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Object manipulation usually requires dexterity, encoded as the ability to roll, which is very difficult to achieve with robotic
hands based on point contact models (subject to holonomic constraints). As an alternative for dexterous manipulation,
deformable contact with hemispherical shape fingertips has been proposed to yield naturally a rolling constraint. It entails
dexterity at the expense of dealing with normal and tangential forces, as well as more elaborated models and control
schemes. Furthermore, the essential feature of the quality of grasp can be addressed with this type of robot hands, but it
has been overlooked for deformable contact. In this paper, a passivity-based controller that considers an optimal grasping
measure is proposed for robotic hands with hemispherical deformable fingertips, to manipulate circular dynamic objects.
Optimal grasping that minimizes the contact wrenches is achieved through fingertip rolling until normal forces pass through
the center of mass of the object, aligning the relative angle between these normal forces. The case of a circular object is
developed in detail, though our proposal can be extended to objects with an arbitrary shape that admit a local decomposition
by a circular curvature. Simulation and experimental results show convergence under various conditions, wherein rolling
and tangent forces become instrumental to achieve such a quality of grasp.

Keywords: dynamic grasping, soft-fingertips, circular object.

1. Introduction

Most of the body of literature on dexterous hands assumes
a frictionless rigid contact point between an object and
fingers. It allows exerting a normal contact force (Cole
et al., 1989), by using the classical DAE-21 formulation
(Parra-Vega et al., 2001), wherein the tangential force is
not modeled, but it is artificially considered a function of
material properties at contact through the friction cone
(Salisbury, 1982). In contrast, when rigid hemispherical
fingertips are considered, tangent forces are introduced
naturally based on the great deal of understanding
of rolling contact mechanics (Jia, 2000; Harada and
Kaneko, 2001; Ito et al., 2007; Nakashima et al., 2005).
Interestingly, the dexterity of robotic hands increases
when rolling constraints are taken into account (Marigo
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1This signifies a system of index-2 differential algebraic equations.

and Bichi, 2007), because relocation of contact points can
be carried out within a stable grasp regime, which is not
possible with the point contact assumption. Such rolling
motion was considered by Song et al. (2012) for force
angle optimization, although for an object without gravity,
in contrast to Ito et al. (2007), who include gravity by
considering a-priori knowledge of stable contact points
using a static analysis. Based on the concept of a
virtual object, Stramigioli (2003) manipulates objects
with arbitrary curvature (Wimboeck et al., 2006), without
tangential forces by using a DAE-2 formulation, limiting
its scope for dexterous grasping.

Notice that we humans grasp and manipulate
everyday objects and tools of non-null curvature, which
contribute to an ergonomic prehensile grasp that reduces
the biomechanical stresses of hands and arms. Endowed
by the hemispherical shape of our deformable fingertips,
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an essential feature of our hands, we exploit routinely
object curvatures by fingertip rolling, without detaching
(Akella and Cutkosky, 1989). To reproduce that in robotic
hands, deformable fingertips have been studied recently
to entail rolling motion (Ozawa et al., 2004; Nguyen
et al., 2006), with independent control of normal and
tangent forces (Arimoto et al., 2000). The resulting
dynamic model is quite involved, just like its stability
analysis, since it is subject to a holonomic constraint that
models rolling at the velocity level. Surprisingly, the
controller is not involved, showing the capability to grasp
a planar dynamic object without gravity with a simple
regulator that deals with environmental energy (Nguyen
et al., 2006). This scheme stands for a more natural
approach for dexterous manipulation because it exhibits
the triplet rolling motion, tangent and normal forces
(Arimoto et al., 2000). In this way, deformable fingertips
provide a (simplistic) biomimetics-based performance
(Arimoto, 2007); however, no measure of the quality of
grasp has been addressed for dynamic objects subject to
gravity.

Considering redundant robotic fingers with soft and
hemispherical tips, in this paper we propose a 2D
dexterous grasping controller of a dynamical circular
object that is subject to the gravity effect, without any
information about the object angle nor contact forces. The
normal and tangential forces are controlled independently,
such that the friction cone is shaped analytically without
depending on an arbitrary static formulation (Cole et al.,
1989), but within a dynamic setting. That is, our
approach removes the zero curvature assumption of the
object established in previous contributions, by including
analytically the object dynamic equation for achieving a
quality of grasp converging to a natural pose by rolling.
The control design is based on the passivity approach
to stabilize the object pose by regulating rolling and
normal forces, similarly to Ozawa et al. (2004; 2005)
or Nguyen et al. (2006); however, in contrast to them,
an artificial potential energy is used to induce an optimal
angle condition in the realm of quality of grasp based
on an internal angle of the normal forces. It is shown
that the desired tangential forces can be designed so
as to compensate dynamically the external wrenches,
including gravity, while simultaneously the normal forces
are aligned collinear, passing through the center of mass
(CoM) of the object. In this way, an optimal grasp
is achieved with a minimum contact wrench, where the
angle condition stands for the index to qualify the grasping
(Song et al., 2012; Kim et al., 2001).

With respect to the trajectory motion planning of this
type of robotic hands, it is important to notice that our
scheme only requires an initial stable grasp (contact and
forces that assure grasp closure at initial conditions), as
it is customary in robotic hands; however, the desired
normal and tangential forces are automatically computed

to stabilize the closed-loop system toward an optimal
pose of the object that requires minimum normal forces.
This stands for a principal characteristic of our approach,
in contrast to complex trajectory motion planning of
robotic hands based on contact points (Coelho and
Grupen, 1994; Wen and Wu, 2012). Finally, simulations
and experimental results are presented to highlight the
viability of our approach, where the rolling motion and the
tangential force become instrumental for dexterous tasks.

