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This paper provides a comparative analysis of selected parameters of the geometric constraints for cracked 
plates subjected to tension. The results of three-dimensional numerical calculations were used to assess the 
distribution of these parameters around the crack front and their changes along the crack front. The study also 
involved considering the influence of the external load on the averaged values of the parameters of the geometric 
constraints as well as the relationship between the material constants and the level of the geometric constraints 
contributing to the actual fracture toughness for certain geometries. 
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1. Introduction 
 
 Elastic-plastic problems of fracture mechanics are formulated using the HRR solution [1], [2] 
proposed in 1968. This approach has been commonly used to describe  stress fields near the crack tip in 
elastic-plastic materials. Before 1993, only 2D problems were considered and the analysis was limited to the 
predominantly plane stress or plane strain conditions. Then, in 1993-1995, [3-5] suggested that the HRR 
solution could be generalized for three-dimensional cases by introducing the stress triaxiality parameter Tz. 
However, the method described by Guo [3-5], like the HRR solution [1,2], takes into account only the first 
term of the asymptotic expansion. In the years 2007-2009, some researchers [6-8], following the example of 
O’Dowd and Shih [9-10], suggested that the description of stress fields proposed by Guo Wanlin could be 
improved by taking into consideration the influence of all the other terms of the asymptotic expansion in the 
form of the parameter Q* [6-8]. The parameters Tz and Q* not only improve the theoretical description of 
stress fields and make it similar to the exact solution, i.e. one obtained with a finite element method (FEM), 
but they can also be used to assess the actual fracture toughness of various structural elements, providing that 
the appropriate fracture criterion is applied [6,11-13]. Using the fracture criteria presented in these papers, it 
is necessary to know the proper measures of in-plane constraints (e.g., the Q stresses defined by O'Dowd and 
Shiha [9-10]), and the out-of-plane constraints, which can be appropriately found in [14,15] and [7] 
respectively. 
 In the specialist literature, the parameters Tz and Q* are known to be measures of the so-called 
geometric constraints, i.e., constraints of a material during the occurrence of plastic deformations under 
external loads [16]. These parameters are not the only parameters used as measures of constraints in the 
fracture criteria. In 1968, McClintok [17] proposed to use the ratio of the average normal stresses m to the 
yield strength 0, designated by m/0, in the fracture criterion. A year later, Rice and Tracey [18] 
employed the ratio of the average stresses m to the effective stresses eff, calculated according to the 
Huber-Misses-Hencky (HMH) hypothesis, m/eff. Some researchers have considered the influence of 
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geometric constraints on the distribution of stresses for three-dimensional cases, analyzing the actual 
stresses responsible for the crack opening [19], or the differences between the actual description obtained 
through the FEM analysis and that obtained on the basis of the HRR solution for a case of plane strain [20, 
21]. It is difficult to discuss all the parameters in one article. In fact, several articles can be devoted to one 
parameter, describing its origin and relationships with the material constants or geometries. The aim of 
this paper is to characterize the parameters for basic geometries, i.e., those typical of cracked plates 
subjected to tension (Fig.1) using the following specimens: a center-cracked specimen under tension 
(CC(T)), a single-edge notched specimen under tension (SEN(T)) and a double-edge notched specimen 
under tension (DEN(T)). According to the FITNET procedures [22], these geometries are used to idealize 
complex structural elements. The knowledge of the values of these parameters as well as their 
relationships with the specimen geometry or the material characteristics can be useful to solve engineering 
problems in the area of fracture mechanics in order to estimate the stress distributions and assess the actual 
fracture toughness. 
 
a) b) c) 

 

 
Fig.1. Geometries of the cracked specimens under tension: a) CC(T); b) DEN(T); c) SEN(T) specimens. 
 
2. Defining selected parameters of the geometric constraints – 3D problems 
 
 The parameters of the geometric constraints for three-dimensional problems were briefly discussed 
in the Introduction; the dates of their use were also mentioned. In the literature on the elastic-plastic fracture 
mechanics we can find expressions defining the measures of the geometric constraints for three-dimensional 
cases: 
 the ratio of the average normal stresses m to the yield strength 0 – m/0: 
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where 11, 22, and 33 designate the normal constituents of the stress tensor;  
 the ratio of the effective stresses eff calculated according to the HMH hypothesis to the yield strength – 

eff/0 [17]; 
 the ratio of the average normal stresses m to the effective stresses eff according to the HMH hypothesis – 

m/eff [18]; 
 the stress triaxiality coefficient Tz [3-5], calculated as 
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 the parameter Q* defined in [6-8] 
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where 22_FEM are the stresses responsible for the crack opening determined through the FEM analysis, and 
22_GUO are the stresses responsible for the crack opening determined according to the solution proposed by 
Guo [3-5] 
 

   
 

  , ,
,

1

1 nfar
ij 0 z

0 0 n z
ij

J
n T

I n T r

 
      

 



 

