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Abstract

Iterative learning control (ILC) applies to systems that repeat the same finite dura-
tion task repeatedly. Each repetition is usually termed as a trial, and the associated
duration is called the trial length. Once a trial is completed, all information is avail-
able for use in updating the control input for the subsequent trial. The vast majority
of the currently available designs demand a strictly identical trial length. This paper
gives a new result on the design and analysis for continuous-time linear dynamics
based on a modified alternating projection method, where the trial lengths may be
nonidentical. This result employs multiple sets to represent the actual varying trial
length dynamics and is developed by reformulating the problem to one that min-
imizes the defined distance in a Hilbert space setting. Compared to the standard
alternating projections using two sets, the theory of alternating projections between
multiple sets is employed to obtain deterministic convergence result for the noniden-
tical trial length problem. A numerical case study is also given to illustrate the
application of the new design.
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1. Introduction

To illustrate the basics of iterative learning control (ILC), consider a robot ex-
ecuting a pick-and-place task. The operations required are: i) collect the object or
payload from a fixed location, ii) transfer it over a finite duration, iii) place the pay-
load onto a moving conveyor, iv) return to the starting location, and then repeat this
sequence as many times as required or until a hat is needed for maintenance or other
reasons. Once a trial is complete, all information is available for use in updating the
control input for the subsequent trial.

Let yk(t), 0 ≤ α <∞, k ≥ 0, and denotes an ILC variable, where y is the vector
or scalar valued variable of interest, α is the trial length, and k ≥ 0 is the trial
number. Suppose also that a reference vector or trajectory is specified over the trial
length, where in the pick-and-place robot example this would be the desired path
for the robot to follow between the pick and place locations. Then, the error on this
trial is the difference between the reference and the output.

Given the error sequence, the ILC design problem can be formulated as con-
structing a sequence of trial inputs that will force this error, as measured by some
suitable norm, either to zero or to within some suitable tolerance. The first work
is widely credited to [1] and sources for the early literature include the survey pa-
pers [2, 3, 4]. Application areas include robotic-assisted biomedical/rehabilitation
devices, see, e.g., [5], multi-agent systems [6, 7], batch processing [8], and motion
control systems [9, 10].

A significant proportion of the available ILC designs assume that each trial is
of the same length. However, there are examples where this is not the case, and
one example is the ventricular assist device considered in [11]. In this application, a
rotary blood pump needs to be controlled repeatedly to maintain the blood perfusion,
but the cycle duration may not be uniform as the heart rate varies when the patient
stays in different situations, e.g., exercise or rest. Similar issues exist in other ILC
applications including foot motion and lower limb movement where ILC is used to
regulate the assistive functional electrical stimulation [12].

If the theory for constant trial ILC is not applicable, it is necessary to develop
algorithms for variable trial length ILC design. A high order ILC design, termed trial
averaging ILC, was developed in [13] to solve the ILC design problem for randomly
varying trial length examples. However, the learning efficiency will decrease as the
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trials increase due to the use of redundant past tracking information. Even though
two improved versions of the trial averaging scheme were developed in [14] to re-
duce the redundant learning from much early historical information, the most recent
previous trial is still a more efficient choice [15]. Nonetheless, results based on trial
averaging have been considered further in [16, 17] as the robustness to the variation
of trial lengths can become stronger by employing the trial averaging method. How-
ever, trial averaging usually requires the use of actual trial information. In contrast,
correct predictions based on the absent outputs may also achieve better learning ef-
ficiency. An auxiliary predictive model has been developed in [18] to compensate for
the unavailable output data, which gives another direction for solving the nonidenti-
cal trial length problem. Moreover, a model free adaptive ILC for randomly varying
trial lengths was reported in [19], which only uses the system input and output
data. The lifted ILC framework for discrete dynamics, also known as intermittent
ILC [20], has been employed to achieve P-type ILC design for the nonidentical trial
length problem [12, 21].

The aforementioned results mainly conduct the design and analysis in stochastic
sense. In contrast, a deterministic model was built in [22] for the nonidentical trial
length problem. Different from the stochastic model that requires the trial lengths
randomly varying, the deterministic model gives an iteration-dependent assumption
on nonidentical trial lengths, i.e., there always exists at least one trial reaching to the
desired lengths during a fixed successive trials. When considering continuous-time
systems, this assumption is more realistic in practice because the actual trial length
cannot reach to every existing lengths during the learning process. Note that as long
as the full-length trial occurs infinitely many times, a well learning process can be
guaranteed along the trial axis. Therefore, we build a deterministic model for the
nonidentical trial length problem in this paper and the strong convergence result of
optimal ILC designs for continuous-time systems is given. Moreover, existing design
and analysis techniques for the nonidentical trial length problem mainly includes the
conventional contraction mapping method [13, 14] and the Lyapunov-based compos-
ite energy function method [23, 24]. However, both methods can be abstracted as
mappings between defined metric spaces. If each trial can be seen as an point in a
suitable space, e.g., a Hilbert space, then the complex design and analysis problem
can be simplified by using the language of operator theory [25]. Introducing an in-
tuitive and simple operator-based design and analysis technique for the nonidentical
trial length problem is the main motivation of this paper.

Based on the operator theory, the alternating projection (also successive pro-
jection) method can further transfer the ILC problem into an intuitive projection
problem in the defined Hilbert space. Therefore, the standard alternating projection
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method has been developed and applied to, among others, design for input con-
straints [26], point-to-point [27], and spatial path tracking [28, 29] problems. How-
ever, this method is not naturally applicable to the nonidentical trial length problem
since a single convex set cannot represent the varying trial length dynamics. On the
other hand, it is desired to develop new effective design and analysis framework to
deal with systems with nonidentical trial lengths. Therefore, this paper modifies the
alternating projection framework by employing multiple sets to represent the system
dynamics, and strong convergence result of alternating projections between multiple
sets is considered. It should be emphasized that multiple sets are introduced only
to represent the varying trial length dynamics. The learning process will not be
influenced if reasonable projection orders are designed.

Moreover, optimization is naturally used as the paradigm for design and analysis
under alternating projections, while there has been some optimal ILC results dealing
with the nonidentical trial length problem. A norm optimal ILC application for non-
identical trial lengths was explored in [11], but there is no strict convergence analysis
for this extension. An optimal learning control scheme, which still uses the most
recent available information, was proposed in [30] by defining a specific cost func-
tion accordingly. By recursively computing the variable learning gain along the time
axis, this scheme can thus obtain faster convergence speed. Also, an intermittent
optimal ILC was reported based on alternating projections for discrete-time systems
with nonidentical trial lengths in [31]. However, this previous work is based on the
standard alternating projections, namely, two closed sets are employed and hence
only the convergence result in random sense is obtained. To achieve stronger con-
vergence result, the standard alternating projection can be modified by introducing
multiple sets to deal with the nonidentical trial lengths. Note also that aforemen-
tioned optimal ILC designs can only be applied to continuous-time dynamics after
first applying sampling, whereas the results in this paper can be applied directly to
continuous-time dynamics. This is also an advantage of the alternating projection
method that uses the Hilbert space settings.