Fig. 1. Two robotic fingers grasping a circular object, where Σ0

is a fixed/inertial coordinate frame.

2. Constrained dynamical model

2.1. Kinematic model. Consider a robotic hand
with two planar fingers of three DoFs (degrees of
freedom) each, whose end-effectors are covered with a
hemispherical deformable homogeneous material. This
system, the so-called hemispherical soft-fingertip robotic
hand, is holding firmly a circular dynamic rigid object
subject to the gravity effect; see Fig. 1, where q1 =
[q11, q12, q13]

T ∈ R
3 and q2 = [q21, q22, q23]

T ∈ R
3 are

the generalized finger position coordinates for the right
and left finger, respectively, θ ∈ R stands for the object
orientation/attitude, φi ∈ R is the angle between the
i-th normal force vector and the projected line of the last
link of the i-th finger, and p = [x, y, θ]T = [p̄, θ]T ∈
R

3 represents the generalized object position coordinates,
with p̄ = [x, y]T ∈ R

2. Additionally, Lij ∈ R stands
for the j-th link length of the i-th finger, L0 ∈ R is
the distance between the bases of each finger, r ∈ R

and R ∈ R are the radii of the deformable fingertip and
the object, respectively, Oi = [xi, yi]

T ∈ R
2 represents

the center position of the deformable i-th fingertip, and
Ocm = [x, y]T ∈ R

2 is the center of mass of the object.

Notice that the i-th maximum fingertip radial
deformation δi = δi(δi, p̄) ∈ R can be defined as (see
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Fig. 2. Kinematic relationships at contact, where β(ν̄) = α1 −
α2 + π ∈ R represents the normal forces relative angle.

Fig. 2)

δi = R̄+ (−1)i
([

(x− xi) (y − yi)
] [ c(αi)

−s(αi)

])
,

(1)
where R̄ = ri + R ∈ R, s(αi) = sin(αi) ∈ R,
c(αi) = cos(αi) ∈ R with αi being the angle with
respect to the horizontal of the i-th normal force, such that
αi

.
= αi(qi, p̄) = tan−1 (Xi(qi, p̄)) ∈ R, with

Xi(qi, p̄) = −
(
y − yi
x− xi

)
∈ R

(see Fig. 2). In particular, the angleαi will be instrumental
in our approach to define the quality of grasp without
a measurement of the object angle and arises as the
fundamental difference from the other approaches (Ozawa
et al., 2004; 2005; Nguyen et al., 2006).

Clearly, the hemispherical curvature of the
deformable fingertip establishes that the angular
rolling object velocity θ̇ can be related to φ̇i by
(−1)iRθ̇ = −riφ̇i, with respect to the inertial frame
(Marigo and Bichi, 2007). This relation can be expressed
by the following differentiable rolling constraint:

ϕ̇ri = (−1)iR
d

dt
θ + ri

d

dt
φi = 0, (2)

where ϕ̇ri = ϕ̇ri(qi,p), φi = φi(qi, p̄) = π −
(−1)iαi − qT

i ei ∈ R, and ei = [1, 1, 1]T ∈ R
3, for

i = 1, 2. Furthermore, notice that (2) is integrable, whose
vector-valued solution in fact stands for a rolling position
holonomic constraint ϕri ∈ R as follows:

ϕri = (−1)iRθ + riφi + Cϕri
= 0, (3)

where ϕri = ϕri(qi,p), and Cϕri
∈ R stands for the

integration constant.

2.2. Dynamic model. The kinetic energy K =
K(q, ν̇) ∈ R of the system is given by

K(q, ν̇) =

2∑
i=1

Ki +K0, (4)

where q = [qT
1 , q

T
2 ]

T ∈ R
6, ν = [qT ,pT ]T ∈ R

9,
and q̇ = [q̇T

1 , q̇
T
2 ]

T ∈ R
6, ν̇ = [q̇T , ṗT ]T ∈ R

9 are
the generalized positions and velocities coordinates of
the whole system, respectively, Ki = 1

2 q̇i
THi(qi)q̇i ∈

R stands for the kinetic energy of the rigid i-th robot
manipulator with Hi(qi) ∈ R

3×3 being the inertial
positive definite matrix, K0 = 1

2 ṗH0ṗ ∈ R represents
the kinetic energy of the circular object, with H0 =
diag(m,m, I) ∈ R

3×3 being the constant object inertial
matrix, m ∈ R the mass of the object and I ∈ R the mass
moment of inertia of the object.

