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2 TADEUSZ WIELGOSŻ 

I. CZĘśC TEORETYCZNA. 

1. Wstęp. 

Najbardziej wartościową częścią naszych drzew leśnych jest 
tak zwany pień, który umocowany zapomocą korzeni w glebie 
wznosi się pionowo do góry i nosi na sobie koronę, złożoną 

z konarów i gałęzi. Pień, który na całej swej długości pozostaje 
w jednym kawałku, nazywa się także s t r z a ł ą drzewa. 

Strzały drzew wyrosłych w zwartych drzewostanach wyka­
zują w zasadzie prostolinijną oś długości i względem tej osi 
mniej lub więcej symetryczną budowę: przekroje poprzeczne 
tj. prostopadłe do osi mają zwłaszcza w części środkowej 

strzały kształt zbliżony do koła, natomiast .w dolnych i górnych 
częściach . spotykamy formę nieco nieregularną, co przede­
wszystkiem ma miejsce u drzew liściastych, podczas gdy drzewa 
iglaste odznaczają się prawie kolistymi przekrojami poprzecznymi. 
Możemy zatem uważać strzały drzew jako ciała obrotowe po­
wstałe przez obrót danej tworzącej około osi. Tworzącą tę 

możemy sobie przedstawić jako przecięcie się płaszczyzny prze­
chodzącej przez oś strzały (pł. południkowej) z jej pobocznicą; 
w ten sposób zdefinjowaną tworzącą nazwijmy m o r f o l o­
g i c z n ą krzywą strzały drzewa w odróżnieniu do m a t e m a -
ty c z n ej krzywej strzały, która dając się wyrazić analitycznem 
równaniem przedstawia linję geometryczną, zbliżoną co do 
kształtu swego najbardziej do morfologicznej krzywej strzały. 

W następnych rozważaniach będziemy matematyczną krzywę 

strzały nazywali krótko krzywą strzały. Analityczne równanie 
krzywej strzały nazywamy r ó w n a n i e m krzy ·w e j strzały 
drzew.a; natomiast matematyczną relację między powierzchnią 

dowolnego przekroju poprzecznego a jego odległością od wierz­
chołka względnie początku układu współrzędnych nazywamy 
r ó w n a n i e m p r z e k r o j u strzały drzewa. Posługiwanie się 

tą ostatnią relacją zamiast równania krzywej strzały przy wypro­
wadzaniu wzorów na obliczanie miąższości strzał . jest wolne od 
warunku kolistych przekrojów poprzecznych, dla zastosowania 
bowiem swego wymaga tylko, żeby przekroje poprzeczne podle­
gały temu samemu matematycznemu prawu powstawania. Za-
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sługuje to na podkreślenie z tego względu, że - jak wyżej 

podkreśliliśmy - przekroje poprzeczne strzał drzew naszych nie 
wykazują ściśle kształtu koła. 

W literaturze dendrametrycznej wysuwa się na pierwszy 
plan z powodu swego prostego kształtu i dostatecznego zbli­
żenia się do rzeczywistości następujące równanie przekroju 
strzały: 

przyczem 9x oznacza powierzchnię przekroju w odległości x od 

wierzchołka strzały, r zowie się wykładnikiem kształtu, a A jest 

stałą, z której obliczamy tak zwany p a r a m e t r s t r z i\ ł y 

drzewa według wzoru p= A; wykładnik i parametr kształtu są 
J[ 

stałemi charakteryzującemi kształt danej strzały drzewa, wobec 
czego możemy je nazwać dendrometrycznemj elementami kształtu. 

Znając wykładnik kształtu r zastosowując ogólny wzór na 
objętość: 

2 

otrzymujemy wzory stereometryczne na objętość dotyczących 

brył. W dendrometry€znych zastosowaniach przybiera r wartość 
od zera do około r = 3·5; większe wartości na r występują 

w praktyce tylko wyjątkowo, wobec czego możemy wszystkie 
możliwe powyższym interwałem zmiennej r objęte bryły nazwać 
brył a m i d e n dr o m e t r y c z n e m i. Najprostsze z nich 
są te, dla których r przybiera wartości: O, 1, 2, 3, tj. walec, 
paraboloida, stożek zwykły i nejloida; te cztery bryły nazywać 

będziemy z a s a d n i c z e m i lub p o d s t a w o w e m i brył a m i 
dendrometrycznemi w odróżnieniu od brył przejściowy c h, 
które odpowiadają pozostałym wartościom zmiennej r. Doświad­

czenie uczy nas, że strzały drzew w pewnych swych częściach 
zbliżają się w większym lub mniejszym stopniu do odpowiednich 
brył · dendrometrycznych i tak naogół możemy powiedzieć, że 

wierzchołek strzał drzew leśnych ma kształt mniej więcej 

1* 
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zwykłego stożka, środkowa część strzały waha się między para­
boloidą a walcem, a dolna część strzały czyli tak zwany odzio­
mek zbliża się do nejloidy. 

Dla systematycznego ugrupowania brył dendrometrycznych 
służyć może następujący szemat :1) 

strzały drzew, których r posiada niżej podane wartości, 
przyjmują określenia 

wartość 

wykładnika 

kształtu r 
r=O 

0<r<0'5 
0·5 < r< 1 

r ·=1 
1 <r< 1'5 
1'5<r<2 

r=2 
2<r<2"5 
2'5 < r<3 

r=3 
3 < r < 3'5 

określenie 

brył 

walcowate 
podwalcowate 
nadparaboloidalne 
paraboloidalne 
podparaboloidalne 
nadstożkowate 

stożkowate 

podstożkowate 

nadnejloidalne 
nejloidalne 
podnejloidalne 

Z nauki o kubaturze brył wiemy, że objętość konoid całko­
w2tych wyraża się wzorem : 

Q h 
V . r + 1 = Q h . f( r) 3 

tj. objętość całkowitej konoidy równa się iloczynowi z objętości 
walca o przekroju podstawy i całkowitej wysokości konoidy, 
czyli objętości walca podstawowego i funkcji, której jedynym 
argumentem jest wykładnik kształtu; funkcja ta przedstawia 
w tym szczególnym wypadku dendrametryczną absolutną liczbę 

kształtu, czyli liczbę wyrażającą stosunek rzeczywistej miąższości 
strzały do walca porównawczego o tej samej wysokości i tym 
samym przekroju podstawowym. 

1) Vide : f e r d. L. L a n g e n b a c h e r und E m a n u e l N o s s e k. 
Lehr und Handbuch der Holzmesskunde . Die Kubierung des Holzes im 
łiegenden zu.,tande . Leipzi~t 1889. 
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Ażeby zakresem naszych badań objąć nietylko całkowite 

bryły dedrometryczne, lecz również i ścięte czyli części ' tych 
brył, wychodzimy od znanego ogólnego wzoru na objętość 

ściętych konoid, który brzmi: 

r + 1 r + 1 -- - -
h ar -gr 

V=~+1 ]_ ~ 4 

ar - gr 

przyczem a oznacza powierzchnię przekroju podstawowego 
(w czole), g powierzchnię przekroju wierzchołkowego (w czubie), 
h wysokość, r wykładnik kształtu. 

