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Abstract

This paper develops PD-type iterative learning control schemes for a class of uncertain
batch processes subject to nonrepetitive disturbances. By means of two-dimensional/repetitive
setting the conditions for batch-to-bach error convergence and H∞ disturbance attenuation
are formulated and analyzed. Subsequently, the procedure for computing the desired control
law matrices is formulated in terms of solvability of linear matrix inequalities. The pro-
posed control law is able to fulfil the imposed design specifications, i.e., they are suitable for
the batch processes with time-varying uncertainties as well as non-repetitive disturbances.
An illustrative example is used to validate the proposed control scheme and demonstrates a
possible applicability of the developed results.

1 Introduction

In the recent years, increasing research effort has been directed at the development of ILC schemes,
which are one of the most popular feedforward control scenarios for improving tracking response in
systems that perform a given task repeatedly. Each repetition of a given task is known as a trial,
or pass, and when a trial is complete, the system resets to the same initial conditions and the
next trial can begin. This allows to use the information collected from the previous trials, such
as control input and error signals, to modify the current control input signals, aiming to track the
desired trajectories of the controlled plant and hence the desired trial-to-trial performance level is
reached. Specifically, ILC aims to construct the control input signals such that the output tracks
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the reference as accurately as possible. Hence, the basic ILC problem is to design both feedback and
learning controllers which produce such control signals to ensure that the error sequence generated
over the trials converges to the prescribed value.

A detailed overview of main developments in ILC research can be found in, e.g., the survey
papers [1, 3, 14], where the last of these has a special focus on run-to-run control as found in
the chemical process industries. Anyway, a great benefit of using ILC has been demonstrated
in industrial robotics, see, e.g., [10], where the pick and place operation common in many mass
manufacturing processes is an immediate fit to ILC, and wafer stage motion systems, see, for
example, [6].

As known, the primary challenge to ILC is to obtain trial-to-trial error convergence of the
resulting system. However, the error convergence should be achieved even if there is uncertainty in
the plant model which additionally is affected by non-repetitive disturbances. Clearly, these factors
make the problem more complex and a robust ILC scheme should be designed to keep the tracking
performance within the acceptable range. A possible approach, see, for example, [1, 3] as starting
points for the literature, to ILC design for nominal and uncertain plants is to first apply a feedback
control law to stabilize and/or produce acceptable along the trial dynamics and then apply ILC
to force trial-to-trial error convergence of the resulting system. Hence, this classical approach
includes separate procedures for designing feedback and learning controllers where, for example,
the ILC learning update (control law) is calculated as the inverse of the dynamics resulting from
the feedback controller design. However, due to the finite nature of the time axis, the properties
along the trial are not particularly addressed by many papers. The main reason behind this issue
is the fact that the response of the linear system can never become unbounded in a finite time.
Therefore, the main drawback of classical approaches to design ILC schemes is that the tracking
error or control signal may become unacceptably large before convergence finally occurs. Thus, it
is evident that application of two-dimensional/repetitive setting, see [13], allows us to study the
convergence properties of ILC in two directions: the time direction (p-direction) and the trial-to-
trial direction (k-direction). This means that both transient response and trial-to-trial convergence
goals can be simultaneously satisfied and hence a great performance superiority is reached. Often
these requirements are defined over the entire frequency spectrum but most of design requirements
and specifications are defined for limited frequency ranges of relevance. Specifically, the possibility
to specify different performance specifications has considerable practical significance since common
performance issues occur over different and limited frequency ranges. For example, trial-to-trial
error convergence rate is in the ‘low’ frequency range whereas low sensitivity to non-repetitive
disturbances and sensor noise is rather in ‘high’ frequency range.