In what follows, an optimal ILC design framework for continuous-time systems
with nonidentical trial lengths by alternating projections between multiple sets is
developed. By employing an auxiliary subspace as the tracking objective, the ILC
design problem with nonidentical trial lengths can be transformed into finding a
point in the intersection region of multiple closed affine subspaces, then a projection
sequence converging in norm is developed by defining a projecting order between the
auxiliary subspace and a family of closed affine subspaces. This designed projection
sequence can be implemented by the norm optimal ILC with specific modifications for
the nonidentical trial length case. Also, an accelerated ILC scheme is developed. The
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implementation of the accelerated scheme is developed on the basis of the modified
norm optimal ILC. Finally, the effectiveness of the optimal ILC designs, including
comparative aspects, is demonstrated by a simulation case study using a multiple-
input multiple-output (MIMO) numerical model. The new contributions of this
paper are:

• An optimal ILC design framework is developed to solve the nonidentical trial
length problem based on alternating projections between multiple sets.

• Using this setting, the norm optimal ILC is specifically modified for the non-
identical trial length problem, and its strong convergence result is strictly
proved.

• An accelerated scheme of the modified norm optimal ILC for the nonidenti-
cal trial length case is developed under this alternating projection framework,
whose convergence analysis is also given accordingly.

The structure is organized as follows: the problem description and the background
to alternating projections between multiple sets are developed in Section 2. Section
3 develops an optimal ILC design for the nonidentical trial length problem using
alternating projections, and specifically modified the norm optimal ILC applied.
Section 4 develops the accelerated ILC scheme and details its implementation. A
numerical case study is given in Section 5 and Section 6 gives the conclusion and
discusses possible future research.

Notation: N and N+ represent the set of natural numbers and positive integers,
respectively. Rn and Rn×m represent the sets of n-dimensional real vectors and n×m
real matrices, respectively. Lm2 [a, b] represents the Lebesgue 2-space of Rm valued
signals on an interval [a, b]. The superscript T and ⊥ respectively represent the
transpose and the orthogonal complement space and x⊥y denotes orthogonal vectors
x and y.

⋂
represents the intersection of sets. 〈·〉 represents the inner product. X×Y

represents the Cartesian product of two spaces X and Y. Other notations will be
introduced as required.

2. Preliminaries

Consider a continuous-time linear time-invariant MIMO system in the ILC setting
with nonidentical trial lengths

ẋk (t) = Axk (t) +Buk (t) ,

yk (t) = Cxk (t) ,
(1)
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where t ∈ [0, Tk] ⊂ R and the subscript k ∈ N represent time and trial number,
respectively. Also, Tk denotes the trial length for trial k which is unknown until the
trial ends. Moreover, xk(t) ∈ Rn, uk(t) ∈ R` and yk(t) ∈ Rm respectively represent
the system state, control input and output vectors on trial k. Finally, it is assumed
that xk(0) = x0 for all trials.

Let yd(t) ∈ Rm for t ∈ [0, T ] denote the reference trajectory vector. In this work,
it is assumed that Tk < T , where T denotes the desired trial length. Also let T− > 0
denote the minimum trial length, then Tk ∈ [T−, T ]. For analysis, the trial length is
modified to enable analysis based on a trial length that is the same for each trial as
discussed next, i.e.,

yk (t) =

{
yk (t) , t ∈ [0, Tk] ,

yd (t) , t ∈ (Tk, T ] .
(2)

In effect, for t > Tk, the pre-specified reference trajectory, is used to obtain signals
defined over the same trial length. Also, define the input and output spaces as
L`2 [0, T ] and Lm2 [0, T ] and the desired trajectory vector yd ∈ Lm2 [0, T ]. Moreover,
the effects of the state initial conditions, as in [32], can be incorporated into the
corresponding signals in a way such that they can be taken as zero in the subsequent
analysis. The system dynamics (1) can now be written in the operator form

yk = FjkGuk, (3)

where uk ∈ L`2 [0, T ] and yk ∈ Lm2 [0, T ] and the convolution operator G : L`2 [0, T ]→
Lm2 [0, T ] takes the form

(Guk) (t) =

∫ t

0

CeA(t−τ)Buk (τ) dτ . (4)

Fjk : Lm2 [0, T ]→ Lm2 [0, T ] is a linear operator that modifies the output signals in (2)
and, for an arbitrary ζ ∈ Lm2 [0, T ] takes the form

Fjkζ =

{
ζ (t) , t ∈ [0, Tk] ,

yd (t) , t ∈ (Tk, T ] .
(5)

Finally, the trial error is denoted by ek, and ek = yd − yk.
In this paper, an alternating projection in a Hilbert space is used to solve the

ILC design problem, for which the required background is given next.
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Figure 1: Illustration of the alternating projections between multiple affine subspaces.

2.1. Alternating projection interpretation

As a branch of the optimal ILC, the standard alternating projection method
in ILC [26, 27], usually employs two convex sets, which can only correspond to
fixed trial length ILC problems for convergence in norm. The results in this paper
require alternating projections between more than two sets and some modifications
are required relative to the previous work. An intuitive illustration is shown in Fig.
1, where different colors represent projections on different affine subspaces.

To begin with, a family of closed affine subspaces Mj in a Hilbert space are
introduced to represent the system dynamics with nonidentical trial lengths, and
another closed subspace M0, also in a Hilbert space, is used to represent the ILC
tracking objective. These sets are defined as

Mj = {(e, u) ∈ H : e = yd − y, y = FjGu} , (6)

M0 = {(e, u) ∈ H : e = 0} , (7)

where j is an index taking values in N+, and H is a Hilbert space defined as

Lm2 [0, T ]× L`2 [0, T ] , (8)

whose inner product and associated induced norm are

〈(e, u) , (y, v)〉{Q,R} =

∫ T

0

eT (t)Qy (t) dt+

∫ T

0

uT (t)Rv (t) dt, (9)

‖(e, u)‖{Q,R} =
√
〈(e, u) , (e, u)〉{Q,R}. (10)

In the above formulation, Q and R are symmetric positive definite weighing
matrices with compatible dimensions, and y ∈ Lm2 [0, T ] and v ∈ L`2 [0, T ]. Also
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Fj : Lm2 [0, T ]→ Lm2 [0, T ] is defined by

Fjζ =

{
ζ (t) , t ∈

[
0, T j

]
,

yd (t) , t ∈
(
T j, T

]
,

(11)

where the superscript j on variables, e.g. T j, denotes members of the family of affine
subspaces, and for this purpose, the following definition is also required.