When a normal force is applied onto the circular
object, it is assumed that the maximum force occurs at
the contact point Pc located along the line connecting the
fingertip center with the CoM of the object; see Fig. 2.
Due to the deformation δi at fingertips, an i-th normal
force fi ∈ R arises, which can be modeled taking into
account the following soft-fingertip deformation model
(Arimoto, 2007):

fi = fi(δi, p̄) = kδ2i , (5)

where k = 2πE ∈ R and E ∈ R are the fingertip stiffness
and the Young modulus of the soft material, respectively.
Notice that (5) contributes with an elastic potential energy
PEi(δi) at each fingertip, which can be obtained through
integration as follows:

[
PEi(δi)

]t
0
=

∫ t

0

fi(δi)
d

dt
δi dt

= PEi(δi)− PEi0, (6)

where

PEi(δi) =
1

3
πkδ3i

and

PEi0 = PEi(δi(qi(0), p̄(0))) =
1

3
πkδ3i (qi(0), p̄(0))

is the initial elastic potential energy at the contact. Thus,
the total potential energy P (ν̄) ∈ R of the whole system
is given as

P (ν̄) =
2∑

i=1

PEi(δi) +
2∑

i=1

PGi(q) + PG0(y), (7)

where ν̄ = [qT , p̄T ]T ∈ R
8; PGi(q) ∈ R and PG0(y) =

−Mgy ∈ R are the generalized potential energies induced
by the Earth’s gravitational field onto the i-th finger and
onto the object, respectively.
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Additionally, notice that a workless constrained
energy St arises from the constrained forces (since the
hemispherical i-th finger is constrained by the object). It
is defined as

St =

2∑
i=1

ϕri(qi,p)λi = ϕT
r λ, (8)

where ϕr = [ϕr1 , ϕr2 ]
T = 0 ∈ R

2 and λ = [λ1, λ2]
T ∈

R
2 is the Lagrange multiplier with λi ∈ R being the

magnitude of the tangential force applied at the contact
point Pci of the i-th finger. Applying the variational
principle to the constrained Lagrangian Lr(ν, ν̇) =
L + St, where L = K(q, ν̇) − P (ν̄) represents the
Lagrangian, we obtain

∫ t2

t1

[
δL+ϕT

r λ+ uT δν
]
dt = 0. (9)

Solving (9) yields, according to the Euler–Lagrange
modeling formalism,

d

dt

[
∂

∂ν̇
L

]
− ∂

∂ν
L− ∂

∂ν
ϕT

r λ = u,

where u = [τT
d1
, τT

d2
, τT

z ]
T = [τT

d1
, τT

d2
,0T ]T ∈ R

9

stands for the generalized torque control inputs. With
these definitions, (9) becomes

• dynamics of the i-th finger:

Hi(qi)q̈i +Ci(qi, q̇i)q̇i + gi(qi)

= τ i + (−1)ifi(δi)J
T
i (qi)

[
c(αi)
−s(αi)

]

+ ri

(
JT

i (qi)D
−1
i

[
s(αi)
c(αi)

]
− ei

)
λi,

(10)

• dynamics of the underactuated object:

H0p̈−
⎡
⎣ 0
Mg
0

⎤
⎦−

2∑
i=1

⎛
⎝(−1)ifi(δi)

⎡
⎣−c(αi)

s(αi)
0

⎤
⎦
⎞
⎠

= τ p +

2∑
i=1

⎛
⎝(−1)iR

⎡
⎣00
1

⎤
⎦− riD

−1
i

⎡
⎣s(αi)
c(αi)
0

⎤
⎦
⎞
⎠λi,

(11)

where Ci(qi, q̇i) and gi(qi) are the Coriolis matrix
and gravitational forces/torques vector of the i-th finger,
respectively; also notice that

τ p = [0, 0, 0]T ∈ R
3

because the object is underactuated. Assuming reasonably
that

−π

2
≤ αi(qi, p̄) ≤

π

2

for circular objects, because r < R, we have that

cos(αi) =
1√

X2
i (qi, p̄) + 1

= −(−1)i
(
x− xi

Di

)
,

sin(αi) =
Xi√

X2
i (qi, p̄) + 1

= −(−1)i
(
yi − y

Di

)
,

with Di = Di(qi, p̄) = ||x̄i(qi)− p̄||2 > 0 representing
the distance from the object CoM to the position of the
base center of the i-th deformable fingertip, for x̄i =
[xi, yi]

T ∈ R
2.

2.3. Some structural properties. From (10) and (11)
we can elucidate some structural properties useful to
design the control and guide the stability analysis.

System of index-2 differential algebraic equations
(DAE-2). Notice that the underactuated object dynamics
couple the finger dynamics into a hyperedundant
closed-kinematic chain in the sense that the dimension of
the operational space is much lower than the generalized
coordinates dimension. Then the system (10)–(11)
represents an underactuated constrained hyperredundant
DAE system that satisfies the constraint (2), as well as its
derivatives. Despite the deformation at the fingertip, this
stands for a very stiff system whose numerical solution
requires a high-end stiff integrator for a well-posed
numerical solution (Baumgarte, 1971).

Primary manifold. The state space of robotic fingers
grasping an object is constrained to satisfy all the time
the rolling constraint (2), which gives rise to the so-called
primary constrained manifold Mϕr defined by, for i =
1, 2 (Yoshida et al., 2007),

Mϕr =
{
(ν, ν̇) ∈ R

18 : ϕri = 0, ϕ̇ri = 0
}
, (12)

where dim(Mϕr) = 14 due to {q,p} ∈ R
9 minus the

two constraints (at the position level), establishing the
manifold where the solution evolves for all t.

