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The main purpose of this work is to verify the influence of the weighting procedure in the Least Squares 
Method on the probabilistic moments resulting from the stability analysis of steel skeletal structures. We discuss 
this issue also in the context of the geometrical nonlinearity appearing in the Stochastic Finite Element Method 
equations for the stability analysis and preservation of the Gaussian probability density function employed to 
model the Young modulus of a structural steel in this problem. The weighting procedure itself (with both 
triangular and Dirac-type) shows rather marginal influence on all probabilistic coefficients under consideration. 
This hybrid stochastic computational technique consisting of the FEM and computer algebra systems (ROBOT 
and MAPLE packages) may be used for analogous nonlinear analyses in structural reliability assessment.  
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1. Introduction  
 
 One of the most challenging problems in the design of skeletal structures is a demand for an extra 
uploading with the additional technological equipment, maybe far beyond the design limits given in the 
initial structural project. As far as the steel or related thin-walled structures are concerned, verification of the 
capacity margin must be complemented each time with the stability analysis taking into account both global 
as well as local instabilities. Computational analysis provided with the use of the Finite Element Method 
(FEM) or some of its stochastic counterparts should account for all the external loads, where the 
technological one is a subject of an incrementation procedure in our model leading in turn to a determination 
of the critical load multipliers. It is usually done by means of the linearized buckling FEM analysis, where 
constitutive, initial stress and initial displacements stiffness matrices compose the overall engineering 
structure stiffness. On the other hand, the uncertainty sources appear as geometrical imperfections, stochastic 
decreases of the given cross-sections due to corrosion (Melchers, 1987; Sadovský and Drdácký, 2001) and/or 
environmental external loadings as ice covers or wind pressures. They all influence the reliability index 
calculated according to the first (FORM) or the second order reliability methods (SORM), where the limit 
function is a difference between computed normal stresses and these corresponding to the stability limit. 
Some other issues connected with uncertainty analysis, particularly in stability verification, may be found in 
Elishakoff (1983), Elishakoff (2000), Elishakoff et al. (2001).  
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 Therefore, the main purpose of this work it to show the Weighted Least Squares Method approach to 
the perturbation-based Stochastic Finite Element Method (Kamiński, 2013; Kamiński and Solecka, 2013; 
Kamiński and Strąkowski, 2013) being a generalization of the Second Order Second Moment (SOSM) 
stochastic perturbation approach (Kleiber and Hien, 1992). Particularly, we demonstrate its application to the 
stability analysis of the steel skeletal structures (towers) to verify an opportunity to upload them significantly 
beyond initial designing limits in the presence of some random parameters. This analysis is carried out for 
the steel telecommunication tower having Young modulus randomized according to the Gaussian probability 
distribution function, rectangular cross-section with linear geometrical convergence to the highest segment 
and subjected to the wind blow as well as dead, technological and live loads. We provide the critical load as 
the unit vector acting downwards and placed at the tower top, which simulates the capacity margin for this 
structure and accounting for the extra equipment to be mounted for the future telecommunication 
applications. Considering the statements of Eurocode 0 we need to verify also whether the critical load 
magnitude is the Gaussian variable - to use further the simplified reliability index formula that consists of a 
ratio of the expectations to the standard deviations of the limit function. It should be underlined that this 
critical load magnitude is automatically a limit function itself in our model, so that the output coefficient of 
variation is an inverse of the reliability index according to the Cornell theory (Melchers, 1987). We examine 
convergence of all the probabilistic characteristics examined together with the order of stochastic 
perturbation method applied as well as with the distribution of the weights inside a computational domain; 
all as the functions of input coefficient of variation and approximating polynomial order. The general 
observation is that we get the distribution of the critical force close enough to the Gaussian one and stable 
values of all the computed quantities for an input coefficient smaller or equal to 0.10. Finally, we notice a 
linear interrelation in-between the output and input uncertainty sources, so the random dispersion level is 
maintained during stability problem solution including even all geometrical nonlinearities in a buckling 
phenomenon. Considering the above it seems that the general idea to calculate the critical force from an 
algebraic relation close to the Euler one (Timoshenko and Gere, 1961), where the critical load magnitude is 
proportional to the initial Young modulus of the structural steel, is quite well justified in the steel skeletal 
structures (Elishakoff, 2000; Kamiński and Strąkowski, 2013). 
 