The contribution of this paper is to provide new insights into the currently known ILC de-
sign procedures with the two-dimensional/repetitive setting. Specifically, systematic guidelines for
design of robust ILC laws are proposed for plants with time-varying uncertainties. Additionally,
the conditions for attenuating non-repetitive disturbances are included. The generalized version
of Kalman-Yakubovich-Popov (KYP) lemma [8] is extensively used to attenuate disturbances at
specific frequencies, whereas the most of currently known results cannot impose such performance
specifications. Moreover, the proposed approach leads to design based on LMI computations. In
particular, sufficient LMI-based conditions for the existence of a robust ILC updating law are
derived together with the design algorithms for the associated controller matrices.

Throughout this paper, the null and identity matrices with the required dimensions are denoted
by 0 and I, respectively, and the notation Y ≺ 0 (respectively Y � 0) means that the matrix Y



is negative definite (respectively, positive definite). The notation (?) represents the transposed
elements in some symmetric matrices and sym{M} is a shorthand notation for M +MT .

The following well-known results are adopted from the literature and used in developing the
new results in this paper.

Lemma 1 [4] Given a symmetric matrix Υ and two matrices Λ, Σ of compatible dimensions, there
exist a matrix W satisfying

Υ + sym
{

ΛTWΣ
}
≺ 0, (1)

if, and only if the following projection inequalities hold

Λ⊥
T

ΥΛ⊥ ≺ 0, Σ⊥
T

ΥΣ⊥ ≺ 0, (2)

where Λ⊥ and Σ⊥ are arbitrary matrices whose columns form a basis of null spaces of Λ and Σ,
respectively. Clearly, this means that ΛΛ⊥ = 0 and ΣΣ⊥ = 0.

Lemma 2 [12] Given matrices X , Y, Z = ZT , ∆ of compatible dimensions, then

Z + sym{X∆Y} ≺ 0,

for all ∆ satisfying ∆T∆ � I if, and only if, there exists ε > 0 such that

Z + εXX T + ε−1YTY ≺ 0.

2 Problem statement and preliminaries

Let p ∈ [0, α − 1] be the discrete-time index where α is the number of time steps for each batch
and k ≥ 0 be the batch index.

In this paper, we consider the following model of a batch process over a finite time interval
p ∈ [0, α− 1], 

zx(p, k) = [A+ ∆A(p, k)]x(p, k)

+ [B + ∆B(p, k)]u(p, k)+w(p, k),

y(p, k) = Cx(p, k),

(3)

where x(p, k) ∈ Rnx ,u(p, k) ∈ Rnu , y(p, k) ∈ Rny and w(p, k) ∈ Rnx represent, respectively, the
process state, input, output, and external disturbance vectors at time instant p and batch number k.
Furthermore, z is the forward shift operator along the time (p) axis, i.e., zx(p, k) = x(p+1, k). The
given matrices A, B, C are supposed to be real with compatible dimensions. Furthermore, ∆A(p, k)
and ∆B(p, k) represent admissible time-varying uncertainties (modelled as additive perturbations
to the nominal model matrices), that may be not repetitive from batch to batch, specified as

∆A(p, k)=H∆(p, k)EA, ∆B(p, k)=H∆(p, k)EB, (4)

where H, EA and EB are known constant matrices and ∆(p, k) is unknown time-varying matrix
with Lebesgue measurable elements bounded by

∆T(p, k)∆(p, k) � I. (5)



The problem can now be formulated as follows. A given batch process of (3) is supposed to
execute repetitive tasks of tracking the desired reference signal {Yr(p), p = 1, 2, . . . , α} with the
initial resetting condition x0 , i.e. x(0, k) = x0, ∀k ≥ 0. Also, the output tracking error is defined
as

e(p, k) = Yr(p)− y(p, k) (6)

and the output tracking error and inputs are recorded for each batch. Then the primary task is
to use these recorded data to generate an appropriate control input in the next batch. In other
words, the objective is to construct a sequence of ILC inputs {u(·, k)}k≥0 such that the tracking
error converges to zero or is below the prescribed level and hence the performance is improved in
the batch-to-batch domain. Therefore, the convergence condition on the input and error can be
defined as