, (2.4) 

 
while Jfar is the J-integral calculated numerically around the far-field contour [7], 0=0/E, E is Young’s 
modulus, n is the exponent in the Ramberg-Osgood law, r and  are polar coordinates defining the location 

of the point in the area around the crack tip, In(n, Tz) and   , ,ij zn T   are functions determined from the 

algorithm presented in [3-5] and [7]; 
 the parameter Qpso is the difference between the actual distribution of stresses 22_FEM and the estimated 

distribution of stresses for the predominantly plane strain conditions 22_pso normalized by the yield 
strength 
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while In(n, pso) and   , ,ij n pso   are the functions determined according to the algorithm presented in [1,2] 

and in [7] for a case of the predominantly plane strain conditions. 
 Among the parameters mentioned above, the parameters m/0, m/eff and Tz are considered to be 
stress triaxiality parameters related mainly to the thickness of the structural elements, while the parameters 
Q* and Qpso are measures of the geometric constraints largely dependent on the in-plane dimensions of the 
structural elements  – the specimen width W and the crack length a. 
 It is necessary to know the parameters of the geometric constraints to use them. The literature does 
not provide values of the parameters – to determine them, we need to perform numerical calculations. There 
are no catalogues that help estimate the values of the parameters for any structure with a specified geometry 
and material characteristics. Reference [7] provides the approximation formulae to determine the values of 
the parameters Tm and Q*

m, which are values of the parameters Tz and Q* averaged across the thickness. The 
formulae are true for one geometry, i.e., the single-edge notched bending (SEN(B)) specimen, for which, 
under laboratory conditions, fracture toughness is determined. The use of the values of the parameters of the 
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geometric constraints averaged across the thickness is a good idea because the estimation of fracture 
toughness (or failure of a cracked structure based on failure assessment diagrams, FADs) is carried out for a 
specified thickness of a structural element and not for a specified cross-section. 
 

3. Details of the numerical calculations 
 
 The selected parameters of the geometric constraints were analyzed for three 3D geometries under 
tension– the CC(T), SEN(T) and DEN(T) specimens – shown in Fig.1. The assumptions made for each 
specimen included the constant width W=40mm, the relative crack length a/W=0.70 and three thicknesses 
B={2, 16, 40}mm. The assumption of the long crack (a/W=0.70) guarantees a high level of geometric 
constraints (high value of the Q stresses defined by O’Dowd [9, 10]. The use of three thicknesses allows us 
to analyze specimens whose stress state near the crack tip is similar to the predominantly plane stress 
conditions (B=2mm), the predominantly plane strain conditions (B=40mm) or the intermediate state 
(B=16mm). 
 The finite element analysis assumed an isotropic, uniform model of an elastic-plastic material, with 
the HMH plasticity condition in the form of formula (3.1) 
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where  is the stress,  is the strain, 0 is the yield strength, 0 is the deformation corresponding to the yield 
strength (0=0/E, where E is Young’s modulus),  is the exponential constant in the Ramberg-Osgood (RO) 
law and n is the exponent in the RO law. In the calculations, it was assumed that the value of Young’s 
modulus was constant E=206GPa, the value of the Poisson ratio was constant =0.3 and the value of the 
exponential constant was =1. The default material for which the calculations were performed had the yield 
strength 0=315MPa and the strain hardening exponent n=5; the material was used by Sumpter and Forbes in 
their famous work dealing with the determination of fracture toughness [23]. 
 All the numerical calculations were performed by means of ADINA SYSTEM 8.8 [24, 25]. The 
numerical models were created using the axes of symmetry existing in the specimens (by assuming 
appropriate boundary conditions); the crack tip was modeled as a quarter of an arc. The mesh was filled with 
eight-node finite elements (of the 3-D SOLID type). The authors of the ADINA program recommend that 
this type of elements be used to solve problems for specimens under tension. The author of this paper 
conducted a test to assess the mesh accuracy, which involved filling it with twenty-node 3-D SOLID type 
finite elements to confirm that the model was similar to the model with eight-node finite elements. The 
results obtained for the two meshes were similar. The external load was applied to the appropriate edge of 
the specimen using the displacement increasing in time. Table 1 provides details of the numerical models 
used to prepare this paper. 
 Figure 2 shows a sample numerical model used to analyze the SEN(T) specimen. The same method 
of modeling of the crack tip was employed for all the three specimens, CC(T), DEN(T) and SEN(T). The 
model was divided into finite elements. The other specimens were modeled in the same way to obtain easy-
to-compare results.  
 The J-integral required for the analysis of the parameters of the geometric constraints was 
determined by means of the ‘virtual shift method’, which uses a virtual increase in the crack length. The J-
integral was calculated for each layer across the specimen thickness; it was also averaged across the 
specimen thickness. 
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Table 1.  Details of the numerical models of the cracked specimens under tension used in the 3D numerical analysis. 
 
specimen type CC(T) DEN(T) SEN(T) 
number of axes of symmetry used 3 2 
modeling (entire specimen, half, 
quarter) 

an eighth of the specimen 
 

a quarter of the specimen 

boundary conditions take into account the symmetry; 
applied to three axes of symmetry – 
vertical, horizontal and that going at 
half a distance of the thickness 

take into account the symmetry; applied 
to two axes of symmetry – horizontal 
and that going at half a distance of the 
thickness 

Number of FEs in the FEM model 15552 ÷ 16988 ÷ 17988 (15552 ÷ 16991 ÷ 18010) 
total number of nodes in the 
FEM model 

18018 ÷ 19638 ÷ 20790 (69999 ÷ 76299 ÷ 80779) 

number of nodes per 1 FE 8 (20) 
number of integration points 
per 1 FE 

8 (27) 

type of FE for 3D small deformations, small displacements, 3-D type FEs with a mixed order 
interpolation scheme 

method of modeling of the 
crack tip a quarter of the arc rw=(1÷5)m 

division of the arc near the 
crack tip 

12 ES 

size of the area near the crack tip (2÷4)mm 
division of the area near the 
crack tip 

(18÷50) ES 

size of the largest and smallest 
FE in the area near the crack 
tip 

division into 18 FEs 
ESmin  2.9061310-5m (i.e. 