2. Governing variational equations  
 

 Let us consider a statistically homogeneous and bounded region 3  with no initial stresses and 
strains. Elastic properties and geometry of   may be treated as design random parameters and they result in 
the random displacement field and random stress tensor satisfying the boundaryvalue problem of linear 
elasticity given below. Let us assume that there are non-empty subsets of external boundaries   and u

of  , where the stress and displacement boundary conditions are defined. The elasticity equilibrium 
problem can be proposed as  
 
  ij ijkl klC   , (2.1) 

 

   , ,ij i j j i
1

u u
2

   , (2.2) 

 
  ,ij j if 0    , (2.3) 

 
  ii uu ˆ ;               i ux  , (2.4) 
 
  ˆ
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where  
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e e
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
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     
, (2.6) 

 
for i, j, k, l=1, 2, 3. Let us note that theoretical foundations and some numerical aspects of elliptic boundary 
value problems with random coefficients are proposed by Kleiber and Hien (1992). This system is 
generalized in our study to the following incremental form:  
 
  ,kl l kf 0    ;      ix , (2.7) 

 
  kl klmn mnC   ;     ix , (2.8) 
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1

u u u u u u u u
2

           ;     ix  , (2.9) 

 
with the following incremental boundary conditions:   
 
  ˆ

kl l kn t   ;      ix ,      k=1,2,3, (2.10) 

 
  kk uu ˆ ;         uix  ,      k=1,2,3. (2.11) 

 
 This problem is also solved for the overall displacement vector  ku x , the strain tensor  kl x  and 

the stress tensor  kl x , where the tensor functions  kl x ,  kl x  are the first and the second Piola-

Kirchhoff tensors   
 
  kl km ml km ml km mlF F F           ; ix   (2.12) 

 
and where  
 
  ,km k mF u   ; ix  .  (2.13) 

 
 The following functional defined on ku  is introduced in order to obtain an additional variational 

formulation:   
 

       , ,
ˆ1 1

k klmn kl mn kl i k i l k k k k2 2
J u C u u f u d t u d

 

                . (2.14) 

 
 Its minimization with respect to this ku  leads to the Finite Element Method equations described in 

details in the next section.   
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3. Stochastic Finite Element Method equations  
 
 In the FEM approach we adopt the following well known discretization of the displacement function 
increments in the RFM analysis (Kamiński, 2013; Kamiński and Solecka, 2013; Kamiński and Strąkowski, 
2013):  
 

  ( )p pu q D b          ,        p=0,...,n-1;         , α=1,…,N. (3.1) 

 
 We rewrite additionally strain tensor components discretization as  
 

  p p
kl kl klB q B D h       ,       p=0,...,n-1;           =1,…,N;         k, l=1, 2, 3; (3.2) 

 
and the stress tensor components  
 

  p p
ij ijkl kl ijkl kl ijkl klC C B q C B D h         ,  

   (3.3) 
  p=0,...,n-1;          , =1,…,N;          i, j, k, l=1, 2, 3. 
  
 Inserting these statements into the geometrical and constitutive equations one may obtain the 
functional given above as the one proposed by Kleiber (1985).  
 