Wyciągając w liczniku i mianowniku a z odpowiednim 
wykładnikiem potęgowym przed nawias, odpowiednio skracając 

i zastąpiwszy iloraz Ij =(i) 2 

= u 2 kwadratem z ilorazu średnic 
krańcowych u ' tj. stosunkiem średnicy w czubie do średnicy 

w czole, otrzymujemy: 

2r + 2 

V=~ 1 -u r = Oh · F (r, u) . 
r+1 ~ 

5 

1-ur 

Widzimy zatem, - że objętość wszystkich brył dendro~ 

metrycznych i ich części da się ogólnie przedstawić jako 
iloczyn z objętości walca podstawowego i funkcji o dwóch 
zmiennych r i u; również i w tym wypadku wyraża funkcja 
o dwu zmiennych stosunek rzeczywistej miąższości strzały lub 
jej części do objętości walca podstawowego. 

Interwał zmiennej niezależnej r został wyżej ze względu 

na wymagania nauki o dendrometrii ustalony jako wahający się 
od r =O do r = 3'5; dolna granica tego interwału tj. r =O jest 
ściśle oznaczona, gdyż wprowadzenie ujemnej wartości dla r 
wykazywałoby dla O> r > - 1, że objętość danej strzały jest 
większa od objętości walca podstawowego, czyli że powierzchnie 
poprzecznych przekrojów wyżej położonych musiałyby być większe 
od powierzchni przekroju podstawowego, co w odniesieniu do 
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budowy drzew naszych jest wykluczone, dalej dla r =- 1 
objętość według wzorów 3 lub 5 równałaby się nieskończoności, 
a przy r < --1 otrzymalibyśmy wartość ujemną, co w zastosowa­
niu do dendrometrji jest również bez znaczenia praktycznego; nato~ 
miast wybór górnej granicy r = 3'5 jest raczej aktem subiektywnego 
uznania, opierającego - się na dotychczasowych ogólnikowych 
badaniach w tym kierunku. W prz.eciwieństwie do zmiennej r 
obydwie granice interwału drugiej zmiennej niezależnej u tj. 
ilorazu średnic krańcowych dadzą się ściśle określić, a miano­
wicie jako wykazujące wartości u= O i u= 1, przyczem należy 
podkreślić, że z chwilą, gdy u przybiera wartość krańcową 

jednostki, musi równocześnie r przybrać wartość zera t. zn. dana 
bryła staje się walcem, czyli w tym momencie funkcja staje się 

nieciągłą, a zmienne niezależne stają się stałeroi; ten matema­
tyczny zwiazek odegra ważną rolę w części zastosowanej niniej~ 

szej publikacji. Również należy zauważyć, że z chwilą gdy u 
przybierze wartość zera, to wtedy mówimy o bryłach całkowitych 
i wzór 5 przechodzi we wzór 3. 

Następnie biorąc pod uwagę tę okoliczność, że całkowite 

bryły drzew nie mogą wykazywać wykładników kształtu zbliżonych 
do zera t. zn. swym całkowitym kształter.n nie zbliżają się do 
walca, lecz raczej do paraboloidy i brył o bardziej zbieżystej 
budowie, a tylko części strzały, wykazujące dla u wartości zbli­
żone do 1, zbliżają się swym kształtem do walca czyli: bryły 

dendrometryczne o kształcie podwalcowatym tj. o r zbliżanem 
do zera muszą być w praktyce bryłami ściętymi o u zbliżonem 
do jednostki. 

Dla celów praktycznych ważnem jest zatem ustalenie krań~ 
cowej wartości dla r, którą całkowite strzały drzew mogłyby 

wykazywać. Ponieważ jednak dotychczas nie mamy przeprowa~ 
dzonych dokładnych badań co do ściślejszego interwału wy~ 

kładnika kształtu drzew leśnych, a nawet w literaturze nie znaj­
dujemy jeszcze opracowania ściślejszych metod co do sposobu 
przeprowadzenia tych badań, 2) dlatego obecnie nie pozostaje 
nic innego, jak dla naszych teoretycznych badań przyjąć od~ 

2) Metody oznaczania dendrametrycznych el ementów kształtu są w toku 
opracowania i z.ostaną wkrótce opu bliko wane. 
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powiednią krańcową wartość na r. Opierając się na obserwacji 
drzew zdaje się uzasadnianem być założenie, że r całkowitych 

strzał drzew leśnych nie będzie mniejsze od wartości 0'5 tj. strzały 
drzew w swej całkowitej wielkości nie będą co do kształtu pełniejsze 
od najpełniejszej nadparaboloidalnej bryły dendrometrycznej. 

Powyższe interwały zmiennych r (O, 3'5) i u (0,1) nazwijmy 
o g ó l n y m i i n t er wał a m i w odróżnieniu do ś c i ś l e j s z y c h 
i n t er wałów, gdyby nam chodziło o węższe amplitudy wahań 
zmiennych r i u w ramach ogólnych interwałów. 

Wyrażając objętość brył dendrametrycznych w odsetkach 
objętości walca podstawowego tj. dzieląc prawą stronę równania 5 
przez Q h i mnożąc przez 100 otrzymujemy wyrażenie, które 
nam umożliwia bliższe poznanie F (r, u), a mianowicie: 

2r.+ 2 

100 1 -u r 
100 · F(r, u) = r + 1 2 

6 

1-ur 

Wzór powyższy obliczamy przez kolejne podstawianie w od­
stopniowaniu wynoszącem 0'1 wartości na r i u, zawartych 
w powyżej ustalonych ogólnych interwałach; otrzymane w ten 
sposób wartości wzoru 6 są tabelarycznie zestawione według 

argumentów r i u w tabeli nr. 1. Z tego zestawienia widzimy, 
że o b j ę t o ś ć b r y ł d e n d r o m e t r y c z n y c h j e s t w p r o -
s ty m s t o s u n ku a o u a w o d wrotny m d. o r i tak np. 
wąrtość wzoru 6 maleje z 1 00°/o dla r =O na 22'220fo dla r = 3'5 
w odniesieniu do brył całkowitych tj. przy u = O, natomiast 
zmienia się powyższa wartość dla r = 3'5 z 22'22°/o przy u= O 
na 90'26°/o przy u = 0 '9, a na 1 00°/o przy u= 1' rozumie się, 
że dla u= 1 musi r przybrać wartość zera, czyli że mamy do 
czynienia z walcem, dla którego otrzymujemy wartość 1 00°/o. 