Passivity and dissipativity. Let the input-output pair
(u,y) be used to compute the power 〈ui, yi〉. We get

uTy =
d

dt
H, (13)

where the storage function H = H(ν̄, ν̇) = K(q, ν̇) +
P (ν̄) ∈ R stands for the open-loop energy function of the
system for y = ν̇ ∈ R

9, and u ∈ R
9. Thus, the constraint

forces along the variational of the constraint velocity
vanish. This implies that the integral of (13) yields
H(ν̄(tf ), ν̇(tf )) = H(ν̄(t0), ν̇(t0)), which represents a
passive lossless system. It is easy to show that if an affine
joint or contact friction were considered, a dissipative
map is enforced, suggesting that the control design must
consider damping injection for stabilization purposes.
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2.4. Control problem statement. Consider DAE-2
dual redundant underactuated robotic fingers equipped
with deformable and hemispherical tips in contact with a
rigid circular object subject to gravity, see Fig. 1. Assume
that generalized positions ν̄, kinematics maps, radii
of soft-fingertips, gravitational forces/torques vectors of
fingers, and the mass of the object are all known, but the
following is unknown: the deformation, the elastic force
and the contact area. Then, the control problem statement
is as follows: Design a smooth control input τi to guaran-
tee stable grasping such that the final pose implies a given
quality of grasp with a minimum force.

3. Control design

3.1. Controller. Let the control law be

τ i =−Kqi q̇i + gi(qi)− (−1)iJT
i (qi)

[
c(αi)
−s(αi)

]
Fdi

− ri

(
JT

i (qi)D
−1
i

[
s(αi)
c(αi)

]
− ei

)
λdi

− riJ
T
i (qi)D

−1
i

[
s(αi)
c(αi)

]
Fβ , (14)

where Kqi ∈ R
3×3 is a diagonal symmetric positive

definite matrix, with Fdi ∈ R, and λdi ∈ R being defined
as

Fdi =fd

(
1 + (−1)i

1

2
ΔCSi

)
− (−1)i

1

2
Mgs(αi)

(15)

λdi =− Fβ − fd
1

2

Di

ri
ΔSCi +

1

2

Di

ri
Mgc(αi) (16)

for fd ∈ R
+ standing for a constant normal force that

assures grasp closure (Shapiro, 2001), and

ΔCSi = ΔCαc(αi) + ΔSαs(αi), (17)

ΔSCi = ΔSαc(αi)−ΔCαs(αi), (18)

with ΔCα = c(α1) − c(α2) ∈ R and ΔSα = s(α1) −
s(α2) ∈ R. Finally, the variable Fβ ∈ R is introduced
to qualify grasp, whose effect is to modulate tangential
forces depending on the relative angle between normal
forces. In this way, Fβ is defined as follows:

Fβ = KβpΔβ̄ +Kβv

(
r1q̇

T
1 e1 + r2q̇

T
2 e2

)
, (19)

where Kβp ∈ R
+, Kβv ∈ R

+, and Δβ̄ = β̄ − βd stands
for the angle error for stable grasping with

β̄ = r1α1 − r2α2 + π (20)

modeling the internal angle between normal force vectors
weighted by fingertip radii; see Fig. 2. The variable β̄
can be interpreted as a grasping quality index in terms of

internal squeezing forces as a rotational spring pivoting
at the object CoM (Song et al., 2012). Clearly, an optimal
stable grasp arises for βd = π wherein normal forces point
toward the CoM, thus representing the pose that requires
the minimum forces to grasp an object. Notice that βd

can be set to another value according to given criteria and
relationship between fingertip radii.

Remark 1. Notice that, whenΔβ̄ and ν̇ converge to zero,
λdi and Fdi converge to constant values, exactly with a
pose corresponding to collinear normal forces pointing
toward the CoM, which for the circular object stands for
an optimal grasp. Also, note that gravity compensation of
the object is carried out through both Fdi and λdi . Finally,
external desired fd and βd are constant, meaning that the
closed-loop system becomes autonomous at equilibrium.
Interestingly enough, desired tangent forces are intuitively
directly depending on the object angle errorΔβ̄; the larger
the error, the larger λdi becomes, and vice-versa.

3.2. Closed-loop system. Substituting (14) into (10),
we obtain the following closed-loop dynamics:

• closed-loop fingers dynamics,

Hi(qi)q̈i +Ci(qi, q̇i)q̇i − (−1)iΔfiJ
T
i (qi)

[
c(αi)
−s(αi)

]

+Kqi q̇i − ri

(
JT

i (qi)D
−1
i

[
s(αi)
c(αi)

]
− ei

)
Δλi

+ riJ
T
i (qi)D

−1
i

[
s(αi)
c(αi)

]
Fβ = 0, (21)

• closed-loop underactuated object dynamics,

Mẍ−Δf1c(α1) + Δf2c(α2) + r̄1s(α1)Δλ1

+ r̄2s(α2)Δλ2 − r̄1s(α1) + r̄2s(α2)Fβ = 0, (22)

Mÿ +Δf1s(α1)−Δf2s(α2) + r̄1c(α1)Δλ1

+ r̄2c(α2)Δλ2 − r̄1c(α1) + r̄2c(α2)Fβ = 0, (23)

Iθ̈ +R (Δλ1 −Δλ2) +Rfd
1

2
D12CS

+R
1

2
MgDC12 = 0, (24)

where Δfi = fi(δi)− Fdi ∈ R is the normal force error,
and Δλi = λi − λdi ∈ R stands for the tangential force
error, and (15)–(18) have been used to obtain (22)–(24).
In the latter, r̄i = riD

−1
i ∈ R, D12 = r̄−1

1 (q1, p̄) −
r̄−1
2 (q2, p̄) ∈ R, CS = c(α1)s(α2) − c(α2)s(α1) ∈ R

and DC12 = r̄−1
1 (q1, p̄)c(α1) − r̄−1

2 (q2, p̄)c(α2) ∈ R.
Finally, (21)–(24) can be expressed in compact form to
stand for the complete closed-loop error dynamics as
follows:

Hν̈ +Cν̇ +Kν̇ +AΔΛ = ucl, (25)
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where ucl ≡ 0 is useful for stability analysis purposes
only, q̈ = [q̈T

1 , q̈
T
2 ]

T ∈ R
6, ν̈ = [q̈T , p̈T ]T ∈ R

9 are the
generalized accelerations of the system,

H = diag(H1(q1),H2(q2),H0) ∈ R
9×9,

C = diag(C1(q1, q̇1),C2(q2, q̇2),03×3) ∈ R
9×9,

and
K = diag(Kq1 ,Kq2 ,03×3) ∈ R

9×9.