         1 2 31 1 1
2 3 4

J q K q q K q q q K q q q q Q q                              (3.4) 

 
where  
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and also  
 

   ˆ

e e

E E

i i i i
e 1 e 1

Q f d t d  
  

           . (3.8) 

 
 Of course, the first order stiffness matrix consists of the constitutive, initial stress and initial 
displacement matrices, i.e.,  
 

         1 e uK K K K
      . (3.9) 
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 Minimization of the functional given in Eq.(3.4) with respect to the displacements vector Δqα leads 
to the statement  
 

       1 2 3K q K q q K q q q Q                  , (3.10) 

 
which is most frequently solved in engineering practice in the reduced form 
 

        e uK K K q Q
        . (3.11) 

 
 We solve numerically the linearized stability problem given by the following matrix equation 
(Kleiber, 1985; Kleiber and Hien, 1997):  
 

        ( ) ( ) ueK q K K q 0
      σ q  (3.12) 

 
where the pair  ,qσ  are the stresses and displacements obtained for the linear problem under the external 

load Q ; the load multiplier λ is introduced as  

 
  , ,Q Q Q          σ q q qσ σ .  (3.13) 
 

 Further, µ and q are the eigenvalue and eigenvector corresponding to the bifurcation point, which is 
expressed by the following well known condition:  
 

               ( ) ( ) ( ) ,u ueK q K K K K q 0 
             σ q σ q q . (3.14) 

 
 It simply follows the basic incremental equilibrium equation  
 

        ( ) ( ) ueK K K q Q
       qσ  (3.15) 

 
where the next possible load increment denoted by Q  induces extra stresses σ  and extra 
displacements q  such that  
 

        ( ) ( ) ueK K K q Q
           q qσ σ . (3.16) 

 
 We apply here Taylor expansion of the first order to these increments  
 

       ( ) ( ) ( )K K K  
      σ σ σ σ  (3.17) 

 
and  
 

       ( ) ( ) ( ) ,u u uK K K      q q q q q , (3.18) 

 



304  M.Kamiński and J.Szafran 

to linearize the last increment with respect to its arguments.  
 Traditionally, the Least Squares Method needs an iterative solution of the initial matrix equation 
around the expectation of the given input parameter and there holds here  
 

             
      

( ) ( ) ue
i i ii i i

K q K K q 0
      qσ  (3.19) 

 
where i=1,…, n, , ,...,1 N   . It results in a sequence of the pairs  )(, iib   used further to recover the 

polynomial response function for the critical load multiplier as in Kamiński (2013)  
 

     j j
cr cr b D b    ,          j=1, ..., m. (3.20) 

 
It leads through the generalized stochastic perturbation technique to the up of the fourth order probabilistic 
characteristics (expectations, coefficients of variation, skewnesses and kurtosis) of this multiplier. Computer 
analysis includes three studies – first we postpone last two stiffness matrices in Eq.(3.16), then we drop off 
the last matrix by only and finally, we solve this equation including all its components.  
 We consider a residual in a given trial point indexed by i as a difference between this trial value and 
a predicted curve to get the Weighted Least Squares Method (WLSM) matrix formulation relevant to the 
stability analysis with uncertain parameters, i.e.,  
 

     ( )
( ) , i
i icr ir f b D   . (3.21) 

 

 Determination of the coefficients )(iD  proceeds by using of the following gradient equations system: 
 

  
 

 
   

  ; ,...,

n
2
i n

i ii 1
j j

i 1

r
r r

2 j 1 n
D D





 
      
 


 . (3.22) 

 
Substituting Eq.(3.21) into Eq.(3.22) results in   
 

   

  
 

,
; ,...,

i
n i

i j
i 1

f b D
2 r 0 j 1 n

D


  


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 Denoting here for the gradient 

  
 

, i
i

ij j

f b D
J

D





 , we solve it for the coefficients D(k)   

 

   
  ; ,...,

n n n
k

ij ik ij cr i
i 1 j 1 i 1

J J D J j 1 n
  

    . (3.24) 

 
 We modify this approach by the Aitken weighting procedure, where each trial point is associated to 
some parameter wii such that the least squares functional equals to  
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   



n

i
iiiw rwS

1

2 . (3.25) 

