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For the synthesis of manipulators and robots, an accurate analysis of movements of the individual links is 
essential. This paper deals with motion planning of the effector of a multi-linked manipulator. An important issue 
in this area is the orientation and position of links and kinematic pairs in space. In particular, attention should be 
paid to the position of their endpoint as well as other significant points. Trajectory planning allows the manipulator 
to perform complex tasks, such as picking and placing objects or following a particular path in space. Overall, 
trajectory planning of a multibody manipulator involves a combination of direct and inverse kinematics 
calculations, as well as control theory and optimization techniques. It is an important process enabling manipulators 
to perform complex tasks such as assembly, handling and inspection. In the design of robot kinematic structures, 
simulation programs are currently used for their kinematic and dynamic analysis. The proposed manipulator was 
first solved by inverse kinematics problem in MATLAB. Subsequently, the trajectories of the end-effector were 
determined in MATLAB by a direct kinematics problem. In Simulink, using the SimMechanics library, the inverse 
problem of dynamics was used to determine the trajectories of the moments.  
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1. Introduction 
 

With technological advances, industries are gradually entering the era of full automation. Industrial 
robots are used instead of humans to perform repetitive work that is highly risky, too complex, too difficult 
and takes a long time. Most of the manufacturing and industrial processes are now performed by modern 
industrial robots, which provide different types of object manipulation and make individual production 
processes easier and faster. The basic function of a handling device is to hold an object and precisely transfer 
it to a specified position. Mobile robots for remote handling are used in the production process. With gradual 
development, robotic manipulators with two or more arms have been designed that are capable of 
simultaneously imitating the movements of a human hand.  

For the synthesis of manipulators and robots, an accurate analysis of the movements of individual links 
is essential. In the analysis of the motions of individual links, the start and end positions of the manipulator are 
important, which are used as a basis for determining or planning the trajectory of a single link. For kinematic 
and dynamic analysis of motions, the matrix method is often used, on the basis of which simulation programs 
are also built. Simulation programs are used in the kinematic and dynamic analysis of robots and allow a 
reliable analysis of robotic devices as a whole and also their single links. The individual computer simulation 
programs contain predefined basic bodies and kinematic pairs from which the user can choose while building 
a simulation model of a multi-link system. 

Compared to the analytical approach, this procedure saves time considerably. Trajectory planning 
allows the manipulator to perform complex tasks. Overall, trajectory planning of a multibody manipulator 
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involves a combination of direct and inverse kinematics calculations as well as control theory and optimization 
techniques. It is an important process enabling manipulators to perform complex tasks such as assembly, 
handling and inspection (Hroncova et al. [1], Lewis et al. [2], Angeles [3]). 
Direct kinematics and inverse kinematics are used to control the manipulator. The proposed manipulator was 
first solved by inverse kinematics problem in MATLAB, where the rotation angles of both robot arms were 
determined. Subsequently, the trajectories of the end effector were determined in MATLAB by the direct 
kinematics problem. In Simulink, using the SimMechanics library, the inverse dynamics problem was used to 
determine the moment trajectories. 
 
2. Trajectory planning 
 

The movements performed by robots and manipulators should be as smooth as possible. Sudden changes 
of movements, i.e. sudden changes of position, speed, acceleration, should be avoided. Sudden changes in 
movements can also occur when the manipulator comes into contact with another object, which should be 
avoided. It is therefore necessary to plan or program in advance the movements that a given manipulator can 
perform with respect to surrounding objects. In practice, however, it is still impossible to avoid unforeseen 
situations that can lead to system failure. Unpredictable situations should therefore be taken into account when 
designing a robotic system. Two trajectory planning methods can be used for motion planning in a known 
environment  

• pick-and-place and 
• continuous pathways. 

 The task of the robotic manipulator is to move an object from a given initial position to a specified 
final position. These positions are determined with respect to the manipulator's base space and its orientation. 
When moving from one position to another, it is not the path that is important, but that there is no collision 
with other objects and at the same time that the movement is smooth. (Lewis et al. [2], Kuryło et al. [4], 
Sapietová et al. [5], Božek et al. [6]).  
 Although the initial and final positions are prescribed in the basic Cartesian coordinate system, the 
motions of individual robot links are realized in their local space. Therefore, individual local spaces need to 
be transformed into the base space. Planning movements in the base space ensures that the robot does not 
collide with other objects in its environment. Therefore, it is necessary to render the motion of all moving links 
of the robot, each of which has its own geometry. However, for general three-dimensional motions and 
arbitrary geometries, this approach is impractical due to the computational requirements. A more pragmatic 
approach could consist of two steps, namely  

• planning a preliminary trajectory in local space, without taking into account obstacles to movement 
and  

• visual verification of the occurrence of collisions, based on a plotted animation of the motion of 
the manipulator in the presence of obstacles.  