The coupling matrix A = diag(A1,A2) ∈ R
9×7 is given

by

A1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JT
1

[
cos(α1)
− sin(α1)

]
0n×1 − ∂

∂q1

ϕr1

0n×1 JT
2

[− cos(α2)

sin(α2)

]
0n×1

− cos(α1) cos(α2) − ∂

∂x
ϕr1

sin(α1) − sin(α2) − ∂

∂y
ϕr1

0 0 R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(26)

A2 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0n×1 −JT
1

∂

∂z
ϕr1 0n×1 0n×1

− ∂

∂q2

ϕr2 −JT
2

∂

∂z
ϕr2 0n×1 0n×1

− ∂

∂x
ϕr2

∂

∂x
ϕr1 +

∂

∂x
ϕr2 0 0

− ∂

∂y
ϕr2

∂

∂y
ϕr1 +

∂

∂y
ϕr2 0 0

−R 0 Rfd
1
2CS R 1

2Mg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(27)

where the arguments of functions are omitted for
convenience, and the vectorΔΛ ∈ R

7 stands for the seven
control objectives, given by

ΔΛ =
[
Δf1 Δf2 Δλ1 Δλ2 Fβ D12 DC12

]T
.

(28)
Now, we are ready to state the main result.

3.3. Main result.

Theorem 1. Let

Ω0 =
{
ν, ν̇ : δi =

√
fi
k

≥ 0, {ν, ν̇} ∈ Mϕr

}

be a non-empty connected set. Consider the closed-loop
error dynamics . Then, if initial conditions ν(0) ∈ Ω0 are

small, the following basic constrained manifold:

Mc =
{
ν, ν̇ : ϕri = 0, ϕ̇ri = 0,

Δfi = 0,Δλi = 0,Δβ̄ = 0
}

(29)

becomes an attractive manifold for (25). It implies the
local asymptotic convergence of the tracking errors, i.e.,
ΔΛ → 0 ⇒ (Δfi,Δλi,Δβ̄) → (0, 0, 0), as well as
grasping with well-posed smooth control signals, with-
out measurements of deformation, neither the contact area
nor the contact force.

Proof. A passivity-based analysis of the closed loop
system yields, for input ucl and output ycl = ν,

uT
clycl =

d

dt
(K(q, ν̇) + ΔPE(ν̄))

+ q̇T
1 Kq1 q̇1 + q̇T

2 Kq2 q̇2

+
2∑

i=1

r̄i
[
ẋi(qi) ẏi(qi)

] [s(αi)
c(αi)

]
Fβ

−
([

ẋ ẏ
] [r̄1s(α1) + r̄2s(α2)

r̄1c(α1) + r̄2c(α2)

])
Fβ

+ θ̇Rfd
1

2
D12CS + θ̇R

1

2
MgDC12

=
d

dt
Ē(ν̄, ν̇) + q̇TKqq̇ +Kβv (r1α̇1 − r2α̇2)

2

+ θ̇Rfd
1

2
D12CS + θ̇R

1

2
MgDC12, (30)

where Kq = diag(Kq1 ,Kq2), and Ē(ν̄, ν̇) =
K(q, ν̇) + ΔPE(ν̄) + Part(ν̄) ∈ R represents the
closed-loop storage energy function of the error system,
ΔPE(ν̄) ∈ R models the elastic potential energy error
of the system, Part(ν̄) = 1

2Kβp (r1α1 − r2α2)
2 is an

artificial potential representing a virtual torsional spring
to drive Δβ̄ → 0 that complies to the quality of grasp for
β = π. To obtain (30), we have resorted to

r1α̇1 − r2α̇2 =r̄1
[
ẋ1(q1) ẏ1(q1)

] [s(α1)
c(α1)

]

+ r̄2
[
ẋ2(q2) ẏ2(q2)

] [s(α2)
c(α2)

]

− [
ẋ ẏ

] [r̄1s(α1) + r̄2s(α2)
r̄1c(α1) + r̄2c(α2)

]

=r1q̇
T
1 e1 + r2q̇

T
2 e2.

Now, since r1 = r2, we have that

D12 =
R (r2 − r1) + δ2r1 − δ1r2

r1r2
≤ 1,

DC12 ≤ R

r1
+ 2,
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CS ≤ 1,

‖ θ̇R
1

2

(
fdD12CS +

1

2
MgDC12

)
‖

≤ θ̇R
1

2
(fd +Mg)

(
R

r1
+ 2

)
.

By virtue of ucl = 0, (30) becomes

˙̄E(ν̄, ν̇) ≤ −q̇TKqq̇−Kβv (r1α̇1 − r2α̇2)
2− θ̇γ, (31)

where

γ =
1

2
R

(
fd +Mg

(
R

r1
+ 2

))
∈ R

+.