 
 Then, the LSM gradient becomes   
 

   

  
 

,
; ,...,

i
n i

ii i j
i 1

f b D
2 w r 0 j 1 n

D


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
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 Finally, the linear equations system to be solved yields  
 

   
  ; ,...,

n n n
k

ij ii ik ii ij cr i
i 1 j 1 i 1

J w J D w J j 1 n
  

    . (3.27) 

 
 In further computational experiments we use (a) the uniform weights equal 1 within the entire 
interval of trial values, (b) triangular distribution of the weights having maximum at the expectation in the 
middle of this interval and minimum values at both ends and finally, (c) the Dirac-like distribution, where the 
largest weight corresponds to the input expectation and unit weight is adopted elsewhere. The key question is 
whether the weighting process increases probabilistic convergence of the stochastic perturbation technique 
and the overall quality and stability of the results for the increasing value of the input coefficient of variation 
or not.  
 The final procedure is a symbolic calculation of the probabilistic moments of the critical load 
multiplier. It proceeds using the general order Taylor expansion of a stability limit cr  with respect to the 
input Young modulus e (Kamiński, 2013; Kamiński and Solecka, 2013; Kamiński and Strąkowski, 2013) 
 

  
! 0

n ii
0 icr

cr cr i
i 1 e e

e
i e 

 
    


  (3.28) 

 
where the order n is smaller than the polynomial order provided in Eq.(3.20). It is inserted into successive 
equations for the basic probabilistic moments and characteristics of limit cr  itself. We show as an 
illustration the expected values; there holds  
 

         
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n ii
0 icr
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i 1 e e

E e p x dx e p x dx
i e
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  

  . (3.29) 

 
 Putting in above ε=1 (Kleiber and Hien, 1992) and using the definitions of the central probabilistic 
moments of the variable e one can get here  
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 
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
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
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 (3.30) 

 
where all the moments of an odd order simply vanish here because of basic property of Gaussian variables  
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   
  
, ,

!!,
i i

0 i 2k 1 k
e

e i 1 i 2k

    
  

 (3.31) 

 
 Analogous perturbation-based formulas for higher moments and coefficients may be found in 
Kamiński (2013), Kamiński and Solecka (2013), Kamiński and Strąkowski (2013), for instance. 
 
4. Computational experiments   
 
 As a numerical illustration to this problem we consider the steel telecommunication tower (60.0 
meters high) being a spatial structure with the rectangular cross-section consisting of ten segments, where up 
to the ninth segment (on the level of 54.0 meters) it has linear geometrical convergence and forms a prism 
with the dimensions 4.82 m  4.82 m at the base and 0.90 m  0.90 m at its top. The basic structural elements 
such as the edge beams and rebars are connected with bolts in lower segments and are welded at the two 
highest segments of this structure. Numerical analysis is provided using a combination of the structural 
analysis FEM system ROBOT (ROBOT Structural Analysis Professional 2011, User’s Manual, 2010) and 
the computer algebra system MAPLE, where FEM discretization is built up with the use of 400 two-noded 
elastic truss 3D elements and 228 two-noded elastic 3D beam elements connected in 806 nodal points. The 
edge beams are designed with the round pipes of the diameters varying from  139.7 mm  8 mm until 
60.3 mm x 3 mm; the rebars are taken as the cold formed C-bars (lower two segments), round pipes 
(segments at the middle of the tower) and full round cross-sections – the remaining upper cross-sections of 
this structure. The rebars are distributed according to the X pattern for 7 lower segments and in K pattern for 
the last three segments. The detailed specification of the steel profiles and bolted connections is given in 
Tab.1 below, while their spatial distribution and photo of the structure are given in Fig.1. We notice there a 
steel ring with the external diameter equal to 3470 mm located at the level of 55.2 meters above the 
foundations, where two sector antennas cantilevers (about 1350 mm long) are attached. We account for the 
dead loads, technological installation weight as well as the wind pressure here. The critical load multiplier is 
added to four unit concentrated forces acting downwards and distributed symmetrically on the top steel ring 
at the ends of antennas cantilevers.  
 
