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This paper presents the chaos synchronization by designing a different type of controllers. Firstly, we propose 
the synchronization of bi-directional coupled chaotic Rikitake systems via hybrid feedback control. Secondly, we 
study the synchronization of unidirectionally coupled Rikitake systems using hybrid feedback control. Lastly, we 
investigate the synchronization of unidirectionally coupled Rikitake chaotic systems using tracking control. 
Comparing all the results, finally, we conclude that tracking control is more effective than feedback control. 
Simulation results are presented to show the efficiency of synchronization schemes. 
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1. Introduction 
 
 Since the pioneer works by Ott et al. (1990) and Pecorra and Carroll (1990), chaos control and 
synchronization have received increasing attention due to theoretical challenges and potential applications to 
various disciplines. Synchronization in biological systems is one of the fascinating areas that has attracted a 
lot of attention. 
 The analysis of synchronization phenomena in the evaluation of dynamical system has been the 
subject of active investigation. Chaos synchronization has become very important in the non-linear science 
over the last two decades, due to its potential applications in many areas such as secure communication, 
information processing, biological systems, chemical reactions, neural networks and in engineering. Usually, 
two dynamical systems are called synchronized if the distance between their corresponding states converges 
to zero as time goes to infinity. 
 This type of synchronization is known as identical synchronization (Pecorra and Carroll, 1990). 
Using linear and non linear feed back control chaos synchronization has been presented in various chaotic 
systems. Synchronization of unified chaotic systems using adaptive feedback control was studied by Lu and 
Chen in 2002. Park (2005) studied controlling chaotic systems via nonlinear feedback control. Chen et al. 
(2006) proposed generating hyperchaotic Lu attractor via state feedback control. Synchronization between 
two different noise perturbed chaotic systems with fully unknown parameters was proposed by Sun and Cao 
(2007). Poria et al. (2007) investigated adaptive synchronization of two coupled chaotic neuronal systems. 
Recently Khan et al. (2011) investigated control strategies for unified chaotic systems using different type of 
control.  
  In this paper firstly, we discuss the synchronization between two bidirectionally coupled chaotic 
Rikitake systems via hybrid feedback control. 
 Secondly, we study the synchronization between two identical Rikitake systems using hybrid 
feedback control and lastly, we investigate the synchronization of two identical Rikitake chaotic systems 
using tracking control. 
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2. Design of hybrid controller of bidirectionally couple chaotic systems 
 
 A dynamical system can be written as   
 
  ( )x f x .                                                                   (2.1) 
                                              
 This system can also be expressed as 
 
  ( )x Ax B x                                                                (2.2)                     
 

where n nA R  , n mB R  are constant matrices, ( ) : n nx R R  is a non-linear vector function. We 
consider the following type of bidirectionally coupled chaotic systems 
 
   ( ) 1x Ax B x u    ,                                                     (2.3) 

 
  2[ ( ) ]y Ay B y u                                                        (2.4) 

 

where nx R , ny R , n nA R  , n mB R  , : n nR R   is non-linear vector functions. The 
synchronization errors between systems (2.3) and (2.4) are defined as 

   , ,........, , ,.....,
T T

1 2 n 1 1 2 2 n ne e e e x y x y x y     . Then the error dynamical system is  

 
   ( ) ( ) 1 2e Ae B x y u u      .                                         (2.5) 

 
 In order to make system (2.3) and (2.4) synchronizable, the coupling functions 1u  and 2u  should be 
properly chosen. 
 Let 1 11 12u u u   and 2 21 22u u u  , where ( )11u y  , 12u Ky   and ( )21u x  , 22u Kx   

and 
1

2

3

k 0 0

K 0 k 0

0 0 k

 
   
 
 

, denote the feedback matrix. Obviously 11u , 21u  are non-linear controllers and 12u , 

22u  are linear controller, so 1u  and 2u  are hybrid controllers. 
 
Theorem: If the matrix A BK  has all eigen values with negative real parts, then the origin will be an 
asymptotically stable fixed point of system (2.5). 
Proof: Choosing the controller 1u  and 2u  properly, the error system (2.5) can be written as  
 
  ( )e A BK e  .                                                                       (2.6) 
 
 Now by the theory of linear dynamical system if the matrix  A BK  has all eigen values with 
negative real parts, then the origin of the error system will be a globally asymptotically stable fixed point. 
Therefore in this case the bi-directionally coupled systems (2.3) and (2.4) will synchronize. 
 
Example. We shall now discuss the efficiency of our scheme taking coupled chaotic Rikitake systems. The 
Rikitake system can be described by the following system of differential equations. 
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  1 2 3 2 1x x x a x  , 
 

  ( )2 3 2 1 2 2x x b x a x   ,                                                   (2.7) 
 

  3 1 2x 1 x x         
 

where , , n
1 2 3x x x R  are state variables and ,2 2a b  are real constants. System (2.7) is found to be chaotic 

when 2a 2  and 2b 5 . 
 According to our choice of controller the coupled systems are 
 
  1 2 3 2 1 2 3 1 1x x x a x y y k y    , 
 
  ( )2 3 2 1 2 2 1 3 2 2x x b x a x y y k y     ,                                   (2.8) 
 
  3 1 2 1 2 3 3 3x 2 x x y y y k y     ,      
and 
  1 2 3 2 1 2 3 1 1y y y a y x x k x    , 
 
  ( )2 3 2 1 2 2 1 3 2 2y y b y a y x x k x     ,                               (2.9) 
 

      3 1 2 1 2 3 3 3y 2 y y x x x k x     .          
 
