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This paper presents the theoretical study of the system comprising an impeller and a balancing device. It deals 

with the dynamic analysis of the system, i.e., the axial vibrations of the impeller, and the system stability. The 
dynamic analysis took into account linearized hydrodynamic forces and moments generated in the longitudinal 
clearances of the seals of the impeller. The theoretical analysis was supplemented with a numerical example with 
characteristics determined for a real single-stage centrifugal pump. 
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1. Introduction  

 
 In impeller pumps, there are systems responsible for balancing or reducing the longitudinal forces 

acting along the axis of the shaft. Their role is vital as they ensure high durability and reliability of the pump 
and low energy consumption. While designing a balancing device, it is crucial to enhance the positioning 
effect of the rotating system and, at the same time, reduce the pump size (Childs, 1993; Jędral, 2001; 
Korczak, 2005). 

 The hydrostatic forces as well as inertial, damping, gyroscopic and circular forces and moments 
generated in the clearances of the balancing device are known to contribute to the changes in the natural and 
critical frequencies of the impeller and a loss in its dynamic stability, as described, for example, in Refs. 
(Childs, 1993; Martsinkovsky and Kundera, 2008; Gosiewski, 2008). 

 In the latest theoretical works (Li at al., 2011; Faria and Miranda, 2012), the transverse vibrations of 
the impeller are analyzed using a non-linear model of dynamic fluid forces generated in the seals, proposed by 
Muszynska. The results of the numerical calculations based on the complex non-linear model were represented 
in the form of dynamic trajectories of the impeller centre, Poincare maps, and bifurcation diagrams. 

 Dynamic analysis based on linearized models of the impeller-clearance seals system can also be of 
importance as it enables us to obtain analytical relationships useful in engineering practice. 

 In their previous work (Kundera and Martsinkovsky, 2014), the authors discuss a single-stage pump 
with an impeller directly connected to a system of balancing rings. The work describes the design of the 
balancing device and analyzes statically the whole rotating system. 
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 This paper is a follow-up theoretical study of the system comprising an impeller and a balancing 

device. It deals with the dynamic analysis of the system, i.e., the axial vibrations of the impeller, and the 
system stability. The dynamic analysis takes into account linearized hydrodynamic forces and moments 
generated in the longitudinal clearances of the seals of the impeller. The results are analytical 
relationships that can be easily used as the first approximation at the design stage of new impeller-based 
systems. 
 
2. Dynamic analysis  

 
 The impeller with a balancing device shown in Fig.1 has three degrees of freedom. It can perform 

radial, angular and axial vibrations simultaneously. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig.1.  Geometry of the impeller with a balancing device: 1- pump casing, 2- impeller, 3- shaft; 4 – ball 

joint; 5, 6 – longitudinal seals of the impeller; 7 – radial vanes; 8- liner disks of balance device; 9 – 
annular chamber; 10 – lateral (face) clearance. 

 
 The axial and radial vibrations of the impeller are due to the eccentricity of the longitudinal 

clearances and the convergence of the lateral clearance. The correlations described in Ref. (Martsinkovsky 
and Kundera) are relatively poor for this case because the hydrodynamic moments are one order smaller than 
the hydrodynamic forces and the influence of the eccentricity of the longitudinal clearances on their capacity 

is proportional to the value . 20 19  (relative eccentricity 1e H 1   ). The shaft deflections (angular 
vibrations) have even less influence on the capacity of the clearances and, accordingly, on the pressure in 
chamber 9 (Fig.1) and axial vibrations. Because of the poor correlation between the parameters, in the first 
approximation, it is possible to analyze the axial vibrations caused by a kinematic excitation in the form of 
predefined transverse vibrations.  