Nauka o dendrometrji wyprowadza wzory stereometryczne, 
które podają ściśle objętość bądźto wszystkich czterech (np. 
wzory R i e ck i e g o, S i m o n y e g o, B r e y m a n n a) bądźto 

niektórych z zasadniczych brył dendrometrycznych, jak wzory 
S m a l j a n a i li u b er a walec i paraboloidę, wzór li o s s -
f e l d a walec, paraboloidę i stożek zwykły . Wzory te noszą 

nazwę w z o r 6 w k s y l o m e t r y c z n y c h i przeszły (zwłaszcza 
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odznaczające się prostotą i łatwością wykonania) do praktycznej 
dendrometrji. Wzory ksylometryczne dadzą się również - jak 
się o tern w części zastosowanej przekonamy - analogicznie 
do ścisłych wzorów na objętość konoid przedstawić jako iloczyny 
z objętości walca podstawowego i funkcji o dwu zmiennych 
r i u względnie jednej tylko zmiennej r (dla brył całkowitych) 

lub u (wzór S m a l ja n a). Oznaczając zatem objętość brył 
dendrometrycznych, obliczoną na podstawie wzorów ksylometrycz­
nych przez V' możemy napisać: 

V'= Qh · 1> (r, u) 7 

Wzory ksylometryczne podają objętość przejściowych brył 

dendrametrycznych i ewentualnie niektórych z zasadniczych 
z błędami stałemi, których wielkość, abstrahując od rodzaju 
błędów, zależna jest od danego wzoru ksylometrycznego oraz 
od r i u. Dla poznania zatem i charakterystyki dokładności, 
z jaką dany wzór ksylometryczny oznacza miąższość strzał 

drzew, ważną jest rzeczą określić wielkość błędów, z którymi 
dany wzór podaje objętość tak brył zasadniczych jak też przejścio­
wych, czyli poznać przebieg tych błędów. 

Ponieważ w dotychczasowej literaturze dendrametrycznej 
nie znajdujemy badań nad dokładnością wzorów ksylometrycz­
nych w odniesieniu do brył przejściowych ani też ujęcia czyto 
cyfrowego • czyto graficznego całokształtu przebiegu błędów od­
noszących się do wszystkich brył dendrometrycznych, przeto 
zadaniem niniejszej publikacji będzie podać w pierwszej lin ji 
ogólną teorję obliczania wielkości poszczególnych rodzajów 
błędów stałych czyli teorję dokładności wzorów ksylometrycz­
nych, następnie zastosować tę teorję do najważniejszych z tych 
wzorów tj. S m a l ja n a, H u b er a, H o s s f e l d a, R i e ck e g o, 
S i m o n y e g o i B re y m a n n a, a wkońcu przedstawić graficznie 
przebieg wielkości przynajmniej niektórych z wyprowadzonych 
błędów odnoszących się tak do całkowitych jak też do ściętych 
brył. 

Przechodząc do szczegółowego przedstawienia wspomnianej 
teorji konieczną jest rzeczą podać klasyfikację błędów, które 
.w naszych badaniach występować będą. 
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2. Klasyfikacja błędów stałych. 

Typem 3) błędów występujących w naszych zagadnieniach są 
błędy systematyczne czyli regularne względnie stałe t. j. błędy 
mające za źródło swe nie dający się usunąć, a na uzyskane wy­
niki w sposób prawidłowy działający błąd przyrządu względnie 

metody, a w naszym wypadku wzoru. 

Objętość danej bryły dendrametrycznej obliczoną na podstawie 
wzoru 5 względnie 3 zowiemy r z e c z y w i s t ą , którą oznaczy­
liśmy · przez V, natomiast objętość obliczoną zapomocą dotyczą~ 

cego wzoru ksylometrycznego i oznaczoną przez V' uważamy za 
p r z y b l i ż o n ą ; ażeby zatem oznaczyć dokładność danego 
wzoru ksylometrycznego możemy objętości rzeczywistą i przybli­
żoną porównywać ze sobą bądźto przez odejmowanie bądźto 

przez dzielenie czyli tworząc stosunek bądźto arytmetyczny 
bądźto geo~etryczny, dalej ważnem jest poznanie warunków, dla 
których następują największe bezwzględne wartości danych błę~ 

dów, w końcu nieodzowną jest rzeczą podać miarę dokładności, 
z jaką oznaczać możemy miąższość większej grupy drzew. Wi~ 

dzimy zatem, że do scharakteryzowania dokładności wzorów ksy­
lometrycznych musimy posługiwać się kilkoma rodzajami błędów, 
których systematyczne ugrupowanie czyli klasyfikację podajemy. 

a) B!qd absolutny. 

Różnicę między objętością przybliżoną rze­
c z y w i s tą n a z y w a my błędem a b s o l u t n y m (.1 v) czyli 
w kształcie wzoru: 

~ v = V'-V. 8 

.1 v podaje wielkość błędu, który musimy odjąć od wartości przy­
bliżonej, ażeby otrzymać objętość rzeczywistą. Dodatni znak 
przy 1!1. v mówi, że dany wzór podaje w danym wypadku obję~ 

tość za wielką, a ujemny znak przy .1 v jest dowodem, że obli­
czona objętość jest w porównaniu z rzeczywistą za małą. 

3) Patrz : T. W i e l g o s z. Pomiar drzew na podstawie metody naj­
mniejszych kwadratów. Roczniki Nauk Rolniczych . Tom IX . Zeszyt 1. 
Rok 1923. 
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Możnaby również błąd absolutny obliczać jako różnicę między 
V a V', w którym to wypadku znak dodatni przy !!.. v wskazywałby, 
że dany wzór podaje . objętość za małą i odwrotnie, co nie byłoby 
zgodnem z duchem języka i dlatego też dla pojęcia błędu abso­
lutnego ustaliliśmy powyższą definicję. 

Uwzględniając wzory 5 i 7 otrzymujemy na błąd absolutny 
wyrażenie : 

!!.. v = Qh {\V (r, u)- F(r, u)) . 8a 

Ażeby otrzymać wartości na !!.. v, nadające się do porówny• 
wania, staramy się uwolnić od czynnika Qh w ten sposób, że 

błąd absolutny wyrażamy w odsetkach objętości walca podstawo­
wego i oznaczamy go przez a : 

a = {\D (r, u)- F(r, u)} 100 . 9 

Dla brył całkowitych wzór ten redukuje się do wyrażenia: 

a'= {cp (r)- f(r) } 100 9a 

b) Blędy procentowe. 

Błędy procentowe przedstawiają procen· 
towy stosunek błędu absolutnego do jednej 
z d w ó c h d a n y c h w a r t o ś c i n a o b j ę t o ś ć ; zależnie 

zatem od- tego, czy wartość przybliżona V' czy rzeczywista V 
tworzy mianownik błędu procentowego, rozróżniamy z a s a d -
n i c z y b ł ą d p r o c e n t o w y (p1), i w t ó r n y b ł ą d p r o· 
c e n t o w y (p 2), z których pierwszy oznacza, o jaki procent 
swej objętości musi być objętość przybliżona poprawiona, ażeby 
otrzymać wartość rzeczywistą, a drugi określa o jaki procent swej 
objętości jest rzeczywista objętość błędnie podana. 

Z powyższych definicyj widzimy, że w praktyce będzie zasad­
niczy błąd procentowy miał większe znaczenie. 