Definition 1. To define the order of the affine subspaces with respect to the index
j, the followings are used:

• T 1 = T−, and F1ζ =

{
ζ (t) , t ∈ [0, T−] ,

yd (t) , t ∈ (T−, T ] ;

• T∞ = T , and F∞ζ = ζ;

• For any a, b ∈ N+, if a < b, then T a < T b.

Given Definition 1, Mj, for j ∈ N+, has an order corresponding to the positive
integer sets N+, which also corresponds to the trial lengths of actual outputs ordered
from small to large. Given that there actually exist an infinite number of affine
subspaces, the one corresponding to the desired length, i.e. M∞, has to correspond
to j =∞ by the second entry in Definition 1. This, in turn, establishes that

M1 ⊆M2 ⊆ · · · ⊆M∞. (12)

Remark 1. The relationship (12) reveals a deterministic property of the nonidentical
trial length problem, which is abstracted in the settings of Hilbert space for analysis.
To further explain, for instance, M1 ⊆ M∞ means the event that the actual trial
length reaches to the minimum trial length T− is the premise of event that it reaches
to the desired one T . Based on this deterministic property, it will be shown later
in this paper that (12) is a necessary condition for the convergence of alternating
projections between an infinite number of affine subspaces.

To ensure that the ILC problem considered has a solution, it is required that at
least one point exists in the intersection region of M0 and Mj, for j ∈ N+.

Assumption 1. There exists a point (0, u∗) in the intersection region of the multiple
subspaces defined in (6) and (7), i.e., (0, u∗) ∈

⋂∞
0 Mj.

With above settings, the ILC problem is equivalent to find a point belonging
to the intersection region of multiple sets defined in (6) and (7). In this sense,
the ILC design objective is to construct a projection point sequence, denoted by
{zk = (ek, uk)}k≥0, to ensure the process of alternating projections converges to a
point belonging to the intersection region.
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3. ILC Design Using Alternating Projections

In this section, an ILC design for nonidentical trial length problem is developed
using the alternating projections setup given in the previous section.

3.1. Design for converging alternating projections

Firstly, a projection point sequence is defined with respect to the sequence {jk}k≥0
as

zk+1 = Pjk+1
(zk) , k ≥ 0, (13)

where Pjk+1
represents a projection operator that projects a signal onto Mjk+1

. If
all Mj are closed subspaces instead of closed affine subspaces, there has been result
showing convergence of alternating projections between a finite number of Mj. Based
on {zk}k≥0, the following result holds, whose proofs can be found in [33] and as
Theorem 4.4 in [34].

Lemma 1. If the sequence s = {jk}k≥0 takes every value in {1, 2, . . . , J} infinitely
many times, i.e.

∆ (s, i) = sup
k

[Kk+1 (i)−Kk (i)] <∞, (14)

for each i ∈ {1, 2, . . . , J}, and there exists a constant S, only associated with the
sequence {jk}k≥0, such that

‖zq − zp‖2 ≤ S

q−1∑
k=p

‖zk+1 − zk‖2, p, q ∈ N+, q > p ≥ 1, (15)

then {zk}k≥0 converges in norm to the orthogonal projection of z0 onto
⋂J

1 Mj, where
J ∈ N+ and {Kk (i)}k≥0 is an increasing integer sequence such that jKk(i) = i with
K0 (i) = 0.

The condition (14) in Lemma 1 requires that each i, for i ∈ {1, 2, . . . , J}, occurs
infinitely many times in sequence {jk}k≥0. More formally, the difference of the index
numbers between two successive appearances of the same i should be bounded. In
the considered problem, it seems to require that each trial length should be reached
infinitely many times, while this is not possible in applications of continuous-time
systems. To overcome this difficulty, the condition (14) can be specifically simplified
for the nonidentical trial length case. Recall that M∞ is defined as the affine subspace
corresponding to the desired trial length, for which a less conservative assumption
specifically for the considered problem can be made in contrast to the requirements
in Lemma 1.
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Figure 2: Geometric illustration of alternating projections between M0 and Mj .

Assumption 2. M∞ appears infinitely many times in the alternating projection
process, i.e.

∆ (s,∞) = sup
k

[Kk+1 (∞)−Kk (∞)] <∞. (16)

Remark 2. In Assumption 2, M∞ represents the subspace corresponding to the
desired trial length, which means the desired trial length should appear infinitely many
times. This assumption is reasonable because there is not enough information for
learning if the actual trial length cannot reach the desired one sufficiently many times.
A similar assumption with respect to the desired length, termed the persistent full-
learning property, is given in [22], where it is required that the desired trial length
should be reached after every fixed number of successive trials. This paper gives
another description of deterministic model for the nonidentical trial length case using
the modified alternating projections.

Lemma 1 requires that alternating projections should be between finite number of
subspaces, i.e. J subspaces, while an infinite number of subspaces should be consid-
ered for the continuous-time setting of this paper. Nonetheless, strong convergence
result can still be guaranteed based on a deterministic property of the nonidentical
trial length problem, i.e., the condition (12). To show that alternating projections
between an infinite number of subspaces can still converge under (12), a geometric
illustration of alternating projections between M0 and Mj, is given in Fig. 2, which
also gives an intuitive illustration of the convergence analysis of sequence {zk}k≥0.
The following theorem can now be established.

Theorem 1. If the projecting order of alternating projections between multiple sub-
spaces defined in (6) and (7) satisfies

Mjk =

{
Mj, k odd,
M0, k even,

(17)

10



then the sequence {zk}k≥0 converges in norm to a point belonging to
⋂∞

0 Mj.

Proof. By Assumption 1, there exists a point z∗ belonging to the intersection region⋂∞
0 Mj. Based on the property of an orthogonal projection operator, it follows that

〈z − Pj (z) , Pj (z)− z∗〉 = 0, (18)

and hence

‖z − Pj (z)‖2 = ‖z − Pj (z) + Pj (z)− z∗‖2 − ‖Pj (z)− z∗‖2

− 2 〈z − Pj (z) , Pj (z)− z∗〉
= ‖z − z∗‖2 − ‖Pj (z)− z∗‖2.