 
2.1. Equation of axial vibrations 

 
 The equation of the impeller axial vibrations, taking into account the external pressure forces, can be 

written as 
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  z 2 2 A B 1 1 e eA B

mz cz F A p p A p A A p A p         . (2.1) 

 
 After dividing the components in Eq.(2.1) by the product A nA p , we obtain the following 

dimensionless equation of the impeller axial vibrations 
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Equation (2.1) contains an unknown value of the pressure in the annular chamber 9, (Fig.1), 

which depends on the width of the lateral clearance and can be determined from the equation of 
continuity of flow through the system of seal clearances: longitudinal 6 and lateral 10. Considering the 
axial vibrations of the impeller, we omit the inertia of the fluid in these clearances; however, we take 
into account the expansion and compression of the fluid in chamber 9. For a turbulent flow through the 
longitudinal 6 and lateral (face) 10 clearances, the continuity equation can be determined as follows 
(Martsinkovsky and Kundera) 

 

    .
*. 2 1 5

2n 1 B 2 3n 2 e 2 2
V

g 1 0 19 p p p g u p p A z p
E

         .  (2.5) 

 
 The first-order differential equation in relation to the p2 variable is non-linear. In further 

transformations, we linearize Eq.(2.5) at static equilibrium, converting it into a variational form 
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 Then, dimensionless quantities are introduced into Eq.(2.6), and written in the following linear form 
(for simplicity, variation signs are omitted) 

 
   2 2 2 s 2 1 1 2 e 3 4T u u k k k k                 (2.8) 
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 In the next transformation, we write the linear Eq.(2.8) in the operational form, by substitution 

 p d dt  
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 Relationship (2.11) is substituted into Eq.(2.2), where the last term in the square brackets on the right 

side is written in a linearized form:  1 2 02 K K   . 

 After appropriate transformations, we obtain an equation of the impeller axial vibrations, which takes 
into account forces generated in the system of seal clearances. 
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 Arranging the terms according to the order of the differential operator, we obtain the equations of the 

system in the following form 
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 In Eq.(2.13), the operator of unforced vibrations and the operators determining the action of the 

external forces are as follows 
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 For the assumed model (in which we omit the inertial hydraulic resistance in the seal clearances), the 

impeller axial vibrations are described with a third-order differential equation. The operator  0D p  is a 

natural operator of the system and the equation  0D p u 0  is an equation of the unforced axial vibrations 

of the impeller. 
 Further analysis will be limited to the description of the forced vibrations and the system stability, 

assuming that the variation of the external forces , ,1 e    are described with harmonic functions: 

, ,i t i t i t
1 a1 e ae ae e e           . The responses of the linear system to these excitations (components 

of the partial solutions) are described using the following formulas 
 

       , ,e1 i t i ti t
1 1a e ea au u e u u e u u e     

    . (2.16) 
 
 Changes in the rotational velocities can be represented as a linear or exponential time function. A 

response to such changes is determined using time characteristics. 
 The amplitudes and phases of the harmonic excitations are defined by the frequency transition 

functions ( )W i , which are easy to calculate by substituting p i   into the equation of axial vibrations 
(2.13) 
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.  

 
 Isolating the real and imaginary components in the operator of unforced vibrations and in the 

operators of external forces (2.14), we have 
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 Substituting these expressions into formulas (2.17), we obtain frequency transition functions in the 

form of complex quantities (numbers), for example 
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where the amplitude- and phase-frequency characteristics describing the action of excitation 1  have the 
following form 
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 After isolating the real and imaginary parts in the expression 1W , we have 
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 Finally, the frequency characteristics take the following form 
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 By analogy, using relationship (2.18), we determine the frequency characteristics taking into account 

the action of the other excitations 
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 The frequency characteristics can be used to determine the critical rotational velocities of the 
impeller at which the vibration amplitudes reach a maximum and the vibration phases change by an angle of 
1800.  

 In the numerical example, the frequency characteristics described with the above relationships were 
determined for the same data as those used in the calculations of the static characteristics (Kundera and 
Martsinkovsky). 