Since Ē(ν̄, ν̇) is not a Lyapunov function in
the primary constrained manifold, we cannot invoke
Lyapunov theorems to show stability. However, this
energy-like function can be used to analyze the stability
of the closed-loop autonomous system on the largest
invariant set. To this end, notice that (31) has two
possible annihilators: (i) (q̇, θ̇) = (0, 0) or (ii) θ̇ =

γ−1
(∑

i=1,2 q̇
T
i Kqi q̇i +Kβv (r1α̇1 − r2α̇2)

2
)

.

Moreover, the equilibrium (ii) implies a rather large
angular velocity of the object, which stands for a rare and
impractical operational regime that can be avoided locally
by initial conditions and tuning; conversely, condition
(i) can be obtained easily with joint damping large
enough through theoretically large Kqi for |θ̇| ≤ ε0 and
|γ| ≤ ε1 with ε0, ε1 > 0, henceforth (31) is locally
negative semi-definite. Consequently, in (i), (31) becomes
negative semi-definite along the solution trajectories with
the equilibrium at (q̇, θ̇) = (0, 0), which implies that
ν̇ = 0. In this condition, (25) becomes

AΔΛ = 0. (32)

The coupling matrix A is non-degenerate if J i(qi) is
full column rank, which is fulfilled for qi1 �= aπ,
with a ∈ Z, for i = 1, 2. This configuration
represents a rather awkward pose with the finger
phalanges collapsing on themselves, which is avoided
through proper initialization in any reasonable practical
experiment; thus, excluding this configuration, we have
that A is a locally non-degenerate matrix. Hence, the
unique solution of (32) is ΔΛ = 0, which implies that
locally asymptotically

force errors: Δfi → 0, Δλi → 0,

optimal pose: Fβ → 0,

aligment: D12 → 0, DC12 → 0

without resorting to force feedback, neither deformation
nor contact area measurement. �

Remark 2. We have assumed that r1 = r2, so
with no loss of generality Δβ̄ = 0 means that α1 −
α2 = 0. This chain of implications leads to the
conclusion that the normal force vectors are dynamically
aligned passing through the CoM without involving any
complex motion planning scheme. This stands for an
optimal dynamic balanced grasp, in energetic terms,
since normal and tangential forces are minimal. At
this point, ΔCSi = ΔSCi = 0 implies fi(δi) =
Fdi = fd − (−1)iMg sin(αi)/2 and λi = λdi =
Di(qi, p̄)Mg sin(αi)/(2ri); see (15) and (16). Finally,
this represents the convergence of each finger to the best
normal and tangential forces that allow compensating for
gravity with an optimal grasping.

Remark 3. Theorem 1 establishes precise conditions
for grasping with a given quality encoded in βd, although
at the expense of a slow convergence rate due to a high
damping to meet the condition (i) discussed in the proof.
Moreover, the slow dynamics of fingertip deformation
imply that the injection of λi into the underactuated
object dynamics is also slow. Overall, owing to a slow
convergence rate toward the basic manifold, it is expected,
intuitively and theoretically, as if this were mimicking a
robot learning from scratch to pinch optimally an object,
which certainly constitutes a high-end task.

4. Simulations and experiments

4.1. Simulator. The simulator is programmed
in Matlab 7.13, based on a variation of the
Bogacki–Shampine variable-step stiff numerical
integrator (Bogacki and Shampine, 1989), implemented
as ode23tb with a maximum step size of 4 ms and an
absolute error tolerance of 1 × 10−6 m. A constrained
stabilization method (CSM) (Baumgarte, 1971) is
introduced for numerical stabilization of the DAE-2
system, whose overall initial conditions are consistent
with the DAE formulation of the system for t = t0 such
that fi(0) > 0, for i = 1, 2, and the initial grasp is
validated.

4.2. Simulation conditions.

4.2.1. System parameters. Physical parameters of
two equal robotic fingers of 3 DoFs each are described
in Table 1, where i, j represent the link and the robot
finger, respectively. Thus Lji, Lcmji , Mji and Iji stand
for the link length, distance to the center of mass from the
i-th joint, mass, and mass moment of inertia, respectively.
Additionally, M = 0.20121 kg, I = 8.050494x10−4

kgm2 and R = 0.08 m is the mass, the mass moment
of inertia and the radius of the object, respectively.
Finally the i-th hemispherical soft-fingertip has a stiffness
parameter of ki = 10000π kgm/s2m2, with radius ri =
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Fig. 3. Case 1: trajectories of fingertips and object centers in the system task space; as a quasi-horizontal line is conformed by normal
forces, the optimal grasping condition β(ν̄) = π rad is achieved.

Table 1. Physical parameters of the robotic fingers.

Li1 0.120 m Mi1 0.50062 kg
Li2 0.08485 m Mi2 0.34045 kg
Li3 0.040 m Mi3 0.1693 kg

Lcmi1 0.05791 m Ii1 6.55341x10−4 kgm2

Lcmi2 0.03988 m Ii2 2.52286x10−4 kgm2

Lcmi3 0.0157 m Ii3 5.39262x10−5 kgm2

0.02 m such that the object is four times bigger than the
fingertip.

4.2.2. Simulation conditions. For comparative
purposes, two simulation cases are considered under
different initial conditions and sets of feedback gains with
fd = 2.5 [kgm/s2], as shown in Table 2. The initial
conditions should guarantee that δi(0) > 0, such that
fi(0) > 0. The integration interval for all simulations
is from 0 to 10 s, and some graphs have been cropped to
show some particular details.