We wzorach na błędy procentowe występować będzie iloraz 
objętości ( 0), przedstawiający stosunek objętości rzeczywistej do 
przybliżonej : 

V F(r, u) 
(J - - -

- V'- <I> (r, u) 10 



TEORJA DOKŁADNOŚCI WZORÓW KSYWMETRYCZNYCH 

względnie dla brył całkowitych t. j. dla u= O: 

G'=f(r) 
cp (r) 

11 

10 a 

Błędy procentowe we formie wzorów przedstawiają się na­
stępująco: 

Zasadniczy błąd procentowy oblicza się jako stosunek pro­
centowy błędu absolutnego do objętości przybliżonej: 

V'- V ( V) p1 = - ----v' 100 = .1 - V' 100 

czyli wprowadzając G lub wymienione we wzorach 5 i 7 funkcje: 

= ( 1 - G) 1 00 = J 1 - C ( r, u) } 1 00 
Pt l <I> (r, u) 11 

względnie dla brył całkowitych 

p' =(1-G')100 = f1- f(r) l100 
l 1 cp (r)f 

11 a 

Analogicznie dochodzimy do wzorów na wtórny błąd pro-
centowy: 

= (2_ _ ) 100 = { <!? (r, u)- 1 } 100 
P2 o 1 F(r,u) 12 

względnie dla br~ł całkowitych: 

p' 2 - (-l, - 1 ) 1 00 - l ; g} - 1 } 1 00 12 a 

c) Blędy maksymalne i kulminacyjne. 

Badając analitycznie funkcję przedstawiającą przebieg da~ 

nego rodzaju błędów dotyczącego wzoru ksylometrycznego 
w określonych przez nas interwałach ogólnych obu ar~umentów 
zauważymy, że dana funkcja wykazuje albo punkty kulminacyjne 
albo, jeśli kulminacja w danych interwałach nie występuje, punkty, 
dla których dana funkcja posiada największą lub najmniejszą 

szczególną swą wartość, a dla których przynajmniej jeden z argu­
mentów przedstawia wartość końcową swego interwału. 
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Największą wartość dodatnią i najmniejszą wartość ujemną4) 
danej funkcji, przedstawiającej przebieg odnośnego błędu w inte­
resujących nas interwałach swych zmiennych niezależnych nazy­
wamy b ł ę d e m m ak s y m a l n y m d o d a t n i m względnie 

uje m n y m. Błędy te maksymalne mogą występować albo jako 
ku l m i n a c ja albo jako war t ość krańcowa, jeśli w tym 
drugim wypadku przynajmniej jedna z dwu zmiennych nieza ­
leżnych występuje jako wartość krańcowa swego interwału.5) 

Wartość błędu odpowiadającą danemu punktowi kulmina­
cyjnemu funkcji tego błędu nazywamy b ł ę d e m k u l m i n a -
c y j n y m; zatem błąd maksymalny występujący jako kulminacjCI 
jest największym co do swej bezwzględnej wartości błędem kul­
minacyjnym o danym znaku algebraicznym. 

Przy obliczeniu wartości błędów kulminacyjnych i maksy­
malnych najważniejszą rzeczą jest oznaczenie wartości zmiennych 
niezależnych, które spełniają daną funkcję błędów do jej war­
tości kulminacyjnej względnie maksymalnej. Przy funkcjach 
błędów o jednej zmiennej niezależnej przedstawia się wyszuki­
wanie wartości argumentu, która prowadzi do kulminacyjnej 
względnie maksymalnej wartości funkcji stosunkowo łatwo, a mia­
nowicie bądźto przez zastosowanie teorji o minimum i maximum, 
jeśli chodzi o kulminację, bądźto przez wywnioskowanie z prze­
biegu krzywej błędu, że maksymalna wartość funkcji następuje 
dla krańcowej wartości zmiennej niezależnej. 

Trudnlej przedstawia się rzecz przy funkcjach błędów o dwu 
zmiennych niezależnych, gdyż z powodu zbyt skomplikowanego 
kształtu funkcji błędów naszych wzorów ksylometrycznych, zasto­
sowanie teorji o minimum i maximum nie da się przeprowadzić, 

wobec czego pozostaje szukanie wartości argumentów przez pró­
bowanie obliczając wartości danej funkcji dla szeregu par zmien-

4) Przez "najmniejszą wartość ujemną" należy rozumieć szczególną 
wartość funkcji błędów, która przedstawia największą wartość bezwzględną 
ze wszystkich rozważanych ujemnych wartości funkcji. 

5) Jeśli przebieg danego błędu wykazywałby wartości albo tylko do­
datnie, albo tylko ujemne, to interesowałyby nas również błędy minimalne. 
przedstawiające najmniejszą bezwzględną wartość takiej funkcji błędów; 

błędy omawianych w niniejszej publikacji wzorów ksylometrycznych wyka­
zują w interesujących nas interwałach wartości tak dodatnie jak też ujemne. 
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nyĆh niezależnych, a kulminujące względnie maksymalne wartości 
funkcji przyjmując za odpowiednie błędy. 

Obliczenie jednak omawianych rodzajów błędów u wyżej 

wymienionych sześciu wzorów ksylometrycznych ogranicza się 

tylko do badania funkcji o jednej zmiennej, gdyż jak z przebiegu 
błędów, obliczonych w części zastosowanej zobaczymy, największe 
wartości błędów występują dla brył całkowitych tj. przy u = O. 

Symbolicznie będziemy oznaczać błędy maksymalne wyra~ 

żeniem "max" z następującym nawiasem owalnym, jeśli chodzi 
o błąd maksymalny występujący jako kulminacja, lub z nawiasem 
prostokątnym, jeśli mowa o błędzie maksymalnym, przedstawia~ 

ją cym się jako wartość krańcowa; w nawiasie zaś umieszczać 

będziemy oznaczenie danego rodzaju błędu z odpowiednim zna­
kiem algebraicznym. Wartość argumentów, dla których błąd 

maksymalny występuje, podana będzie u dołu nawiasu; ponieważ 
jednak - jak już wyżej podkreśliliśmy - błędy maksymalne 
w naszych dalszych rozważaniach w części zastosowanej będą 
się odnosić do brył całkowitych, dlatego określenie u = O u dołu 
nawiasu można opuszczać i tak np. u wzoru Hubera posiada 
maksymalny błąd absolutny dodatni, występujący jako kulminacja 
dla r = 0'3614 wartość: 4'39°/0, a ujemny występujący jako 
wartość krańcowa dla r= 3'5 osiąga wartość: - 13'38% obję~ 
tości walca podstawowego, co symbolicznie piszemy : 

Dla oznaczenia błędów kulminacyjnych, które nie są rów~ 

nocześnie błędami maksymalnymi w naszych ogólnych inter~ 

wałach zmiennych, używać będziemy zamiast symbolu "max'' 
symbol "kul" z nawiasem owalnym. 

d) Blędy przeciętne. 

Wzory ksylometryczne służą w praktyce przeważnie do ozna­
czania łącznej miąższości większej grupy drzew bądźto tworzą ­

cych pewne sortymenty bądźto złączonych według pewnych 
zasad dendrometrycznych, dlatego ważną jest rzeczą · poznać 

miarę dokładności, z jaką oznaczać możemy miąższość większej 
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grupy ~rzew, których wykładnik kształtu i iloraz średnic krań­

cowych wahają się w pewnych w danym wypadku miarodajnych 
interwałach. 

