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The creep test is one of the important approaches to determining some mechanical properties of composite 
materials. This study was carried out to investigate the creep behaviour of an epoxy composite material that was 
reinforced with Y2O3 powder at weight ratios of 2%, 7%, 12%, 17% and 22%. Each volume ratio was subjected 
to five loads over the range of 1N to5N at a constant temperature of 16 ± 2°C. In this work, creep behaviour, 
stress and elasticity modulus were studied through experimental and numerical analyses. Results showed that 
increasing the weight ratio of Y2O3 powder enhanced creep characteristics. 
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1. Introduction

 Composites may be defined as any multicomponent material that presents a certain 
property of any of its constituents in accordance with the percentage of the constituent and 
wherein a combination of two or more components can provide improved properties to the end 
product. Epoxy-reinforced composites are important because they provide stiffness and high 
strength-to-weight ratios. The knowledge of creep behaviour is required to design parts for long-
term use [1]. 

 Creep behaviour is an important design property of polymers because it is responsible for 
important strength reductions and time-dependent changes in the dimensions of a product. These 
changes may affect the product's capability to resist design load. Polymers are susceptible to creep 
even at room temperature. Many researchers have studied this problem. Al-Hassani and Areef 
investigated the creep behaviour of an epoxy composite material that was reinforced with three 
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volume fractions of glass fibres at room temperature. Their results showed that creep behaviour 
increases when the volume fraction is increased [1].  

 Glaskova and Aniskevich estimated the creep behaviour of an epoxy/clay nanocomposite 
under the effect of moisture. They reported that the elastic modulus increases by 25% with the 
increase in filler content and decreases by 40% with the increase in moisture content[2]. 
Subramanian et al. studied the influence of fibre length on the creep performance of a fibre-
reinforced polypropylene composite at different stress levels and room temperature. The creep 
strain of all tested materials increases with respect to time. Moreover, sensitivity changes in 
accordance with stress level [3]. Papanicolaou et al. compared the experimental and theoretical 
results for the creep behaviour of an epoxy material reinforced with fibreglass [4]. Bakonyi and 
Vas subjected nonreinforced polypropylene and fibreglass-reinforced polypropylene to creep and 
tensile tests at different loads for 10h is to determine the average ratios of failure force [5]. 
Lorandi et al. applied different stress and temperature conditions to evaluate the creep behaviour 
of a carbon/epoxy composite over test time [6]. Zhai et al. conducted a series of creep tests to 
predict the behaviour of E-glass-reinforced composites experimentally and constitutively [7].  

 Fu et al. studied the influence of loading rate on the creep response of an epoxy resin 
under indentation to establish the scope of deformation under constant loads [8]. 

 
2. Experimental work 
 
2.1. Materials used 

 
 The epoxy resin used in this work was Nitofill EPLV (Jordan Industry). Its hardener was K-6. The 

resin and hardener were mixed at the ratio of 1:2. Y2O3 powder with an average grain size of 30 µm was used 
as the reinforcement at 2%, 7%, 12%, 17% and 22% weight ratios. 

 
2.2. Composite preparation 

 
 The epoxy composite was mixed with Y2O3 powder in accordance with the predefined weight ratios 

by first using the hand lay-up technique and then by using a magnetic stirrer for 15 min. Then, the hardener 
was added at the amount specified by the suppliers. Subsequently, the mixture was placed in a vacuum 
chamber to remove bubbles and then carefully poured into a rubber mould with the required dimensions of 
the samples. The mixture was finally left for 72h to dry and then removed and cured for 5 days. Five 
specimens were prepared for each volume ratio. 

 
2.3. Tensile test 

 
 The tensile test was carried out by using a Zwick/Roell Z100 universal testing machine to obtain the 

mechanical properties that were required as the input in the finite element model (ANSYS) program. 
Specimen dimensions were selected in accordance with the ASTM D638 standard[9]. 

 
2.4. Creep test 

 
 The creep test was performed by using a WP600 creep testing machine as shown in Fig.1. The 

specimens were moulded initially to meet the ASTM D2990 standard requirements [10] as indicated in Fig.2. 
Each volume ratio was subjected to loads ranging from1N to 5N at constant temperature (16 ± 2 °C).Strain as 
a function of time was recorded every 8s for 1h. Then, the load was removed, but the readings were 
continued to be taken for another hour because the rate of change in the first hour was high and additional 
points had to be collected to obtain a curve with increased accuracy. The creep specimens are shown in 
Fig.3. Figure 4 depicts the rubber mould used in this study.   
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where δ= o

1




 

σo : initial stress (1, 2, 3, 4, 5)Mpa. 
ε1: initial strain 
t: time in sec. 

