.
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Fig.2a. The effect of internal heat source on heat transport.
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Fig.2b. The effect of internal heat sink on heat transport.

The strength of the fluid flow in the presence of a magnetic field is presented in Fig.3a. The Hartman
number is the ratio of an electromagnetic force to the viscous force. It is clear from the figure that upon
increasing the value of Ha heat transfer enhances in the layer. To see the effect of the magnetic field on the
Nusselt number the value of R;is chosen near (.2 which does not affect the magnetic field. In Fig.3b we find
Nu increases on increasing the value of the Prandtl number Pr for fixed values of other parameters. This may
happen due to the dominating role of thermal diffusivity k7 over kinematic viscosity v .
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Fig.3a. The effect of Hartmann number on heat transport.
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Time

Fig.3b. The effect of internal heat sink on heat transport.

As the Prandtl number Pr increases, then for no change in kinematic viscosity probably there is a
large decrement in thermal diffusivity, and this causes a sudden increase in the temperature gradient. So
convection takes place early, and there is an enhancement in heat transfer. Thus, the effect of an increment in
the Prandtl number Pr is to advance convection. A similar nature of Pr is observed in the studies of
Bhadauria and Kiran [15, 18, 24, 32, 54], Kiran et al. [10, 28, 33], Manjula ef al. [47, 59]. We have the
following mathematical expression

Nup=,<Nup—;g<Nup=29

In Fig.4a, we depict the effect of amplitude of modulation for moderate values of Ri and for the
fixed values of other parameters. Upon increasing the value of §,;, the value of Nu increases, hence
advancing heat transport. This means that an increasing amplitude of modulation increases heat transfer. In
the case of un-modulated system, &, shows no influence on heat transport for larger values of time t. The
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above results are compared with the studies of Manjula et al. [13, 59], Bhadauria and Kiran [14, 15], Kiran et
al. [16,19, 41] and are found in good agreement. We have the following mathematical expression

Nus=g.2<Nus;=0.4<NUs;=0.6.

From Fig.4b, we see the effect of frequency of modulation. For small values of @ heat transport is
greater. An increment in the value of @ decreases the magnitude of Nu(t) , and shortens the wavelength of
oscillations. As the frequency increases from 4 to 40, the magnitude of Nu(t) decreases, and the effect of

modulation on heat transport diminishes. On further increment of @ the effect of modulation on thermal
instability disappears altogether. Hence the effect of ® is to stabilize the system. These results agree with many
other studies on thermal instability by Bhadauria and Kiran [15, 18, 24, 32, 38], Kiran et al. [10, 28, 33, 41, 42],
Manjula et al. [47, 58], and Kiran and Manjula [48, 57]. We have the following mathematical expression

Nu ¢ =40<Nu @ =20<NU & =;0<NU @ =4.

[+

Heat transg

a1 = 0.6

.l Pr=2,|H1=2,Ri=ﬂ.li!,¢'h =ﬂ.2,ml=4
0 2 4 8 B 10

Time

Fig.4a. The effect of amplitude of modulation on heat transport.
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Fig.4b. The effect of frequency of modulation on heat transport.
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In Fig.5, we have depicted the comparison between with or without internal heating. It is clearly
evident that internal heating of the system enhances heat transport in the media.

Nugizo<Nugi=.

— — ———
35

I

W

Hoaof

0,

w

e 25

L]

+ [
20}

o L

I‘E without internal heating  yith internal heating

T 15 -
1.0 _J I!"1':1'.,. Ha=2, F;ti:[l.l,ﬁl = ﬂ.?, =44 . ]

0 2 = i) ] 10
Time

Fig.5. With and without internal heating.

Figure 6 shows the stability curves.

6000

6000

5000 5000 Ha=4, Pr=t,
4000
O

e
1 £ 3000

2000

1000 Ri=0.2, Pr=1.0 1 1000

Fig.6. Stability curves ROc versus kc for different values of Ha and Ri.

Here we plot Ry, versus wavenumber k.. The effects of Ha (in Fig.6a) and R; (in Fig.6b) show that
Ha stabilizes the system i.e. as Ha increases R, increases. This means that as the thermal Rayleigh number
increases buoyancy enhances and more viscous force is required to destabilize the system.