 To determine the trajectories of the manipulator's moving links, it is necessary to know or choose the 
initial and final positions of the manipulator Let the vector of joint variables in the robot's initial and final 
configurations be denoted by 0θ  and Fθ . We assume that time is calculated from the initial position when 
t 0= . If the motion takes place at time t , then at the final position let the time be labeled Ft t= . In this case, 
the path of the end effector is not important. 
 The position vector of the endpoint (effector) with respect to the frame is denoted by p , that is, at the 
initial position ( ) ( ) 0t 0 0= = =p p p  and at the final position ( ) ( )F F Ft t t= = =p p p . If there is no singularity 
we assume zero velocity and acceleration at the end position of the effector: 
 
  ( ) 00θ = θ , ( )0 0θ = , ( )0 0θ = , (2.1) 
 
  ( )F Ftθ = θ , ( )Ft 0θ = , ( )Ft 0θ = . (2.2) 
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From the equations, it is clear that neither linear nor quadratic interpolation holds between the initial and final 
positions because the slope vanishes at only one point. Therefore, higher order interpolation is required.  
 The trajectory is generated by an algorithm that, given general requirements, is able to optimize some 
parameters when moving a point from one position to another (Siciliano et al. [7], [8], Kuryło et al. [9], Kuric 
et al. [10]).  
 A third-order polynomial function can be used to generate the trajectory: 
 
  ( ) 3 2

3 2 1 0q t a t a t a t a= + + +  (2.3) 
 
where the coefficients ia  are determined from the values of the initial and end position of the effector and the 
initial and final velocity, which is usually equal to zero. If we add the initial and end acceleration values to the 
conditions, the six boundary conditions must be satisfied. For the six boundary conditions, it is necessary to 
use a polynomial of at least fifth degree to plot the motion (Lenarčič et al. [11], Hroncová et al. [12], 
Frankovský et al. [13], Baressi et al. [14]). The time dependence of the motion for a general point is then given 
by the relation: 
 
  ( ) 5 4 3 2

1 2 3 4 5 6q t a t a t a t a t a t a= + + + + + , (2.4) 
 
whose coefficients ia  can be computed from the boundary conditions for the initial time t 0=  and the time at 
the final position Ft t=  for the variable ( )q t  and for its first two derivatives. It is necessary to find a 
polynomial that will allow the joint variable jθ  to be represented over the whole range of motion: 
 
  ( )( ) ( )j j0 jF j0t q tθ = θ + θ − θ  (2.5) 
 
where j0θ  and jFθ  are given the initial and final values of the j-th link variable. In vector form, Eq.(2.5) takes 
the form: 
 
  ( )( ) ( )0 F 0t q t= + −θ θ θ θ . (2.6) 
 
 We plan the trajectory for the two-links planar manipulator according to Fig. 1. The manipulator's 
workspace is given in Cartesian coordinates in the plane, which are a function of time ( ), ( )x x t y y t= = . The 
angular parameters of individual links that determine the position of the end-effector are 1θ , 2θ  (Fig. 1) and 
are a function of time ( )1 1 tθ = θ , ( )2 2 tθ = θ . 
 We use the inverse kinematic transformation to determine the angular variables of individual links of 
the manipulator 1θ , 2θ . Coordinates of the end point are as follows:  
 
  ( )( ) cos cosL 1 1 2 1 2x x t L L= = θ + θ + θ , (2.7) 
 
  ( )( ) sin sinL 1 1 2 1 2y y t L L= = θ + θ + θ . (2.8) 
 
From Fig.1 we can determine; 
 
  cos2 2 2 2

L L 1 2 1 2 2x y L L 2L L+ = + + θ  (2.9) 
 
and  
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  cos
2 2 2 2
L L 1 2

2
1 2

x y L L
2L L

+ − −θ = .  (2.10) 