1/1376W) 
ESmax  4.1516110-4m (i.e. 

1/96W) 
ESmax/ESmin = 14 

 

division into 36 FEs 
ESmin  1.4530610-6m (i.e. 

1/2752W) 
ESmax  2.075810-4m (i.e. 

1/192W) 
ESmax/ESmin = 14 

 

division into 50 FEs 
ESmin  1.0462110-5m (i.e. 

1/3823W) 
ESmax  1.4945810-4m (i.e. 

1/267W) 
ESmax/ESmin = 14 

division into 18 FEs 
ESmin  2.9061310-5m (i.e. 1/1376W) 
ESmax  4.1516110-4m (i.e. 1/96W) 

ESmax/ESmin = 100 
 

division into 36 FEs 
ESmin  1.4530610-6m (i.e. 1/2752W) 
ESmax  2.075810-4m (i.e. 1/192W) 

ESmax/ESmin = 100 
 

division into 50 FEs 
ESmin  1.0462110-5m (i.e. 1/3823W) 
ESmax  1.4945810-4m (i.e. 1/267W) 

ESmax/ESmin = 100 

number of layers in the division 
across the thickness 

9 

density of FEs in the division 
across the thickness 

20 ÷ 100 

relative coordinates of the 
layers across the thickness 
(x/B=0.000 – specimen axis, 
x/B=0.500 – specimen edge) 

x/B={0.000 ; 0.119 ; 0.222 ; 0.309 ; 0.379 ; 0.434 ; 0.472 ; 0.483 ; 0.494 ; 0.500} 
÷ 

 x/B={ 0.000 ; 0.124 ; 0.230 ; 0.319 ; 0.390 ; 0.444 ; 0.480 ; 0.496 ; 0.499 ; 0.500}; 

external load applied to the specimen edge in the form of a displacement; with the displacement of the 
point at which the force was applied as vll=f(t) – displacement linearly increasing in time 
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a) 

 

b) 

 
c) 

 

 
Fig.2.  Numerical model of the SEN(T) specimen used in the numerical analysis: a) general model; b) 

magnified fragment of the mesh close to the crack tip; d) the crack tip model. 
 
 The parameters of the geometric constraints mentioned above were estimated for seven distances 
from the crack tip – r={0.5, 1, 2, 3, 4, 5, 6}J/0, separately for each layer across the specimen thickness. 
Since the maximum stresses responsible for the crack opening occur at a distance ranging r=(0.5÷2)J/0, 
with the assumption of large deformations, the analysis focused on determining the influence of the external 
load on the distribution of selected parameters of the geometric constraints for two measurement points near 
the crack tip – r=1.0J/0 and r=2.0J/0. The points were not selected at random; these distances were used 
by O’Dowd [9, 10] to determine the distribution of Q stresses, and these distances were considered to 
estimate the distribution of the values of the parameters Tz and Q* in Ref. [7]. All the parameters of the 
geometric constraints were determined in the direction =0; they were averaged using the following formula 
for the stress triaxiality parameter Tz 
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The index ‘av’ will designate the value averaged across the specimen thickness, B. 
 
4. Analysis of the numerical calculation results 
 
4.1. Stress triaxiality parameters m/0, m/eff and Tz 
 
 Figure 3 illustrates changes in the ratio of the average normal stresses to the yield strength (m/0), 
defined by formula (2.1). The further from the crack tip (the lower the value of r in the key to symbols), the 
lower the values of the average normal stresses. However, the closer to the edge (x3/B=0.5), the larger the 
changes. The highest values of the average normal stresses are reported along the specimen axis (x3/B=0). 
The closer to the crack tip, the greater the difference in the average normal stresses measured along the 
specimen axis and along its edge. It should be emphasized that the difference between the estimated stresses 
along the specimen axis (x3/B=0) and those along its edge (x3/B=0.5) decreases with an increasing distance 
from the crack tip. The analysis of the distribution of stresses around the crack front for the geometries 
considered in this paper shows that the highest values of the parameter m/0  are observed for the DEN(T) 
specimens, and the lowest for the CC(T) specimens; there are very small changes in the values of the 
parameter m/0 along the crack front for distances larger than r=3.0·J/0.  
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a) 

 

b) c) 

d) 

 

e) f) 

 
Fig.3.  Distributions of the values of the parameter m/0 along the crack front for seven normalized 

distances for the specimens under tension at a/W=0.70, W=40mm, n=5, 0=315MPa, P/P0=1.20:  
a) CC(T) B=2mm; b) DEN(T) B=2mm; c) SEN(T) B=2mm; d) CC(T) B=40mm; e) DEN(T) B=40mm; 
f) SEN(T) B=40mm. 

