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In the paper the influence function and the method of partial discretization in free axisymmetric vibration 

analysis of multilayered circular plates of constant and linearly variable thickness were presented. The effects of 
shear deformation and rotary inertia for the core as well as the facings were neglected. An analytical investigation 
based on the classical plate theory was made for the multilayered plate which satisfies Sokołowski’s condition. 
Discretization of mass and replacing stiffness of a fixed circular plate were presented. Formulas of influence 
matrix and Bernstein-Kieropian’s estimators for different steps of discretization were defined. The influence of 
variable distribution of parameters on the value of double estimators of natural basic and higher frequency of a 
sandwich circular plate was investigated. 
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1. Introduction 
 

 A sandwich plate is an important structural element in aeronautical, astronautical and naval 
engineering. This plate is composed of three layers, a thick core and two thin faces.  A sandwich construction 
has been used for many years in aerospace industries and aviation as well as in marine and civil engineering 
applications due to the specific stiffness, light weight and design versatility besides good damping 
characteristics and maximum fatigue resistance.  
 A lot of researchers have been concerned with the dynamic behavior of sandwich structures 
(Magnucki et al., 2014; Lal and Rani, 2013; Zhang, 2013; Duan, 2005; Kączkowski, 2000). The boundary 
value problem of transverse vibrations for the multilayered and homogeneous fixed plates is one of the most 
frequently considered issues in engineering practice (Starovoitov et al., 2009; Ebrahimi and Rastgo, 2008). 
The necessity of considering the discrete masses and variable thickness of the plate leads to particular 
problems. Many authors showed that ignoring varying thickness of the plate, even in the case of thin plates, 
leads to significant errors in the calculation of natural frequencies (Conway, 1958b). Conway (1958b) found 
characteristic equations using Bessel functions for the particular case where the thickness of the plate varies 
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as a power function. The exact solution to the vibration problems for a circular and annular constant and 
variable thickness plates having an additional annular mass and spring inclusions was provided by among 
others, Roberson (1951), Szewczyk (2007) and Kukla (2007). 

 In this paper free axisymmetric vibrations of a sandwich circular plate of constant and linearly 
variable thickness with additional annular mass were considered. For the vibrations of the plate with variable 
parameters the method of partial discretization has been used. It is based on the properties of the influence 
function used to, e.g., the analysis of the bending curve and reactions of elastic supports of a beam 
considered in an earlier work (Jaroszewicz et al., 2014).  

 
2. Formulation of the boundary value problem  

 
 If we consider a three-layered circular plate which satisfies Sokołowski’s condition (Sokołowski, 

1958; Kączkowski, 2000)  presented in the following form 
 

  ,f 2

c

E
n

E
   (2.1a) 

 
  Hnh h   (2.1b) 

 
where Ef – modulus of elasticity of facing, Ec – modulus of elasticity of core, h – thickness of three-layered 
plates, hH – thickness of homogeneous plates, then the plate will satisfy the classical plate theory (CPT). 

 The equation of free axisymmetric vibrations of a circular plate of variable thickness (CPT) has the 
form (Timoshenko and Woinowsky-Krieger, 1940) 
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Eq.(2.2) has the  following form (Conway, 1958b) 
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where r – radial coordinate  0 r R  ,   – Poisson’s ratio, E – modulus of elasticity, m – coefficient of 

variable thickness of the plate, h – thickness of the plate,   – density,   – parameter of frequency, ( )w r  – 
function of deflection of the plate, D – stiffness bending of the plate of variable thickness. 
 The equation of axisymmetric vibrations of sandwich circular plates with spring and mass inclusions 
has the following form (Jaroszewicz and Zoryj, 2005) 
 

       K2
i i ii 1
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M
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    ,   ( )1 2
i z i iD m c i 1 K         (2.6) 

 
where L[w] – differential operator of Euler’s equation appropriately for a plate of constant and linearly 
variable thickness, Dz – replacing stiffness of the sandwich plate, M – mass of the plate, i  – inclusions, im  

– annular mass on radius ,i ir c  – stiffness of elastic supports on radius ir  (for considered plates ic 0 ), K –

number of inclusions,   – Dirac’s delta. 
 In a particular case, operator (2.5) for the plate of constant thickness is in the following form 
 

    .
4 3 2

m 0 4 3 2 2 3

d w 2 d w 1 d w 1 dw
L w

r drdr dr r dr r                                         (2.7) 

 
 The differential operator (2.5) for the plate of linearly variable thickness has the form 
 

    . 
4 3 2

m 3 4 3 2 2

d w 8 d w 12 d w
L w

rdr dr r dr                                           (2.8)               

 
 Fixed circular plates have boundary conditions in the following form (Vasylenko and Oleksiejčuk, 
2004) 
 

       ,   ( ) ,    ( ) / ,       ( )
dw dw

w R 0 R R 0 w 0 h 2 0 0 0
dr dr

                         (2.9) 

 
where  w 0  is an admissible bending which satisfies the classical plate theory. The solutions to boundary 

value problem (2.4), (2.9) with their derivatives are limited in r=0. 
 