(19)

Adding the trial number k gives

‖zk − z∗‖2 − ‖zk+1 − z∗‖2 = ‖zk − zk+1‖2, (20)

and hence yields

‖zp − z∗‖2 − ‖zq − z∗‖2 =

q−1∑
k=p

‖zk+1 − zk‖2. (21)

Next a property for any q > p ≥ 1 is firstly proved. To begin with, when p is odd
and q is even for q > p ≥ 2, as shown in Fig. 2, it follows that

zq = zp−1 + γ (zp+1 − zp−1) , (22)

where γ is a scalar. Given (20), ‖zk − z∗‖2 monotonically decreases as k increases,
so zq ∈M0 should be a point on the line segment with endpoints zp+1 and z∗. Then

‖zq − zp−1‖2 = γ2‖zp+1 − zp−1‖2 ≥ ‖zp+1 − zp−1‖2, (23)

which yields γ ≥ 1. When zq converges to z∗,

〈zq − zp, zp−1 − zp〉 = 0. (24)

Also, it follows from 〈zp+1 − zp−1, zp − zp+1〉 = 0 that

γ = − ‖zp − zp−1‖2

〈zp+1 − zp−1, zp−1 − zp〉
=

‖zp − zp−1‖2

〈zp+1 − zp−1, zp − zp+1 + zp+1 − zp−1〉
(25)

=
‖zp − zp−1‖2

‖zp+1 − zp−1‖2
, (26)
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and hence 1 ≤ γ ≤ ‖zp−zp−1‖2

‖zp+1−zp−1‖2
. Given (19), since 〈zp − zp+1, zp+1 − z∗〉 = 0 and

〈zp − zp−1, zp − z∗〉 = 0, it follows that

〈zp − zq, z∗ − zq〉 = 〈(zp − zp+1) + (zp+1 − zq) , z∗ − zp−1 − γ (zp+1 − zp−1)〉
= 〈zp − zp+1, (1− γ) (z∗ − zp−1)〉+ 〈zp − zp+1, γ(z∗ − zp+1)〉
+ 〈(1− γ) (zp+1 − zp−1) , (z∗ − zp−1)− γ (zp+1 − zp−1)〉
= 〈zp − zp−1 + zp−1, (1− γ) (z∗ − zp−1)〉 − (1− γ) 〈zp+1, z

∗ − zp−1〉
+ (1− γ) 〈zp+1, z

∗ − zp−1〉 − (1− γ) 〈zp−1, z∗ − zp−1〉
− (1− γ) γ ‖zp+1 − zp−1‖2

= (1− γ)
(
〈zp − zp−1, z∗ − zp−1〉 − γ ‖zp+1 − zp−1‖2

)
,

(27)
which is a quadratic function with respect to γ and its quadratic coefficient is positive.

Moreover, when γ = ‖zp−zp−1‖2

‖zp+1−zp−1‖2
,

〈zp − zp−1, z∗ − zp−1〉 − γ ‖zp+1 − zp−1‖2 = 〈zp − zp−1, z∗ − zp−1〉 − 〈zp − zp−1, zp − zp−1〉
= 〈zp − zp−1, z∗ − zp〉 = 0.

(28)

Hence 〈zp − zq, z∗ − zq〉 ≤ 0 since 1 ≤ γ ≤ ‖zp−zp−1‖2

‖zp+1−zp−1‖2
. For the case p = 1, the

original orthogonal projection point of z1 belonging to M0 can be employed and the
same result obtained. Then

‖zq − zp‖2 = ‖zp − z∗‖2 − ‖zq − z∗‖2 + 2 〈zp − zq, z∗ − zq〉
≤ ‖zp − z∗‖2 − ‖zq − z∗‖2, q > p ≥ 1.

(29)

When p is even and q is odd, a similar result to (29) is obtained by employing two
points in the same subspaces that zq belongs to, i.e., Mjq , where one point is the
orthogonal projection of zp onto Mjq , and the another is the original orthogonal
projection point of zp. Furthermore, when both p and q are odd or even, (29) is
obtained since ‖zk − z∗‖2 monotonically decreases as k increases by (21) even though
multiple subspaces arise when k is odd. The final step is to establish the property
(29) for any q > p ≥ 1, where, combined with (21), it follows that

‖zq − zp‖2 ≤ ‖zp − z∗‖2 − ‖zq − z∗‖2 =

q−1∑
k=p

‖zk+1 − zk‖2, (30)

and then S = 1 as required by Lemma 1. Hence the sequence {zk}k≥0 would converge
in norm to a point belonging to

⋂∞
0 Mj as established next.
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The proof is divided into two parts, the first of which is to prove that {zk}k≥0
converges in norm in a Hilbert space and the second is to prove that the convergent
point, denoted by z∞, belongs to

⋂∞
0 Mj. For the first part, it follows from (20)

that ‖zk − z∗‖2 monotonically decreases as k increases and is bounded below by 0.
Therefore, there exists a constant β > 0 such that lim

k→∞
‖zk − z∗‖2 = β. Furthermore,

given ε > 0, there exists k ∈ N such that 0 ≤ ‖zp − z∗‖2 − β < ε/2 whenever p ≥ k
and this is the case when q ≥ k. Combined with (29), it follows that

‖zq − zp‖2 ≤ ‖zp − z∗‖2 − β + β − ‖zq − z∗‖2 < ε/2 + ε/2 = ε. (31)

Then, due to the completeness property of Hilbert spaces, {zk}k≥0 converges in norm
to a point, i.e., z∞.

To prove the second part, note that M∞ appears infinitely many times as As-
sumption 2 requires. Hence there exists a sub-sequence

{
zKk(∞)

}
k≥0 such that each

zKk(∞) ∈M∞, and then 〈
zKk(∞), z

′〉 = 0, (32)

for every z′ ∈ M⊥
∞. By the continuity property of the inner product, it follows from

(32) that

〈z∞, z′〉 =
〈

lim
k→∞

zKk(∞), z
′
〉

= lim
k→∞

〈
zKk(∞), z

′〉 = 0, (33)

and hence z∞ is orthogonal to every point in M⊥
∞ and thus z∞ ∈M∞. Note also that

M0 appears infinitely many times with ∆ (s, 0) = 2, because of the designed order
(17). Hence z∞ ∈M0 and z∞ ∈M∞ ∩M0, where

M∞ ∩M0 = {(0, u∞) ∈ H : yd = F∞Gu∞ = Gu∞} . (34)

Substituting u∞ into Mj gives

e = yd − FjGu∞ = yd − Fjyd = 0, (35)

and hence (0, u∞) ∈ Mj for any j ∈ N+. Finally, z∞ ∈
⋂∞

0 Mj and the proof is
complete.

Remark 3. Lemma 1 actually discussed the alternating projections between multiple
closed subspaces as in [33], which means the original point naturally belongs to the
intersection region. In contrast, due to the system dynamics setting of the nonidenti-
cal trial length problem, Theorem 1 should analyze the convergence of the alternating
projections between a family of closed affine subspaces and a subspace, where the orig-
inal point would not belong to the intersection region. Nevertheless, the projection
sequence {zk}k≥0 still converges to a point belonging to the intersection region as in
Theorem 1.
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There is no direct relationship between z∗ and the convergent point z∞, except
that both belong to

⋂∞
0 Mj. Theorem 1 gives a design of projecting order for conver-

gence, when the alternating projection method is employed to solve the nonidentical
trial length problem. However, the design can be modified to further improve the
performance of ILC design subject to the condition that the convergence property is
guaranteed. The following corollary to Theorem 1 can now be established.