Jako miernik teoretycznej dokładności, jaką uzyskujemy 
przy pomiarze objętości większej grupy brył dendrometrycznych 
służyć będzie przeciętny błąd, który w następstwie omawiać 

będziemy. Celem łatwiejszego uzmysłowienia sobie pojęcia błę~ 
du przeciętnego zajmiemy się wpierw tym rodzajem błędów 

systematycznych w odniesieniu do funkcji o jednej zmiennej 
przyjmując każdorazowo zależnie od danego zagadnienia dla 
drugiej zmiennej wartość stałą, a następnie dopiero rozszerzymy 
nasze badania na fukcje błędów o dwu zmiennych niezależnych. 

a) Jeśli dany błąd wyrażony jest za pomocą funkcji o jednej 
zmiennej np. 1~ (r) lub 'tjJ1 (u) to geometrycznie otrzymujemy jako 
przebieg błędu linję przeważnie krzywą, przyczem dla danego 
ściślejszego interwału argumentu zawartego w granicach np. 
r = r1 i r = r2 wzglednie u = · u1 i u = u2 obliczają się krańcowe 

rzędne 1jJ (r1) i 1~ (r2) względnie 1j!1 (u 1) i 1j!1 (u 2), które wraz 
z osią odciętych i daną linją błędu, wyrażoną analitycznie przez 
1V (r) względnie 'tjJ1 (u), zamykają powierzchnię, którą obliczyć 

możemy za pomocą wzoru na kwadraturę: 

r2 u2 

f 1V (r) dr względnie f 1Vt (u) du 

Zamieniwszy tę powierzchnię na prostokąt o podstawie 
r2 - r 1 względnie u 2 - u1 otrzymujemy wysokość prostokąta, która 
przedstawia nam żądany błąd przeciętny wobec czego b ł ą d 
p r z e c i ę t n y przy funkcji błędu o jednej zmiennej przedstawia 
się jako całka oznaczona z funkcji błędu o granicach żądanego 
interwału podzielona przez różnicę wartości krańcowych tegoż 

interwału6). 

6) W wypadku; kiedy krzywa błędu przecina oś odciętych mamy do 
czynienia z wielkościami o różnych znakach algebr., zatem błędy przeciętne 
przy błędach systematycznych uwzględniają znaki algebraiczne poszczegól ­
nych wartości odnośnych błędów, (w przeciwieństwie do błędów prze­
ciętnych przy błędach przypadkowych, które obliczają się z absolutnych 
wartości odnośnych błędów). 
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Oznaczając błąd przeciętny przez t z następującym nawiasem, 
w którym umieszcza się oznaczenie danego rodzaju błędu, oraz 
z podaniem u dołu i góry nawiasu granic ściślejszego interwału 

zmiennej, o którą nam w danym wypadku chodzi, jak też umiesz~ 
czeniem pośrodku tych granic stałej wartości drugiej zmiennej, 
otrzymujemy wzór ogólny na błąd przeciętny przy funkcji o jednej 
zmiennej n. p. dla zasadniczego błędu procentowego u brył 

całkowitych: 

13 

Obliczenie . występujących we wzorach na błędy przeciętne 

całek oznaczonych napotyka przeważnie na znaczne trudności, 

dlatego jesteśmy często zmuszeni posługiwać się sposobami przy~ 
błiżonymi do obliczenia powierzchni, którą zamieniamy na prosto~ 
kąt, jak n. p. wzorem tra p e z owym, polegającym na podzie­
leniu danej powierzchni na wązkie paski, których powierzchnie 
oblicza się jako trapezy, zesumowaniu otrzymanych powierzchni 
poszczególnych pasków. 

Dzieląc interwał r2 - r1 względnie u2 - u1 na pewną ilość 

równych części, obliczając dla punktów podziału szczególne 
wartości danej funkcji błędów i przyjmując stosownie do przyjętego 
przy obliczeniach tabelarycznych zestawień, że najmniejsza działka 
podzielonego interwału wynosi 0'1 oraz równocześnie zastępując, 
celem oznaczenia użycia sposobu przybliżonego, w symbolu na 
błąd przeciętny nawias owalny nawiasem prostokątnym, otrzy~ 

mujemy dla błędu przeciętnego n. p. błędu absolutnego wyrażonego 
w odsetkach objętości walca podstawowego dla brył całkowitych 
wzór: 

r=r2 0'1 {1 
t [a]~;~= r

2 
_~~li [lv(rl) +1l!(r2)]+1J!(r1 +o·1)+ 4J (r1+ 0'2) + 

+1J!Cr2-o·1)} 13a 
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t. z. błąd przeciętny danego rodzaju błędu, wyrażonego przez 
funkcję o jednej zmiennej, obliczony zapomocą wzoru trapezo­
wego równa się sumie algebraicznej z połowy wartości funkcji 
błędu dla krańcowych wartości interwału i z pełnych wartości 

funkcji dla innych pu11któw podziału danego interwału zmiennej 
niezależnej, podzielonej przez rozmcę krańcowych wartości 

interwału oraz pomnożonej przez najmniejszą dział~ę podzie· 
lonego interwału tj. 0"1. 

B) Jeżeli wzór na dany rodzaj błędów przedstawia funkcję 
o dwu zmiennych tj. W (r, u) to do pojęcia błędu przeciętnego 
dochodzimy w ten sposób, że uzmysławiamy sobie bryłę, której 
objętość określa się następującą podwójną całką określoną: 

~'2 /'2 

f dr f W (r, u) du, 
l't l't 

a następnie dzielimy otrzymaną objętość przez powierzchnię 

prostokąta o bokach r2 - r1 i u2 - u1 tj. zamieniamy bryłę na 
prostopadłościan, którego podstawą jest prostokąt o bokach od­
powiadających ściślejszym interwałom zmiennych r i u, a którego 
wysokość przedstawia żądany błąd przeciętny. 

Zat~m błąd przeciętny np. absolutnego błędu wyrażonego 

w odsetkach objętości walca podstawowego dla ściślejszych inter­
wałów r = r1 i r = r2 oraz u= u1 i u= u2 określa się za pomocą 
ogólnego wzoru 

14 

7) Symbol L ')! (r = ~~) oznacza sumę dwóch szczególnych wartości 

funkcji 'lj> (r) dla r = r 1 i r = r2; symbol zaś L 'i' (r =l= ~~) oznacza sumę 
szczególnych wartości funkcji błędów dla r obejmującego przy danem od­
stopniowaniu wszystkie wartości zawarte między r 1 i r 2 z wyłączeniem 

wartości krańcowych r1 i r2. 
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t. zn . wzór na przeciętny błąd danego rodzaju błędów stałych, 
wyrażonyc h przez funkcję błędów o dwóch zmiennych, przedstawia 
się jako podwójna całka oznaczona o granicach krańcowych war­
tości ściślejszych interwałów zmiennych r i u z funkcji błędu 

podzielona przez iloczyn z różnic krańcowych wartości interwałów. 