Table1. Structural steel profiles and connections in the telecommunication tower. 
 

Segment no. Legs profiles [mm] Rebars profiles [mm] Bolts [mm]  
10 

(tower top) RO 60.3 x 3.6 ϕ22 M16 (class 8.8) 

9 RO 70.0 x 4.0 RK 25.0 x 3.0 M20 (8.8) 

8 RO 76.1 x 5.0 RO 38.0 x 4.0 M20/M12 (8.8) 

7 RO 88.9 x 6.3 C 30 x 30 x 3 M20/M12/M18 (8.8)

6 RO 88.9 x 6.3 C 30 x 30 x 3 M20/M12/M18 (8.8)

5 RO 114.3 x 6.3 C 40 x 40 x 3 M22/M12 (8.8) 

4 RO 114.3 x 6.3 C 40 x 40 x 3 M22/M12 (8.8) 

3 RO 139.7 x 6.3 C 50 x 50 x 4 M24/M16 (8.8) 

2 RO 139.7 x 8.0 C 50 x 50 x 4 M24/M16(8.8) 

1 (tower base) RO 139.7 x 8.0 C 50 x 50 x 4 M24/M16 (8.8) 
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Fig.1.  Photo (left), discretization of the entire structure (middle) and its top (right) in the FEM system 

ROBOT. 
 
 We use steel S355 for all the structural members with the Young modulus defined as the input 
random variable distributed according to the Gaussian probability function with the expected value equal to 
e=210 GPa (Poisson ratio  equals 0.3, of course), where its coefficient of variation α is an additional design 
parameter of the computational example. We use eleven trial points to recover the response functions 
between the critical value and the Young modulus and these are 189.0, 193.2, 197.4, 201.6, 205.8, 210.0, 
214.2, 218.4, 222.6, 226.8, 231.0 GPa. The Finite Element Method analysis includes the following three 
different case studies: (a) initial stiffness matrix (composed using the elastic part only) with the 
corresponding critical values given in the left graphs, (b) including extra stiffness fluctuation from the 
longitudinal forces on the deformed elements (middle graphs of the probabilistic moments) and (c) including 
finally the stresses variations resulting from the computed deformations (right series of the next graphs). We 
account for maximum ten critical values of the engineering structure examined, numerical error during 
determination of the critical values is defined as equal to 0.0001, iteration number equal to 40, while the 
eigenproblem has been entirely solved using the subspace iteration algorithm. A nonlinear stability analysis 
(of the second and of the third order) has been carried out via the incremental approach using 5 load 
increments, 40 iterations for each load increment, maximum 3 reductions of a single increment, coefficient 
of the increment length taken as 0.5 and tolerance of the residual forces equal to 0.0001 has been adopted. 
 The resulting probabilistic moments and coefficients – expectations, coefficients of variation, 
skewness and kurtosis – are shown in Figs 2-13 for the first critical value and in Figs 14-24 – for the fifth 
critical load multiplier. This visualization is provided for each probabilistic characteristics in three 
independent rows - first for the unweighted LSM (Figure 2 for the first eigenvalue expectation - weights 
distribution is taken as the set [1,1,1,1,1,1,1,1,1,1,1]), then for the triangular weighting scheme - 
[1,2,3,4,5,6,5,4,3,2,1] (Figure 3 for this case) and finally, with the use of the Dirac-type weights distribution - 
[1,1,1,1,1,6,1,1,1,1,1] (Fig.4). These functions are presented also with respect to the order of stochastic 
perturbation technique, see Fig.2, for instance, as well as in addition to the approximating polynomial order, 
see Figs 3-4, for example, where both odd and even order terms are included. We contrast probabilistic 
moments of the first critical value against these adjacent to the fifth one to verify any possible qualitative and 
quantitative differences in-between such characteristics for various forms of the stability loss (in 
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compression, bending and combined bending-twisting admissible for the structures of similar structural 
morphology).  
 