 
 The analysis of the results obtained for the specimens with the thickness B/W=0.05 shows that the 
values of the parameter m/0 along the edge decrease until m/0=1. For the specimens with a thickness 
satisfying the condition that B/W=1, the values of the parameter m/0 are almost constant along the crack 
front for certain distances assuming that the distance from the specimen axis is x3/B=0.38. The closer to the 
specimen edge, the more rapid the changes in the values of the parameter m/0. It can be concluded that, 
along the specimen edge, the parameter m/0 decreases until m/0=0.5. All results are presented for 
external load P/P0=1.20, where P0 denoted limit load [26, 27]. 
 Figure 4 shows changes in the values of the parameter m/eff for the specimens under tension with 
the thickness B=16mm at external loads P/P0=1.20. An increase in the distance from the crack tip causes a 
decreases in the value of the parameter m/eff. The larger the distance from the specimen axis (x3/B=0) 
towards the edge (x3/B=0.50), the lower the values of the parameter m/eff, which decrease until 
m/eff=0.50. For the CC(T) specimens, the values of the parameter m/eff around the crack tip 
(r=0.5J/0) are smaller than those reported for the  DEN(T) and SEN(T) specimens by the value of the 
yield strength.  
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a) 

 

b) c) 

 
Fig.4.  Distributions of the values of the parameter m/eff along the crack front for seven normalized 

distances for the specimens under tension at a/W=0.70, W=40mm, n=5, 0=315MPa, P/P0=1.20:  
a) CC(T) B=16mm; b) DEN(T) B=16mm; c) SEN(T) B=16mm. 

 
 Figure 5 illustrates changes in the values of the parameter Tz – stress triaxiality coefficient – for an 
increase in the distance from the crack tip. The parameter Tz decreases with an increasing distance from the 
crack tip, but the highest values are observed for the cross-section along the specimen axis (x3/B=0). The 
closer to the specimen edge, the smaller the values of the parameter Tz, which decrease until Tz=0. In the 
layers located along or close to the edge (x3/B=0.5), the value of the parameter Tz is practically equal to zero 
when the distance is r=1.0J/0 (or larger). In the case of specimens with the thickness B/W=0.05, the lowest 
values of the stress triaxiality coefficient Tz are observed for the CC(T) specimens, and the highest for the 
DEN(T) specimens. For thin specimens with B/W=0.05, we can see rapid changes along the crack front. For 
thick specimens with B/W=1, initially, the values of the parameter Tz are not affected by an increase in the 
distance from the specimen axis (the values of the parameter Tz along the crack front practically do not 
change), but when the cross-section is x3/B=0.43, there are rapid changes and a decrease in the values of the 
parameter Tz. 
  Figure 6 compares the values of the parameters m/0, m/eff and Tz averaged across the thickness, 
designated by (m/0)av, (m/eff)av and (Tz)av, respectively, for the three geometries considered in this paper. 
The analysis of the results indicates that the averaged values of the parameters (m/0)av, (m/eff)av and (Tz)av 
are the lowest for the CC(T) specimens, and the highest for the DEN(T) specimens. The conclusions are true 
for both analyzed distances from the crack tip, i.e., r=1.0J/0 and r=2.0J/0. It can be seen that when there 
is an increase in the external load (expressed by the value of  the J-integral averaged across the thickness), 
the averaged values of the parameters (m/0)av, (m/eff)av and (Tz)av decrease nonlinearly reaching the 
predetermined values, which is true only for specimens with a relatively small thickness, B/W<0.2 (see 
Fig.7). 
 The three parameters discussed above - m/0, m/eff and Tz – known in the specialist literature as 
the stress triaxiality parameters, have values largely dependent on the thickness of the structural element, as 
shown in Figs 7a-c, where we can see changes in the values of the parameters averaged across the thickness 
(according to the procedure described by formula (3.2)) for the distance from the crack tip r=2.0J/0. The 
use of the values of the parameters averaged across the thickness is fully justified because when fracture 
toughness is determined under laboratory conditions, the J-integral (or another measure) is determined for a 
specimen with a specified thickness. The values averaged across the thickness can be applied to formulate 
the fracture criteria. 
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a) 

 

b) c)

d) 

 

e) f)

 
Fig.5.  Distributions of the values of the parameter Tz near the crack tip for the particular layers across the 

thickness of the specimens under tension at a/W=0.70, W=40mm, n=5, 0=315MPa, P/P0=1.20:  
a) CC(T) B=2mm; b) DEN(T) B=2mm; c) SEN(T) B=2mm; d) CC(T) B=40mm; e) DEN(T) B=40mm; 
f) SEN(T) B=40mm. 

 
a) 

 

b) c)

 
Fig.6.  Comparison of the values of the parameters m/0 (a), m/eff (b) and Tz (c) averaged across the 

thickness of the CC(T), DEN(T) and SEN(T) specimens at B=2mm, a/W=0.70, W=40mm, n=5, 
0=315MPa with the results reported for a whole spectrum of loads. 
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a) 

 

b) c)

d) 

 

e) f)

 
 

Fig.7.  Influence of the specimen thickness, B, on the distribution of the parameters: a) (m/0)av for the 
CC(T) specimens; b) (m/eff)av for the DEN(T) specimens; c) (Tz)av for the SEN(T) specimens;  
d) influence of the relative crack length, a/W, on the distribution of the parameter (m/0)av, for the 
CC(T) specimens; e) influence of the yield strength, 0, on the distribution of the parameter 
(m/eff)av for the DEN(T) specimens; f) influence of the strain hardening exponent in the RO law on 
the distribution of the parameter (Tz)av for the SEN(T) specimens. 