ƞ = 
έ

o
, where έ = slope= 

t




,which can be inferred from experimental readings. 

 

 Equation constants (C1, C2 and C3) must be calculated as input for the FEA model (ANSYS). Log 
strain was plotted versus log time for several loads as shown in Fig.5. The slope, which represents C3, was 
calculated. Figure 6 shows the relationship of stress versus strain (in log–log scale) that was needed to find 
C2 on the basis of the slope.  

 C1 was determined by inputting the value of C2 and C3 into the general creep Eq.(3.2). The creep 
constants for each weight ratio of composite materials are summarised in Tab.1.   

 Young’s modulus was calculated by applying the following equation 
 

 E(t) = 
 
 
t

t




 = 
  t




. (3.4) 

 

 

Fig.5. Log strain versus log time for 2% additive at 
different loads. 

 

Fig.6. Log strain versus log stress for 2% additive at 
different loads. 

 

Table 1. Creep constants for each weight ratio used in FEM. 
 

Y2O3 % C1 C2 C3 

0% (Epoxy) 1.9035980453 0.5949980809 -0.9220200842 

2%  1.6032895882 0.6232712681 -0.92201292 

7% 1.402752392 0.5966758675 -0.92201292 

12% 1.0021744219 0.6206395851 -0.92201292 

17% 0.801802437 0.6036495364 -0.92201292 

22% 0.7013568137 0.4274674809 -0.92201292 
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5. Finite element modelling for creep analysis 
 
 The aim of creep modelling is to simulate time-dependent behaviour in engineering design up to the 

critical state of creep. A 3D model of the specimens was constructed and analysed through the nonlinear FE 
method. Several parameters are necessary as inputs in the FEA of creep issues. These material parameters were 
obtained from experimental data. The FE model was loaded with stable load at the lower part of the specimen, 
and creep strain values were taken and compared with the experimental results. The analysis in this work was 
performed by using ANSYS/APDL Ver.15.0. PLANE182 elements were sufficient for predicting creep 
behaviour. Boundary conditions were selected to represent a case that was similar to the specimen. The applied 
loads were the same as those used in the experimental tests. The holes made in the samples to enable handling 
were also modelled. Figure 7 depicts the numerical solution of the creep test by using ANSYS software. 

 

 
 

Fig.7. Creep test using ANSYS/ APDL software. 
 

6. Results and discussion 
 
 The experimental and numerical results are shown in Figs 8 to 12. Each figure represents the effect of 
time on strain (creep behaviour). Five different weight ratios of Y2O3 (2%, 7%, 12%, 17% and 22%) were 
subjected to each load at a constant temperature (16 ± 2 °C) for a total of five loads. Thirty specimens were 
examined to investigate the stages of deformation that occurred given that cross-sectional area decreased with 
the continuous increase in the length of the specimen due to stress build-up. Notably, no creep fractures were 
detected. As observed from the figures, strain decreased gradually with the increase in the weight ratio of Y2O3. 
The epoxy with the reinforcement was stronger and stiffer than the pure epoxy. Hence, creep features gradually 
improved as the weight ratio of Y2O3 powder was increased to 22% as mentioned above. Consequently, the 
secondary stage, which is the most important part of the creep curve, improved because of the appearance of 
viscoelasticity. This characteristic, which is based on the properties of the specimen, determines the predestined 
lifetime of components[12]. The Maxwell and Kelvin model [11] may be the simplest viscoelastic model used 
to predict creep strain over time. The model under 1N load is shown in Fig.13. Figure 14 represents a 
comparison of creep strain under the addition of Y2O3 at different weight ratios. The experimental and 
numerical data showed good correlation as indicated by the difference of 0%–12% between the experimental 
and numerical data. These differences were due to several reasons, including the environment. For example, 
humidity plays an important role in the experiment and changed continually. However, in the numerical 
simulation, this variation was ignored. Instead, humidity was taken as a factor that remained constant during the 
experiment. Another factor was the method used to fix the specimen. In the experiment, the specimen slipped 
negligibly. This problem did not occur at all in the numerical simulation. As shown by the results in Fig.15, 
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Fig.10. A comparison of ANSYS and experimental study of strain versus time for different weight ratios at 3N load. 
 

 
 

Fig.11. A comparison of ANSYS and experimental study of strain versus time for different weight ratios at 4N load. 
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Fig.12. A comparison of ANSYS and experimental study of strain versus time for different weight ratios at 5N load. 
 

 
 

Fig.13. Modulus of elasticity for different weight ratios at 1N load. 
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