 
 
Fig.2.  Expected values for the first critical value in the unweighted LSM approach (1st order – left, 2nd order 

– middle, 3rd order – right graph). 
 

 
 
Fig.3.  Expected values for the first critical value in the triangular weighted LSM approach (1st order – left, 

2nd order – middle, 3rd order – right graph). 
 

 
 
Fig.4.  Expected values for the first critical value in the Dirac weighted LSM approach (1st order – left, 2nd 

order – middle, 3rd order – right graph). 
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Fig.5.  Coefficients of variation for the first critical value in the unweighted LSM approach (1st order – left, 

2nd order – middle, 3rd order – right graph). 
 

 
 
Fig.6.  Coefficients of variation for the first critical value in the triangular weighted LSM approach  

(1st order – left, 2nd order – middle, 3rd order – right graph). 
 

 
 
Fig.7.  Coefficients of variation for the first critical value in the Dirac weighted LSM approach (1st order – 

left, 2nd order – middle, 3rd order – right graph). 
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Fig.8.  Skewness for the first critical value in the unweighted LSM approach (1st order – left, 2nd order – 

middle, 3rd order – right graph). 
 

 
 
Fig.9.  Skewness for the first critical value in the triangular weighted LSM approach (1st order – left,  

2nd order – middle, 3rd order – right graph). 
 

 
 
Fig.10.  Skewness for the first critical value in the Dirac weighted LSM approach (1st order – left, 2nd order – 

middle, 3rd order – right graph). 
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Fig.11.  Kurtosis for the first critical value in the unweighted LSM approach (1st order – left, 2nd order – 

middle, 3rd order – right graph). 
 

 
 
Fig.12.  Kurtosis for the first critical value in the triangular weighted LSM approach (1st order – left, 2nd order 

– middle, 3rd order – right graph). 
 

 
 
Fig.13.  Kurtosis for the first critical value in the Dirac weighted LSM approach (1st order – left, 2nd order – 

middle, 3rd order – right graph). 
 
 A comparison of Figs 2-4 with 14-16 shows that the weighting procedure does not influence 
significantly probabilistic convergence of the stochastic perturbation technique as it was noticed for some 
elasticity problems before (Kamiński, 2013). The results are perfectly independent from an input coefficient 
of variation for all case studies in the interval  . , .0 0 0 075  and diverge further. However, the relative 

differences obtained for larger values are really negligible as they are smaller than 1% of the initial 
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expectation. The largest values of the critical forces are noticed for the triangular distribution of the weights 
(as far as the weighting procedure is analyzed) and, independently, when elastic and stress stiffness matrices 
are inserted into the eigenproblem solution. The coefficients of variation (Figs 5-7 and Figs 17-19) are 
practically insensitive to the weighting scheme at all for both the first and fifth critical value (the same 
intervals and extreme values are obtained even for a various composition of the stiffness matrix of the 
system).  
 Considering the fact that the third and fourth order probabilistic moments need longer Taylor 
expansion to preserve satisfactory accuracy, we propose the 16th order perturbation analysis (Figs 8 and 11 
for the first critical value), contrary to the first two approaches, where up to the 10th order expansions were 
preferred. A general observation is that these coefficients diverge probabilistically out of the interval 

 . , .0 0 0 075 , while inside it we obtain 0 independent of the order of both perturbation and the polynomial 

response function. We obtain both positive and negative values of these coefficients in the same weighting 
scheme and different stiffness components (graphs in the same row) as well as for the same stiffness and 
various weighting procedures (graphs in the same columns). Extreme values of skewness and kurtosis are 
obtained here in the tenths and hundredths (close to the values characteristic for the Gaussian distribution). 
Once more, the weighting procedure has no apparent clear influence on the final results and, especially, their 
tendencies with increasing coefficient of variation of Young modulus for steel.  
 