 
 The solution implies that cos 2θ  must be from the interval ,1 1− , otherwise the point in question 
would be outside the manipulator's workspace. Then 
 

  sin cos2
2 21θ = ± − θ   (2.11) 

 
where the positive sign represents the downward position of the arm and the negative sign represents the 
upward position of the arm. The angle 2θ  is calculated as: 
 
  atan (sin , cos )2 2 22θ = θ θ .  (2.12) 
 
We then determine the angle 1θ  by inserting 2θ  into (2.7), (2.8) from which we get an algebraic system of 
two equations with two unknowns, whose solution is: 
 

  ( )cos sin
sin 1 2 2 L 2 2 L

1 2 2
L L

L L y L x
x y

+ θ − θ
θ =

+
,  (2.13) 

 

  ( )cos sin
cos 1 2 2 L 2 2 L

1 2 2
L L

L L x L y
x y

+ θ − θ
θ =

+
.  (2.14) 

Then  
 
  atan (sin , cos )1 1 12θ = θ θ .  (2.15) 
 
The angle of 1θ  depends on the angle of 2θ . 
 
3. Rendering of the manipulator trajectory 
 
 A model of a two-link manipulator coupled by a rotary kinematic pair is shown in Fig.1. The coordinate 
systems are stored in rotary kinematic pairs. The rotation angle of individual links is denoted by the angles 1θ , 

2θ . The manipulator has 2 degrees of freedom of motion. Let us consider the arms of the manipulator as 
perfectly rigid bodies. For the lengths of the links .1L 0 55 m=  and .2L 0 45 m=  the angles at the initial position 
of the end effector L have been calculated.  
At the initial position at time t 0= , the coordinates are .L0x 0 5 m= , .L0y 0 86 m= − . At the final position at 
time Ft 2 s= , the end-effector L has the coordinates .LFx 0 9 m= − , LFy 0 m= . 
 The angles were calculated using relations (2.7), (2.8), and (2.12), (2.15) for the initial and final 
effector positions, respectively. By calculating the angles for two possible positions and movements, we gets: 
 
  [ ]. ; .10 54 5340 65 1190θ = − ° − ° , [ ]. ; .2 0 11 7656 11 7656θ = − ° , 
 
  [ ]. ; .1 F 156 8082 156 8082θ = − ° ° , [ ]. ; .2 F 51 9636 51 9636θ = − ° ° . 
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Fig.1. Two-link manipulator. 
 
 Figure 2 shows the positions of the arms at the start and end positions of the effector L for the calculated 
angles. The values of .1 0 65 1190θ = − ° , .2 0 11 7656θ = , .1 F 156 8082θ = ° , .2 F 51 9636θ = °  were used to plot 
the endpoint trajectory, Fig.2. 
 

 
 

Fig.2. Manipulator with given start and end position of point L. 
 
The time history of the angular rotations 1θ , 2θ  of individual arms is found in the form of a polynomial of 
degree five by using relation (2.4): 
 
  ( ) 5 4 3 2

1 1 2 3 4 5 6t a t a t a t a t a t aθ = + + + + + ,  (3.1) 
 
  ( ) 5 4 3 2

2 1 2 3 4 5 6t b t b t b t b t b t bθ = + + + + +  (3.2) 
 
where the coefficients 6a  and 6b  correspond to the magnitudes of the angles at the initial position of the arms 
at times t 0= , 6 10a = θ  and 6 20b = θ . Expressed in radians, they are: 
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  [ ]( ) . . rad6 10 1a t 0 65 1190 1 1365
180

π = θ = θ = = − = − 
 

; (3.3) 

 

  [ ]( ) . . rad6 20 2b t 0 11 7656 0 2053
180

π = θ = θ = = = 
 

. (3.4) 

 
 To ensure the desired movement of the individual terms, we express the other coefficients in 
polynomials, which can be written in vector form: 
 
  [ ]T

1 2 3 4 5 6a a a a a a=a ; [ ]T
1 2 3 4 5 6b b b b b b=b .  (3.5) 