Obliczenie powyższej podwójnej całki odbywa się metodą 

przybliżoną, polegającą na te m, że dane interwały r2 - r 1 i u2 - u1 

dzielimy na pewną ilość równych części i dla poszczególnych 
par wartości argumentów tych podziałów obliczamy szczególne 
wartości funkcji błędów, przez co otrzymujemy w danej bryle 
szereg wysokości, z których najpierw za pomocą wzoru trapezo­
wego obliczamy powierzchnie przekrojów w równych od siebie 
odległościach s!ę znajdujących i równoległych do jednej pary 
ścian prostopadłych do podstawy, a następnie z tych powierzchni 
przekrojów obliczamy za pomocą wzoru Żnanego w dendrometrii 
pod nazwą wzoru sekcyjnego opartego na wzorze ksylometry­
cznym S m a l j a n a objętość całej bryły. Zastosowanie tego 
wzoru sekcyjnego do obliczenia objętości bryły polega na za­
łożeniu, że całą bryłę dzielimy na wązkie warstwy, których 
objętość obliczamy jako iloczyn z grubości i średniej arytmety­
cznej powierzchni podstaw danej warstwy, które to założenie 

przy małej grubości warstw jest uzasadnione. 

Zatem w myśl tej metody przybliżonej wyprowadzenie ogól­
nego wzoru na objętość wspomnianej bryły przedstawia się na­
stępująco: 

Bryłę funkcji błędów o d~u zmiennych r i u w interwałach 
(r1, r2) i (u1 , u2) dzielimy np. na _m warstw o grubości f i o pod­
stawach: P 0 , P1 , P 2 •••• P m, z których każda powierzchnia podzie­
lona jest na n pasków o szerokości .() i o bokach: a0, a 1, a 2 •••• a n 
w przekroju P0 ; b0,br,b2 •••• bn· w przekroju P1 ; c0,c1,c2 • ••• c~ 
w przekroju P 2 ; 10 , 11 , 12 •••• l n w przekroju P m - 1; m0, m1 , m 2 •••• m n 

w przekroju P m. 

Na podstawie wzoru trapezowego obliczamy powierzchnie 
poszczególnych przekrojów: 

2 
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- f1 l P1- O 12 (bo+ b n) + bt + b2 + .·. + b n __ 1 J 

P2 = O~~ (eu+ en) +.- e1 + e2 -f- ... + en -1} 

Pm --1 =b{~ Uo -f- l n) + /1 + l"+ ··· + In -11 
Pm=O ~~ (m 0 + mn) + m1 + m2 + ... + mn 1: 

Objętość bryły oblicza się za pomocą wzoru: 

V =E {~(P0 + Pm)+ P1 + P2 + · · · + Pm ~ 11 · 
Podstawiając powyżej otrzymane wartości na powierzchnie prze­
krojów w ostatnim wzorze otrzymujemy: 

V= EO {i[a0 + an + m0 + mnJ + ~[al+ al + ... a n - 1 + 
+ bo+ bn + c0 + Cn + ... + 10 +In + m 1 + m2 + ... m n _ d+ 

+ b1 + b2 + ... + bn ...:_ 1 + et + e2 + ... -f- en - 1 + ... -f-
l + 11 + /2 + · · • + In -1 J 

Jeśli otrzymaną w ten sposób objętość bryły podzielimy 
przez iloczyn z interwałów zmiennych: (r2 - r 1) · (u 2 - u1), dalej 
jeśli weźmiemy pod uwagę, że w naszych późniejszych oblicze­
niach najmniejsza działka obydwóch interwałów wynosi: E=0 = 0'1 
i na miejsce powyższych oznaczeń wprowadzimy symbole sumy 
funkcji błędu z analogicznym określeniem interwałów, jakto miało 
miejsce przy funkcji błędu o jednej zmiennej, otrzymujemy na~ 
stępujący wzór na przeciętny błąd np. dla zasadniczego błędu 

procentowego w interwałach (r1, r2 ) i (u 1 , u.2): 

t[ ] r=r.,u=u2_ 0'01 {1 Dn1 (. _ r~ _ u2 ) f-
PI - ----- · ' '~ r - r

1 
' u - u

1 
-

r = r1,u=u1 (r2-rl)(u2-u1) 4~ 

+~[L \l' (r = ~~, u =f= ~:) + LqJ (r =f= ~~,u = ~: )]+ 

+ L'I'(r =f= ~~. u =f= ~:)} 14a 
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t. ut. błąd przeciętny danego rodzaju błędu, wyrażonego przez 
funkcję o dwu zmiennych, obliczony sposo_bem przybliżonym 

równa się iloqynowi z najmniejszych działek, na jakie interwały 

obu zmiennych zostały podzielone - w naszym wypadku 0·01 -
podzielonemu przez iloczyn z różnic krańcowych wart0ści tych 
interwałów i pomnożemu przez sumę, złożoną z trzech ~rup 

szczególnych wartości danej funkcji błędów, a mianowicie pierwsza 
1 

grupa z czynnikiem -4 obejmuje sumę algebraiczną czterech szcze-

gólnych wartości funkcji błędu obliczonych dla krańcowych war· 

tości interwałów zmiennych r i u; druga grupa z czynnikiem ~ 
obejmuje sumę algebraiczną tych wszystkich szczególnych war­
tości funkcji błędu, przy obliczaniu których posiada na przemian 
jedna z dwu zmiennych krańcowe wartości swego interwału, 

podczas gdy druga właśnie wszystkie inne wartości prócz dwu 
krańcowych swego interwału, a trzecia grupa z czynnikiem 1 obej­
muje sumę algebraiczną reszty szcze~ólnych wartości danej funkcji, 
przy obliczaniu których żadna z obu zmiennych nie posiada war~ 
tości krańcowych swego interwału. 

Ze względu na cyfrowe zest.awienie szczególnych wartości 

funkcyj poszczególnych błędów dla pojedyńczych wzorów ksylo~ 
metr.ycznych z~rupowane w tabelach, dołączonych do niniejszej 
publikacji, możemy podać dla obliczenia przeciętnego błędu 

błędów, wyrażonych za pomocą funkcji o dwu zmiennych, na~ 
stępujący sposób obliczenia : 

Zgrupowane szczególne wartości funkcji błędów dla danych 
ściślejszych interwałów (r1 , r 2 ) i (u1 , u 2 ) tworzą prostokąt liczb, 
ustawionych tak, że cztery liczby znajdujące się na wierzchoł­

kach prostokąta liczb, przedstawiają pierwszą grupę liczb, których 
algebraiczną sumę dzielimy przez cztery; liczby tworzące boki 
prostokąta z wyłączeniem liczb wierzchołkowych dają drugą 

grupę liczb, których algebraiczną sumę dzielimy przez dwa; 
pozostałe liczby znajdujące się wewnątrz tego prostokąta liczb, 
tworzą trzecią grupę liczb. Sumę algebraiczną tych trzech grup 
liczb mnożymy przez 0"01 i dzielimy przez iloczyn z różnic 
wartości krańcowych interwałów zmiennych; otrzymany w ten 
sposób wynik jest żądanym przeciętnym błędem. 

