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Abstract

This paper develops an indirect iterative learning control scheme for batch processes with time-varying uncertainties, input delay,
and disturbances. In this paper, a predictor based on a state observer is designed to estimate the future state and to compensate
for the input delay. Then a feedback controller based on the estimated state and the set-point error is used to track the specified
reference trajectory, where, of the options available, a robust H∞ controller is designed in the presence of time-varying uncertainties
and load disturbances. Then a proportional plus derivative type iterative learning control law is designed. An injection molding
process model demonstrates the new method’s effectiveness, and a comparison with a direct-type design is given. In this alternative
approach, all design objectives are simultaneously considered.
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1. Introduction

Iterative learning control (ILC) is a method of updating the
input signal for systems that repeatedly complete the same finite
duration task, with a stoppage time or resetting to the starting
location after each one is complete. The pick and place task for
robotics is one for which ILC is particularly suitable. In such an
application, the robot collects the payload from a fixed location,
transfers it over a finite duration, places it on a synchronized
moving conveyor, returns to the starting location, collects the
next payload, and repeats these steps as many times as required
or until a halt is required for maintenance or other purposes.
Each execution is termed a trial (pass and iteration are also used
in the literature), and the duration of each trial is termed the trial
length.

A prevalent form of ILC is where a reference trajectory de-
scribes the desired output from the system on each trial and is
specified at the outset. Then the difference between this trajec-
tory and the output of a trial can be used to form a sequence that
describes the propagation of the error from trial to trial. De-
sign can then proceed with forcing this sequence to converge
in terms of a suitably chosen norm, either to zero (ideally) or
within a specified bound. At the end of each trial, all infor-
mation generated over the trial length is available for use in
constructing the input to the subsequent trial.

Since the first work, widely credited to [1], ILC has been
an active research area in algorithm development and applica-
tions. The survey papers [2, 3] are sources for the early lit-
erature. Recent results that combine algorithm development
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with experimental validation include broiler weight optimiza-
tion [4], nano-positioning, e.g., [5], and there have also been
applications in healthcare, e.g., ventricular assist devices [6]
and robotic-assisted stroke rehabilitation, e.g., [7].

One approach to ILC design for discrete dynamics is to use
the so-called lifted model. Consider the single-input single-
output case for ease of presentation. Then since the trial length
is finite, the values of a variable can be assembled as the entries
in a vector (termed a super-vector), and the error dynamics up-
dating from trial to trial are described by a standard linear sys-
tems difference equation. Hence trial to trial error convergence
and control law design can proceed by standard methods. The
trial length is finite, however; consequently, trial-to-trial error
convergence can occur even if (for linear dynamics) the state
matrix is unstable.

An alternative setting for ILC design is to use its 2D systems
structure, i.e., from trial to trial and along the trial, respectively.
Repetitive processes are a distinct class of 2D systems where
the information in one of the two directions is of finite duration
and hence a closer fit to ILC dynamics. Repetitive processes
are a distinct class of 2D systems where the information in one
of the two directions is of finite duration and hence a closer fit
to ILC dynamics. Therefore in this paper, ILC design is based
on the stability theory for repetitive processes.

Repetitive processes arose, see, e.g., [8], which also gives
the original references to other 2D systems models from the
modeling of industrial systems where repeated sweeps through
dynamics defined over a finite duration occur, e.g., successive
reduction of the thickness of a metal bar. In keeping with the
ILC literature, a sweep is termed a trial, and the duration is
termed the trial length. Once a trial is complete, the system
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resets to the starting location. During the subsequent trial, the
output from the previous one acts as a forcing function, thereby
contributing to its dynamics. The unique control problem is
oscillations that increase in amplitude from trial to trial, which
also cannot be controlled by the application of standard systems
designs.

One possibility that arises from using the repetitive process
setting for ILC design is the (sometimes termed) direct type de-
sign, where a control law is simultaneously designed to enforce
trial-to-trial error convergence and regulate the dynamics pro-
duced on any trial. This setting also enables designs that use
two loops, where each can be designed separately, and such a
design is often referred to as an indirect type. The former class
of designs has also been experimentally validated, e.g., [9].

Most often, indirect-type ILC designs have a two-loop struc-
ture [10]. In the inner of these loops, e.g., a three-term con-
troller or one based on the internal model principle [11] or,
as one further example, model predictive control [12], are de-
signed to ensure stability along the trials. The outer loop con-
troller is ILC based, and its function is to update the set point
for the inner loop. Batch processing is a common feature in
many process industries, such as injection molding [13], where
each entry in the batch is subject to the same processing over
a finite time interval. Hence an application area for ILC (and
also repetitive control). One feature of batch processing is the
presence of time delays and uncertainty in the model of the dy-
namics used for design. These topics are the subject of this
paper, using descriptions of the dynamics to which repetitive
process stability theory can be applied.

A starting point for the literature on the application of ILC
and related approaches (repetitive control and run-to-run con-
trol) is the survey paper [14]. More recent results on direct-
type ILC design using the repetitive process/2D systems setting
include [15], where the Kalman-Yakubovich-Popov lemma is
used to apply control action of finite frequency domains. One
possible implementation-related issue with such a design is the
amount of information to be stored.

In batch processing, time delays often arise because of the
sensor response lag and signal transmission between the con-
trollers or actuators etc. In turn, this has led to research on
the stability analysis and controller design for batch processing
in the presence of time delays. Early results, including using
a 2D systems setting for analysis, are given in, e.g., [11, 16].
Previous research has used a 2D systems state estimator and
then constructed a ’delay-free’ 2D systems model, leading to
linear matrix inequality (LMI) conditions to ensure the H∞ per-
formance [17]. Recently, by constructing an equivalently novel
extended 2D model, predictive control has also been combined
with ILC method to deal with the asynchronous switching prob-
lem in complex batch processes with time delay and uncertain-
ties [18, 19].

This paper develops an indirect type ILC design for batch
processes with time delays, time-varying uncertainties and dis-
turbances. In the case of disturbances, both repetitive, i.e., the
same on each trial, and non-repetitive are considered. With the
aim of keeping the ILC law complexity to a minimum, a PD-
type is considered, but the analysis extends to more complex

laws if required by a particular application.
Section 2 gives the required background and details the de-

sign of the feedback control loop with H∞ performance. In
section 3, the stability theory for linear repetitive processes is
used to develop an LMI-based robust ILC design for both repet-
itive and non-repetitive disturbances. Section 4 gives the results
and associated discussion from applying the new results in this
paper to an example, including comparisons with a direct ILC
design. Finally, section 5 gives overall conclusions on the new
results in this paper and section 6 discusses areas for possible
future research.