Corollary 1. The convergent point z∞ is the orthogonal projection of z0 onto
⋂∞

0 Mj.

Proof. Note that z∗ is a point that belongs to
⋂∞

0 Mj, and therefore z ∈Mjk+1
. Since

zk − Pjk+1
(zk) ∈M⊥

jk+1
, it follows that

〈zk − zk+1, z
∗〉 =

〈
zk − Pjk+1

(zk) , z
∗〉 = 0, (36)

and from (36) that

〈z0 − z∞, z∗〉 = lim
k→∞
〈z0 − zk, z∗〉

= lim
k→∞

(〈z0 − z1, z∗〉+ 〈z1 − z2, z∗〉+ · · ·+ 〈zk−1 − zk, z∗〉) = 0.
(37)

Hence z0 − z∞ ∈ (
⋂∞

0 Mj)
⊥

and therefore

z0 =

∈
⋂∞

0 Mj︷︸︸︷
z∞ +

∈(
⋂∞

0 Mj)
⊥︷ ︸︸ ︷

z0 − z∞ . (38)

Consequently, z∞ is the orthogonal projection of z0 onto
⋂∞

0 Mj by the projection
theorem for Hilbert spaces.

Corollary 1 establishes that the ILC design can not only enforce the sequence to
converge, but also to the orthogonal projection point of the initial point onto the
intersection region. This is a critical property, especially when there is more than one
point in the intersection region. Moreover, when an arbitrary initial ILC input u0 is
chosen, the ILC design will always converge with minimum distance with respect to
u0 in the defined Hilbert space provided Theorem 1 holds.

3.2. ILC implementation of projections

For applications, an implementation of the optimal ILC design is required. This
problem is actually equivalent to minimizing a cost function that is associated with
the distance in the defined Hilbert space. According to the inner product and asso-
ciated induced norm defined in (9) and (10), the cost function is given as

J (uk+1) = ‖ek+1‖2Q + ‖uk+1 − uk‖2R . (39)
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Remark 4. Note that the output signal yk is modified by adding the desired trajectory
information as required, and hence the corresponding parts of ek are set as zero. Al-
though this zero compensation mechanism cannot be of benefit to learning efficiency,
it can be seen as a lazy pattern [13, 35]. In this sense, the learning efficiency is
only dependent on the actual trial length that each trial would reach. Moreover, the
output error signals under zero compensation mechanism can also accurately show
the actual situation of control process and there would be no influence of the virtual
data. Hence the convergence property of the ILC design under alternating projections
can be analyzed exactly.

Minimizing the cost function (39) is an optimal ILC problem and many ap-
proaches can be employed to develop a solution. Norm optimal ILC has many
advantages both in theory and practical applications, see, e.g., [25], and can be
used to solve this optimal ILC problem. Note that the tracking error vector, i.e.,
ek = yd−FjkGuk according to (3), has been modified for the nonidentical trial length
case, then the standard form of the solution to the norm optimal ILC problem can
be modified as follows:

uk+1 = uk +G∗(I +GG∗)−1ek, (40)

where G∗ denotes the adjoint operator of G in Hilbert space and I denotes the
unit operator in this space. The update law (40) is actually non-causal, while it
can be implemented in a simple feedforward form according to the cost function
or a causal feedback plus feedforward structure by solving a series of differential
equations [36, 37]. It should be emphasized that this work mainly aims at proposing
an ILC design and analysis framework for continuous-time systems in the presence
of nonidentical trial lengths. In this sense, strict convergence analysis of the norm
optimal ILC applicable to the nonidentical trial length case can be conducted. The
following result is now relevant.

Proposition 1. The input sequence {uk}k≥0 generated by the update law (40) con-
verges to u∞, where z∞ = (0, u∞).

Proof. Since the update law (40) is one of the solutions that minimize the cost
function (39), the points consisting of input and output signals generated by (3)
and (40), denoted as z̃ = (ẽ, ũ), should be the orthogonal projections onto Mj, i.e.,
z̃ = (ẽ, ũ) ∈ Mj. Also, denote z = (e, u) as the corresponding orthogonal projection
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point onto M0. Then

P0 (z̃) = arg min
ẑ∈M0

‖ẑ − z̃‖2H

= arg min
(ê,û)∈M0

‖(ê, û)− (ẽ, ũ)‖2{Q,R}

= arg min
(ê,û)∈M0

{
‖ê− ẽ‖2Q + ‖û− ũ‖2R

}
,

(41)

whose solution is û = ũ because (ê, û) ∈M0. Hence ê = 0, and

Pj (z) = arg min
ẑ∈Mj

‖ẑ − z‖2H

= arg min
(ê,û)∈Mj

‖(ê, û)− (e, u)‖2{Q,R}

= arg min
(ê,û)∈Mj

{
‖ê− 0‖2Q + ‖û− u‖2R

}
= arg min

û

{
‖ê‖2Q + ‖û− u‖2R

}
,

(42)

which is an optimization problem that can be solved by (40). Then, repeatedly
utilizing (40) to solve the optimization problem in (42) as k increases is equivalent
to conducting alternating projections under the order given by (17). Finally, the
sequence {uk}k≥0 generated by (40) converges to u∞ by Theorem 1 and the proof is
complete.

It follows from Proposition 1 that the input signal uk is only updated when pro-
jecting on Mj under the designed order (17), which means that two projections in
the sequence {zk}k≥0 corresponds to one iteration in the design. Using Proposition
1, convergence properties of ILC design under alternating projections for the non-
identical trial length problem can be further investigated, which gives rise to the
following theorem.