lim
k→∞
‖e(·, k)‖ = 0, lim

k→∞
‖u(·, k)− u(·,∞)‖ = 0,

where ‖·‖ denotes the norm on the underlying function and u(·,∞) is termed the learned control.
According to the aforementioned issues, this paper proposes analysis and design over a repetitive

process setting since the dynamics of repetitive processes evolve in two independent directions and
information in the temporal domain is limited to a finite duration. As the result this setting gives a
systematic way to simultaneously consider behaviour along the time axis and from batch-to-batch.
Therefore, the next section provides the adaptation of repetitive processes setting for ILC design
of uncertain processes affected by disturbances.

2.1 Repetitive process model for ILC schemes

To formulate the ILC design problem over the repetitive process setting, let

δx(p, k+1) = x(p, k+1)−x(p, k),

δu(p, k+1) = u(p, k+1)−u(p, k),

δe(p, k+1) = e(p, k+1)−e(p, k),

δw(p, k+1) = w(p, k+1)−w(p, k).

(7)

Then, according to (3), (6) and (7), we have

e(p, k+1) =e(p, k)− Cδx(p, k + 1),

zδx(p, k+1) =Aδx(p, k+1)+Bδu(p, k+1)

+$(p, k+1),

(8)

where
A =A+∆A(p, k+1),B = B+∆B(p, k+1),

$(p, k+1) =[∆A(p, k+1)−∆A(p, k)]x(p, k)

+[∆B(p, k+1)−∆B(p, k)]u(p, k)

+δw(p, k+1).

It deserves to point out that $(p, k + 1) 6= 0 for any non-repeatable uncertainties and/or external
disturbances. Next, consider a classical formula for learning process of updating control input
sequence as

u(p, k + 1) = u(p, k) + r(p, k + 1), (9)



where r(p, k+ 1) is the modification of the control input. Then it is found from (7) and the above
formula that

e(p, k+1)−e(p, k)=−CAδx(p−1, k+1)−CBδu(p−1, k+1)

−C$(p−1, k+1).

Next, define the vectors

x(p, k)=δx(p−1, k+1), u(p, k)=δu(p−1, k+1),

$(p, k)=$(p−1, k+1),
(10)

to write
x(p+ 1, k) = Ax(p, k)+B(p, k)+$(p, k). (11)

A widely used, ILC law to determine an input at the subsequent batches takes the form (9) where

r(p, k + 1) =K1δx(p, k + 1) +K2e(p+ 1, k)

−K3(e(p+ 1, k)− e(p, k)).
(12)

In the above formula K1, K2 and K3 are compatibly dimensioned control law matrices to be found.
Application of (12) results in the controlled dynamics written as[

zx(p, k)
ze(p−1, k)

]
=A

[
x(p, k)
e(p−1, k)

]
+B0e(p, k)+B1$(p, k),

e(p, k+1) =C
[
x(p, k)
e(p−1, k)

]
+D0e(p, k)+D1$(p, k),

(13)

where

A=

[
A+BK1 BK3

0 0

]
, B0 =

[
B(K2−K3)

I

]
, B1 =

[
I
0

]
,

C=
[
−C(A+BK1) −CBK3

]
, D0 =I−CB(K2−K3),

D1 =− C.

Remark 1 Having the repetitive model of (13) we can address 3 different forms of ILC laws. In
particular, when K2 6= K3 the PD-type ILC law is addressed. On the other side, when K3 = 0 then
the P-type ILC law is addressed. Finally, set K2 = K3 to address the D-type ILC law.

3 Robust PD-type ILC scheme design

Given repetitive process model (13), the problem of selecting of K1, K2, K3 in (12) can be formu-
lated by means of LMI-based stability condition for these processes. In a next step, this result will
be extended to propose the design method for the robust ILC scheme with the requirement for H∞
non-repetitive disturbance attenuation - see [11] for more details on H∞ disturbance attenuation
for discrete repetitive processes. To proceed, introduce the matrices

Π1 =

[
1 0
0 −γ2

1

]
,Φ =

[
1 0
0 −1

]
, (14)

where a scalar γ1 is a priori known. The following lemma gives an LMI-based sufficient condition
for robust stability along the pass of discrete repetitive processes described by (13) and this result
is adopted from [2].