 

 The larger the thickness, the higher the values of the parameters (m/0)av, (m/eff)av and (Tz)av 

averaged across the thickness. It can be seen that the shapes of the curves (m/0)av=f(J), (m/eff)av=f(J) and 
(Tz)av=f(J) change with increasing thickness. The analysis reveals that the crack length practically does not 
affect the values stress triaxiality parameters averaged across the thickness (Fig.7d). There is little 
dependence of the parameters (m/0)av, (m/eff)av and (Tz)av on the strain hardening exponent n in the RO 
law (see Fig.7f); this finding was used in the study presented in [7] for a simplified description of the 
distributions of the parameter (Tz)av for the SEN(B) specimens, by providing appropriate approximation 
formulae. The higher the degree of hardening, the lower the average value of the parameter Tz. It should be 
noted that the difference between two extreme curves for a material undergoing considerable strain 
hardening (n=3.36) and a material exhibiting poor strain hardening (n=20) for the same load does not exceed 
15%. As shown in Fig.7e, the yield strength has a substantial influence on the averaged values of the 
parameters (m/0)av, (m/eff)av and (Tz)av. The higher the yield strength, the higher the values of the 
parameters (m/0)av, (m/eff)av and (Tz)av averaged across the thickness. 
 
 
 
 
 
 

0 400 800 1200
J [kN/m]

0

1

2

3

4

(
m
/

ef
f) a

v
(r

 =
 2

.0
J/

0)

DEN(T)
a/W = 0.20   W = 40mm

E = 206000MPa   n = 3.36

B = 2mm
B = 4mm
B = 8mm
B = 16mm
B = 25mm
B = 40mm

0 = 500MPa = 0.3

0/E = 0.00243

0 400 800 1200 1600
J [kN/m]

-0.2

0

0.2

0.4

SEN(T)
a/W = 0.05   W = 40mm
E = 206000MPa   n = 10

B = 2mm
B = 4mm
B = 8mm
B = 16mm
B = 25mm
B = 40mm

0 = 1500MPa = 0.3

0/E = 0.00728

(
m
/

ef
f) a

v
(r

 =
 2

.0
J/

0)



On the parameters of geometric constraints for cracked plates ... 911 

 

4.2. Parameters Q* and Qpso as measures of the in-plane constraints for 3D geometries 
 
 The measures of the geometric constraints, which are measures of the resistance of the material to 
the formation of plastic deformations, include the two parameters mentioned in the first section of this paper 
– Q* and Qpso – defined by formulae (2.3) and (2.5), respectively. 
 The parameter Q* was first presented in [6-8]; it defines the difference between the numerical 
solution, which is considered to be the exact solution, and the theoretical solution proposed by Guo [3-5]. 
The use of the parameter Q* to analyze stresses or assess fracture toughness requires knowledge of their 
distribution around the crack tip, apart from the distribution estimated numerically using the FEM analysis, 
as well as the knowledge of the stress triaxiality parameter Tz, being the basis of the solution proposed by 
Guo [3-5]. The parameter Q* is regarded to be a measure of the constraints resulting from the in-plane 
dimensions of structural elements (specimen width and crack length) as well as those resulting from the 
thickness and the material characteristics. 
 
a) 

 

b) c)

d) 

 

e) f)

 

Fig.8.  Distributions of the values of the parameter Q* along the crack front for seven normalized distances 
obtained for the specimens under tension at a/W=0.70, W=40mm, n=5, 0=315MPa, P/P0=1.20:  
a) CC(T) B=2mm; b) DEN(T) B=2mm; c) SEN(T) B=2mm; d) CC(T) B=40mm; e) DEN(T) B=40mm; 
f) SEN(T) B=40mm. 

 
 Figure 8 illustrates changes in the values of the parameter Q* along the crack front for the analyzed 
CC(T), DEN(T) and SEN(T) specimens with the thickness being B=2mm (Figs 8a-c) and B=40mm (Figs 8d-
f). The closer to the crack tip, the lower the value of the parameter Q*; thus, we can assume a low level of 
geometric constraints near the crack tip. As can be seen, the distribution of the parameter Q* along the crack 
front depends on the type of geometry, the thickness of the specimen and the distance from the crack tip. It is 
difficult to precisely determine the nature of the changes in the values of the parameter; actually, each case 
should be considered separately, and the analysis can be simplified when the value of the parameter Q* 
averaged across the thickness (Q*

av) is used. 
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 The lowest level of constraints was reported for the CC(T) specimen, which coincided with the 
lowest value of the parameter Q* (Fig.8d). By contrast, the DEN(T) specimen has a relatively high level of 
geometric constraints (Fig.8e). It should be emphasized, however, that the conclusions were drawn for one 
case of the geometry and material configurations; more details will be known after an analysis of the values 
averaged across the specimen thickness is completed. 
 Another parameter similar to the parameter Q* is the parameter Qpso, which determines the level of 
constraints resulting from the in-plane dimensions of the structural elements, defined by formula (2.5). This 
parameter is not frequently used to analyze problems related to fracture mechanics. It was described in [20, 
21], where the authors tried to determine the difference between the distribution of stresses calculated 
numerically using a finite element method and those calculated according to the HRR solution recommended 
for the predominantly plane strain conditions. The author of this paper suggests that the use of the parameter 
Qpso is a good approach because it shows the difference between the actual distribution of stresses responsible 
for the crack opening and the distribution determined according to a theoretical solution for a case of the 
dominance of plane strain. The application of the actual stress state seems suitable because, under laboratory 
conditions, fracture toughness is estimated assuming the presence of the predominantly plane strain conditions, 
which should be ensured by appropriate geometric dimensions of the structural elements, i.e. the specimen 
width, the crack length (or the length of the uncracked ligament) and the specimen thickness. 
 