3. Discretization of mass of sandwich circular plates of constant and linearly variable thickness 
 
 The radius of distribution plate’s mass ri has the following form 
 

  
( )

,  , .i
R 2i 1

r i 1 K
K


                                                  (3.1)  

 
 Based on the Guldin-Pappus theorem the equations for i-th mass of the three-layered circular plate of 
constant (m=0) and linearly (m=0) variable thickness were defined in the following form 
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where f  – density of facing, c  – density of core, h – thickness of the three-layered plate, ch  – thickness 

of core of the plate. 
 The sum of the mass from discretization equals the total mass of the plate 
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 Examples of results of calculation of the coefficient i  for discretization K 1 3    were 
presented in Tab.1.  
 
Table 1.  Value i  for discretization K 1 3    of mass of the plate of constant and linearly variable 

thickness. 
 

Circular plate of 
constant thickness

Circular plate of  
linearly variable thickness 

K 
i   i   

1 
1

1

2
    1

1

3
    

2 
1

1

2 4
 


   2

3

2 4
 


  1

1

3 8
 


   2

7

3 8
 


  

3 
1

1

2 9
 


   2

3

2 9
 


   3

5

2 9
 


 1

1

3 27
 


   2

7

3 27
 


   3

19

3 27
 


  

 
 The additional annular mass m0 Eq.(2.6) placed on radius r0 has the following form 
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                                       (3.5) 

 
 The radius of additional mass must satisfy the condition .1 2 K0 r r r R     The value of 

additional mass equals .0 0 2   (Roberson, 1951). 

 
4. Influence matrix  

 
 An example of calculation of the influence matrix for the circular plate of constant and linearly 

variable thickness was presented. The limited solution (r=0) of Euler’s Eq.(2.5)  L w 0  for the circular 

plate of constant thickness has the form 
 

       ,2
0 1 j 0 j jw r C C r F K r r H r r                                       (4.1) 
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where: Ci – constants of integral, H(r) – Heaviside’s function, Fj – unit force distribution on radius 

 , ,j 0 jr K r r  – fundamental solution of  L w  which has the form 
 

     , , ,j j2 2 2 2
0 j j j j

r r
K r r r r r r ln 0 r r R

4 r

 
      

 
.                     (4.2) 

 

 The Cauchy function  ,0 jK r r  for the circular plate of constant thickness for normalized 
r

R
 and 

jr

R
 

was presented in Fig.1. 
 

 
 

Fig.1. Cauchy function  ,0 jK r r  for the circular plate of constant thickness. 

 
 The limited solution of Euler’s Eq.(4.1) and two first boundary conditions (2.9) were used to 
calculate constants C0, C1. Taking into consideration equations ( )ij j iu r   and jF 1 , the formula of the 

influence matrix has the form (Jaroszewicz and Zoryj, 2005) 
 

        , , .2 2
ij 0 j i 0 j

1
K R r R r 2R K R r

2R
                                    (4.3)  

 

 After transforms Eq.(4.3) has the following form after transformations 
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r

R
    coefficients of the influence matrix for the plate of constant thickness have 

the form 
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8
                                        (4.6) 

 
 Based on the method of calculation of coefficients of the influence matrix presented above, Cauchy 

function  ,0 jK r r  (Fig.2) and the formula for coefficients of the influence matrix for the circular plate of 

linearly variable thickness have the following form 
 

       , 2 5 2 4 1 3
0 j j j j j

1 1
K r r r r r r r r r

6 2
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Fig.2. Cauchy function  ,0 jK r r  for circular plate of linearly variable thickness. 

 
5. Characteristic equation of natural frequency of sandwich circular plates 

 
 The record for continuous or discrete- continuous mass distribution systems can be replaced with 

one, two and n-degrees of freedom, which are characterized by the same function of stiffness. The plate’s 
mass was placed on the rings with a certain radius. The total weight of the replacement is equal to the weight 
of the plate. This procedure is used to get the universal characteristic equation of elastic systems based on 
inverse equations of motion and the theorem of Betti-Maxwell (Solecki and Szymkiewicz, 1964). The 
inverse equations of motion (K=2) for the circular plates have the following form 
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d q
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dt
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 The obtained characteristic equation has the following form 
 

  2
0 1 2a a a 0                                                             (5.2) 

where 
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where c  – Poisson’s ratio of core, f  – Poisson’s ratio of facing. 

 Taking into consideration an additional annular mass 0m

2
 and parameters  ,  0 0   the characteristic 

equation has a new form 
 

     2
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where 
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 The coefficients of characteristic Eq.(5.6) for K>2 have the following form 
 

    ,      ,      .
ii ijK K 1 K i ji

0 1 ii 2 2i 0 i 0 j i 1
ji jj

m mm
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
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 
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  
                           (5.8) 

 
 The natural basic frequency 0  of sandwich circular plates can be calculated using Bernstein-
Kieropian’s equation (Bernstein and Kieropian, 1960) 
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f c c
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where estimators of the basic natural frequency have the form 
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 
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6. Results of calculation  
 
 If factors of characteristic equation (5.6) are omitted 
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a
R

h h h
 

        
 

                ~

2
4

c
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 ,                 (6.2) 

 
estimators of axisymmetric frequency will be the same for the fixed multilayered and homogeneous circular 
plates and only the absolute value of frequency will be different. The results of an analytical calculation of 
estimators of the first three frequency parameters, coefficients of the influence matrix and the coefficients of 

the characteristic series for circular plate of constant thickness and additional mass . , 0 0
1

0 1
50

     
 

 were 

presented in Tab.2. The results of calculation of estimators of three axisymmetric frequency parameters for 
circular plates of linearly variable thickness with additional mass were presented in Tab.3. 
 