Throughout this paper, 0 and I denote the null and identity
matrices, respectively, with compatible dimensions. The nota-
tion P ≻ 0 denotes a symmetric positive definite matrix, (∗) de-
notes block entries in symmetric matrices, and diag [·] denotes
a diagonal matrix with compatibly dimensioned block entries.

The following lemma is used in the proofs of the main re-
sults.

Lemma 1. [20] Given symmetric matrix Ω, as well as matri-
ces X,Y with appropriate dimensions, and unknown matrix ∆
satisfies ∆T∆ ≺ I, then

Ω + X∆Y + YT∆T XT ≺ 0, (1)

holds when and only when there exists constant ε ≻ 0 such that

Ω + εXXT + ε−1YYT ≺ 0. (2)

Lemma 2. [21] (Schur’s complement) Given matrices
χ1, χ2, χ3 with appropriate dimensions, and satisfying χ2 ≻ 0,
then the inequality χ1 + χ

T
3 χ
−1
2 χ3 ≺ 0 can be written as[

χ1 χT
3

χ3 −χ2

]
≺ 0

or [
−χ2 χ3
χT

3 χ1

]
≺ 0.

2. Background and Feedback Control Loop Tuning

This paper considers discrete-time batch processes subject
to input delay, time-varying uncertainties, and disturbances de-
scribed by the state-space model

xk+1(t + 1) = (A + ∆A(t))xk+1(t)
+ (B + ∆B(t))uk+1(t − τ) + Bddk+1(t),

yk+1(t) = Cxk+1(t), (3)

where t and k denote the time and trial indices. xk+1(t) ∈
Rp, uk+1(t) ∈ Rm and yk+1(t) ∈ Rn are, respectively, the state, in-
put, and output vectors, dk+1(t) ∈ Rm represents disturbances (if
present), and τ is the known input delay. The initial state vector
is xk(0) and is set as zero in each trail. ∆A(t) and ∆B(t) denote
the uncertainties, which are norm-bounded and time-varying.
Moreover,
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Figure 1: The indirect-type ILC structure

[∆A(t) ∆B(t)] = D∆(t)[Fa Fb]. (4)

where D, Fa and Fb are constant matrices that are known or
can be estimated and ∆(t) is the uncertainty, which is assumed
to satisfy ∆T (t)∆(t) ≤ I. For ease of notation, ∆(t), ∆A(t), ∆B(t)
are written as ∆, ∆A, and ∆B, respectively, in the rest of this
paper.

Fig 1 shows a PD-type indirect ILC structure, consisting of
a feedback control loop and the ILC law. The feedback loop,
sometimes termed the inner loop regulates along the time be-
havior, and its structure and design is detailed in this section.
The ILC forms the so-called outer loop, based on a PD-type
law in this paper, and is specified and designed in the next sec-
tion.

Let rd(t) denote the specified reference trajectory, and hence
the error on trial k is

ek+1(t) = rd(t) − yk+1(t). (5)

i.e., the difference between the reference trajectory and the out-
put on this trial. For analysis, the sequence {ek}k is of central im-
portance. The ILC design problem is to find a control law that,
when applied, will force this sequence to converge from trial to
trial (k) and regulate the dynamics along the trials (t). Conver-
gence to zero in k of {ek}k is the objective, and in this case the
desired reference is equal to the system output.(In some cases,
this may have to be relaxed to convergence in some neighbor-
hood of zero, as measured by the norm on the underlying func-
tion space). The interaction between the two loops is that the
ILC law adjusts the set point for the inner loop.

The set-point error of the inner loop is

er,k+1(t) = yr,k+1(t) − yk+1(t), (6)

where er,k+1(t) is the set-point error, yr,k+1(t) is the set-point up-
dated by the indirect-type ILC law, which differs from the ref-
erence trajectory rd(t). Moreover, yr,k+1(t) is set as zero for the
initial trial.

The presence of disturbance and uncertainties makes obtain-
ing accurate information on the current state vector challeng-
ing. In addition, all entries in this vector may not be available

for measurement, and also there will be a phase lag due to the
input time delay. For these reasons, an observer is used to esti-
mate the future state vector, which has the structure

x̂k+1(t + 1) = Ax̂k+1(t) + Buk+1(t)
+ L[yk+1(t + τ) − ŷk+1(t)],

ŷk+1(t) = Cx̂k+1(t), (7)

where x̂k+1(t) denotes the τ-step ahead prediction of the state
vector xk+1(t), i.e, the estimate of the state vector xk+1(t + τ),
ŷk+1(t) denotes the prediction of the output vector yk+1(t + τ),
and L is the observer gain matrix to be determined. Also, the
prediction error is defined as

êk+1(t) = xk+1(t + τ) − x̂k+1(t). (8)

where êk+1(t) denotes the prediction error at t + τ.
To achieve no steady-state tracking error along the time (trial)

direction in the inner loop, a local controller combined with
observer-based state feedback plus set-point tracking error in-
formation is used, where

uk+1(t − τ) = K1er,k+1(t) + K2 x̂k+1(t − τ), (9)

and K1 and K2 are matrices to be designed.
Combining (6) - (9), gives

x̂k+1(t + 1) = (A + BK2 − BK1C)x̂k+1(t)
+ (−BK1C + LC)êk+1(t)
+ BK1yr,k+1(t + τ),

êk+1(t + 1) = (∆A + ∆BK2 − ∆BK1C)x̂k+1(t)
+ (A + ∆A − ∆BK1C − LC)êk+1(t)
+ ∆BK1yr,k+1(t + τ) + Bddk+1(t + τ), (10)

Introduce the augmented vector ξk+1(t) =[
x̂T

k+1(t − τ) êT
k+1(t − τ)

]T
, Then the state-space model

(3) can be rewritten in delay-free formulation as

ξk+1(t + 1) = Âξk+1(t) + B̂yr,k+1(t) + B̂ddk+1(t),
yk+1(t) = C̃ξk+1(t), (11)
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where

Â =
[

A + BK2 − BK1C −BK1C + LC
∆A + ∆BK2 − ∆BK1C A + ∆A − ∆BK1C − LC

]
,

B̂ =
[

BK1
∆BK1

]
, B̂d =

[
0
Bd

]
, C̃ =

[
C C

]
.

The controller given above only involves signals on the same
trial; hence, the trial subscript (k) for variables is omitted in the
remainder of this section. The inner loop-controlled system is
described by

ξk+1(t + 1) = Âξk+1(t) + B̂ddk+1(t),
er,k+1(t) = −C̃ξk+1(t), (12)

where Â = Ã + ∆Ã and

Ã = A1 + B1K̃ + L̃,∆Ã = D0∆F,

A1 =

[
A 0
0 A

]
, B1 =

[
B
0

]
, L̃ =

[
0 LC
0 −LC

]
,D0 =

[
0
D

]
,

K̃ =
[
K2 − K1C −K1C

]
, F = F1 + FbK̃, F1 =

[
Fa Fa

]
.