a) 

  

b) c)

d)

 

e) f)

 

Fig.9.  Distributions of the values of the parameter Qpso along the crack front for seven normalized 
distances, obtained for the specimens under tension at a/W=0.70, W=40mm, n=5, 0=315MPa, 
P/P0=1.20: a) CC(T) B=2mm; b) DEN(T) B=2mm; c) SEN(T) B=2mm; d) CC(T) B=40mm; e) 
DEN(T) B=40mm; f) SEN(T) B=40mm. 

 

 Figure 9 shows the distribution of the values of the parameter Qpso around the crack front for the 
CC(T), DEN(T) and SEN(T) specimens considered in this paper. The results are given for the particular 
layers across the specimen thickness. As can be noticed, the parameter Qpso reaches the lowest values near 
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the crack tip. The closer to the specimen axis (x3/B=0), the higher the value of the parameter Qpso. For 
specimens with a small thickness (B/W=0.05), the value of the parameter Qpso decreases in the layers located 
closer to the specimen axis with an increase in the distance from the crack tip (Figs 9a-c). The closer to the 
specimen edge (x3/B=0.5), the lower the value of the parameter Qpso in the particular layers. For the layers 
located close to the specimen edge, the values of the parameter Qpso increase with an increase in the distance 
from the crack tip (Figs 9a-c). For the  analyzed range of distances from the crack tip, the lowest values of 
the parameter Qpso are observed for the CC(T) specimen, while the highest for the DEN(T) specimen. In the 
case of specimens with a larger thickness (B/W=1), we can see that the value of the parameter Qpso is nearly 
constant regardless of the distance from the crack tip for the layers located in the range of normalized 
coordinates from x3/B=0 (the specimen axis) to x3/B=0.472 for the CC(T) specimen and to x3/B=0.379 for the 
DEN(T) and SEN(T) specimens (Figs 9d-f). In the other layers, the values of the parameter Qpso change 
almost linearly with an increasing distance from the crack tip, but for the layers located very close to the 
specimen edge (x3/B=0.5), the value of the parameter Qpso increases with an increasing distance from the 
crack tip (Figs 9d-f). A smaller value of the parameter Qpso for the layers located close to the edge is not 
surprising because near the edge we should expect a stress state similar to the state with the dominance of plane 
stress. Along the specimen axis, the state is expected to be similar to that with the dominance of plane strain. 
 Figure 10 compares the values of the parameters Qpso and Q* averaged across the thickness, designated as 
Qpso

av and Q*
av. The results were obtained at two distances from the crack tip, r=1.0J/0 and r=2.0J/0, for a 

whole spectrum of loads. The value of the parameter Qpso
av decreases with an increasing external load (expressed 

by the level of the J-integral). The lowest values of the parameter Qpso
av are reported for the CC(T) specimens, 

while the highest for the DEN(T) specimens (Fig.10a). As can be seen, the differences between the values of the 
parameter Qpso

av  for the two analyzed distances from the crack tip are small for all the specimen types considered. 
In the case of the SEN(T) specimen, the curves Qpso

av=f(J) almost coincide for both distances from the crack tip. 
The Q*

av=f(J) curves, however, are slightly different (compare Figs 10b and 10c). Initially, the parameter Q*
av 

decreases with an increasing external load, but then after the curve Q*
av=f(J) reaches a minimum, the parameter 

Q*
av increases. The lowest values of the parameter Q*

av are observed for the CC(T) specimens, while the highest 
for the DEN(T) specimens (Figs 10b and 10c, respectively). The further from the crack tip, the higher the value of 
the parameter Q*

av at the same value of the external load. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.10.  Comparison of the values of the parameters Qpso (a) and Q*
 (b, c) averaged across the thickness of the 

CC(T), DEN(T) and SEN(T) specimens at B=40mm, a/W=0.70, W=40mm, n=5, 0=315MPa, with 
the results reported for a whole spectrum of loads. 

 

 A comprehensive analysis of the parameters Qpso
av and Q*

av should also indicate the dependence on 
the thickness, the crack length and the material constants – see Fig.11. Figures 11a and 11b indicate a clear 
influence of the thickness on the values of the parameters Qpso

av and Q*
av. The smaller the thickness, the 

lower the value of the parameter Qpso
av. Specimens with a smaller thickness are characterized by a lower 

level of geometric constraints (Fig.11a). An increase in the thickness causes an increase in the level of 

a) 

 

b) c)

Q
* av
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constraints expressed by the parameter Qpso
av (Fig.11a). In the case of the parameter Q*

av, an inverse 
relationship is observed (Fig.11b); the greater the thickness, the lower the value of the parameter Q*

av. 
 
a) 

 

b) c)

d)

 

e) f)

g)

 

h) i)

 