 
 These coefficients are used to ensure the desired endpoint motion and are determined from the initial 
and endpoint conditions of the monitored point. The degree of the polynomial is chosen according to the 
number of prescribed conditions to allow their calculation.  
 At the desired start and end positions of the arms and the end point, respectively, the velocity and 
acceleration will be zero. Given this, the angular velocity and angular acceleration will also be zero at these 
positions, which serves as a condition for calculating the coefficients of the polynomial.  
 The angular velocity of the first term in time t  is the derivative of the angle ( )1 tθ  with respect to time: 
 

  ( )( ) ( ) 4 3 2
1 1 1 2 3 4 5

d t t 5a t 4a t 3a t 2a t a
dt

θ = θ = + + + + . (3.6) 

 
 Due to the zero angular velocity of ( )1 t 0θ =  at the time t 0=  the parameters will be 5a 0= . The 
second derivative of the rotation angle ( )1 tθ  with respect to time is the angular acceleration: 
 

  ( )( ) ( )
2

3 2
1 1 1 2 3 42

d t t 20a t 12a t 6a t 2a
dt

θ = θ = + + + . (3.7) 

 
Given zero angular acceleration ( )1 t 0θ =  at time t 0=  the parameters will be 4a 0= . Similarly, for the angle 

( )2 tθ , given zero angular velocity and acceleration at the initial and final positions, the parameters will be 

5b 0= , 4b 0= . 
 By adjusting the polynomials, we obtain a system of three equations of three unknowns at the initial 
and final times. Angle ( )1 t 0θ = , ( )1 Ft tθ = ; 
 
  ( ) ( ) 5 4 3

1 F 1 1 F 2 F 3 Ft t t 0 a t a t a tθ = − θ = = + + , (3.8) 
 
  4 3 2

1 F 2 F 3 F0 5a t 4a t 3a t= + + , (3.9) 
 
  3 2

1 F 2 F 3 F0 20a t 12a t 6a t= + + . (3.10) 
 
Angle ( )2 t 0θ = , ( )2 Ft tθ = ; 
 
  ( ) ( ) 5 4 3

2 F 2 1 F 2 F 3 Ft t t 0 b t b t b tθ = − θ = = + + , (3.11) 
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  4 3 2
1 F 2 F 3 F0 5b t 4b t 3b t= + + , (3.12) 

 
  3 2

1 F 2 F 3 F0 20b t 12b t 6b t= + + . (3.13) 
 

 
 

Fig.3. Trajectory of the endpoint from the selected start position to the end position. 
 
To simplify the solution, these equations can be written in matrix form  
 

  
( ) ( )

5 4 3
F F F 1 1 F 1
4 3 2
F F F 2
3 2 3F F F

t t t a t t t 0
5t 4t 3t a 0

a 020t 12t 6t

  θ = − θ =        =              

, (3.14) 

 

  

( ) ( )5 4 3
F F F 2 f 21
4 3 2
F F F 2
3 2 3F F F

t t t t t t 0b
5t 4t 3t b 0

b 020t 12t 6t

  θ = − θ =       =             

. (3.15) 

 
The solution gives the coefficients for the angle function in matrix form:  
 
  [ ]T. . . .0 7263 3 6313 4 8417 0 0 1 1365= − −a , (3.16) 
 
  [ ]T. . . .0 1315 0 6577 0 8770 0 0 0 2053= −b . (3.17) 
 
Substituting the only sensitive coefficients (3.16), (3.17) into relations (3.1), (3.2), we obtain the time-
dependent angular momentum of the arms, on the basis of which the trajectory of the end-effector L can be 
plotted. The trajectory of the effector L is plotted in Fig.3. In Fig.4, the time-dependent trajectories of the 
rotation angles, angular velocities, and angular accelerations of the manipulator links can be seen.  
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Fig.4. The course of angular quantities of individual manipulator links. 
 
By determining the angular variables of the individual links of the manipulator, the working point of the 
manipulator can be determined. The workspace is a subspace of the space of all positions that the end-effector 
can occupy, taking into account the arm lengths. The solvability of the problem is judged in this workspace. 
The size and shape of the workspace is defined by the characteristics of the manipulator:  

• geometric dimensions of the manipulator, 
• by restricting the wedge variables. 

The workspace of the manipulator arms can be plotted as workspace coordinates for various combinations of 
angles ( )1 tθ , ( )2 tθ . Figure 5 plots the manipulator workspace with the end effector trajectory plotted for a 
given start and end effector position. 
 