(13)
The following robust H∞ design is the first new result of this
paper.

Theorem 1. The controlled dynamics (12) is robustly stable
with a H∞ performance level γc if there exist compatibly di-
mensioned matrices W ≻ 0, P,R and a positive scalar εc such
that the following LMI is feasible

−W ÃW B̂d 0 0 εcD0

(∗) −W 0 C̃T (FW)T 0
(∗) (∗) −ρcI 0 0 0
(∗) (∗) (∗) −I 0 0
(∗) (∗) (∗) (∗) −εcI 0
(∗) (∗) (∗) (∗) (∗) −εcI


≺ 0, (14)

where

ÃW = A1W + B1P + R,

FW = F1W + FbP,

ρc = γ
2
c .

Moreover, if (14) is feasible, then the observer gain and
local feedback controller are obtained from the following
parametrization[

L
−L

] [
0 C

]
= RW−1,

[
K2 − K1C −K1C

]
= PW−1. (15)

Proof. Stability and robust H∞ performance is equivalent to∥∥∥er,k+1(t)
∥∥∥

2 < γc ∥dk+1(t)∥2 , (16)

where∥∥∥er,k+1(t)
∥∥∥

2 =

√√
α∑

t=0

eT
r,k+1(t)er,k+1(t),

∥dk+1(t)∥2 =

√√
α∑

t=0

dT
k+1(t)dk+1(t), 0 ≤ t ≤ α, γc > 0.

Define the H∞ control objective function as

Jc =
∥∥∥er,k+1(t)

∥∥∥2
2 − γ

2
c ∥dk+1(t)∥22 , (17)

and consider the Lyapunov function

V(t) = ξTk+1(t)S ξk+1(t), S = diag
[

S 1 S 2

]
≻ 0.

Then, since zero initial state is assumed, xk(0) = 0, ek(0) =
0, ξk+1(0) = 0, (17) can be rewritten as

Jc <

α∑
t=0

GT
c (t)ΛcGc(t),

where

Gc(t) =

[
ξk+1(t)
dk+1(t)

]
,

Λc =
[
Â B̂d

]T
S

[
Â B̂d

]
−

[
S − C̃T C̃ 0

0 γ2
c

]
.

By the robust stability theorem, for any Gc , 0, the re-
quirement that (12) is stable with prescribed H∞ performance
is equivalent to Λc ≺ 0. Applying the Schur’s complement for-
mula twice, this last condition can be written as

−S −1 Â B̂d 0
(∗) −S 0 C̃T

(∗) (∗) −γ2
c I 0

(∗) (∗) (∗) −I

 ≺ 0, (18)

Left and right-multiplying this last expression by
diag

[
I S −1 I I

]
and then setting W = S −1, P =

K̃S −1,R = L̃S −1 and ρc = γ
2
c , results in

Ωc + Xc∆Yc + YT
c ∆

T XT
c ≺ 0, (19)

where

Ωc =


−W ÃW B̂d 0
(∗) −W 0 C̃T

(∗) (∗) −ρcI 0
(∗) (∗) (∗) −I

 ,
Xc =

[
DT

0 0 0 0
]T
,

Yc =
[
0 F1W + FbP 0 0

]
.

Applying Lemma 1, (19) can be rewritten as

Ωc + εcXcXT
c + ε

−1
c YT

c Yc ≺ 0, (20)

Next, by the Schur’s complement formula and pre- and post-
multiplying by diag

[
I ε1/2

c ε1/2
c

]
, givesΩc YT

c εcXc

(∗) −εcI 0
(∗) (∗) −εcI

 ≺ 0. (21)

and the proof is complete.
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To reduce the effect caused by disturbance and obtain the
optimal H∞ performance, the following optimization program
can be implemented to Theorem 1.

min
W≻0,εc≻0

ρc

s.t. (14)

In the nominal model case, i.e., ∆ = 0, dk+1(t) = 0, the LMI
of (14) reduces to −W −ÃW 0

(∗) −W C̃T

(∗) (∗) −I

 ≺ 0. (22)

and the design again uses the parameterization (15). Design
based on (22) and (15) is used in the first case considered in
Section 5.

3. Indirect-type ILC design

The ILC law in Fig 1 is chosen to have the PD-type structure,
i.e.,

The set-point related PD-type ILC law has the structure

yr,k+1(t) = yr,k(t) + K3ek(t) + K4[ek(t + 1) − ek(t)], (23)

where K3 and K4 are to be determined. The ILC law is designed
to update the set-point, and forcing the set-point to follow the
desired trajectory along the trial gradually. Note that the ILC
law updates the set-point along the trial without modifying the
structure of the inner closed-loop feedback system. For ease of
presentation set K = K3−K4. This particular law has been cho-
sen because it is widely used in applications and its structure is
relatively simple, often a critical aspect in terms of applications.
Other ILC laws can also be considered.

In the new design developed in the remainder of this paper,
the first stage is to use Theorem 1 to select the observer gain
matrix L and the control law matrices K1 and K2. The analysis
that follows then enables design of K3 and K4 in (23). Also, the
case study section includes comparisons with a direct type ILC
law.

In order to transform the system (3) into an equivalent repet-
itive process model, define a trial-direction error function as

δ fk+1(t + 1) = fk+1(t) − fk(t), (24)

where f denotes, as appropriate, x̂, d, ê, ξ and y. Then it follows
from (11) and (24) that

δξk+1(t + 1) = Âδξk+1(t) + B̂δyr,k+1(t) + B̂dδdk+1(t),
δyk+1(t) = C̃δξk+1(t), (25)

where δyr,k+1(t) = Kek(t − 1) + K4ek(t). Furthermore, using the
definition of the tracking error in (5), gives

ek+1(t + 1) = ek(t) + yk(t) − yk+1(t) (26)
= −δyk+1(t + 1) + ek(t)

= ek(t) − C̃δξk+1(t + 1).