 
2.2. Assessing the stability of axial vibrations 

 

 According to the Routh-Hurwitz stability criterion, the necessary and sufficient condition of stability 
of a third-order system is that the coefficients of the natural operator (2.14) should satisfy the inequity 

1 2 0 3a a a a . After the values of the coefficients are substituted into Eqs (2.15), the stability condition is 
reduced to 
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 If the expansion time constant is higher than the compression time constant, 2 2T  , then inequity 

(2.25) is satisfied at arbitrary values of the damping coefficient   (also for 0  ). Using the values of the 
constants (2.9), we obtain 
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where: 2V A H  - volume of the annular chamber; H - the chamber depth. 

 Finally, (in the first approximation) the stability condition is reduced to the following inequity 

 

  0 s0

n 20 c0

Ez
H

3 p


 

 
. (2.27) 

 

 The second fraction on the right side of this inequity is defined with formula (2.9). The chamber 
depth H is an independent parameter, easy to redesign. Thus, the stability condition (2.27) can be used while 
designing the rotating system of the pump. 
 
3. Numerical example 
 

 The calculations of dynamic characteristics were performed for an impeller of a modernized high 
speed single-stage centrifugal pump. The pump modernization involved applying an impeller with a system 
of seal clearances, shown in Fig.1. 

 The static calculations for the modernized pump are omitted here because they are presented in the 
previous work of the authors (Kundera and Martsinkovsky). 

 
1) Input parameters. 

 
 Let us assume the following geometrical dimensions of the pump impeller 
 

  R1=56mm,      R2=75mm,      R3=65mm,      R4=58mm,      R5=51mm,      R6=15mm,  
 
  l1=l2=15mm,        H1=H2=0.2mm  (with symbols being the same as those in Fig.1). 

 
 The assumptions concerning the pump performance parameters are 
 

  . ; . ; 1
n e np 3 5 MPa p 1 25 MPa 1500s    ;  

 

  / ; . ; .3 3
1 210 kg m 0 8 0 6      . 

 
2) Calculation of the surface areas of the impeller 

 

    .2 2 3 2
A 2 1A R R 7 58 10 m     ,               .2 2 3 2

B 2 3A R R 4 08 10 m     , 

 

    .2 2 3 2
2 3 4A R R 2 76 10 m      ,              .2 2 3 2

c 4 5A R R 2 40 10 m     , 

 

  . . ,3 2
2 2 cA A 0 5 A 3 96 10 m                   .2 2 3 2

e 1 5A R R 1 68 10 m      , 

 

  . , . , .2 4 2 3 2
3 6 e e 3 cA R 7 07 10 m A A A 0 5 A 1 19 10 m          , 

 
    . ; . ; .1 A B A 2 2 A e e AA A A A 0 437 A A A 0 45 A A A 0 152       . 
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Coefficients (4): . ; .1 2K 0 312 K 0 056  . 
 

3) Calculation of the frequency characteristics for the impeller-seal clearances system. 
 

 To calculate the dynamic characteristics, we had to assume the following additional parameters: 

, , , . ,9 3m 30 kg Е 2 10 Pа 10 Pа s 0 05         .с 0     
 

 
 

Fig.2. Amplitude vs. frequency and phase vs. frequency characteristics. 
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 From the frequency characteristics it is evident that the first resonance occurs at frequencies of 

3.79x103 s-1. The second natural frequency of the system axial vibrations exceeds the ranges specified for the 
admissible impeller rotational velocities.  

 Relationships (2.22)-(2.24) can be used to calculate the values of the resonance vibration amplitudes. 
If we assume relative values of the amplitudes of the external forces: .1a ea a 0 1      , then the impeller 

axial vibration amplitudes are: . . ,1a nz 0 21z 0 058 mm   . . ;еa nz 0 06 z 0 017mm   .a nz 0 024z  
.0 007 mm , respectively. 
 The results indicate that the critical angular (rotational) velocity is twice as large as the assumed 

pumping velocity. This confirms that the impeller is rigid because of the axial vibrations. Furthermore, the 
resonance amplitudes corresponding to the critical rotational velocity are not dangerous. 
 