Fig.11.  Relationship between the specimen thickness and the values of the parameters Qpso
av and Q*

av (a and 
b, respectively). Influence of the relative crack length a/W on the values of the parameters Qpso

av and 
Q*

av (c and f, respectively). Changes in the distribution of the curves Qpso
av=f(J) and Q*

av=f(J) (d and 
e, respectively) for the specimens differing in the yield strength. Influence of the strain hardening 
exponent n in the RO law on the values of the parameters Qpso

av and Q*
av (g and h and I, 

respectively). 
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 The two parameters, Qpso

av and Q*
av, are considered to be measures of the constraints dependent on 

the crack length (Figs 11c and 11f, respectively). The value of the parameter Qpso
av is lower when the crack is 

shorter and the level of constraints is lower (Fig.11c). The parameter can be identified with Q stresses 
defined by O’Dowd [9, 10]. The two parameters are calculated in the same way both for the predominantly 
plane strain conditions and for the three-dimensional problems considered in this paper; the reference state is 
the level of stresses calculated according to the HRR solution for the predominantly plane strain conditions. 
In the case of the parameter Q*

av, the influence of the relative crack length is illustrated in Fig.11f. As can be 
seen, the longer the crack length, the smaller the value of the parameter Q*

av. However, it is important to note 
that changes in the values of this parameter are directly related to the stress triaxiality coefficient Tz, which is 
also calculated numerically. Thus, when the parameter Q*

av is calculated, the reference distribution of 
stresses changes for the particular layers across the specimen thickness. From the analysis of the results of 
the numerical calculations it is clear that the effect of the crack length should be assessed separately for each 
geometry, taking into account the appropriate material characteristics. 
 Figures 11d and 11e illustrate the relationships between the yield strength and the parameters Qpso

av 
and Q*

av, respectively. The higher the value of the yield strength, the higher the level of the geometric 
constraints expressed by the value of the parameter Qpso

av (Fig.11d). With the value of the J-integral being 
the same, the value of the parameter Qpso

av will be lower for a material characterized by a low yield strength. 
The curves Qpso

av=f(J) plotted for the specimens under analysis are generally similar in shape; the curves 
Qpso

av =f(J) are lowest for the materials with the lowest yield strength (Fig.11d). In the case of the parameter 
Q*

av (Fig.11e), its values are lower when the yield strength and the J-integral are lower. Then, the curves 
Q*

av=f(J) reach a minimum. However, after an increase in the external load (expressed by the value of the J-
integral), the value of the parameter Q*

av increases differently, according to the yield strength (Fig.11e).  
 The two parameters, Qpso

av and Q*
av, are also dependent on the strain hardening exponent in the RO 

law. The higher the degree of hardening, the lower the level of the geometric constraints expressed by the 
parameter Qpso

av (Fig.11g). The higher the value of the strain hardening exponent in the RO law, the higher 
the curves Qpso

av=f(J) (Fig.11g). The changes in the parameter Qpso
av as a function of the J-integral (expressed 

by the value of the external load) coincide with the changes in Q stresses determined for specimens under 
predominantly plane strain conditions, which are described in [7]; it is important to note, however, that the 
analysis presented in this paper refers to 3D geometries. The parameter Qpso

av declines gradually with an 
increasing external load; for certain configurations of geometry and material, it approaches a state of 
saturation (Fig.11g). This paper does not contain all the results obtained. The greatest influence of the strain 
hardening exponent on the distribution of the curves Qpso

av=f(J) was reported for the CC(T) specimens, while 
the smallest for the SEN(T) specimens. 
 Figures 11h and 11i show changes in the parameter Q*

av as a function of the J-integral for specimens 
with different degrees of material hardening. The higher the degree of hardening, the lower the curves 
Q*

av=f(J). The changes in the values of the parameter Q*
av as a function of the J-integral are not uniform; 

they are dependent on the configuration of the specimen geometry and material. The values of the parameter 
Q*

av obtained for two specimens with the same geometry and yield strength, characterized by extreme values 
of the strain hardening exponent n in the RO law (n=3.36 and n=20) differ by about 20%. The lower the 
degree of hardening, the higher the values of the parameter Q*

av at the same value of the J-integral. 
 
5. Conclusions 
 
 This paper has briefly analyzed selected measures of the geometric constraints for cracked plates 
under tension; however, further research in this area is essential. From the author’s experience it is evident 
that determining the relationship between the measures of the constraints, the element geometry and its 
material characteristics requires considering each geometry separately (see e.g. [7]). This paper has described 
problems related to these constraints and methods of their assessment; however, creating a complete 
catalogue of numerical solutions will allow us to fully analyze the different aspects of the definitions of the 
material, the crack length, the specimen thickness and the variations of these parameters. 
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The following are the major conclusions drawn from the study of the measures of the geometric constraints 
determined for certain 3D geometries subjected to tension: 

 the distance from the crack tip and the location of the layer across the specimen thickness have a 
substantial effect on all the measures of geometric constraints considered in this paper for 3D 
problems; 

 the averaged values of the stress triaxiality parameters, (m/0)av, (m/eff)av and (Tz)av, decrease with 
an increase in the external load; 

 the lowest values of the averaged stress triaxiality parameters, i.e., (m/0)av, (m/eff)av and (Tz)av, were 
reported for the CC(T) specimens, while the highest were obtained for the DEN(T) specimens; for the 
cases studied, the differences between the curves (m/0)av=f(J), (m/eff)av=f(J) and (Tz)av=f(J) were 
not large; 

