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Abstract

This paper considers the problem of designing of iterative learning control (ILC) laws
for linear batch processes. Unlike the majority of existing results about ILC law design
for linear batch processes over repetitive/two-dimensional setting where Lyapunov theory is
applied, this study is focused on formulating the ILC law design procedures by transforming
it into an equivalent problem of (structural) stability analysis for a linear Roesser model for
two-dimensional (2D) systems. Then, based on a non-conservative version of stability and
stabilization conditions for linear 2D systems, suitable PD-type ILC laws are derived by the
application of the linear matrix inequality (LMI) approach. Finally, a numerical example
is given to show the validity of the proposed design procedure and some advantages are
emphasized when compared to the existing alternatives.

1 Introduction

Iterative learning control (ILC) is a specialized method for systems or processes that execute
repetitive operations over a finite duration, known as a trial or a batch. The learning mechanism
of this control method is the utilization of the historical trial or batch data to update the control
input for the next trial and thereby improve the transient responses and tracking performance
of subsequent trials [1, 6]. The advantages of ILC is indicated by its simple controller form
and remarkable performance, which only requires less prior knowledge of the controlled system
and can be easily realized. A literature review indicates that ILC has attracted considerable
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research attention since it has been used for improving the control performance in many practical
problems as industrial robotics, see, e.g., [11] and wafer stage motion systems, see, for example, [8].
Additionally, as indicated in [17, 9], a version of ILC can be directly applied in the chemical process
industries.

The developed ILC designs for industrial batch processes are mostly based on application so-
called lifting technique for discrete-time ILC [1, 6] where the interest is rather restricted to batch
domain convergence only. An alternative approach to ILC design is to focus on the inherent
two-dimensional (2D) structure of the resulting dynamics [15, 13]. This allows us to consider the
interaction between the batch-to-batch error and transient response along the batches. Unfortu-
nately, a direct application of 2D system models and their stability conditions are computationally
cumbersome, hence many conservative (necessity is not reached) but trackable relaxations are
applied - see [15].

Differently from the most popular approaches to ILC laws design, the aim of this paper is to
use some known less conservative stability and stabilization conditions for 2D Roesser models, as
these in [5, 2, 12]. Clearly, these results can lead to LMI-based conditions for ILC control law
design applied to discrete-time linear batch processes and, as it is done in this paper, design proce-
dures for ILC law are obtained by exploring the fact that structural stability of 2D Roesser model
imposes tracking error convergence of the resulting ILC scheme. In particular, this article proposes
improved LMI-based conditions for designing of PD-type ILC laws for linear batch processes over
two-dimensional setting. These new and less conservative conditions are established by utilization
of the results on stability Roesser model with a state feedback in order to guarantee stability of
the resulting ILC system along both the time and batch directions. Additionally, the reduced con-
servatism may be achieved and hence improve the applicability of developed results. Additionally,
some simple modification applied to the proposed design procedures allows to assign the poles of
so-called intertrial transfer function in open disc centered at the origin with radius r1 satisfying
0 < r1 ≤ 1 and hence the speed of batch-to-batch error convergence is potentially increased. The
numerical example illustrates the benefits of the approach and show that the proposed LMI condi-
tions are less conservative than the ones available in the literature. Also, the tracking performance
of the controlled dynamics is compared with some known results to indicate the potential interest
in this paper outcomes.

Throughout this paper, the following notations are used: The null and identity matrices with
the required dimensions are denoted by 0 and I, respectively, and the notation [ ]n,0 (respectively
[ ]0,n) denotes an empty matrix with n rows and 0 column (respectively n columns and 0 rows). ρ(·)
denotes the spectral radius of its matrix argument, i.e., if λn, 1 ≤ n ≤ m, denotes the eigenvalues of
a m×m matrix, say L, ρ(L) = max

1≤n≤m
|λn|. Also sym{N} denotes N+N∗ where N∗ is the transpose

conjugate of a matrix N , lC stands for lC ∪{∞} where lC is a set of complex numbers. For 0 < r1 ≤
1, let O(0, r1) be a disk centered at the origin with radius r1. Finally, for a matrix M and block

matrix M̂ =

[
M11 M12

M21 M22

]
with appropriate dimensions, M⋆M̂ = M22+M21(I−MM11)

−1MM12

stands for the linear fractional transformation (LFR) of M̂ with respect to M .