 
 
Fig.14.  Expected values for the fifth critical value in the unweighted LSM approach (1st order – left,  

2nd order – middle, 3rd order – right graph). 
 

 
 
Fig.15.  Expected values for the fifth critical value in the triangular weighted LSM approach (1st order – left, 

2nd order – middle, 3rd order – right graph). 
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Fig.16.  Expected values for the fifth critical value in the Dirac weighted LSM approach (1st order – left,  

2nd order – middle, 3rd order – right graph). 

 

 
 
Fig.17.  Coefficients of variation for the fifth critical value in the unweighted LSM approach (1st order – left, 

2nd order – middle, 3rd order – right graph).  

 

 
 
Fig.18.  Coefficients of variation for the fifth critical value in the triangular weighted LSM approach  

(1st order – left, 2nd order – middle, 3rd order – right graph).  
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Fig.19.  Coefficients of variation for the fifth critical value in the Dirac weighted LSM approach (1st order – 

left, 2nd order – middle, 3rd order – right graph). 

 

 
 
Fig.20.  Skewness for the fifth critical value in the unweighted LSM approach (1st order – left, 2nd order – 

middle, 3rd order – right graph). 

 

 
 
Fig.21.  Skewness for the fifth critical value in the triangular weighted LSM approach (1st order – left,  

2nd order – middle, 3rd order – right graph).  
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Fig.22.  Skewness for the fifth critical value in the Dirac weighted LSM approach (1st order – left, 2nd order – 

middle, 3rd order – right graph). 

 

 
 
Fig.23.  Kurtosis for the fifth critical value in the unweighted LSM approach (1st order – left, 2nd order – 

middle, 3rd order – right graph). 

 

 
 
Fig.24.  Kurtosis for the fifth critical value in the triangular weighted LSM approach (1st order – left,  

2nd order – middle, 3rd order – right graph).  
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Fig.25.  Kurtosis for the fifth critical value in the Dirac weighted LSM approach (1st order – left, 2nd order – 
middle, 3rd order – right graph). 

 

 Further, it is remarkable in Figs 8-10, 11-13 as well as in Figs 20-22 and 23-25 that for smaller values 
of the input coefficient of variation α, the resulting skewnesses and kurtosis of the critical force are with a 
relatively small error equal to 0, while for larger values (α>0.075) these differences diverge a little typically for 
the generalized stochastic perturbation technique. The resulting coefficient of variation for both the first (Figs 
5-7) and the fifth critical load magnitude (Figs 17-19) is linearly dependent upon the input one; they have the 
same values with a negligibly small error, independently of the number of stiffness matrix components 
included into the stochastic eigenproblem solution. It makes it possible to confirm a linear interrelation between 
the stability limit and Young modulus of the steel skeletal tower, which proves the Gaussian probability 
distribution of the force equivalent to the bifurcation point. Since the first and the fifth critical values behave 
probabilistically in almost the same manner, we observe that the classical Euler formula together with 
probabilistic basic algebraic formulas may certainly serve in reliability assessment and simplified engineering 
calculations in that particular area. These conclusions are significantly affected neither by the stochastic 
perturbation order nor by the polynomial response function order, which guarantees satisfactory accuracy of 
both qualitative and quantitative results. A common additional observation is that probabilistic characteristics 
higher than the second one start to diverge for an input coefficient of variation larger than 0.15. Some small 
numerical discrepancies are also noticed for the expectations, but overall differences are smaller than a single 
percent for the entire availability interval of the input coefficient of variation α(e).  
 