Lemma 3 Let γ1 be a positive scalar satisfying 0 < γ1 ≤ 1. Then a linear repetitive process
described by (13) is stable along the pass if there exist compatibly dimensioned P1 � 0, P2 � 0 such
that [

A I
C 0

]
(Φ⊗ P1)

[
A I
C 0

]T
+

[
B0 0
D0 I

]
(Π1⊗P2)

[
B0 0
D0 I

]T
≺0 (15)

is feasible.

Clearly, the result of Lemma 3 cannot be directly applied for the considered ILC design since there
exist product terms between control law matrices and matrix variables P1 and P2. Additionally,
the unknown matrix ∆(p, k) is coupled too. To convert it into LMI problem and reduce the some
conservatism imposed by uncertainty we firstly write[

A B0

C D0

]
=

 A 0 0
0 0 I

−CA 0 I

+

 ∆A(p, k+1) 0 0
0 0 0

−C∆A(p, k+1) 0 0


+

 B
0

−CB

+

 ∆B(p, k+1)
0

−C∆B(p, k+1)

[K1 K3 N
]

=
(
A+∆A

)
+
(
B+∆B

)
K,

where N = K2 −K3. Additionally, let us introduce the below matrices

H =

 H
0
−CH

 , EA =
[
EA 0 0

]
to rewrite ∆A and ∆B as

∆A = H∆(p, k)EA, ∆B = H∆(p, k)EB.

Therefore, the following result can be established.

Theorem 1 Let γ1 be a positive scalar satisfying 0 < γ1 ≤ 1. Suppose also that an ILC law (12)
is applied to an uncertain batch process (3). Then the resulting ILC scheme described as a discrete
linear repetitive process of the form (13) is robustly stable along the pass, and hence batch-to-batch
error convergence occurs, if there exist compatibly dimensioned matrices P1 � 0, P2 � 0, W , F1,
F2, F3, Y and scalars β ∈ (−1, 1) and ε1 > 0 such that the following LMI is feasible

Υ1 −sym{W} (?)
Υ3+AW T +BY−βW Υ2+βsym

{
AW T +BY

}
Fb−[0 I]W −F T

a +[0 I](AW T +BY )T

0 ε1H
T

EAW+EBY EAW+EBY

(?) (?) (?)
(?) (?) (?)

P2−sym{F3} (?) (?)
0 −ε1I (?)

(EAW+EBY )

[
0
I

]
0 −ε1I

≺0,

(16)



where

Υ1=

[
P1 0
0 0

]
,Υ2=

[
−P1 0

0 −γ2
1P2

]
,

Υ3 =

[
0F1

0F2

]
, Fa=

[
F1

F2

]
, Fb=

[
0F3

]
.

(17)

Also, if this last LMI is feasible then the corresponding ILC law matrices of (12) are given by[
K1 K3 N

]
= YW−T , K2 = N +K3. (18)

Proof 1 Assume that there exist P1 � 0, P2 � 0, W , F1, F2, F3, Y and scalars β ∈ (−1, 1) and
ε1 > 0, such that the LMI of (16) is feasible. Then application of the Schur’s complement formula
to (16) gives

Γ1 + ε1H1H1
T + ε1

−1E1
TE1 ≺ 0,

where

Γ1 =

 Υ1 −sym{W} (?)
Υ3+AW T +BY−βW Υ2+βsym

{
AW T +BY

}
Fb−[0 I]W −F T

a +[0 I](AW T +BY )T

(?)
(?)