2 Preliminaries

Let t ∈ [0, N − 1] be the discrete-time index where N is the fixed number of time steps for each
batch and k ≥ 0 be the batch index.

Consider a class of discrete-time batch processes over a finite time interval t ∈ [0, N − 1]
represented by the following state-space model

xk(t + 1) =Axk(t) + Buk(t),

yk(t) =Cxk(t),
(1)

where xk(t) ∈ Rnx is the state vector, yk(t) ∈ Rny is the output vector, uk(t) ∈ Rnu is the control
input vector. {A,B,C} consists of batch process matrices with appropriate dimensions. Regarding
the batch process model of (1) the below assumption is made.

Assumption 1 The matrix pairs (A,B) and (A,C) are assumed to be controllable and observable
respectively, and CB ̸= 0.

In the sequel, we assume the repetitive behaviour of a process (1), i.e., it is required to track
a desired output trajectory denoted as yd over a finite time interval t ∈ [0, N − 1]. Additionally,
the batch process state xk(0) resets to the same initial value x0 at the end of each batch, and this
value can be set as x0 = 0 without loss of generality.

Our objective in this work is to provide to a control sequence {uk}k≥0 such that the output yk
follows the desired trajectory yd as precisely as possible as the batch index k approaches infinity.
Therefore the tracking error

ek(t) = yd(t) − yk(t), t ∈ [0, N − 1],

converges to zero and hence the tracking performance is improved in the batch-to-batch domain.
hese requirements are represented mathematically as

lim
k→∞

∥ek(·)∥ = 0,

lim
k→∞

∥uk(·) − u∞(·)∥ = 0,

where ∥·∥ denotes the norm on the underlying function and u∞(·) is termed the learned control.
As we look for the tracking error convergence conditions for the batch processes of (1) under

repetitive framework, let us apply a standard form of ILC law (i.e. the way of updating the control
vector from batch-to-batch) given as an update to the control input (and denoted as ∆uk(t)) from
the current batch, i.e. uk, to a new input uk+1 for the next batch. Therefore, it is fairly obvious
that a general iterative control is applied here

uk+1(t) = uk(t) + ∆uk(t), (2)

where the update ∆uk(t) is calculated using the previous batch data. Next, define the following
notations

δxk+1(t) = xk+1(t)−xk(t),

δuk+1(t) = uk+1(t)−uk(t),

δek+1(t) = ek+1(t)−ek(t)

(3)



and let us define a new change of variables by introducing

xk(t)=δx(p−1, k+1),

uk(t)=δu(p−1, k+1).
(4)

Then, it is concluded that
xk(t + 1) = Axk(t)+Buk(t). (5)

Next, assume that the batch process is subject to PD-type control law, i.e. the update item in
ILC law (2) takes the form

∆uk(t) =K1δxk+1(t) + K2ek(t + 1)

−K3(ek+1(t) − ek(t)),
(6)

where K1, K2 and K3 are matrices of compatible dimensions to be found. Clearly, the above
control law uses the current batch data to generate state feedback and the PD-type learning items
are generated with the previous batch data. Anyway, by simple derivations, one can obtain the
controlled dynamics model as[

xk(t + 1)
ek(t)

]
=A11

[
xk(t)

ek(t−1)

]
+A12ek(t),

ek+1(t) =A21

[
xk(t)

ek(t−1)

]
+A22ek(t),

(7)

where

A11 =

[
A+BK1 BK3

0 0

]
, A12 =

[
B(K2−K3)

I

]
,

A21 =
[
−C(A+BK1)−CBK3

]
, A22 =I−CB(K2−K3).