Combing (25) and (26), the controlled dynamics are de-
scribed by the following state space model

δξk+1(t + 1) = Âδξk+1(t) + B̂1ek(t − 1)
+ B̂0ek(t) + B̂dδdk+1(t),

ek+1(t) = Ĉδξk+1(t) + D̂1ek(t − 1)
+ D̂0ek(t) + D̂dδdk+1(t), (27)

where

B̂1 =

[
BK1K
∆BK1K

]
, B̂0 =

[
BK1K4
∆BK1K4

]
,

Ĉ = −C̃Â, D̂1 = −C̃B̂1, D̂0 = I − C̃B̂0, D̂d = −CB̂d.

and Â is defined after (11). Introduce the augmented vector
η(t) =

[
ξTk (t) eT

k (t − 1)
]T

. Then the dynamics of (27) can be
written as

ηk+1(t + 1) =

[
Â B̂1
0 0

]
ηk+1(t) +

[
B̂0
I

]
ek(t) +

[
B̂d

0

]
δdk+1(t),

ek+1(t) =
[
Ĉ D̂1

]
ηk+1(t) + D̂0ek(t) + D̂dδdk+1(t).(28)

The dynamics described by (28) have the structure of a dis-
crete repetitive process. These processes are a distinct class of
2D systems characterized by a series of sweeps, termed trials
in this paper and denoted by the nonnegative integer subscript k
on variables, through a set of dynamics defined over a finite du-
ration, termed the trial length, where for discrete dynamics the
sample values are indexed by t, and if N denotes the number
of samples, 0 ≤ p ≤ N − 1. Also N times the sampling period
gives the trial length, denoted by α.

Once a trial is complete, the process resets to the starting lo-
cation and the next trial begins. On any trial, the output from
the previous trial acts as a forcing function on the next and
thereby contributes to its dynamics, see [8] for a detailed treat-
ment for linear examples, including references to their indus-
trial origins. The unique control problem for these processes is
that the sequence of pass profiles can include oscillations that
increase in amplitude from trial-to-trial (k) and cannot be reg-
ulated by standard control action. Repetitive processes are a
class of 2D systems that operate over the restricted quadrant
(k, t) ∈ [0,∞]× [0, α]. In the repetitive process interpretation of
the ILC dynamics, ξk+1(t) is the state vector on trial k + 1 and
ek(t) is the error on trial k.

The stability theory for repetitive processes applied to ILC
requires that a bounded initial trial error produces a sequence
of bounded trial outputs. Moreover, this property can be ap-
plied over the finite and fixed trial length, or uniformly, i.e., for
all possible trial lengths, where this last property can be ana-
lyzed mathematically by considering α→ ∞. The first of these
properties is termed asymptotic stability and the second stabil-
ity along the trial. Moreover, the asymptotic stability property
guarantees trial-to-trial error convergence but is independent of
the state dynamics. In particular, due to the finite trial length,
trial-to-trial error convergence can occur for unstable systems.

Stability along the trial is the name given to the second prop-
erty. Moreover, a necessary condition for this property is that
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the state matrix is stable, i.e., the dynamics along a given trial
are stable, but this condition is only necessary for stability along
the trial. This property also requires that the frequency con-
tent of any trial decays geometrically from trial-to-trial. Even
though these properties can be checked graphically, the last, in
particular, does not provide a basis for control law design, ex-
cept in a few special cases.

One alternative to the frequency domain approach is to for-
mulate conditions for stability along the trial in terms of linear
matrix inequalities (LMIs). Define the system matrix Ξ for (28)
as

Ξ =

[
Ξ1 Ξ2
Ξ3 Ξ4

]
(29)

where

Ξ1 =

[
Â B̂1
0 0

]
, Ξ2 =

[
B̂0
I

]
Ξ3 =

[
Ĉ D̂1

]
, Ξ4 = D̂0

Then it can be shown [8] that a sufficient condition for stability
along the trial of (28) is that there exists a matrix S ≻ 0 such
that

ΞT SΞ − S ≺ 0 (30)

This last expression forms the 2D Lyapunov equation condition
for stability along the trial and is both necessary and sufficient in
some cases, the most relevant being single-input single-output
systems. As shown in the rest of this paper, it immediately leads
to conditions for control law design in terms of LMIs.

4. ILC tuning

Firstly, the nominal case, ∆ = 0, dk+1(t) = 0, is considered,
and the following theorem gives an LMI condition for stability
along the trial.

Theorem 2. Consider an indirect-type ILC scheme described
as a discrete, repetitive process described by (28) in the nominal
case with no disturbance and matrices L, K1 and K2 available
from Theorem 1. Then stability along the trial hold if there exist
compatibly dimensioned matrices W1 ≻ 0,W2 ≻ 0,W3 ≻ 0, R1
and R2 such that

Ψ1 =

[
Θ1 Θ2
(∗) Θ1

]
≺ 0, (31)

where

Θ1 =

−W1 0 0
(∗) −W2 0
(∗) (∗) −W3

 ,
Θ2 =

 ÃW1 B1K1R1 B1K1R2
0 0 W3

−C̃ÃW1 −C̃B1K1R1 W3 − C̃B1K1R2

 .
If this last LMI is feasible, then the matrices in the control
law (23) are given by

K = R1W−1
2 ,K4 = R2W−1

3 ,K3 = K + K4. (32)

Proof. The nominal system model is obtained by setting ∆A =
0,∆B = 0, dk+1 = 0 and hence

Â = Ã,

B̂1 = B1K1K,

B̂0 = B1K1K4, (33)

Applying the Schur’s complement formula, (30) can be writ-
ten as [

−S −1 Ξ

(∗) −S

]
≺ 0, (34)

where

Ξ =

Â B̂1 B̂0
0 0 I
Ĉ D̂1 D̂0

 , S =
S 1 0 0

0 S 2 0
0 0 S 3

 .
Pre- and post- multiplying this last expression

by diag
[

I I I S −1
1 S −1

2 S −1
3

]
, and setting

W1 = S −1
1 ,W2 = S −1

2 ,W3 = S −1
3 ,KW2 = R1,K4W3 = R2, gives

the LMI (31), and the proof is complete.

The following result enables ILC design in the presence of
uncertainty characterised by (4) and repetitive disturbances, i.e.,
those for which (24) (applied to the disturbance) hold.

Theorem 3. Consider an indirect-type ILC scheme described
by a discrete, repetitive process of the form (28) in the presence
of time-varying uncertainties characterised by (4) and a repet-
itive disturbance that satisfies (24). Suppose also that matrices
L, K1 and K2 are available from Theorem 1. Then this process
is stable along the trial if there exists a compatibly dimensioned
diagonal matrix W ≻ 0, together with compatibly dimensioned
matrices Q1,Q2,Q3 ≻ 0, Q4 ≻ 0, and a scalar ε1 > 0 such that
the following LMI is feasible

Ψ2 =

O1 O2 O4
(∗) O3 O5
(∗) (∗) O6

 ≺ 0, (35)

where

O1 =

[
−W 0
(∗) −Q4

]
,

O2 =

[
ÃW B1K1Q1 B1K1Q2

−C̃ÃW −C̃B1K1Q1 Q4 − C̃B1K1Q2

]
,

O3 =

−W 0 0
(∗) −Q3 0
(∗) (∗) −Q4 + Q3

 ,O4 =

[
0 ε1D0

0 −ε1C̃D0

]
,

O5 =

 (FW)T 0
(FbK1Q1)T 0
(FbK1Q2)T 0

 ,O6 =

[
−ε1I 0
(∗) −ε1I

]
.