P2−sym{F3}

 , H1 =

 0
H
0

 ,
E1 =

[
EAW+EBY EAW+EBY (EAW+EBY )

[
0
I

]]
.

Next, assign Z ← Γ1, X ← H1, Y ← E1, ∆ ← ∆(p, k)and by Lemma 2 the last inequality is
feasible if and only if

Γ1 + sym {H1∆(p, k)E1} ≺ 0.

Introducing M =
(
A+∆A

)
+
(
B+∆B

)
K the last inequality can be is transformed to the form

of (1) with

Γ=

Υ1 ΥT
3 F T

b

Υ3 Υ2 −Fa
Fb −F T

a P2−sym{F3}

 ,ΛT =

 I 0
βI 0
0 I

 ,
W=

[
W

[0 I]W

]
,Σ=

[
−I MT 0

]
.

(19)

Next, by Lemma 1, the inequality (16) is feasible if and only if the inequality (1) holds for matrices
chosen as in (19). Also, by construction, the matrices Σ⊥ and Λ⊥ are

Σ⊥ =

MT 0
I 0
0 I

 , Λ⊥ =

βI−I
0

 .



Also, it follows immediately that the first inequality in (2) for this case is[
(β2−1)P1 0

0 −γ2P2

]
+sym

{[
0
−βI

] [
F1 F2

] [I 0
0 I

]}
≺ 0.

(20)

Therefore, by assigning

Γ←
[

(β2−1)P1 0
0 −γ2P2

]
,ΛT←

[
0
−βI

]
,

W←
[
F1 F2

]
,Σ←

[
I 0
0 I

]
and in virtue of Lemma 1 with Λ⊥ = [I 0]T and noting that Σ⊥

T
ΓΣ⊥ vanishes, (20) is feasible if

and only if (β2−1)P1 ≺ 0. This meas that one can require β ∈ (−1, 1) and P1 � 0 to satisfy (20).
Additionally, using the notation in (19) the second inequality in (2) yieldsAP1AT−P1 AP1CT 0

CP1AT CP1CT−γ2
1P2 0

0 0 P2


+sym


I 0 0

0 I 0
0 0 I

F1

F2

F3

 [BT0 DT0 −I
] ≺0.

(21)

Finally, assign

Γ←

AP1AT−P1 AP1CT 0
CP1AT CP1CT−γ2

1P2 0
0 0 P2

 ,W←
F1

F2

F3

 ,
ΛT ← I, Σ←

[
BT0 DT0 −I

]
and by Lemma 1, the inequality (21) can be directly transformed into (15). This implies robust sta-
bility of the resulting repetitive process (13) and hence and hence batch-to-batch error convergence
occurs. This completes the proof.

4 Nonrepetitive disturbances attenuation

In this subsection, we address the problem of nonrepetitive disturbance attenuation. Specifically,
we are interested in imposing additional constraint that allows the following frequency specification

supθ∈Ω‖G(ejθ)‖∞ < γ2, (22)

be satisfied for the prescribed value of γ2 > 0, where G(ejθ) = C(ejθI − A)−1B and

A =
(
A+∆A

)
+
(
B+∆B

)
K, B =

[
B1

D1

]
, C = [0 I].



As seen, the specification (22) imposes the desired small gain (or H∞ norm) specification over
finite frequency domain Ω. In other words, (22) captures the desired attenuation of nonrepetitive
disturbances since G(ejθ) denotes the frequency response matrix from $(p, k) to e(p, k). Also,
to include the finite frequency domain specifications, Ω is the finite frequency range of interest
as shown in Table 1, and LF, MF, and HF stand for low, middle and high frequency ranges
respectively. As known, the generalized KYP (gKYP) lemma has been proven to be an efficient

Table 1: Frequency ranges of interest
LF MF HF

Ω |θ| < θl θ1 ≤ θ ≤ θ2 |θ| > θh

tool for a given transfer function to satisfy a frequency domain specification over a limited frequency
range. Moreover, it results in conditions over LMIs. Thus it can be directly applied to address the
considered attenuation problem. The required gKYP lemma (its dual version) is given below for
convenience.