 
 

Fig.5. Manipulator workspace with marked effector trajectory. 
 

-1 -0.5 0 0.5 1
x [m]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 workspace
effector trajectory



Ingrid Delyová et al.  61 

 
Mark Angle restriction 2θ  
p 20 30° ≤ θ ≤ °  
q 230 60° ≤ θ ≤ °  
r 260 90° ≤ θ ≤ °  
s 290 120° ≤ θ ≤ °  
u 2120 150° ≤ θ ≤ °  
w 2150 180° ≤ θ ≤ °  

 
 

 
Fig.6. Manipulator workspace at angular constraints. 

 
The workspaces of the manipulator expressed by the coordinates of the points under angular constraints, where 
the angle of 1θ  link 1 was varied in the interval ;65 180− ° °  and the angle of 2θ  link 2 was varied under 
angular constraints in the interval ;0 180° ° , can be seen in the color resolution in Fig.6.  
 

 
 

Fig.7. Scheme for solving the inverse problem of dynamics. 
 

 
 

Fig.8. Scheme for solving the direct dynamics problem. 
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The inverse problem of dynamics can be used to obtain the torques of individual links of the manipulator 
during motion. In the SimMechanics program, based on the obtained workspace quantities, the torques of the 
two links in motion have been determined (Hroncová et al. [15], Vavro et al. [16], Grepl [17], [18], Frankovsky 
et al. [19]). Figure 7 shows the flowchart in SimMechanics for the inverse dynamics problem. The obtained 
results of the torques of the inverse problem were used in the direct dynamics problem (Fig.8). The results of 
solving the direct dynamics problem in SimMechanics are identical to the angular quantities in Fig.4. 
Figure 9 plots the torque waveforms of individual manipulator links at different end link loads: .21m 0 45 kg=
, .22m 0 95 kg= , .23m 1 45 kg= , .24m 1 95 kg= , .25m 2 45 kg= , .26m 3 45 kg= . The mass of the first 
manipulator link was considered .1m 0 55 kg= . 
 

 
 

Fig.9. Torques of links for different effector loads. 
 
The maximum values of the torques for the individual end point loads of link 2 are given in Tab.1. 
Based on the obtained results of the torques, it is possible to oversize the drive size of individual links of the 
manipulator. 
 
Table 1. Maximum torque values. 

 
Maximum 
torque 

Weight of link 2 
21m  22m  23m  24m  25m  26m  

1τ  Nm 5.2438 9.1493 13.0547 16.9602 20.8656 28.6765 

2τ  Nm 1.1356 2.2695 3.4034 4.5372 5.6711 7.9389 
 
4. Conclusion 
 
 The article dealt with the trajectory planning of the end-effector of a bipartite manipulator. The 
MATLAB program was used in the solution. The inverse kinematics was used to determine the rotation angles 
of the manipulator arms, based on which the program plotted the trajectory of the end effector given its start 
and end positions. At the same time, it was possible to determine the time dependence of the angular quantities 
of individual manipulator links. On the basis of the results, obtained it was possible to plot the workspace. The 
workspace was plotted for the angular constraints chosen by us. However, the angular constraints can be 
changed depending on the need when manipulating objects.  
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 At the same time, on the basis of the catch quantities obtained, the moments of rotation of the 
manipulator arms can be determined by inverse dynamics. The courses of the moments of rotation were 
determined in the SimMechanics program. The results were verified according to the outputs of the direct 
dynamics problem from the SimMechanics program.  
 Based on the outputs, it is possible to design actuators according to the purpose of the manipulator, 
looking at the maximum load when handling objects of different weights. When handling different objects, it 
is necessary to oversize the actuator to meet all the requirements for its purpose. 
It is also necessary to design the control for the manipulator in order for it to work properly. The control 
provides stability in the execution of individual movements. 
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Nomenclature 

 
 ia  – coefficient functions of a polynomial 
 p  – position vector 
 ( )q t  – variable function  
 t  – time [s] 
 jiτ  – torque of the j-th link [Nm] 
 Fθ  – angle of rotation of the effector in the final position (at time) Ft  
 jFθ  – finite values of the angular variable of the j-th link 
 j0θ  – initial values of the angular variable of the j-th link 
 0θ  – angle of rotation of the effector at the initial position (at time) t 0=  
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