If this last LMI is feasible, then the matrices in the control
law (23) are given by

K = Q1Q−1
4 ,K4 = Q2Q−1

4 ,K3 = K + K4. (36)
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Proof. Consider the Lyapunov function

V(k, t) = V1(t, k) + V2(k, t),

V1(t, k) = δξTk+1(t)S δξk+1(t),

V2(k, t) = eT
k (t − 1)P1ek(t − 1) + eT

k (t)(P2 − P1)ek(t), (37)

where S = diag
[

S 1 S 2

]
≻ 0, P2 ≻ 0,≻ P1 ≻ 0 and P2 −

P1 ≻ 0. Then

∆V1(t, k) = V1(t + 1, k) − V1(t, k)

= δξTk+1(t + 1)S δξk+1(t + 1) − δξTk+1(t)S δξk+1(t),
∆V2(k, t) = V2(k + 1, t) − V2(k, t)

= eT
k+1(t)P2ek+1(t) − eT

k (t − 1)P1ek(t − 1)

− eT
k (t)(P2 − P1)ek(t),

∆V(k, t) = ∆V1(t, k) + ∆V2(k, t)

= HT
k+1(t)ΠHk+1(t), (38)

where

Hk+1(t) =

 δξk+1(t)
ek(t − 1)

ek(t)

 ,
Π =

[
Â B̂1 B̂0

Ĉ D̂1 D̂0

]T [
S 0
(∗) P2

] [
Â B̂1 B̂0

Ĉ D̂1 D̂0

]

−

 S 0 0
(∗) P1 0
(∗) (∗) P2 − P1

 .
Then stability along the trial holds [8] if ∆V(k, t) ≺ 0 for all k
and t, which is equivalent to the requirement that Π ≺ 0 for any
Hk+1(t) , 0.

By the Schur’s complement formula, Π ≺ 0 is equivalent to

Γ =


−S −1 0 Â B̂1 B̂0

(∗) −P−1
2 Ĉ D̂1 D̂0

(∗) (∗) −S 0 0
(∗) (∗) (∗) −P1 0
(∗) (∗) (∗) (∗) −P2 + P1

 ≺ 0, (39)

Moreover, from the state space model and the uncertainty de-
scription (4),

B̂1 = (B1 + ∆B1)K1K, B̂0 = (B1 + ∆B1)K1K4, (40)

where

∆B1 =

[
0
∆B

]
= D0∆Fb,

Pre- and post- multiplying (39) by
diag

[
I I S −1 P−1

2 P−1
2

]
, and letting W = S −1,Q1 =

KP−1
2 ,Q2 = K4P−1

2 ,Q3 = P−1
2 P1P−1

2 ,Q4 = P−1
2 , gives that

Γ =

[
O1 O2 + ∆O2
(∗) O3

]
≺ 0, (41)

where

∆O2 =

[
∆ÃW ∆B1K1Q1 ∆B1K1Q2

−C̃∆ÃW −C̃∆B1K1Q1 −C̃∆B1K1Q2

]
.

This last inequality is still nonlinear due to the system uncer-
tainties, but (41) can be rewritten as

Ω1 + X1∆Y1 + YT
1 ∆

T XT
1 ≺ 0, (42)

where

Ω1 =

[
O1 O2
(∗) O3

]
,

X1 =
[
DT

0 (−C̃D0)T 0 0 0
]T
,

Y1 =
[
0 0 FW FbK1Q1 FbK1Q2

]
.

Applying Lemma 1, gives that (42) is equivalent to

Ω1 + ε1X1XT
1 + ε

−1
1 YT

1 Y1 ≺ 0, (43)

Moreover, application of the Schur’s complement for-
mula, and then pre- and post- multiplying the result by
diag

[
I ε1/2

1 I ε1/2
1 I

]
, (43) can be written asΩ1 YT

1 ε1X1
(∗) −ε1I 0
(∗) (∗) −ε1I

 ≺ 0, (44)

and the proof is complete.

Theorem 4. Consider an indirect-type ILC scheme described
by a discrete, repetitive process of the form (28) in the presence
of time-varying uncertainties characterized by (4) and a non-
repetitive disturbance that does not satisfy (24). Suppose also
that matrices L, K1 and K2 are available from Theorem 1. Then
this process is stable along the trial with H∞ disturbance at-
tenuation performance level γ if there exists a diagonal matrix
W ≻ 0, matrices Q1, Q2, Q3 ≻ 0, Q4 ≻ 0, and scalars ε2 > 0,
and γ > 0 such that

Ψ3 =


O1 O2 O7 O10
(∗) O3 O8 O11
(∗) (∗) O9 O12
(∗) (∗) (∗) O13

 ≺ 0, (45)

where

O7 =

[
B̂d 0
−C̃B̂d 0

]
,O8 =


0 (−C̃ÃW)T

0 (−C̃B1K1Q1)T

0 (Q4 − C̃B1K1Q2)T

 ,
O9 =

[
−ρ (−C̃B̂d)T

(∗) −I

]
,O10 =

[
0 ε2D0

0 −ε2C̃D0

]
,

O11 =

 (FW)T 0
(FbK1Q1)T 0
(FbK1Q2)T 0

 ,O12 =

[
0 0
0 −ε2C̃D0

]
,

O13 =

[
−ε2I 0
(∗) −ε2I

]
, ρ = γ2I.
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If the above LMI is feasible, then the matrices in the control
law (23) are given by

K = Q1Q−1
4 ,K4 = Q2Q−1

4 ,K3 = K + K4. (46)

Proof. In the presence of a non repetitive disturbance, the
repetitive process (28) is robustly stable along the trial with H∞
disturbance attenuation performance γ > 0 if

∥ek+1(t)∥2 < γ ∥δdk+1(t)∥2 , (47)

where 0 ≤ t ≤ α,

∥ek+1(t)∥2 =

√√
∞∑

k=0

α∑
t=0

eT
k+1(t)ek+1(t),

∥δdk+1(t)∥2 =

√√
∞∑

k=0

α∑
t=0

δdT
k+1(t)δdk+1(t).