Theorem 2. Given system (1), applying the ILC update law (40) under the de-
signed order of alternating projections (17) with initial input signal u0 yields the zero
convergence property of the output errors, i.e.,

lim
k→∞
‖ek‖ = 0, (43)

and
‖uk − u∞‖ ≥ ‖uk+1 − u∞‖ . (44)

16



Proof. By Theorem 1, the sequence {zk}k≥0 converges to z∞ under the designed
order (17), so the distance between zk and z∞ in the defined Hilbert space converges
to zero, i.e.,

lim
k→∞
‖zk − z∞‖ = lim

k→∞

{
‖ek − 0‖2Q + ‖uk − u∞‖2R

}
= 0, (45)

and the zero convergence property (43) is established. Furthermore, it follows from
〈zk − zk+1, zk+1 − z∞〉 = 0 that

‖zk − z∞‖2 = ‖zk − zk+1‖2+‖zk+1 − z∞‖2+2 〈zk − zk+1, zk+1 − z∞〉 ≥ ‖zk+1 − z∞‖2.
(46)

Hence when k is even

‖uk − u∞‖2R ≥ ‖ek+1‖2Q + ‖uk+1 − u∞‖2R, (47)

which gives rise to (44) and the proof is complete.

It is shown in Theorem 2 that the projections with specific implementations under
the designed order of Theorem 1 can solve the nonidentical trial length problem
in ILC. Although this projection implementation is an optimal ILC scheme, the
monotonic property with respect to the error signal cannot be deduced because the
affine subspaces representing the system dynamics are unknown. Equivalently, the
monotonic property of error signal cannot be naturally obtained under the design
using alternating projection method because of the nonidentical trial lengths. To be
more specific, the relationship between two successive trial errors under the modified
norm optimal ILC (40) is

ek+1 = yd − Fjk+1
Guk+1 =

(
yd − Fjk+1

Guk
)
− Fjk+1

GG∗ (I +GG∗)−1 ek. (48)

Note that ek 6= yd − Fjk+1
Guk, since typically Fjk+1

6= Fjk . Then, a direct equality
relation between ek+1 and ek cannot be derived from (48), which means the monotonic
convergence of error in norm cannot directly obtained. This can also be interpreted
under the proposed alternating projection framework. For a certain angle between
Mj and M0 (certain weighting matrices Q and R), the deviation in norm of trial
lengths between two successive trials, i.e. projecting onto two successive different
Mj, may be larger, on the scale, than the distance that is decreasing, especially
when zk comes nearly close to z∞.

However, the monotonic convergence result in norm can actually be achieved by
modifying the error with virtual information, see, e.g. [12]. To further reveal the
convergence of alternating projections in this paper, we extend the analysis in [12]
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to the continuous-time systems with nonidentical trial lengths under the modified
norm optimal ILC. To begin with, define a full-length error ēk ∈ Lm2 [0, T ] as

ēk = yd −Guk, (49)

which consists of both actual error information ek and virtual information generated
by the full-length input uk. Define a cutting operator F c

jk
: Lm2 [0, T ]→ Lm2 [0, T ] as

F c
jk
ζ =

{
ζ (t) , t ∈ [0, Tk] ,

0, t ∈ (Tk, T ] .
(50)

Then, a monotonic convergence result is given by the following proposition.

Proposition 2. Given system (1), if choose symmetric positive definite weighing
matrices satisfying ∥∥I −GG∗ (I +GG∗)−1 F c

j

∥∥ < 1,∀j ∈ N+, (51)

then applying the modified norm optimal ILC (40) yields

‖ēk+1‖ ≤ ‖ēk‖ . (52)

Proof. Combined with (40), it is easy to show that

ēk+1 = yd −Guk −GG∗ (I +GG∗)−1 ek =
[
I −GG∗ (I +GG∗)−1 F c

jk

]
ēk. (53)

Then, taking norm on the both side of (53) in the defined topology space, i.e. the
Hilbert space H, (52) can be achieved when (51) is satisfied.

This monotonic convergence result in norm is reasonable when considering the
full-length error ēk, which is equivalent to the case with identical trial lengths in
essence except that the learning process is only fully stored in the full-length input
signal instead of the error. Then, the proposed optimal ILC scheme can be further
accelerated using alternating projections by modifications to the projecting method
as established in the next section.

4. Accelerated ILC Scheme

The projection developed in the previous section is actually not the optimal
solution of ILC problem, and an accelerated version of the norm optimal ILC has
been investigated for the constant trial length case [32]. In particular, a point closer to
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Figure 3: Illustration of the accelerated ILC scheme.

the point z∗ always exists in the corresponding subspace compared to the orthogonal
projection point. The aim of this section is to use the modified alternating projection
framework to design and analyze the accelerated scheme for the nonidentical trial
length case. An illustration of the accelerated ILC scheme is given in Fig. 3, where
points that follow the solid lines usually have the accelerated convergence property
compared to that of the dashed lines when projecting onto M0. Then, an accelerated
ILC scheme for the nonidentical trial length problem is first developed.

By Proposition 1, the control input signal only updates when projecting on Mj,
which means M0 is actually an auxiliary subspace for optimal ILC design under
alternating projections. Equivalently, the sub-sequence {z2k ∈M0}k≥0 has no direct
influence on the practical ILC process when following the designed order (17) in
Theorem 1. Therefore, some accelerated strategies can be embedded into the process
of finding a point in M0. In this sense, a point closer to z∗, denoted as Z = (0, U), can
be located by the orthogonal projection point onto M0 and employed to accelerate
the ILC design.

This construction is illustrated in Fig. 3, and the sub-sequence of the orthogonal
projection point {z2k ∈M0}k≥0 is employed to locate the closer point Z2k when a
point in M0 is found. In contrast, the orthogonal projection is still conducted when
we find a point in Mj. In this way, choose z0 ∈ H arbitrarily and set Z0 = P0 (z0),
then an accelerated strategy can be obtained by designing a sequence {Zk}k≥0, i.e.,

Z2k+1 = Pj2k+1
(Z2k) , (54)

z2k+2 = Pj2k+2
(Z2k+1) , (55)

Z2k+2 = Z2k + γ2k (z2k+2 − Z2k) , (56)
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where γ2k is a scalar and

Mjk =

{
Mj, k odd,
M0, k even.

Compared with the sequence {zk}k≥0 designed in Theorem 1, {Zk}k≥0 changes
the point belonging to M0 to a point closer to z∗ so as to accelerate the process of
alternating projections. However, there should exist some limitations on this closer
point to avoid the divergence. Then, in order to ensure the convergence of accelerated
ILC design, the following theorem is established.