It is worth to note that the dynamics in the model (7) propagates along two independent directions
and (7) is in Roesser model [14] structure. Accordingly, the structural stability [5] of the equivalent
2D Roesser model implies that the required batch-to-batch error convergence to zero - see [2].
It is evident that the matrices A11, A12, A21 and A22 defined in (7) can be rewritten as

A11 =

[
A 0
0 0

]
+

[
B
0

] [
K1 K3

]
=A+BK1,

A21 =
[
−CA 0

]
−CB

[
K1 K3

]
=C+CBK1,

A12 =

[
0
I

]
+

[
B
0

]
(K2−K3)=B1+BK2,

A22 =I−CB(K2−K3) = I − CBK2,

(8)

where

K1 =
[
K1 K3

]
, K2 = (K2−K3),

B1 =

[
0
I

]
, B=

[
B
0

]
, A=

[
A 0
0 0

]
.



2.1 Structural stability of a linear 2D Roesser model

As discussed earlier, 2D system model of (7) allows to represent the behavior of controlled process
under ILC law of (2) and (6). Consequently, the representation (7) can facilitate stability analysis
and control synthesis.

In particular, utilizing the results presented in [5, 2], the structural stability of Roesser model
in (7) along the notation (8) is characterized by the following lemma.

Lemma 1 (see [5, 2] and references therein) An equivalent 2D Roesser model of the form (7)
and (8) is structurally stable if and only if the following conditions hold

i) ∀λ ∈ lD, det(λI − A22) ̸= 0,

ii) ∀λ ∈ ∂ lD, det(G(λ)) ̸= 0,

where lD =
{
z ∈ lC , |z| ≥ 1

}
(it is just the outside of the open unit disc), ∂ lD =

{
z ∈ lC , |z| = 1

}
and

G(λ) = A21(λI − A11)A12 + A22.

It is fairly obvious that the condition i), is just standard stability condition for discrete-time systems
and can be easily checked with LMI conditions. Unfortunately, the main difficulty, which arises, is
the computational cost associated with the condition ii). As it is seen it requires computations for
all ∀λ ∈ ∂ lD and clearly the number of computations goes to infinity so the LMI-based formulation
to condition ii) cannot be directly and easily provided. Anyway, based on the developments
presented in [5] it follows immediately that the conditions i) and ii) in Lemma 1 can be replaced
by the following inequalities

AT
22PA22 − P ≺ 0 (9)

and
G(λ)∗P (λ)G(λ) − P (λ) ≺ 0, (10)

where the matrices P and P (λ) satisfy P ≻ 0 and P (λ) ≻ 0 ∀λ ∈ ∂ lD. Equivalently, the inequal-
ity (9) implies that ρ(A22) ≤ 1 and (10) can be transformed into ρ(G(λ)) ≤ 1 ∀λ ∈ ∂ lD. However,
in practice it is desirable to increase the speed of batch-to-batch error convergence. Therefore, we
are interested in placing the eigenvalues of A22 and G(λ) inside the open disc centered at the origin
with radius r1 satisfying 0 < r1 ≤ 1. Hence, the required versions of (9) and (10) are

r−2
1 AT

22PA22 − P ≺ 0 (11)

and
r−2
1 G(λ)∗P (λ)G(λ) − P (λ) ≺ 0. (12)

Furthermore, introduce the notation

A21 =r−1
1 C − r−1

1 CBK1,

A22 =r−1
1 I−r−1

1 CBK2

(13)

and then the inequalities (11) and (12) can be expressed as[
A22

I

]T
R⊗ P

[
A22

I

]
≺ 0 (14)



and [
G(λ)
I

]∗
R⊗ P (λ)

[
G(λ)
I

]
≺ 0, (15)

where R = diag{1,−1} and
G(λ) = A21(λI − A11)A12 + A22. (16)