 Therefore the error system is 
 
  ( )1 2 1 1e a k e   , 
 
  ( )2 2 1 2 2 2e b e k a e    , (2.10) 
 
                        ( )3 3 3e k 1 e  .            
 
 Now for a suitable choice of K the matrix A BK  has all eigen values with negative real parts, and 
then the drive system synchronizes with the response system. 
 

 
Fig.1. 
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Fig.2. 
 

 
 

Fig.3.  
 

Fig.1-Fig.3. Represents the trajectories of (x1, y1), (x2, y2) and (x3, y3). 
 

 
 

Fig.4. Shows time evolution of the synchronization errors. 
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We choose   

2 0 0

A 5 2 0

0 0 1

 
    
  

,       

1 0 0

B 0 1 0

0 0 1

 
   
 
 

,       and       

.

1 0 0

K 0 1 0

0 0 5

 
   
 
 

. 

 

 For numerical simulation, the fourth order Runge-Kutta method is used. We select the parameters 
( , ) ( , )2 2a b 2 5 . The initial conditions of system (2.8) and (2.9) are chosen as ( ( ), ( ), ( )) ( , , )1 2 3x 0 x 0 x 0 10 6 3  

and ( ( ), ( ), ( )) ( , , )1 2 3y 0 y 0 y 0 3 2 5    , so the initial synchronization errors are ( ( ), ( ), ( )) ( , , )1 2 3e 0 e 0 e 0 13 8 8 . 

The trajectories of the 1x , state of the drive system and 1y , state of the response system are shown in Fig.1. 

The trajectories of 2x  and 2y  are shown in Fig.2. and the trajectories of 3x  and 3y are shown in Fig.3. The 
figures confirm the synchronization between the two chaotic bidirectionally systems. Time evolution of the 
synchronization errors goes to zero as shown in Fig.4.  
 
3.  Synchronization of coupled Rikitake systems via hybrid feedback control 
 
 In this section, we discuss the synchronization of the coupled Rikitake systems via hybrid feedback 
control. The Rikitake system (2.7) can be rewritten as 
 

1 2 1 2 3

2 2 2 2 1 3

3 3 3 1 2

x a 0 0 x 1 0 0 x x

x b a 0 x 0 1 0 x x

x 0 0 1 x 0 0 1 1 x x x

        
                   

                  





.      (3.1) 

 
 Comparing Eq.(3.1) with Eq.(2.2), we get 
 

                
2

2 2

a 0 0

A b a 0

0 0 1

 
    
  

,      

1 0 0

B 0 1 0

0 0 1

 
   
 
 

,        ( )
2 3

1 3

3 1 2

x x

x x x

1 x x x

 
    
   

. 

 

Now,   
1

2

3

2 k 0 0

A BK 5 2 k 0

0 0 1 k

  
      
   

 where 2a 2  and 2b 5 . 

 
 The characteristic equation of A BK  is 
 

  
( ) ( )

( )( )( ) .

3 2
1 2 3 1 2 1 3 2 3 1 2 3

1 2 3

k k k 5 k k k k k k 3k 3k 4k 8

k 2 k 2 k 1 0

              

    
 

 
 According to Routh-Hurwitz, the matrix A BK is negative definite if 
 
  ,1 2 3k k k 5 0     
 
  ,1 2 1 3 2 3 1 2 3k k k k k k 3k 3k 4k 8 0        
   (3.2) 
  ( )( )( ) ,1 2 3k 2 k 2 k 1 0     
 
               ( )( ) ( )( )( )1 2 3 1 2 1 3 2 3 1 2 3 1 2 3k k k 5 k k k k k k 3k 3k 4k 8 k 2 k 2 k 1             ,  
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are satisfied when ,1 2k 1 k 1   and .3k 5  then A BK  is negative definite. Therefore the controller 1u  

and 2u  can be chosen as  
 

          
2 3 2 3

1 1 3 1 3

1 2 1 2 3 3

x x y y

u x x y y

x x y y x y

 
   
     

 and ( )
1 1 1

2 2 2 2

3 3 3

k 0 0 x y

u K x y 0 k 0 x y

0 0 k x y

  
       
    

. 

 
 Therefore the response system becomes 
 
  ( )1 2 1 1 2 3y a 1 y x x x     , 
 
  ( )2 2 1 2 2 2 1 3y b y a 1 y x x x      ,                 (3.3) 
 

  ( )3 3 3 1 2
1

y x y x x 1
2

    .           

 

 
 

Fig.5. 
 