Lemma 4 [8] For a given linear discrete time-invariant system with the transfer function matrix
G(z) and the frequency response matrix G(ejθ) = C(ejθI − A)−1B, the following statements are
equivalent

i) The frequency domain inequality[
(ejθωI − AT )−1CT

I

]∗
Θ

[
(ejθωI − AT )−1CT

I

]
≺ 0 (23)

holds ∀θ ∈ Ω where Ω is the frequency range, i.e. θ belongs to a subset of real numbers
denoted by Ω and specified as in Table 1.

ii) There exist matrices Q � 0 and a symmetric matrix P3 such that[
A I
C 0

]
(Ψ∗ ⊗Q+Φ∗ ⊗ P3)

[
A I
C 0

]T
+Θ≺0, (24)

where Phi is as in (14) and Φ is defined with the reference to specified choices of frequency ranges
given below in Table 2.

Table 2: The values of Ψ over Ω
LF MF HF

Θ |θ| < θl θ1 ≤ |θ| ≤ θ2 |θ| > θh

Ψ

[
0 1
1 −2 cos(θl)

] [
0 ejθc

e−jθc −2 cos(θd)

] [
0 −1
−1 2 cos(θh)

]

where

θd =
θ2 − θ1

2
, θc =

θ1 + θ2

2
.



Importantly, to satisfy (22), i.e. H∞ disturbance attenuation over finite frequency domain, the
matrix Θ is fixed as

Θ =

[
B 0
0 I

]
(Π2⊗I)

[
B 0
0 I

]T
, (25)

where Π2 = diag{1,−γ2}. In view of the above lemma, the following result can be obtained.

Theorem 2 Let γ1, γ2 be given positive scalars. Suppose also that an ILC law (12) is applied
to an uncertain batch process (3). Then the resulting ILC scheme described as a discrete linear
repetitive process of the form (13) is robustly stable along the pass and the finite frequency H∞
performance in (22) is satisfied for all θ ∈ Ω and hence batch-to-batch error convergence occurs if
there exist compatibly dimensioned matrices P1 � 0, P2 � 0, P3 � 0, Q � 0, W , F1, F2, F3, Y
and scalars β ∈ (−1, 1) and ε2 > 0 such that the LMIs (16) and

Ψ∗ ⊗Q+Φ∗ ⊗ P3 0

[
0
B

] [
0 ΥT

4

ε2H ΥT
4

]
0 −I 0

[
0 I
]

ΥT
4[

0 BT
]

0 −γ2
2I 0[

0 ε2H
T

Υ4 Υ4

]
Υ4

[
0
I

]
0 −ε2I



+sym




[
I
I

]
[0 I]

0
0


[
−[W WAT +Y TBT ] WCT 0 0

]
≺0,

(26)

hold and where Υ4 = EAW+EBY . Moreover, if LMIs in (16) and (26) are feasible then the ILC
law matrices of (12) given by (18) ensure that the resulting ILC scheme is robustly convergent
from batch to batch and keep the H∞ disturbance attenuation below γ2.

Proof 2 Assume that (16) and (26) hold. Then feasibility of (26) implies that W is non-singular
and hence invertible. Clearly, the feasibility (16) ensures the batch-to-batch error convergence for
uncertain processes. Next, apply the Schur’s complement formula to (26) and employ the similar
lines to that of the proofs of Theorem 1. Subsequently, it can be observed that it is possible to
rewrite the inequality (24) asAT CT

I 0
0 I

T Υ5

[
0
0

]
[
0 0

]
−γ2

2I

AT CT

I 0
0 I

≺0, (27)

where

Υ5 =(Ψ∗ ⊗Q+Φ∗ ⊗ P3)+

[
0 0
0 BBT

]
.