Table 2.  Results of calculations ( ; )K 2 3   of radius ir  , masses im , influence matrix    and estimators 

  for homogeneous and sandwich circular plates of constant thickness. 
 

Homogeneous and sandwich 
circular plate of constant thickness 

Homogeneous and sandwich circular plate of constant 
thickness with additional mass 

2
im

π
 1

1

2 4
 


        2

3

2 4
 


  0

1

4 5
 


     1

1

2 4
 


     2

3

2 4
 


 

iχ  1
1

2
               2

3

4
    0

1

50
         1

1

2
         2

3

4
   

βij   
. .

. .ij
0 08119 0 01315

0 01315 0 00454

 
   

 
  

. . .

. . .

. . .
ij

0 1242 0 09543 0 01422

0 0955 0 08119 0 01315

0 0142 0 01315 0 00453

 
    
  

  

ia   
a0=1 

a1=0.01185 
a2=0.0000092 


0a 1   

 .1a 0 01810  
 .2a 0 0000224  

i   

.0 9 5279    

.1 19 3337    

.2 58 6213    

.0 7 723    

.1 15 4016    

.2 42 0161   
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Table 3.  Results of calculations  ;K 2 3   of radius ir , masses im , influence matrix    and estimators 

  for homogeneous and sandwich circular plates of linearly variable thickness. 

 

Homogeneous and sandwich 
circular plate of linearly variable

 thickness 

Homogeneous and sandwich 
circular plate of linearly variable 
 thickness with additional mass 

im

2
       1 2

1 7

3 8 3 8
   

 
  0

1

4 5
 


     1

1

2 4
 


     2

3

2 4
 


 

i  1
1

4
               2

3

4
    0

1

50
         1

1

2
         2

3

4
   

ij  
. .

. .ij
0 5625 0 03

0 03 0 0069

 
   

 
  

. . .

. . .

. . .
ij

0 035 1 08 0 5407

1 08 0 5625 0 01315

0 5407 0 01315 0 00694

 
    
  

  

ia  
a0=1 

a1=0.02546 
a2=0.000003646 


0a 1   

 .1a 0 574  
 .2a 0 000657  

i  

.0 7 404    

.1 23 8023    

.2 40 7944    

.0 1 321    

.1 6 6152    

.2 7 6043   

 
 The examples of the influence of step discretization on the values of estimators of the basic 
frequency 0  are presented in Fig.3. The relative error between the exact values 0  (Conway, 1958b; 
Roberson, 1951) and the values from the method of partial discretization are presented in Fig.4. 
 

 
 

Fig.3.  Influence of step discretization on the values of estimators of the basic frequency 0  for the plate of 

constant  m 0  and linearly  m 3  variable thickness. 
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Fig.4.  Relative error between the exact values 0  and values from the method of partial discretization for 

the plate of constant  m 0  and linearly  m 3  variable thickness. 

 
Conclusions 
 

 Thin sandwich and homogeneous circular plates of constant and varying thickness carrying 
concentrated mass have been investigated. The influence of variable thickness and additional annular mass 
on double estimators of the basic and higher frequency of circular plates were presented. Figures 3 and 4 
show that the results produced by the discretization method are close to the exact values for only 15 steps of 
discretization. Double estimators have the same value for homogeneous and sandwich circular plates of 
constant thickness and for plates of linearly variable thickness. Non-homogeneous material has no influence 
on double estimators of the basic and higher frequency. Important is the influence of replacing stiffness of a 
non-homogeneous material on the absolute value of the basic and higher frequency i  depending on material 
properties and thickness of the facing and core. The next step in vibration analysis of circular plates will be a 
numerical (MES) and analytical investigation of the influence of a functionally graded material on 
axisymmetric frequency of Kirchoff’s and Reisner-Mindlin’s plates with mixed boundary conditions. 
 
Nomenclature 
 
 D – stiffness bending of plate 
 Dz – replacing stiffness of sandwich plate 
 Ef – modulus of elasticity of facing 
 Ec – modulus of elasticity of core 
 H(r) – Heaviside’s function 
 h – thickness of three-layered plates 
 hH – thickness of homogeneous plates 
 K – number of inclusions 

  ,0 jK r r  – influence function 

 L[w] – differential operator of Euler’s equation 
 m – coefficient of variable thickness of plate 
 m0 – additional mass  
 r – radial coordinate 
 v – Poisson’s ratio 
  w r  – function of deflection of the plate 

 i  – discrete inclusions 
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   – Dirac’s delta 
 c  – density of core 

 f  – density of facing 

 ,i j  – coefficients of influence matrix 

 0  – natural basic frequency 
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