Define the H∞ control objective function

J = ∥ek+1(t)∥22 − γ
2 ∥δdk+1(t)∥22 , (48)

Then, since zero initial state is assumed, xk(0) = 0, ek(0) =
0, ξk+1(0) = 0, (48) can be rewritten as

J ≺ ∥ek+1(t)∥22 − γ
2 ∥δdk+1(t)∥22 + V(∞, α + 1) − V(0, 0)

=

∞∑
k=0

α∑
t=0

[eT
k+1(t)ek+1(t) − γ2δdT

k+1(t)δdk+1(t) + ∆V(k, t)]

=

∞∑
k=0

α∑
t=0

ZT
k+1ΦZk+1,

(49)
where

Zk+1(t) =


δξk+1(t)
ek(t − 1)

ek(t)
δdk+1(t)

 ,
Φ =

[
Â B̂1 B̂0 B̂d

Ĉ D̂1 D̂0 D̂d

]T [
S 0
(∗) I + P2

] [
Â B̂1 B̂0 B̂d

Ĉ D̂1 D̂0 D̂d

]

−


S 0 0 0
(∗) P1 0 0
(∗) (∗) P2 − P1 0
(∗) (∗) (∗) γ2I

 .
By Theorem 2, robust stability of the controlled dynamics

holds if objective function J ≺ 0, which is equivalent to Φ ≺ 0.
Also, write the matrix Φ in the form

Φ =

[
MT

1
MT

2

]
(O + IT

1 I1)
[
M1 M2

]
−

[
M3 0
(∗) γ2I

]
, (50)

where

M1 =

[
Â B̂1 B̂0

Ĉ D̂1 D̂0

]
,M2 =

[
B̂d

D̂d

]
, I1 =

[
0 I

]
,

M3 =

 S 0 0
(∗) P1 0
(∗) (∗) P2 − P1

 ,O =
[

S 0
(∗) P2

]
.

For the convenience of application of the Schur’s comple-
ment, write the matrix Φ as

Φ =

[
MT

1
MT

2

]
O

[
M1 M2

]
+

([
MT

1
MT

2

]
IT
1 I1

[
M1 M2

]
−

[
M3 0
(∗) γ2I

])
,

By applying Schur’s complement formula, the robust stabil-
ity condition Φ ≺ 0 holds if−O−1 M1 M2

(∗) −M3 + MT
1 IT

1 I1M1 MT
1 IT

1 I1M2
(∗) (∗) −γ2I + MT

2 IT
1 I1M2

 ≺ 0

Then above LMI can be written as−O−1 M1 M2
(∗) −M3 0
(∗) (∗) −γ2I

 +
 0
MT

1 IT
1

MT
2 IT

1

 I
[
0 I1M1 I1M2

]
≺ 0

and applying Schur’s complement formula again, which gives

ϕ =


−O−1 M1 M2 0

(∗) −M3 0 (I1M1)T

(∗) (∗) −γ2I (I1M2)T

(∗) (∗) (∗) −I

 ≺ 0, (51)

Also on pre- and post- multiplying the last expression
by diag

[
I I S −1 P−1

2 P−1
2 I I

]
and letting W =

S −1,Q1 = KP−1
2 ,Q2 = K4P−1

2 ,Q3 = P−1
2 P−1

1 P−1
2 ,Q4 =

P−1
2 , γ

2I = ρ, givesO1 O2 + ∆O2 O7
(∗) O3 O8 + ∆O8
(∗) (∗) O9

 ≺ 0, (52)

where

∆O8 =


0 (−C̃∆ÃW)T

0 (−C̃∆B1K1Q1)T

0 (−C̃∆B1K1Q2)T

 .
This last matrix is not an LMI but, proceeding as in the proof

of the previous theorem, (52) can be written asO1 O2 + ∆O2 O7
(∗) O3 (∗)
(∗) (O8 + ∆O8)T O9

 ≺ 0, (53)

or
Ω2 + X2∆2Y2 + YT

2 ∆
T XT

2 ≺ 0, (54)

where
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Ω2 =

O1 O2 O7
(∗) O3 (∗)
(∗) (O8)T O9

 ,
X2 =

[
DT

0 (−C̃D0)T 0 0 0 0 (−C̃D0)T
]T
,

Y2 =
[
0 0 FW FbK1Q1 FbK1Q2 0 0

]
.

Moreover, on applying Lemma 1, (54) is equivalent to

Ω2 + ε2X2XT
2 + ε

−1
2 YT

2 Y2 ≺ 0, (55)

and pre- and post- multiplying by diag
[

I ε1/2
2 I ε1/2

2 I
]
,

gives that (55) can be written asΩ2 YT
2 ε2X2

(∗) −ε2I 0
(∗) (∗) −ε2I

 ≺ 0. (56)

and the proof is complete.

5. Case Study

This section gives the results of a simulation-based study on
applying the new designs in this paper using a model of a batch
processing system. Included is a comparison with a direct ILC
law design. In ILC, the trial-to-trial error convergence is of
critical importance, and in keeping with many other papers in
the literature, this property is measured using the root mean
square (RMS) tracking error on each trial, defined for trial k as

RMS =

√√
1
α

α∑
t=1

e2
k(t). (57)

The performance along a trial is assessed as per standard sys-
tems.

The example is for one form of injection molding. As a typ-
ical batch process, injection molding plays an important role in
transforming polymer granules into various shapes and types of
products like cups or compact discs even precision lens. It in-
cludes three stages: filling, packing/holding, and cooling. Dur-
ing filling, injection screw pushes the polymer melt into the
mold cavity and after that, the process switches into packing-
holding stage. In the second stage, additional polymer is added
under a certain pressure to compensate the shrinkage caused by
material cooling and solidification until the entrance of mold
cavity freezing and isolating. Then the third stage came for
continuously cooling.

For the packing stage, a critical process variable to be con-
trolled is the nozzle pressure, which significantly influences
product quality. As studied in [22], based on the open-loop
tests and analysis, the model of the nozzle packing pressure re-
sponse to the hydraulic control valve opening can be identified
as

P∆(z−1) =
1.2390(0.10)z−1 − 0.9282(0.14)z−2

1 − 1.607(0.08)z−1 + 0.6086(0.08)z−2

where the numbers in the brackets show the typical norm
bounds of the parameter perturbations. Then the model in con-
verted into state-space model and considering the situation in

input delay and disturbance as follow:

xk+1(t + 1) =

([
1.607 1
−0.6086 0

]
+ ∆A(t)

)
xk+1(t)

+

([
1.2390
−0.9282

]
+ ∆B(t)

)
uk+1(t − τ)

+

[
1
0

]
dk+1(t),

yk+1(t) =
[
1 0

]
xk+1(t), (58)

where ∆A(t) and ∆B(t) representing the uncertainty are given
later in the section.