2* 
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Zastosowanie jednak błędu przeciętnego do określania do­
kładności wzorów ksylometrycznych napotyka o tyle na trudności, 
że dotychczas - jak wyżej podkreślono - nie l)'lamy przepro · 
wadzonych dokładnych badań co do ściślejszego interwału wy­
kładnika kształtu rani w odniesieniu do poszczególnych gatunków 
drzew, ani w zastosowaniu do pewnych grup drzew, złączonych 
według pewnych zasad dendrometrycznych. 

Wo0ec tego zadaniem niniejszej publikacji zwłaszcza jej 
części zastosowanej w odniesieniu do błędów przeciętnych 

będzie przedstawić w jaki sposób odbywa się w konkretnym 
wypadku ścisłe obliczenie błędu przeciętnego danego rodzaju 
błędów i wykazać na cyfrowych przykładach, że wyniki oblicze­
nia ścisłego są zgodne z wynikami, otrzymanymi sposobem 
przybliżonym; następnie celem utworzenia skali dokładności 

wzorów ksylometrycznych przyjmiemy na podstawie pewnych 
danych ściślejsze interwały zmiennych r i u i obliczymy błędy 
przeciętne dla poszczególnych rodzajów błędów dla wszystkich 
omawianych wzorów ksylometrycznych. 

W wymienionym poprzednio w uwadze 1. podręczniku L a n­
g e n b a c h er a i N o s s e k. a znajdujemy obliczenie wykładników 
kształtu dla poszczególnych 18 sekcji - długich po 1'6 m 
i wierzchołku o długości 2"9 m - strzały drzewa o całkowitej 
długości 31'7 m za pomocą znanego wzoru: 

Otrzymane, w myśl ostatniego wzoru pojęte, wykładniKi 

kształtu ~aha ją się w podanym przykładzie od r = 0'517 do . 
r = 2'304, wobec czego możemy - abstrahując od rozważań 

nad .trafnością takiego sposobu obliczenia wykładnika kształtu -
przyjąć dla naszych późniejszych pokazowych przykładów, że 

ściślejszy interwał jest zawarty między rl = 0'5 a r2 = 2'3. . 

Również możemy na podstawie obserwacji przyjąć, że sto­
sunek średnic krańcowych dla kloców, spotykanych w praktyce, 
waha się w ściślejszym interwale od mniej więcej u1 = 0'5 do 
u2 = 0'8. 
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3. Ogólne twierdzenia o wzajemnym stosunku poszczególnych 
rodzajów błędów podstawowych. 

Definicje błędu absolutnego i obydwóch odmian błędu pro~ 

centowego opierają się na określeniach noszących piętno pod­
stawowych pojęć, podczas gdy błędy kulminacyjne, maksymalne 
i przeciętne przedstawiają pewne fazy względnie tworzą niejako 
dalszą budowę poprzednich rodzajów błędów, dlatego możemy 
błędy absolutne i procentowe nazwać p o d s t a w owym i. 

Zrównując wzory na błędy podstawowe z zerem i rOZ\\ ią~ 
zując otrzymane w ten sposób równania, otrzymujemy wartości 
na r względnie pary wartości na r i u, dla których odnośne 

bryły dendrametryczne obliczają się zapomocą danego wzoru 
ksylometrycznego bez błędu, przyczem przekonujemy się, że 

następuje to dla tychsamych wartości argumentów równocześnie 
dla wszystkich rodzajów błędów podstawowych dotyczącego wzoru 
ksylometrycznego, gdyż dochodzimy we wszystkich wypadkach do 
tego samego warunku, a mianowicie do następujących równań: 

<P (r, u)- f(r, u)= O względnie cp (r)---:- f (r) =O 

. Ażeby znaJeść wartości argumentów, dla których występują 
kulminacyjne błędy absolutne, musimy pierwsze pochodne funkcyj 
błędów absolutnych zrównać z zerem i rozwiązać następujące 

równania: 

W' r (r, u)- F' r (r, u) = O i W' u (r, u)- F' u (r, u)= O 
względnie cp' (r)- f' (r) =O 

Ażeby znaJeść wartości argumentów, dla których występują 
kulminacyjne błędy procentowe, musimy pierwsze pochodne 
funkcyj błędów procentowych zrównać z zerem, przyczem dla 
obydwóch · odmian błędu procentowego dochodzimy do tych~ 
samych równań, których pierwiastki przedstawiają żądane wartości 
argumentów. Równania te brzmią. 

<f> (r, u) F'r (r, u)- F(r, u) <P'r (r, u)= O 

<P (r, u) F' u (r, u)- F(r, u) <P' u (r, u)= O 

względnie cp (r) f' (r)- f (r) cp' (r) =O 
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funkcje F(r, u), <l> (r, u), f(r), cp (r) przedstawiają dla usta­
lonych przedtem interwałów ogólnych zmiennych r i u czynniki, 
przez które mnożymy objętości dotyczących walców podstawowych, 
ażeby otrzymać rzeczywiste względnie przybliżone objętości brył 

dendrametrycznych i ich części, wobec czego muszą one przed­
stawiać wartości dodatnie i z wyjątkiem zastosowania do walca, 
w którym to wypadku równają się jednostce, muszą być zawsze 
ułamkami właściwymi. 

Opierając się na powyższych rozważaniach możemy ustalić 
następujące ogól n e t w i er d z: e n i a odnoszące się do podsta­
wowych i kulminacyjnych błędów: 

1. Rzeczywiste pierwiastki równania (_J) (r, u)- f (r, u) = O 
względnie •cp (r)- f(r) =O przedstawiają te pary wartości na 
r i u względnie wartości na r, dla których dotyczące bryły 

dendrametryczne obliczają się za pomocą danego wzoru ksylo­
metrycznego bez błędu tj. dla których błędy podstawowe są 

równe zeru. 

2. Rzeczywiste pierwiastki równań: 

<l>' r (r, u)- F' r (r, u)= O i ())'u (r, u) -F' u (r, u)= O 

względnie 

cp' (r)- f' (r) =O 

przedstawiają te pary wartości na r i u względnie r, dla których 
występują. kulminacyjne błędy absolutne. 

3. Rzeczywiste pierwiastki równań: 

względnie 

()) (r, u) F'r (r, u)- F (r, u) ())'r (r, u)= O 

<P (r, u) F' u (r, u)- F (r, u) ())'u (r, u) = O 

(r) f' (r)- cp' (r) f (r) = O 

przedstawiają te pary wartości na r i u względnie na r, dla 
których otrzymujemy kulminacyjne błędy procentowe tak. zasad­
nicze jak też wtórne. 

Na podstawie twierdzeń 2 i 3 dochodzimy do wniosku, że 

kulminacja bł~du absolutnego z jednej strony i'l procentowych 
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z drugiej nie następuje w zasadzie dla tychsamych wartości 

swych argumentów. 

4. Z zasadniczych wzorów na pojęcia błędów podstawowych 

wynika, że 

a . , u.' 
p1 =(f> (r, u) względme P1 = (P(r) 

a a ' 
p2 = F (r, u) względnie p 2' = f(r). 