Conclusions 
 

 In the first approximation, the impeller with a balancing device performs independent axial 
vibrations, which is a result of the kinematic excitation in the form of predetermined radial vibrations caused 
by static unbalance.  

 With the axial vibrations of the impeller, variable throttling of the fluid through the lateral (face) 
clearance acts as negative feedback. Thus, the impeller with a balancing device (containing two longitudinal 
and one lateral seal clearances) becomes a system of automatic control of the axial position of the impeller. 
Knowing the dynamic rigidity of the controller, we can calculate approximate values of natural frequencies 
and assess the stability of the axial vibrations. More accurate values of the natural frequencies are used to 
plot amplitude and phase characteristics. The analysis of the dynamics of the impeller with a balancing 
device showed that the rotating system of the pump is characterized by stability for a wide range of rotational 
velocities. 

 Observations of the prototypes of centrifugal pumps modernized in this way have been conducted 
both under laboratory and factory conditions. The findings, which confirm their numerous advantages over 
conventional pumps, include: 

 
- better vibroacoustic characteristics; 
- higher reliability and a longer service life between overhauls; 
- easier operation, assembly and transport.  
 

 It is also possible to reduce the weight and size of such pumps by eliminating the external bearing of 
the drive shaft. 

 
Nomenclature  
 
 AA , BA  – outer surfaces area of the impeller shrouds [m2] 

 , ,1 2 eA A A  – dimensionless surface areas Eq.(2.4) 

 ao, a1, a2, a3 – parameters in Eq.(2.13) 
 ( ), ( ), ( )1 eB B B     – amplitude frequency characteristics 

 Do(p) – natural operator of the system 
 E – compression modulus [N/m2] 
 e – radial displacement of the impeller axis 
 g2n, g3n – coefficients capacities of the clearances Eq.(2.5) 
 H – the annular chamber depth [m] 
 H1, H2 – width of the longitudinal clearances [m] 
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 H3 – width of the lateral clearance [m] 
 K1, K2 – dimensionless coefficients of Eq.(2.4) 
 k1, k2, k3, k4, T2, 2, s – parameters of Eq.(2.9) 
 m – impeller mass [kg] 
 N1(p), Ne(p), N(p) – excitation operators 
 ( ), ( ), ( )1 eN i N i N i    – frequency operators of external forces of Eq.(2.18) 

 pe, p1 – inlet pressure and outlet pressure of the impeller [N/m2] 
 2p  – pressure in the annular chamber of a balance device [N/m2] 

 np  –  nominal pumping pressure [N/m2] 

 Qo – fluid flow rate at the static equilibrium [m3/s] 
 R1, R2 – radii of the impeller [m] 
 R3, R4, R5 – radii of a balance device [m] 
 T1 – parameter in Eq.(2.2) 
 u=z/zn – dimensionless axial displacement of the impeller 
 V – volume of the annular chamber [m3] 
 ( ), ( ), ( )1 eW i W i W i    – frequency transition functions of Eq.(2.17) 

 z, zn – axial displacement of the impeller, and its nominal value [m] 
 , ,20 c0 s0p p p    – differences of the pressures of Eq.(2.7) 

   – relative eccentricity of the longitudinal clearance 
 a  – amplitude of the transverse vibrations in Eq.(2.16)  

 ( ), ( ), ( )1 e        – phase frequency characteristics 

 ,1 2   – coefficients of the geometry of the impeller in Eq.(2.4) 

 , ,1 e 2    – dimensionless pressures of Eq.(2.4) 

 ,a1 ae   – amplitudes of harmonic excitations in Eq.(2.16) 

   – angular velocity of the impeller [1/s] 
 n  – nominal angular velocity[1/s] 

   – dimensionless angular velocity of Eq.(2.4) 
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