The input delay is τ = 4, trail length is α = 200, and the
reference trajectory is taken as

rd(t) =


200, 0 < t ≤ 100;
200 + 5(t − 100), 100 < t ≤ 120;
300, 120 < t ≤ 200,

(59)

which is representative of the reference trajectories used in the
injection molding process. Moreover, to protect the inject ma-
chine from conflict of the suddenly signal, the initial part of
the trajectory is smoothed by a user-specified prefilter for prac-
tical implementation [13]. In this study, the filter is taken as
G f (z) = (z−1 + z−2)/(3 − z−1). Note that the inclusion of this
filter is application specific and is not required in other applica-
tions.

The new design in this paper is compared against a direct
type ILC law, which has the structure

uk+1(t) = uk(t) + Kd
1δx̂k(t + 1) + Kd

2 ek(t + τ)
+ Kd

3 [ek(t + τ + 1) − ek(t + τ)]. (60)

This law also uses (7), and for clarity, the observer gain is de-
noted by Ld in all cases considered below.

Application of this last ILC law results in the controlled dy-
namics

ζk+1(t + 1) = Âdζk+1(t) + B̂d
1ek(t − 1)

+ B̂d
0ek(t) + B̂dδdk+1(t)

ek+1(t) = Ĉdζk+1(t) + D̂d
1ek(t − 1)

+ D̂d
0ek(t) + D̂dδdk+1(t), (61)

where

ζk+1(t) =
[
δx̂k+1(t − τ)
δêk+1(t − τ)

]
,

Âd =

[
A + BKd

1 LdC
∆A + ∆BKd

1 A + ∆A − LdC

]
,

= A1 + B1K̃d + L̃d + ∆Ãd,

K̃d =
[
Kd

1 0
]
, L̃d =

[
0 LdC
0 −LdC

]
,

∆Ãd = D0∆
(
F1 + FbK̃d

)
, B̂d

1 =

[
BKd

∆BKd

]
,

B̂d
0 =

[
BKd

3
∆BKd

3

]
,Kd = Kd

2 − Kd
3 ,

Ĉd = −C̃Âd, D̂d
1 = −C̃B̂d

1, D̂
d
0 = I − C̃B̂d

0.

(62)
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and the remaining matrices are defined in (13). Introduce the
augmented vector ϑk+1(t) =

[
ζk+1(t)T eT

k (t − 1)
]T

. Then the
last state space model can be written asϑk+1(t + 1) = Adϑk+1(t) + Bdek(t) + Bdδdk+1(t)

ek+1(t) = Cdϑk+1(t) + Ddek(t) + Ddδdk+1(t),
(63)

where

Ad =

[
Âd B̂d

1
0 0

]
,Bd =

[
B̂d

0
I

]
,Bd =

[
B̂d

0

]
,

Cd =
[
Ĉd D̂d

1

]
,Dd = D̂d

0,Dd = D̂d.

(64)

This last model is a discrete repetitive process and the system
matrix is

Ξd =

Âd B̂d
1 B̂d

0
0 0 I

Ĉd D̂d
1 D̂d

0

 . (65)

Hence the repetitive process-based results developed above can
be used to design this law. Three designs are completed, de-
noted as Cases 1,2 and 3, respectively, and compared in this sec-
tion, for the particular example given above. In each case, the
direct-type ILC law is first designed, followed by the indirect-
type, and then simulation results are given and discussed.
Case 1: — nominal dynamics, i.e., ∆A(t) = 0, ∆B(t) = 0 and
also the disturbance dk+1(t) is zero. The controlled dynamics for
the direct-type law, in this case, is governed by the LMI condi-
tion of Theorem 2, and hence this property holds if there exist
compatibly dimensioned matrices W1 ≻ 0,W2 ≻ 0,W3 ≻ 0, and
hence the block diagonal matrix W = diag

[
W1 W2 W3

]
,

and matrices G1,G2,Z,Rd such that the following LMI is feasi-
ble [

Θ1 Θd
2

(∗) Θ1

]
≺ 0, (66)

where Θ1 is defined in Theorem 2 and

Θd
2 =


A1W1 + B1Z + Rd B1G1 B1G2

0 0 W3

−C̃
(
A1W1 + B1Z + Rd

)
−C̃B1G1 W3 − C̃B1G2

 ,
G1 = KdW2,G2 = Kd

3 W3,Z = K̃dW1,Rd = L̃dW1.
Hence [

Ld

−Ld

] [
0 C

]
= RdW−1

1 ,
[
Kd

1 0
]
= ZW−1

1 ,

Kd = G1W−1
2 , Kd

3 = G2W−1
3 ,K

d
2 = Kd + Kd

3 .

(67)

The matrices in the control law (60) in this case are

Kd
1 =

[
−1.2286 −0.7253

]
, Kd

2 = 0.5735,

Kd
3 = 0.4089, Ld =

[
1.4021
−0.4633

]
.

For the indirect-type ILC law, applying (22) (the form of the
result of Theorem 1 for nominal dynamics) and then Theorem 2
gives

K1 = 1.0637,K2 =
[
−0.0048 −0.5203

]
,

K3 = 0.7335, K4 = 0.5930, L =
[

1.3762
−0.9085

]
.

The tracking results for this example are given in Fig. 2, and
the RMS plots against trial number are shown in Fig. 3. It is
seen that the indirect-type ILC law achieves very close to per-
fect tracking of the reference trajectory after 3 trials. In con-
trast, the direct-type alternative needs 6 trials to achieve the
same outcome. These results demonstrate that the new design
can improve performance, and the following two case studies
investigate performance in the presence of model uncertainty
and repetitive (Case 2) and nonrepetitive disturbances (Case 3).

In this paper, the uncertainty is represented by (4), and in
both cases below, the uncertainty is defined by

D =
[
1 0
0 1

]
, Fa =

[
0.08 0
0.08 0

]
, Fb =

[
0.1
0.14

]
,

∆(t) =
[
κ(t) 0
0 κ(t)

]
,

where κ(t) is a random variable taking values in [−0.5, 0.5].
Case 2: — design and performance in the presence of time-
varying process uncertainties and repetitive disturbances. In
this case, the controlled dynamics for the direct-type law are
governed by the LMI condition of Theorem 3. Suppose that
there exist compatibly dimensioned matrices W ≻ 0, and
G1,G2,Z,Rd, and a positive scalar εd

1 ≻ 0 such that the fol-
lowing LMI is feasibleΘ1 Θd

2 Θd
4

(∗) Θ1 Θd
5

(∗) (∗) Θd
6

 ≺ 0, (68)

where

Θd
4 =


0 εd

1D0
0 0
0 −εd

1C̃D0

 , Θd
5 =

(F1W + FbZ)T 0
(FbG1)T 0
(FbG2)T 0

 ,
Θd

6 =

[
−εd

1I 0
(∗) −εd

1I

]
.