Our concern now is the inequality (15). As G(λ) and P (λ) depend on λ, then we need a sequence
of transformation that leads to LMI formulation of (15). To proceed, note that the existence
of a matrix P (λ) ≻ 0 implies that there exists a matrix Q(λ) satisfying P (λ) = sym{Q(λ)}.
Consequently, the inequality (15) can be converted into

G(λ)∗(Q(λ) + Q∗(λ))G(λ) − (Q(λ) + Q∗(λ)) ≺ 0

or [
M(λ)
I

]∗ 
0 I 0 0
I 0 0 0
0 0 0 −I
0 0 −I 0

[
M(λ)
I

]
≺ 0, (17)

where
M(λ) = [G∗(λ)Q(λ) G∗(λ) Q∗(λ)]∗.

The remaining problem is the dependence of Q(λ) on the parameter λ. This complex dependence
does not allow us to find the feasible solution to inequalities (15) and (17). Fortunately, according
to the results of [3], we state the following theorem.

Theorem 1 Let nx and ny be given dimension of the state and output vectors in (1) respectively.
Also, assume that (15) has feasible solution for some P (λ). This means that there exists α ∈[
0; b=

ny

2
((nx + ny)

2+(nx + ny)−2)
]
such that P (λ) can be taken to have the form

P (λ)=sym

{
α∑

h=0

Qhλ
h

}
= Υ∗(λ)QΥ(λ),

with

Q=


sym{Q0} Q1 . . . Qα

Q∗
1
...

Q∗
α

0

 ,Υ(λ)=


λ0Ik1
λ1Ik1
...

λαIk1

 (18)

and Qh ∈ R(nx+ny)×(nx+ny), h = 0, . . . , α.

Proof 1 The proof of this theorem was already achieved in [3] - see Theorem 2 from that paper.
The only difference is the dimension of A11 which is (nx + ny) × (nx + ny) instead of nx.

Now, with this last result, our immediate concern is to convert the inequality (17) into the LMI-
based condition to allow us to compute the required ILC law matrices. Firstly, it is evident that
Q(λ) can be rewritten as

Q(λ) = λI ⋆

[
AΥ BΥ

CΥ DΥ

]
,



where the matrices AΥ, BΥ, CΥ and DΥ dependent on the parameter α ≥ 0. By letting α equal
to zero (this requires the lowest computational burden), it is easy to reach the following result[

AΥ BΥ

CΥ DΥ

]
=

[
[ ]0,0 [ ]0,nx

[ ]nx,0
Inx

]
.

Next, letting α > 0 (increasing α leads to higher computational burden), one can obtain

AΥ =



0 1 0 . . . 0

0 0
. . .

. . .
...

... 0
. . . 1 0

...
... . . . 0 1

0 0 . . . 0 0


⊗Inx , BΥ =

[
0(α−1)nx,nx

Inx

]
,

CΥ =

[
0nx,αnx

Jα ⊗ Inx

]
, DΥ =

[
Inx

0αnx,nx

]
,

(19)

where Jα denotes the α× α matrix of the special form as 0 1

. .
.

1 0

 .

Secondly, consider the matrix M(λ) in (17) and it follows that

M(λ) = λI ⋆

[
AM BM

CM DM

]
,

where

AM =

AΥ 0 BΥA12

0 AΥ 0
0 0 r−1

1 (I−CBK2)

 ,

BM =

 BΥA11

BΥ

r−1
1 (C−CBK1)

 ,

CM =

[
CΥ 0 DΥA12

0 CΥ 0

]
, DM =

[
DΥA11

DΥ

]
.

Along the above notation, we have the following result on ILC law design by providing an equivalent
formulation in terms of matrix inequalities to conditions i) and ii) of Lemma 1.