 the stress triaxiality parameters, i.e., (m/0)av, (m/eff)av and (Tz)av, are practically independent of the 
relative crack length, as suggested in [7]; 

 the material constants, i.e., the yield strength and the exponent in the RO law, affect the parameters 
(m/0)av, (m/eff)av and (Tz)av; the influence of the yield strength is very clear, but the strain hardening 
exponent is responsible for a difference of about 15% between the values of the same stress triaxiality 
parameters for a material undergoing considerable strain hardening (n=3.36) and a material exhibiting 
poor strain hardening (n=20); 

 the specimen thickness has a considerable effect on the averaged measures of the geometric 
constraints discussed in this paper, i.e., stress triaxiality parameters – (m/0)av, (m/eff)av and (Tz)av –
as well as measures of the in-plane constraints [7] – Qpso

av and Q*
av; 

 the averaged values of the measures of geometric constraints in the form of the parameters Qpso
av and 

Q*
av are greatly dependent on the relative crack length, the strain hardening exponent and the yield 

strength; the relationships between the measures of the constraints and the different factors should be 
studied separately for each geometry, as shown in [7], using the example of Q stresses defined by 
O’Dowd [9, 10]. 

 In the near future, the author of this paper intends to develop a program code with a built-in library 
of numerical solutions, which will contain all the FEM-based calculation results concerning the assessment 
of elastic-plastic parameters of fracture mechanics, which can be considered as measures of geometric 
constraints. The library of numerical solutions could be used to handle engineering problems, for example, 
the determination of the state of stresses around the crack front in three-dimensional structural elements or 
the determination of fracture toughness or tensile strength of structural elements using failure assessment 
diagrams (FADs) or the crack driving force (CDF) technique [16].  
 
Acknowledgements 
 
 The research reported herein was supported by a grant from the Faculty of Mechatronics and 
Machine Design at Kielce University of Technology (project No. 01.0.09.00/2.01.01.01.0027 
MNSP.MKTM.17.002). 
 
Nomenclature 
 
 a    crack length  
 a/W    relative crack length  
 B    specimen thickness  
 b    uncracked ligament of the specimen (b=W-a)  
 CC(T)    center cracked plate in tension 
 CDF    Crack Driving Force Diagram 
 DEN(T)    double edge notched cracked plate in tension 
 E    Young’s modulus  
 ESmax    size of the largest FE 
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 ESmin    size of the smallest FE 
 f(t)    time function 
 FAD    Failure Assessment Diagram 
 FE    Finite Element 
 FEM    Finite Element Method 
 FITNET    European FITness-for-service NETwork 
 HMH    Huber-Misses-Hencky hypothesis  
 HRR    Hutchinson-Rice-Rosengren 
 i, j    components of the stress tensor 
 In(n, pso)    quantity dependent on the material through the exponent n, and the method of loading, calculated for 

the plane strain state 
 In(n, Tz)    quantity dependent on the material through the exponent n, the Tz parameter, the method of loading 

and the specimen thickness 
 J    J – integral 
 Jfar    J – integral calculated numerically using far-field integration contour  
 n    strain hardening exponent in the Ramberg-Osgood relationship 
 Q     Q - stress defined by O’Dowd and Shih 
 Q*    the in-plane constraints parameter defined by Graba and Neimitz (the differences between numerical 

stresses and Guo solution) 
 Q*

av    average across the specimen thickness value of the Q* parameter 
 Qpso    the in-plane constraints parameter defined as the differences between numerical stresses and HRR 

solution for plane strain state 
 Qpso

av    average across the specimen thickness value of the QPpso parameter 
 P    external load 
 P0    limit load 
 r, , z    coordinates of the polar coordinate system hooked on crack tip 
 rw    radius of the arc in crack tip 
 SEN(T)    single edge notched cracked plate in tension  
 Tz    stress triaxiality coefficient defined by Guo Wanlin 
 vLL    load line displacement  
 W    width of the specimen  
 x1, x2, x3    Cartesian coordinates: x1, x2 - in the crack plane, x3 - in the thickness direction 
 x3/B    normalized coordinate in the thickness direction (x3/B=0 – center of the specimen, x3/B=0.5 – free 

surface of the specimen) 
     constant in the Ramberg-Osgood relationship 
     Poisson’s ratio 
     normalized distance from the crack tip, calculated as =r·J/0 
 (m/0)av    average across the specimen thickness value of the m/0 ratio (parameter) 
 (m/eff)av    average across the specimen thickness value of the m/eff ratio (parameter) 
 0    strain corresponding to the yield stress (0=0/E) 
 0    yield stress 
  11, 22, 33,    normal components of the stress tensor 
 22_FEM    numerical value of crack opening stresses 
 22_GUO    the value of crack opening stresses resulting from the Guo solution 
 22_pso    the value of crack opening stresses resulting from the plane strain state solution 
 eff    effective stresses calculated according to the HMH hypothesis  
 ij    stress tensor defined for 3D issues 
 ij_pso    stress tensor defined for plane strain state 
 m    normal stresses 
 (Tz)av    average across the specimen thickness value of the Tz parameter 
   , ,ij zn T      functions dependent on the material through the exponent n, the angle  and Tz parameter 

   , ,ij n pso      functions dependent on the material through the exponent n, the angle , calculated for plane strain state 

 2D    two dimensional 
 3D    three dimensional 
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