Then control law matrices in (60) for this case are given by[
Ld

−Ld

] [
0 C

]
= RdW−1

1 ,
[
Kd

1 0
]
= ZW−1

1 ,

Kd = G1W−1
2 , Kd

3 = G2W−1
3 ,K

d
2 = Kd + Kd

3 ,

(69)

and for the example considered

Kd
1 =

[
−0.5892 0.0750

]
, Kd

2 = 0.4148,

Kd
3 = 0.3589, Ld =

[
0.0580
0.0506

]
.

Applying Theorem 1 (the LMI (14)) with the minimum pa-
rameter γc and Theorem 3 gives the following control law ma-
trices for the new indirect-type design

K1 = 0.8710, K2 =
[
0.2059 −0.6992

]
,

K3 = 0.2799, K4 = 0.2665, L =
[

1.5065
−0.5394

]
,

γc = 5.2622 × 10−5.

The simulation results are shown in Fig. 4 - 7, where the
repetitive disturbance is dk+1(t) = 10sin(t). Evidently, in the
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Figure 2: Output and input signals for the indirect-type nominal system for Case 1.
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Figure 3: RMS of indirect and direct type designs against the trial number for
Case 1.

presence of the time-varying uncertainties and repetitive distur-
bance, the output of the system tracks the reference trajectory
asymptotically, i.e., the tracking error converges to a minimum
value. Also, compared with direct-type ILC, the new design
results in a faster tracking error convergence.

Case 3:

A procedure for design in the case of nonrepetitive dis-
trubance is given in the following algorithm

Suppose that there exists matrices W1 ≻ 0,W2 ≻ 0,W3 ≻

0, and matrices G1,G2,Z,Rd and positive scalar εd
2 ≻ 0 with

the disturbance attenuation performance level γd, such that the

Algorithm 1 Indirect-type ILC with nonrepetitive disturbance
systems

Input: : The nominal state-space model matrices and refer-
ence trajectory (rd(t)), the trial length (α), the maximum
number of trials considered (denoted by M), the nonrepeti-
tive disturbance dk+1(t) and the time-varying uncertainty de-
scription (the matrices D, Fa, Fb, and ∆. Apply Theorems
1 and 4 to obtain the predictor and controllers parameters
L,K1,K2,K3,K4 and set yr,0 = 0.

Output: yk(t), uk(t) and RMS
for dok = 0 : N

for dot = 0 : α
Calculate the set-point yr,k(t) by ILC law (23).
Apply uk(t) to the batch process (3) and predictor (7)

and record the output trajectory yk(t) together with the set-
point error er,k(t) and tracking error ek(t).

Calculate the RMS for the current trial k using (57).
end for

end for
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Figure 4: Outputs under the indirect-type ILC design for Case 2.

Figure 5: Inputs under the indirect-type ILC design for Case 2.

following LMI is feasible
Θ1 Θd

2 Θd
7 Θd

10
(∗) Θ1 Θd

8 Θd
11

(∗) (∗) Θd
9 Θd

12
(∗) (∗) (∗) Θd

13

 ≺ 0, (70)

where

Od
7 =

 B̂d 0
0 0
−C̃B̂d 0

 ,Od
8 =


0

(
−C̃A1W1 − C̃B1Z

)T

0
(
−C̃B1G1

)T

0
(
W3 − C̃B1G2

)T

 ,

Od
9 =

−ρd
(
−C̃B̂d

)T

(∗) −I

 ,Od
10 =

0 εd
2D0

0 0
0 −εd

2D0

 ,
Od

11 =

(A1W1 + B1Z)T 0
(FbG1)T 0
(FbG2)T 0

 ,Od
12 =

[
0 0
0 −ε2C̃D0

]
,

Od
13 =

[
−ε2I 0
(∗) −ε2I

]
, ρd = (γd)2I.

Then the matrices in the control law (60) are[
Ld

−Ld

] [
0 C

]
= RdW−1

1 ,
[
Kd

1 0
]
= ZW−1

1 ,K
d = G1W−1

2 ,

Kd
3 = G2W−1

3 ,K
d
2 = Kd + Kd

3 .
(71)

Figure 6: Outputs under the direct-type ILC design for Case 2.
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Figure 7: RMS of indirect and direct type control for Case 2.

For the example considered

Kd
1 =

[
−1.3507 −0.8744

]
,Kd

2 = 0.8200

Kd
3 = 0.8019, Ld =

[
0.7617
−0.6018

]
,

γd = 110.7080.

Applying Theorem 1 (the LMI (14)) with the minimum pa-
rameter γc and Theorem 4 in this case gives

K1 = 0.8710,K2 =
[
0.2059 −0.6992

]
,

K3 = 0.2548, K4 = 0.2545, L =
[

1.5065
−0.5394

]
,

γc = 5.2622 × 10−5, γ = 32.1822.

Consider also the case when d(k+ 1, t) = 10sin(t)+w(t), where
w(t) varies arbitrarily over [−5, 5] (the disturbance is the sum of
a repetitive term and a non-repetitive term)

The results for this case are given in Figs. 8– 14
Finally, to assess the influence of the time delay, this case was

recomputed for a delay τ = 10. The output sequence is shown
in Fig 11 and the RMS plots for τ = 4 and τ = 10 are shown in
Figs 13 and Fig. 14. These latter results indicate that the design
can be applied for a range of time delays.
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Figure 8: Outputs under the indirect-type ILC design for Case 3 with τ = 4.

Figure 9: Inputs under the indirect-type ILC design for Case 3 with τ = 4.

6. Conclusions and Future Research

This paper has addressed the problem of the design of an
indirect ILC scheme for batch processes with time-varying un-
certainties, input delay, and disturbances. The analysis covers
three cases, where the latter two focus on repetitive and non-
repetitive disturbances, respectively. In the last case, H∞ dis-
turbance attenuation is used as an ILC design alone can only
compensate for the presence of a repetitive component in the
disturbance. The designs are LMI based, and their performance
has been highlighted by three case studies on a physically-based
model.

The current design uses an observer to reconstruct state vari-
ables. One area for possible future research is to develop al-
gorithms that do not require access to the state vector entries.
Also, further research is possible to provide a range of results
for different descriptions of the uncertainty.
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