5. Concluding remarks  
 

1. The computational analysis provided in this paper shows with no doubt that the uncertain critical loading 
under consideration remains Gaussian when Gaussian Young modulus is taken as the input random 
variable. This conclusion comes from the fact that the output coefficient of variation is equal to the input 
one independently of the deterministic stability analysis type, order of a stochastic perturbation and the 
polynomial response function and of the fact that both skewness and kurtosis equal 0 with a negligible 
error. It means that the output critical force is a linear combination of the input randomness source, which 
practically recovers the Gaussian PDF here (Elishakoff, 1983). Further, it enables the usage of the Euler-
like formula (Timoshenko and Gere, 1961) in practical calculations for the steel tower as it is noticed for 
both first and fifth (higher) critical load value and should be examined further in addition to the inertia 
moment of the edge beams in such a tower. It is remarkable that this study obeys parameter sensitivity 
analysis of the critical load for the towers with respect to the Young modulus as the stochastic 
perturbation technique is based on the sensitivity gradients of the increasing orders (at least of the first 
and of the second order (Kleiber and Hien, 1997) and as such may be engaged straightforwardly to both 
deterministic and probabilistic optimization procedures. It is also apparent that the weighting procedure 
taken into account during the Least Squares Method recovery of the response functions for the critical 
load is practically of a marginal importance for the considered probabilistic characteristics.  

2.  The computational study presented in this work is a preliminary study for the full extended stability analysis 
and examination of the limit states in high steel telecommunication towers. One of the most important issues 
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is the local analysis of the structural members, where shell elements with random thickness should be 
accounted for together with limited stiffness of welded and/or bolted connections (Hadianfard and Razani, 
2003; Papadopoulos et al., 2009). Such an analysis could reflect stochastic corrosion usually having 
apparently local character (Sadovský and Drdácký, 2001). The second, very important issue is post-buckling 
of the steel towers, where computational determination of the post-buckling paths (Schafer and Graham-
Brady, 2006; Steinböck et al., 2008), especially in the stochastic context (especially with the use of 
generalized stochastic perturbation technique) and in reliability analysis using FORM and SORM, can be of 
the paramount importance. Needless to say, analogous numerical analysis would be interesting in the field 
of aluminum telecommunication structures (Kamiński and Solecka, 2013).  

 

Nomenclature 
 

 klB   – derivatives of the shape functions 

 ijklC  – elasticity tensor 

 ( ) ( ),j jD D  – unknown coefficients in Least Squares Method polynomial approximations 

  iE   – expected value of the critical load i  

 e  – Young modulus 
 if  – mass forces vector 

   i
i Dbf ,  – polynomial approximation in the Least Squares Method 

 ijJ  – Jacobian matrix 

  kuJ   – potential energy functional 

  1K  – first order stiffness matrix 

  eK  – elastic part of the stiffness matrix 

  K 
  – initial stress stiffness matrix 

  uK  – initial displacements stiffness matrix 

 N  – total number of degrees of freedom in the FEM model 
  xpe  – probability density function of Young modulus e 

 )(ir  – Least Squares Method residuals 

 wS  – functional of the Least Squares Method weighted residuals 

 ku  – displacement vector 

 iiw  – vector of the weights in the Least Squares Method 

 tx,  – space and time variables 

  i   – coefficient of variation of the critical load i  

  i   – skewness of the critical load i  

 e  – variation of random parameter e about its mean value 0e  
 if  – increments of mass forces vector 

 Q  – vector of the generalized node forces 

 q  – vector of increments of the generalized displacements 

 it  – vector of boundary forces 

 kl , kl  – the first and the second Piola-Kirchhoff stress tensors 

 ij  – Kronecker delta 

   – perturbation parameter 
 kl  – strain tensor 

  i   – kurtosis of the critical load i  
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 cr  – critical load multiplier 

 i  – i-th critical load multiplier  

  i e  – i-th central probabilistic moments of random parameter e  

   – Poisson ratio 
   – mass density 
 kl  – stress tensor 

  e  – standard deviation of random parameter e  

   – shape function matrix 

 Ω – computational domain 
  , u  – external boundaries of   to define stress and displacements boundary conditions 

  . 0  – mean value of the parameter  .  
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