Case 1. The system is initialized with α1(0) = −α2(0) =
−0.21250 rad, which means an internal angle of β̄(0) =
2.71658 rad. The initial conditions are q1(0) = q2(0) =
[0.42685, 1.77089, 1.17068]T rad and q̇1(0) = q̇2(0) =
[0, 0, 0]T rad/s for fingers, and p̄(0) = [0.075, 0.130]T m,
θ(0) = 0 rad and ˙̄p(0) = [0, 0]T m/s, θ̇(0) = 0 rad/s for
the object, and with δ1(0) = δ2(0) = 0.00232m such that
f1(0) = f2(0) = 0.17011 kgm/s2.

Table 2. Control laws gains and desired normal force.

Sim Kqi gain Kβp gain Kβv gain
ID [kgm2/s] [kgm/s2] [kg/s]

S1 diag(0.5) 300 250

S2 diag(0.5) 300 0

S3 diag(0.5) 600 250

S4 diag(0.5) 600 0

Case 2. The system is initialized with α1(0) = −0.21250
rad and α2(0) = 0.05258 rad, which means an internal
angle of β̄(0) = 2.87650 rad. The initial conditions
are q1(0) = [0.42685, 1.77089, 1.17068]T rad, q2(0) =
[0.42685, 1.77089, 0.77798]T rad and q̇1(0) = q̇2(0) =
[0, 0, 0]T rad/s for fingers, and p̄(0) = [0.075, 0.130]T

m, θ(0) = 0 rad and ˙̄p(0) = [0, 0]T m/s, θ̇(0) = 0
rad/s for the object, and with δ1(0) = 0.00232 m and
δ2(0) = 0.00486 m such that f1(0) = 0.17011 kgm/s2

and f2(0) = 0.74463 kgm/s2.

4.3. Simulation results.

4.3.1. Results of Case 1. Figure 3 shows the system
movement to achieve stable grasping conditions, that
is, the alignment of the centers of fingertips and the
object in a quasi-horizontal line, while Fig. 4 shows
how the object is lifted in order to achieve the stable
grasping conditions. The error convergence of normal and
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tangential forces is shown in Figs. 5 and 6, respectively,
where it can be appreciated that the effect due to gravity
is compensated accordingly. On the other hand, Fig. 7
shows the convergence of internal angles α1(q1, p̄) and
α2(q2, p̄), which implies that both angles converge to the
same value, that is, the convergence to the optimal stable
grasping angle β̄ = π; see Fig. 8. Finally, if we analyse
the differences between simulations (for the four different
sets of feedback gains), we can see a direct correlation of
gain Kβp with the velocity of the system to reach stable
grasping conditions with some oscillations. On the other
hand, the gains Kqi are directly correlated to the damping
of fingers, which is used in order to achieve asymptotic
convergence for the grasping conditions; furthermore, the
gain Kβv is also related to damping, but as such damping
is dependent on angles α̇1(q1, p̄) and α̇2(q2, p̄), it is more
suitable for reducing the oscillatory behaviour of internal
angles as the stable grasping conditions are achieved.
Therefore, a correct balance between this pair of control
gains must be established in order to achieve a desired
system performance.

4.3.2. Results of Case 2. Figure 9 shows the system
movement to achieve stable grasping conditions, that is,
the alignment of the centers of the fingertips and the object
in a line, which is diagonal due the initial conditions of the
system, while Fig. 10 shows how the object is lifted but
also rotated, as the left finger displaces and rolls a greater
distance achieving the grasping. The error convergence of
normal and tangential forces is shown in Figs. 11 and 12,
respectively, where we can highlight that the gravitational
effect is compensated. On the other hand, in Fig. 13 the
convergence of internal angles α1(q1, p̄) and α2(q2, p̄),
is shown and it is possible to corroborate how both angles
converge to the same value but not necessarily to zero,
and where α angles may vary once they reach the same

Fig. 4. Case 1: smooth behavior of object coordinates/positions.

Fig. 5. Case 1: after a short smooth transient, normal forces er-
rors converge to zero, showing a dynamic search of the
optimal configuration.

value if any remaining rotational movement of the object
exists. If the object rotation is not stopped due the friction
induced by the control laws, eventually the stable grasp
can be lost, since it was discussed as an ideal stable grasp
condition, where control gains Kqi and Kβv must be
large enough but Kβp small. Finally, from the simulations
we can conclude similar conclusions in the relationships
between control gains and the performance of the system
as for the previous case.

4.4. Experimental results.

4.4.1. Experimental setup. In order to verify the
performance of the proposed controller in a real setting, a
pair of robotic fingers with soft-tips and three degrees each

Fig. 6. Case 1: after a short smooth transient, tangential forces
errors converge to zero, compensating the object weight.
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Fig. 9. Case 2: trajectories of fingertips and object centers in the system task space; as a diagonal line is conformed by normal forces,
the optimal grasping condition β(ν̄) = π rad is achieved.

was implemented as a testbed; see Fig. 15. In each finger
we used Dynamixel R© MX-64R servos in torque mode.
Generalized positions and velocities of the fingers are
obtained directly from the servomotors while the position
of the object’s center of mass is obtained through a web

camera, QuickCam R© E500
TM

from Logitech, using the
OpenCV library. Finally, the experiments were developed
using C++ on a PC under Ubuntu 14.04 LTS equipped
with an RTAI patch; see Fig. 16.