 
 

Fig.6. 
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Fig.7. 
 

Fig.5-Fig.7. Present the trajectories of (x1, y1), (x2, y2) and (x3, y3). 
 

 
 

Fig.8. Shows time evolution of the synchronization errors. 
 

 For numerical simulation, the fourth order Runge-Kutta method is used. We select the parameter 
( , ) ( , )2 2a b 2 5 . The initial conditions of system (3.1) and (3.3) are chosen as ( ( ), ( ), ( )) ( , , )1 2 3x 0 x 0 x 0 10 6 3  

and ( ( ), ( ), ( )) ( , , )1 2 3y 0 y 0 y 0 3 2 5    , so the initial values of errors are (13,8,8). The trajectories of 1x , state 

of the drive system and 1y , state of the response system are shown in Fig.5. The trajectories of 2x  and 2y

are shown in Fig.6 and the trajectories of 3x  and 3y are shown in Fig.7. The figures confirm synchronization 

of the coupled systems. Time evolution of the synchronization errors converges to zero as shown in Fig.8. 
 
4. Design of tracking controller 
 
 For discussing the synchronization of unidirectional coupled chaotic system via tracking control we 

assume that system (2.2) is the drive system. Upon introduction of the control variable nU R , the 
controlled response system is given by 
 

( )y Ay B y U                                                              (4.1)    
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where ny R  denotes the state vector of the response system. The main problem is to design a controller U  
which synchronizes the state of both drive and response systems. We substract (2.2) from Eq.(4.1) and we 
get 
                   
  ( ( ) ( ))e Ae B y x U                                               (4.2) 
 

where e y x  . The aim is to make lim ( )t e t 0  . Let  the Lyapunov error function be ( ) T1
V e e e

2
 , 

where ( )V e  is a positive definite function. Assume that the parameters of the drive  and response systems 
are known and the states of both systems are measurable. We may achieve the synchronization by selecting 
the controller U  to make the first derivative ( )V e , i.e., ( )V e 0 . Then the state of the response and drive 
system is synchronized asymptotically. 
 
Example. Synchronization of Rikitake system via tracking control 
 
 Let the dynamical system (2.7) be the drive system, then the controlled response  Rikitake system is 
given by the following 
         

  

,

( ) ,

.

1 2 3 2 1 1

2 3 2 1 2 2 2

3 1 2 3

y y y a y u

y y b y a y u

y 1 y y u

  

   

  







                                                  (4.3) 

 
 Let us define the error between the trajectories of the response and drive Rikitake system as 

i i ie y x   ( , , )i 1 2 3 . Therefore the error system is 

 

   

,

,

.

1 2 1 2 3 2 3 1

2 2 1 1 3 1 3 2 2 2

3 1 2 1 2 3

e a e y y x x u

e b e x x y y a e u

e x x y y u

    

     

  







                                           (4.4) 

 
 If we choose the controller as 
                       

                       

,

,

,

1 2 3 2 3

2 1 3 1 3 2 1

3 1 2 1 2 3

u x x y y

u x x y y b e

u y y x x e

 

  

  

                                                           (4.5) 

 
then the coupled Rikitake systems will get synchronized. 
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Fig.9. 
 

 
 

Fig.10. 
 

 
 

Fig.11. 
 

Fig.9-Fig.11. Present the trajectories of (x1, y1), (x2, y2) and (x3, y3). 
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Fig.12. Shows time evolution of the synchronization errors. 
 

 The parameters of Rikitake systems are ( , ) ( , )2 2a b 2 5 . The initial conditions for the driving system 

and driven system are given respectively by ( ( ), ( ), ( )) ( , , )1 2 3x 0 x 0 x 0 10 6 3  and 

( ( ), ( ), ( )) ( , , )1 2 3y 0 y 0 y 0 3 2 5    , so the initial values of error system are ( ( ), ( ), ( )) ( , , )1 2 3e 0 e 0 e 0 13 8 8 . The 

trajectories of 1x , state of the drive system and 1y , state of the response system are shown in Fig.9. The 

trajectories of 2x  and 2y  are shown in Fig.10. and the trajectories of 3x  and 3y  are shown in Fig.11. The 
figures confirm the synchronization of the systems. Time evolution of the synchronization errors goes to zero 
as shown in Fig.12. 
 
6. Conclusions 
 
 This paper investigates the synchronization by designing a different type of controllers, which 
include bi-directional coupled chaotic systems using hybrid feedback control and unidirectional coupled 
chaotic systems using hybrid feedback control and tracking control. We apply the above three controller 
methods to Rikitake systems to prove the feasibility and effectiveness of the proposed scheme. Comparing 
all the results finally we conclude from numerical simulation results that tracking control is more effective 
than feedback control.  
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Nomenclature 
 
 ,n n n nA R B R    – constant matrix 
 ,2 2a b  – real constants 

 K – feedback matrix 
 ,11 21u u  – non-linear controller 

 ,12 22u u  – linear controller 

 ( )V e  – Lyapunov error function 
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