In Fig.7 the effect of R; and different modulations have been compared and presented. Figure 7a
presents the results of R; for large values of time, and shows the destabilizing effect on heat transport. The
corresponding studies of Ri have been compared with Tveitereid et al. [34], Bhadauria et al. [38], Kiran et
al. [41, 42, 52, 57] and found similar. The results have also been compared with Kiran and Manjula [48] and
Manjula et al. [58, 59] and Kiran et al. [60] for internally soluted media. The internal solutal Rayleigh
number S; has a reverse nature of Ri.
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In Fig.7b the effects of thermal (solution of Eq.(3.15)), gravity (solution of Eq.(4.2)) and magnetic
field modulations (solution of Eq.(5.2)) are compared. It is clear that thermal modulation advances stability
and enhances heat transfer more than the other two modulations. It is concluded that magnetic field
modulation stabilizes the system more than the other two modulations. These results have been compared
with the studies of Bhadauria and Kiran [32] and Kiran and Bhadauria [33] and found in good agreement.

The following relation is observed clearly.

Nu thermal modulation ~ Nu gravity modulation™ Nu magnetic field modulation-
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Fig.7. (a) The effect of Ri on Nu for magnetic modulation (b) Different modulation profiles.

In Figs 8 and 9, the streamlines and the corresponding isotherms are depicted for rotation speed
modulation, respectively at t= 0.0, 0.10, 0.14, 0.16, 0.2 and 0.4. From the figures, we found that initially
when time is small, the magnitude of streamlines is also small (Figs 8a, b), and isotherms are straight
showing the system in conduction state, Figs 9a, b. However, as the time increases the magnitude of
streamlines increases and the isotherms lose their evenness. This shows that convection is in progress in
the system. The layer is more vibrant, i.e. convection becomes faster on further increasing the value of
time t.
However, the system achieves its steady state beyond t =0.6 as there is no change in the streamline,
and isotherms Figs 8c, d - 9c, d. The results of streamlines and isotherms have been compared with the
studies of Bhadauria and Kiran [22-29] and Kiran [51, 55] for gravity modulation. The readers may find
similar results for gravity modulation (porous convection) in the studies of Kiran ef al. [51, 52, 55],

Bhadauria et al. [53, 54] and Kiran et al. [60].
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alues of time T (a) T =0.0(b)=0.10(c) t© =0.14(d) t =0.16(e) T =0.2(f) T =0.4.

Fig.8. Streamlines for various v
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7. Conclusions

The following conclusions are drawn from the analysis:
1. The Prandtl number Pr, is to increase heat transfer.
2. The modulation loses its effect at sufficiently large values of frequency w .
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el

AN

8.
9.

The effect of the magnetic field (Ha), frequency of modulation (® ), heat sink (R;<0) is to suppress heat transport.
The effect of an increase in the values of Ha decreases the value of the Nusselt number. Thus, the amount
of heat transfer decreases and hence the system is more stable.

. The effect of amplitude of modulation (§;), heat source (R>0) is to enhance heat transport.

Upon increasing the value of R;, Nu increases.

. The magnitude of streamlines increases as timet passes and isotherms lose their evenness, showing that

convection takes place. At t=1.0 the system achieves equilibrium state.
Thermal modulations enhance heat transfer.
Magnetic modulation diminishes heat transfer.
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Nomenclature

— amplitude of convection
— basic state
— critical
— depth of the fluid layer
— acceleration due to gravity
— Hartman number
— vertical unit vector
— wavenumber
— reduced pressure
— fluid velocity
Ray — thermal Rayleigh number

R; —internal Rayleigh number

d; — amplitude of thermal modulation

dg — amplitude of gravity modulation

dm — amplitude of magnetic modulation

Pr — Prandtl number
ROc - critical Rayleigh-number

¢t — temperature
t —time
By — coefficient of thermal expansion

AP »»E% Lo >

a

— slow time (dimensionless)
— perturbation parameter
— phase angle
k, — effective thermal diffusivity
® — thermal modulation frequency
0, — gravity modulation frequency
®, — magnetic modulation frequency
p — dynamic viscosity of the fluid
K. — magnetic permeability
v — kinematic viscosity
p — fluid density
v — stream function
/ — perturbed quantity
* — dimensionless quantity
0 — reference value

o M
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