Theorem 3. If the accelerated factor, γ2k, satisfies

1 ≤ γ2k ≤
‖Z2k+1 − Z2k‖2

‖z2k+2 − Z2k‖2
, (57)

then the sequence {Zk}k≥0 converges to a point in
⋂∞

0 Mj.

Proof. Firstly, note that Z2k+1 and z2k+2 are the orthogonal projections of Z2k and
Z2k+1 respectively, and it follows from (18) that 〈Z2k − Z2k+1, Z2k+1 − z∗〉 = 0 and
〈Z2k+1 − z2k+2, z2k+2 − z∗〉 = 0. Then, similar to (27),

〈Z2k+1 − Z2k+2, z
∗ − Z2k+2〉 = (1− γ2k)

(
〈Z2k+1 − Z2k, z

∗ − Z2k〉 − γ2k ‖z2k+2 − Z2k‖2
)
.

(58)
Due to (57), 〈Z2k+1 − Z2k+2, z

∗ − Z2k+2〉 ≤ 0 by Theorem 1. Moreover, it follows
that

‖Z2k+1 − z∗‖2 = ‖Z2k+1 − Z2k+2‖2 + ‖Z2k+2 − z∗‖2 + 2 〈Z2k+1 − Z2k+2, Z2k+2 − z∗〉
≥ ‖Z2k+1 − Z2k+2‖2 + ‖Z2k+2 − z∗‖2,

(59)
and also

‖Z2k − z∗‖2 = ‖Z2k − Z2k+1‖2 + ‖Z2k+1 − z∗‖2 + 2 〈Z2k − Z2k+1, Z2k+1 − z∗〉
= ‖Z2k − Z2k+1‖2 + ‖Z2k+1 − z∗‖2,

(60)

due to the orthogonal projection. Combined with (59) and (60), it follows that

‖Zk − Zk+1‖2 ≤ ‖Zk − z∗‖2 − ‖Zk+1 − z∗‖2. (61)

Finally, following the proof of two parts in Theorem 1 gives that {Zk}k≥0 converges
to Z∞, where Z∞ is a point belonging to

⋂∞
0 Mj.
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One difference between the orthogonal projection sequence {zk}k≥0 and its accel-
erated design {Zk}k≥0 is that the scalar γ employed to denote zq originally satisfies

the inequality condition 1 ≤ γ ≤ ‖zp−zp−1‖2

‖zp+1−zp−1‖2
, and the range of γ2k is set to satisfy

(57) for convergence.
Given the designed sequence {Zk}k≥0, an accelerated ILC scheme can be imple-

mented as follows:

uk+1 = uk +G∗(I +GG∗)−1ek, (62)

uk+1 = uk + γk+1 (uk+1 − uk) , (63)

where {uk}k≥0 is the actual control input sequence and {uk}k≥0 is an auxiliary se-
quence with u0 = u0, and

1 ≤ γk+1 ≤
‖ek+1‖2Q + ‖uk+1 − uk‖2R

‖uk+1 − uk‖2R
. (64)

The accelerated scheme in this paper is specifically developed for the nonidentical
trial length problem, and the convergence analysis is conducted using framework of
alternating projections between multiple closed subspaces. In this sense, by The-
orem 3, the accelerated ILC scheme also achieves its convergence properties under
alternating projections as in the next result.

Theorem 4. Given a system described by (1), suppose that the accelerated ILC
scheme (62) and (63) and (64) is applied with initial input signal u0. Then

lim
k→∞

uk+1 = U∞, lim
k→∞
‖ek‖ = 0, (65)

where Z∞ = (0, U∞), and

‖uk − U∞‖ ≥ ‖uk+1 − U∞‖ . (66)

Proof. Firstly, the pairs of error and input signals (ek+1, uk+1) and (0,uk) in the ac-
celerated ILC scheme (62) and (63) represent Z2k+1 and Z2k in the sequence {Zk}k≥0
as shown in Fig. 3. By Theorem 3, the sub-sequence {Z2k+1}k≥0 also converges to
Z∞, and hence

lim
k→∞
‖Z2k+1 − Z∞‖ = lim

k→∞

{
‖ek+1 − 0‖2Q + ‖uk+1 − U∞‖2R

}
= 0, (67)
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which gives (65). Moreover, Z∞ is also a point in
⋂∞

0 Mj, then it follows that

‖Z2k+1 − Z∞‖2 = ‖Z2k+1 − z2k+2‖2 + ‖z2k+2 − Z∞‖2 + 2 〈Z2k+1 − z2k+2, z2k+2 − Z∞〉
= ‖Z2k+1 − z2k+2‖2 + ‖z2k+2 − Z∞‖2,

(68)
and

‖Z2k − Z∞‖2 = ‖Z2k − Z2k+1‖2 + ‖Z2k+1 − Z∞‖2 + 2 〈Z2k − Z2k+1, Z2k+1 − Z∞〉
= ‖Z2k − Z2k+1‖2 + ‖Z2k+1 − Z∞‖2.

(69)
Combined with (68) and (69), it follows that ‖z2k+2 − Z∞‖2 ≤ ‖Z2k − Z∞‖2. Also
since γ2k ≥ 1, it follows that ‖Z2k − Z∞‖2 ≤ ‖z2k − Z∞‖2, and hence

‖z2k+2 − Z∞‖2 ≤ ‖z2k − Z∞‖2. (70)

Moreover, z2k and z2k+2 corresponds to (0, uk) and (0, uk+1), respectively. Hence (66)
can be obtained from (70) and the proof is complete.

Theorem 4 gives the convergence properties of the accelerated ILC scheme (62)
and (63) for γk+1 satisfying (64) under alternating projections. Moreover, a more
precise selection can be made for some specific convergence properties. A selection
for the accelerated scheme is given next.

To start, two auxiliary points Z ′2k = (ek,uk) and Z ′2k+2 = (ek+1,uk+1), both of
which belong to Mj2k+1

as shown in Fig. 3, are defined to explore the accelerated
property in the case when the trial lengths are not identical. Since Z ′2k ∈ Mj2k+1

, it
follows that 〈Z2k − Z2k+1, Z2k+1 − Z ′2k〉 = 0. Moreover,

‖Z ′2k − Z2k‖2 = ‖Z2k − Z2k+1‖2 + ‖Z2k+1 − Z ′2k‖
2
, (71)

and hence

‖ek‖2Q = ‖Z2k − Z2k+1‖2 + ‖ek+1 − ek‖2Q + ‖uk+1 − uk‖2R. (72)

Similarly, since
〈
Z2k − Z2k+1, Z2k+1 − Z ′2k+2

〉
= 0,

‖ek+1‖2Q+‖uk+1 − uk‖2R = ‖Z2k − Z2k+1‖2+‖ek+1 − ek+1‖2Q+‖uk+1 − uk+1‖2R. (73)