Furthermore, by means of Lemma 1 (or the Finsler Lemma which is a specialized version of
Lemma 1) the LMI (2) can be obtained, and the proof is complete.



5 Illustration

To illustrate effectiveness of the developed approach, the ILC algorithm design problem for the
linearized dynamics of injection molding process is considered. Following studies in [9, 7, 5], the
nozzle pressure response is formulated as the following state-space model,

x(p+1, k)=

([
1.607 1
−0.6086 0

]
+∆A(p, k)

)
x(p, k)

+

([
1.239
−0.9282

]
+∆B(p, k)

)
u(p, k)+ω(p, k),

y(p, k) =
[
1 0

]
x(p, k)

where the time-varying uncertainties ∆A(p, k), ∆B(p, k) are of the form (4) with

H=

[
0.5 0
0 0.5

]
, EA =

[
0.0804 0
−0.0304 0

]
, EB =

[
0.062
−0.0464

]
.

For illustration, the target profile takes the following form:

Yr(p) =


200, 1 ≤ p < 100;

200 + 5(p− 100), 100 ≤ p < 120;

300, 120 ≤ p ≤ Tp = 200.

For practical implementation the initial part of Yr(p) is pre-filtered by Gf = (z−1 + z−2)/(3− z−1).
Also assume that |∆(p, k)| ≤ 1, together with non-repetitive disturbance w(p, k) = 5 sin(0.1δ1p +
0.2δ2k), where δ1 and δ2 are randomly selected from interval [0, 1]. To demonstrate the effectiveness
of the proposed results, the design procedure given in Theorem 2 is executed for γ1 = 0.5, β = 0.1,
γ2 = 10 and the low frequency range (θl = 0.3). The obtained solution gives the following controller
matrices

K1 = [−1.2948− 0.8127], K2 = 0.8473, K3 = 0.0073

The resulting controlled system is stable along the trial and hence trial-to-trial error convergence
occurs. This can be verified in Figure 1 where the tracking error in the form of the RMSE (Root
Mean Squared Error) is shown and compared to the previously presented results in [7, 5]. From
comparison in Figure 1, the RMSE of the developed method is significantly lower when comparing
with the method of [7, 5]. Obviously, the effectiveness of the presented ILC design is apparent.

6 Conclusions

In this paper we have developed new results on the iterative learning tracking control problem
for a class of uncertain batch processes with nonrepetitive disturbances. A robust PD-type ILC
law based on the repetitive process theory and H∞ disturbance attenuation over finite frequency
has been developed. Sufficient conditions for the existence of a monotonically convergent ILC law
have been obtained in terms of the corresponding LMIs. In order to reduce the conservatism of the
control problem, additional slack matrix variables have been introduced. A simulation study based
on the nozzle velocity control system of injection molding process verifies the effectiveness of this
design method. Topics for future research include a detailed investigation into continuous-time
processes and more complex control laws which use only measured outputs.
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Figure 1: RMSE values obtained in the simulation study.
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[10] M. Norrlöf. An adaptive iterative learning control algorithm with experiments on an industrial
robot. IEEE Transactions on Robotics and Automation, 18(2):245–251, 2002.

[11] W. Paszke, K. Ga lkowski, E. Rogers, and D. H. Owens. H∞ and guaranteed cost control
of discrete linear repetitive processes. Linear Algebra and its Application, 412(2–3):91–131,
2006.

[12] I. R. Petersen. A stabilization algorithm for a class of uncertain systems. System & Control
Letters, 8:351–357, 1987.

[13] E. Rogers, K. Ga lkowski, W. Paszke, K. L. Moore, P. H. Bauer, L. H ladowski, and
P. Dabkowski. Multidimensional control systems: case studies in design and evaluation.
Multidimensional Systems and Signal Processing, 26(4):895–939, 2015.

[14] Y. Wang, F. Gao, and F.J. Doyle. Survey on iterative learning control, repetitive control, and
run-to-run control. Journal of Process Control, 19(10):1589–1600, 2009.