Theorem 2 Let nx and ny be given dimension of the state and output vectors in (1) respectively.
Also, let r1 be a given positive scalar satisfying 0 < r1 ≤ 1. Assume that an ILC law (6) is applied
to the system (1). Then the resulting ILC dynamics described as 2D Roesser model of the form (7)
is structurally stable, and hence batch-to-batch error convergence occurs, if and only if there exist



an integer α ∈
[
0; b=

ny

2
((nx + ny)

2+(nx + ny)−2)
]
, Qh, h = 0, . . . , α, X ≻ 0 and Y ≻ 0 such

that  I 0
AM BM

CM DM

T[
R̂⊗X 0

0 R⊗Q

] I 0
AM BM

CM DM

≺0 (20)

and  I 0
AΥ BΥ

CΥ DΥ

T[
R̂⊗Y 0

0 −Q

] I 0
AΥ BΥ

CΥ DΥ

≺0 (21)

hold and where
R = diag{1,−1}, R̂ = diag{−1, 1}. (22)

Proof 2 Theorem 2 can be proven easily to be equivalent to the condition obtained by [4, 5] based
on a pure linear 2D model and hence the details are omitted.

The interesting point to note is that Theorem 2 result provides relaxation to condition ii) of
Lemma 1 through the S-procedure described in [16]. In what follows, condition ii) of Lemma 1 is
implied by condition (20).

Unfortunately, the inequalities provided in Theorem 2 are coupling between unknown matrix
variables (note the coupling among X, Y and the control law matrices K1, K2 and K3) that are
not LMIs and cannot be directly transformed to ILC law design procedures. This problem can
be resolved by the result developed in the next section and provides LMI characterizations for
calculating the ILC law matrices in (6) to achieve batch-to-batch error convergence.

3 Main results

In this section, the aim is to develop a new ILC scheme design procedure for systems modeled
with (1) where recently developed results on structural stability of 2D systems are used. As
mentioned, the inequalities (20) and (21) cannot be directly applied for computation of the ILC
control law matrices K1, K2 and K3 of (6). This is mainly due to the fact that the inequalities
in this result are bilinear in X and the matrices K1, K2 and K3 (the same problem arises for the
matrix Y ). However, by using a particular set of transformations, the required LMI condition for
computation K1, K2 and K3 can be obtained.

In the sequel, we use the following decomposition[
A11 A12

A21 A22

]
=

[
A B1

r−1
1 C r−1

1 I

]
+

[
B

−r−1
1 CB

] [
K1 K2

]
.

Next, redefine the matrices A11, A12, A21 and A22 introduced in (8) and (13) respectively as

A11 =A, A12 =B1, A21 =r−1
1 C, A22 =r−1

1 I. (23)

Then the next theorem gives novel and possibly less conservative (than known alternatives) con-
dition for existence of the control law matrices K1, K2 and K3.



Theorem 3 Let nx and ny be given dimension of the state and output vectors in (1) respectively.
Also, let r1 be a given positive scalar satisfying 0 < r1 ≤ 1. Assume that an ILC law (6) is
applied to the system (1). Then the resulting ILC scheme described as a 2D Roesser model of the
form (7) is structurally stable, and hence batch-to-batch error convergence occurs, if an integer α ∈[
0; b=

ny

2
((nx + ny)

2+(nx + ny)−2)
]
can be found such that there exist matrices Qh, h = 0, . . . , α,

P ≻ 0 and matrices M and S of compatible dimensions such that the LMI

ΛT

[
R̂⊗ P 0

0 R⊗Q

]
Λ+sym {(AM+BS)Lβ} ≺ 0 (24)

holds and where R and R̂ are as in (22) and

Λ=



Iν 0 0 0 0 0
0 Iν 0 0 0 0
0 0 Iny 0 0 0
AΥ 0 0 0 0 BΥ

0 AΥ 0 BΥ 0 0
0 0 0 0 Iny 0
CΥ 0 0 0 0 DΥ

0 CΥ 0 DΥ 0 0


,

A=


0 0
0 0

A22 A21

A12 A11

−Iny 0
0 −Inx+ny

,

BT =
[

0 0 −r−1
1 BTCT B

T

1 0 0
]
,

Lβ =

[
0 0 β2Iny 0 −Iny 0
0 0 0 β1Inx+ny 0 −Inx+ny

]
.