Since both Z ′2k and Z ′2k+2 belong to Mj2k+1
and combining with (63), (72) and (73),

it follows that

‖ek+1‖2Q − ‖ek‖
2
Q =

(
γ2k+1 − 2γk+1

)
‖ek+1 − ek‖2Q − 2γk+1‖uk+1 − uk‖2R. (74)
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The right-hand side of (74) is a quadratic function with respect to γk+1, and hence

the extreme point, γk+1 = 1 +
‖uk+1−uk‖2R
‖ek+1−ek‖2Q

, can be selected to minimize the norm of

auxiliary error ek+1. For practical implementation, this extreme point cannot always
satisfy (64), and in this case, set

γk+1 =

{
1 +

‖uk+1−uk‖2R
‖ek+1−ek‖2Q

, (64) is satisfied,

1, otherwise.
(75)

Compared with the accelerated scheme for the constant trial length case, the
accelerated sequence {Zk}k≥0 cannot guarantee the norm of actual error signal is
monotonically decreasing by selecting the value of γk+1. However, the developed
accelerated scheme relaxes the limitation that each trial length should be strictly
identical. Nonetheless, better performance can be still achieved by following (75),
which will be verified in the numerical case study of the next section.

5. Numerical Simulation

The example used is described by the following linear continuous MIMO system
from [17]

ẋk (t) =


0.14 0.12 0.26 0.6
−0.3 1.2 0.23 −0.3
0.18 −0.24 −0.35 0.43
0.2 0.01 0.05 −0.5

xk (t) +


0.1 0.2
−1 8
1.5 9
0 0

uk (t) ,

yk (t) =

[
0 0.1 0 0
0 0 0 1

]
xk (t) .

(76)

The reference trajectory is chosen as

y
(1)
d (t) = 1.6t2 [1 + cos (πt− π)] ,

y
(2)
d (t) = 0.7

[
1 + sin

(
2πt− π

2

)]
,

(77)

where the superscript (·) denotes the component of MIMO systems and the desired
time duration is t ∈ [0, 2], and hence T = 2s. The variation of trial lengths is
uniformly distributed, starting from 1.8s, i.e., T− = 1.8s.

The alternating projections can be implemented by the norm optimal ILC (40)
with modifications, so the simple feedforward form of the modified norm optimal ILC
is employed to minimize the cost function (39). Choose the cost function weighing
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Figure 4: Output profiles of the modified norm optimal ILC.

matrices as Q = 100IQ and R = 0.001IR, where IQ =
[
0.5 0
0 1

]
and IR =

[
1 0
0 1

]
. Set the

initial input signal u0 as 0. Then, simulation with 20 trials gives the results in Fig. 4,
where the 2nd and 4th output profiles are specifically plotted and their trial lengths
all fail to reach to the desired one. Nonetheless, the 20th output can still track the
desired trajectory. The variation profile of the trial length Tk is given in Fig. 5. The
cost function defined in (39) is plotted in Fig. 6, which decreases along the trial axis.
To further assess performance, the root mean square error (RMSE) of each trial is
used, and comparisons with both the P-type ILC using Arimoto-like gain and the
trial averaging ILC [38] are given in Fig. 7. Both learning gain parameters for these
alternative designs are set as 0.5 and satisfy the respective convergence conditions
for this example. It can be seen in Fig. 7 that the convergence performance of
the modified norm optimal ILC is better than that of the other two non-optimized
schemes.

An obvious step in this study is to examine the effects of choosing different
weighed matrices. In Fig. 8, the RMSEs of the modified norm optimal ILC with
different choices of the weighing matrices are given. Note that both increasing the
diagonal entry of Q and decreasing R will have positive effects on the convergence
speed. Also, the error convergence will follow the same profile if there exists the
same ratio, even though the actual values of the weighing matrices are different. The
results can be interpreted under the framework of alternating projections. Different
choices of the weighing matrices will change the angle of Mj and M0, which naturally
influences the optimization scale. If the ratios of two choices are same, the angle will
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Figure 7: RMSEs of the modified norm optimal ILC compared with the conventional counterparts.

also remain unchanged and the error convergence will be the same (under the same
variation profile of Tk). Besides, the error convergence is not monotonic, which has
been discussed at the end of Section 3. For comparisons, the specific monotonic
convergence result in Proposition 2 is given in Fig. 9, where the chosen weighing
matrices satisfy the condition (51).

Finally, the effectiveness of the accelerated scheme is examined with Q = 10IQ
and R = 0.001IR and also γk+1 is chosen using (75). The simulation is run with 20
trials, which generates the data for the modified norm optimal ILC and its accelerated
scheme shown in Fig. 10. These confirm that the accelerated scheme indeed can
increase the convergence speed. Note that since the initial value of auxiliary sequence
u0 is set as u0, so γ1 = 1 according to (75), which leads to the first trial decrease of the
modified norm optimal ILC is same with its accelerated scheme. Other reasonable
value of u0 can be chosen for larger decrease. Also, the profiles of the accelerated
scheme have more fluctuations than that of its original method. This is because
the accelerated scheme converges faster to z∞ and the deviation in norm of trial
lengths between two successive trials are more likely to be larger on the scale than
the distance that is decreasing. Finally, Fig. 11 gives the value of γ along the trial.

6. Conclusions and Future Work

This paper has developed an optimal ILC design for linear continuous-time MIMO
systems with nonidentical trial lengths using alternating projections. By transform-
ing the ILC design to one finding a point inside the intersection region of multiple
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Figure 8: RMSEs of the modified norm optimal ILC with different choices of Q and R.
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Figure 9: Monotonic convergence of ēk in Proposition 2.
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Figure 10: RMSEs of the modified norm optimal ILC and its accelerated scheme with Q = 10IQ
and Q = 0.001IR.
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closed affine subspaces, a projection sequence was developed by defining a projecting
order between a single subspace and a family of affine subspaces. The projection se-
quence was then proved to converge in norm based on an assumption that there exists
a point in the intersection region. It was also proved that the designed projection
sequence can be implemented by the norm optimal ILC with specific modifications
for the nonidentical trial lengths.

An accelerated scheme has also been developed under alternating projections.
The accelerated scheme can also be abstracted as a sequence in the defined Hilbert
space, which was similarly proved to converge in norm. Moreover, an accelerated
implementation for nonidentical trial length problem has been developed based on
the modified norm optimal ILC and the choice of the accelerated factor is given.
Finally, the effectiveness of the ILC designs has been compared with two other non-
optimized ILC designs.

Possible onward developments for future study, include extension to other ILC
problems, such as varying initial conditions and nonidentical time scales.
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