Fig. 7. Case 1: smooth convergence of both α angles to a com-
mon value close to zero.

4.5. Experimental parameters and conditions. The
physical parameters of the robotic fingers are Li1 = 0.088
m, Li2 = 0.088 m, Li3 = 0.036 m, Mi1 = 0.2, Mi2 =
0.2 kg, Mi3 = 0.15 kg, Lcmi1 = 0.06 m, Lcmi2 = 0.06 m
and Lcmi3 = 0.025 m for indices i, j representing the link
and the robot finger, respectively. Additionally,M = 0.04
kg and R = 0.05 m are the mass and radius of the object,
respectively. Finally, the i-th hemispherical soft-fingertip

Fig. 8. Case 1: after a short smooth transient, exponential-like
convergence of the optimal grasping error Δβ(ν̄) is
achieved.



Dynamic optimal grasping of a circular object with gravity using robotic soft-fingertips 319

has a stiffness2 parameter of ki = 270563.4 kgm/s2m2,
with radius ri = 0.03 m, and L0 = 0.20 m is the distance
between each finger’s base.

As in the previous section, we consider fd = 2.5
[kgm/s2] while the system is initialized with α1(0) =
−0.027 rad andα2(0) = −0.17 rad. The initial conditions
of the fingers are q1(0) = [1.20111, 0.670349, 1.39592]T

rad, q2(0) = [0.228563, 1.46955, 0.0901538]T rad and
q̇1(0) = q̇2(0) = [0, 0, 0]T rad/s for fingers, and p̄(0) =
[0.160923, 0]T m, θ(0) = 0 rad and ˙̄p(0) = [0, 0]T

m/s, θ̇(0) = 0 rad/s for the object, Kqi = 0.1 kgm2/s,
Kβp = 125 kgm/s2, Kβv = 10 kg/s.

The objective is to guarantee stable grasping of

2The deformable tips are made with resin, RESILAM 95/M, while
the stiffness parameter was obtained experimentally.

Fig. 10. Case 2: smooth behavior of object coordi-
nates/positions.

Fig. 11. Case 2: after a short smooth transient, normal forces
errors converge to zero, showing a dynamic search of
the optimal configuration.

a circular object based on the optimal stable grasping.
In Fig. 17 we can notice the contribution of the
hemispherical and deformable tips of the fingers to align
the centers of fingertips and the object, while in Fig. 18 the
convergence of α1(q1, p̄) and α2(q2, p̄) approximately
to the same value but not necessarily to zero is shown.
The variations around 0.1 represent small errors in the
detection of the object; these variations occur due to light
changes which the camera translates as movements of
the object (these can be perfectly seen in Fig. 17 when
the optimal grasping is reached). Finally, in Figs. 19
and 20 the exponential convergence of the angle error for
stable grasping in approximately 1 s and the force errors,
respectively, is shown.

Fig. 12. Case 2: after a short smooth transient, tangential
forces errors converge to zero, compensating the object
weight.

Fig. 13. Case 2: smooth convergence of both α angles to a com-
mon value not necessarily at zero, which can be chang-
ing until the remaining object rotation is stopped.
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Fig. 14. Case 2: after a short smooth transient, exponential-like
convergence of the optimal grasping error Δβ(ν̄) is
achieved.

Fig. 15. Experimental setup.

5. Final remarks

The quality of grasping rigid curved objects was addressed
in this paper, using redundant robotic fingers with
deformable fingertips. Despite the apparent complexity
of the model and stability analysis, the controller is quite
simple for the optimal grasping of a dynamic object
subject to gravity where the normal forces are aligned,
passing through the CoM of the object. The final condition
of the normal forces represents a trivial pose which

Fig. 16. General structure of the robotic fingers controller.

Fig. 17. Performance of the trajectories of fingertips and object
centers in the system task space to achieve the optimal
grasping condition β(ν̄) = π rad.

Fig. 18. Experimental performance of the angles αi.

requires a minimum energy, and this is possible by the
rolling of the hemispherical fingertips into the circular
object—a property that has not been explored previously
in the context of an optimal grasping with the automatic
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Fig. 19. Experimental performance of the optimal grasping er-
ror Δβ(ν̄).

Fig. 20. Experimental performance of the force errors.

synthesis of the desired equilibrium. Notice that this
approach exhibits an intuitive biomimetic performance to
grasp an object, which is unknown or not evident for the
grasping and manipulation based on the point contact.

Thus, an explicit inclusion of rolling in fingers with
soft tips, characteristic that is fundamental in our human
hands for precise manipulation, arises as a feasible option
for dexterous tasks with robotic hands.

All these issues were verified in a real experimental
setting throughout experiments. This approach can be
extended to an object with arbitrary shape that admits
a local decomposition by a circular curvature assuming
that the objects can be defined as a set X ∈ R

2 whose
boundary ∂X is a finite union of mutually disjoint simple
closed curves. If an affine joint or contact friction is
considered, it will only increase dissipativeness; our result
applies in the presence of such friction. Extension to the
tracking case, and thus manipulation, seems feasible in
the realm of passivity; however, partial knowledge of the
dynamics may be needed to compensate for kinetic energy
in the error frame. The 3D case becomes more involved

but straightforward for the regulation case, where the
convex hull of the quality of grasp provides a conservative
measure. Finally, the inclusion of the visual sensors under
kinematic and dynamics uncertainties (Skrzypczyński,
2005) represents a more comprehensive system.
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