Additionally, the scalar parameters β1 and β2 can freely be chosen from the set lD = {z ∈ lC , |z| < 1}
(it is just the inside of the open unit disc). Also, to have compatibly dimensioned matrices, ν (which
appears as dimensions of some blocks in Λ) must be equal to the dimension of the matrix AΥ defined
in (19).

Moreover, if the LMI (24) is feasible, the required control law matrices K1, K2 and K3 are
computed as [

K1 K3 K2

]
= SM−1, K2 = K2 + K3. (25)

Proof 3 It is a straightforward consequence of identical steps to those in the proof of Theorem
5 in [5] and hence the details are omitted for the sake of brevity and due to space limitations.
Anyway, it has to be emphasized that some slight differences are present due to specific form and
dimensions of A11, A12, A21, A22 as given in (23).



4 Numerical example

In order to illustrate the applicability and effectiveness of our proposed method, one numerical
example is given to illustrate the feasibility and demonstrate the effectiveness of the method for
the synthesis of the PD-type ILC law for linear batch processes.

The example considers the linearized dynamics of injection molding process. The details of the
model can be found in [9, 7]. Following the literature we know that a key process variable to be
controlled is the nozzle pressure. When considering the nozzle pressure response to the hydraulic
control valve opening the following state-space model is provided - again see [9, 7] for details,

xk(t + 1)=

[
1.607 1

−0.6086 0

]
xk(t)+

[
1.239

−0.9282

]
uk(t),

yk(t) =
[
1 0

]
xk(t).

For illustration, the desired trajectory for the nozzle pressure, which is shown in Figure 1, takes
the following form
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Figure 1: The desired profile.

yd(t) =


200, 1 ≤ t < 100;

200 + 5(t− 100), 100 ≤ t < 120;

300, 120 ≤ t ≤ N = 200.

For practical implementation, the initial part of yd(t) is pre-filtered by Gf = (z−1 +z−2)/(3−z−1).
Furthermore, RMSE (Root Mean Square Error) value of the tracking error is taken as an index
to evaluate the tracking performance of the batch processes and it will be computed along each
batch.

To demonstrate the effectiveness of the proposed results, the design procedure given in Theo-
rem 3 is executed for α = 1, β1 = 0, β2 = 0, r1 = 0.3 and ILC law matrices in (6) are derived as
follows

K1 = [−1.2819 − 0.8021], K2 = 0.7741,

K3 = −3.8406 · 10−6.



The resulting controlled system represented as Roesser model is structurally stable and hence
batch-to-batch error convergence occurs. This can be verified in Figure 2 where the RMSE of
the tracking error is shown and compared to the previously presented results in [7, 10]. From
comparison in Figure 2, the RMSE of the proposed method is lower when comparing with [7, 10].
Obviously, the effectiveness of the presented ILC design is apparent. Additionally, Figure 3 shows
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Figure 2: RMSE values obtained in the simulation study for different methods

the spectral radius of the transfer function G(λ) ∀λ ∈ ∂ lD. From this comparison of the three ILC
law designs in Figure 3, we see that the proposed approach can produce ILC law with lowest level
for spectral radius and hence can deliver faster batch-to-batch error convergence.
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-35
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Figure 3: Plot of spectral radius of G(λ)



5 Conclusions

In this paper, we have dealt with the design problem of PD-type ILC laws for a class of linear
batch processes. Our new results have been obtained by via transforming initial problem into an
equivalent one of designing stabilizing state feedback gains for linear Roesser model of 2D systems.
After providing the 2D setting of the ILC scheme, we have employed an LMI approach to which
derives learning gains directly. It has been shown that the proposed approach can be applicable to
a class of linear batch processes. A simulation based case study is given to demonstrate the utility
of the proposed design approach and its the effectiveness. It should be noticing that the results
developed in this paper are of a nominal model only. Therefore, the results should be directly
generalized to batch process models with uncertainty and disturbances, which is a interesting
problem to be discussed in the future.
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