Ponieważ funkcje na przybliżone rzeczywiste objętości brył 
de ndrametrycznych są wartościami dodatnimi i z wyjątkiem 

zastosowania do walca, dla którego przybierają wartość jednostki, 
ułamkami właśGiwymi, dlatego wszystkie rodzaj e błędów 
podstawowych posiadają dla tychsamych argu~ 
mentów jednakowe znaki algebraiczne, a błędy 

pro c entowe są większe od błędu absolutnego, 
wyrażonego w odsetkach objętości walca pod~ 
s t a w o w e g o , o ile wogóle błędy podstawowe nie są równe 
zeru i z wyjątkiem wypadków, jak się w części zastosowanej 
przekonamy, tylko o teoretycznem znaczeniu, w których f (O) 
będzie równała się jednostce, a u.' będzie różne od zera.8) 

5. Ze wzorów 11 i 12 wynika wzór: Pl = a, czyli p1 = a p~, 
· P2 

z czego wyłania się _następująca dyskusja: 

a) jeśli a= 1 tj. jeśli błąd absolutny równa się zeru, to 
wtedy p 1 =p2 = 0 

f:l ) jeśli a > 1 czyli błędy podstawowe są ujemne to p1 > p~ 

y) jeśli a< 1 czyli błędy podstawowe są dodatnie to p1 < P~ · 

Zatem wniosek: 

Błędy podstawowe są sobie równe, jeśli się 

równają zeru; przy ujemnym znaku błędów pod­
stawowych zasadniczy błąd procentowy jest 
większy od wtórnego, a przy dodatnim znaku 
wtórny jest większy od zasadniczego. 

8 ) Patrz: Wtórny błąd pro centowy u wzorów S m a l j a n a 1 H o s s­
f e lda, R icc kego . 6reyrnann<\ dląr = OiLi = O, 
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II. CZĘŚĆ ZASTOSOWANA. 

4. Ogólny wzór udnoszący się do wzajemnego stosunku 
przekrojów poprzecznych u brył dendrometrycznych. 

Zastosowanie teorji, wyłuszczonej w części teoretycznej, do 
wzorów ksylometrycznych prowadzi do zbyt skomplikowanych 
funkcji, ażeby na podstawie algebraicznego rozwiązania utworzo­
nych z tych funkcji równań można nad niemi dyskutować, rzecz 
się jednak staje rozwiązalną, jeśli sobie uprzytomnimy, że dla 
argumentów r i u ustaliliśmy ściśle ograniczone interwały ogólne. 
Ażeby zatem przedstawić przebieg wartości omawianych rodzajów 
błędów systematycznych u wzorów ksylometrycznych dla wszyst­
kich brył dendrametrycznych i ich części, uciekamy się do 
szczegółowego obliczenia i tabelarycznych zestawień szczegól­
nych wartości naszych funkcji błędów przez kolejne podstawianie 
w odstopniowaniu wynoszącem 0'1 na r i u wartości objętych 

odnośnymi interwałami ogólnymi. 
Otrzymane tabelaryczne zestawienie cyfrowe zużytkujemy 

do sporządzenia wykresów, które prócz potwierdzenia słuszności 
twierdzeń ogólnych, podanych przy końcu części pierwszej są 
nam potrzebne przy ustalaniu nowych szczegółowych wniosków. 
odnoszących się już specjalnie do poszczególnych wzorów ksy­
lometrycznych. 

Zanim jednak przejdziemy do szczegółowego omawiania 
przebiegcr i . charakterystyki błędów systematycznych u poszcze­
gólnych wzorów ksylometrycznych musimy podać wzór odno­
szący się do wzajemnego stosunku przekrojów poprzecznych 
u brył dendrometrycznych, a mianowicie: 

Matematyczna relacja między przekrojami krańcowymi i prze­
krojem dowolnym, leżącym między temi u brył dendrametrycz­
nych: 
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Jeżeli przez n oznaczymy stosunek odległości przekroju g n 

od podstawy (O) do całkowitej długości (h) ściętej bryły den­
drometrycznej, to h n = (1 -n) h a następnie: 

Mnożąc u przez n, a u +h przez 1 -n; otrzymamy jako 
rezultat u + (1 -n) h czyli podstawiając za te wyrażenia prawe 
strony powyższych równań i mnożąc powstałe w ten sposób 

1 

równanie przez Ar dostaniemy jako rezultat żądany wzór: 

1 

n gr + ( 1 - n) er= g nr 15 

względnie dla całkowitych brył dendrometrycznych tj. przy g= O 

[3) 1 

" n = 3' 

2 
y) 

" n= 3, 

1 o) 
" n=4, 

f) 

g n= (1 -n)r ·G 

Dyskusja równań 15 i 16: 

" 
gr + 20r = 3gr •!s 

1 1 1 
- --

" 
2gr + ar= 3gr 'l' 

1 1 1 
- - -

" 
gr + 30r = 4gr 'i• 

" 

" 

" 

" 

g•r. = (~r a 

g•,, = (~(a 

16 

17 

18 

19 

20 

21 
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Po tych wstępnych rozważaniach przechodzimy do zastoso­
wania naszej teorji do poszczególnych, wyżej wymienionych wzo­
rów ksylometrycznych. 

5. Wzór Smaliana 

nosi w praktyce miano "kubikowania z końców" 

następującym wzorem matematycznym : 
wyraża się 

gdzie a oznacza przekrój podstnwowy (w czole), g przekrój 
górny (w czubie), a h długość osi strzały drzewa. 

Dla brył całkowitych przybrałby wzór ten wobec g = O nastę­

pujący kształt : 

V" =.!_ ah 
2 

Wzór Smaljana przekształca się przez wyciągnięcie a przed 

nawias i zastąpienie wyrażenia ~ przez u2
: 

22 

Przez odjęcie wzoru 5 od ostatniego względnie przez po­
dzielenie wzoru 5 przez ostatni dochodzimy do wzoru na błąd 

absolutny (L'. v) i na iloraz objętości (o), a mianowicie 

f 

2r + 2 l 
L'. v = ah -~ ~ (1 + u2) - 1 - u(_,. 2) f 

(r + 1) 1 - ur 

23 

względnie dla brył całkowitych : 

L'. ' = ah J 1 - -1_ 1 v l2 r+ 1J 23 a 

( 
2r + 2) 

2 1-u r 
o = -

(r + 1) (1 + u 2)( 1 - u~.) 
24 
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względnie 
' 2 (j = --

r + 1 
. 24a 

Na podstawie wzorów 23 do 24 a obliczamy błędy podsta­
• wowe dla wzoru Smaljana: 

a) Błąd absolutny wyrażony w odsetkach objętości walca 
podstawowego równa się: 

11 1-~r:-
2 

1 
a = - ( 1 + u2) - - - 1 00 . 25 

\
2 (r + 1) ( 1 - u~) 1 

względnie 

. 25 a 

~) Zasadniczy błąd procentowy 

p,~ l ( 2r + 2) l 
1 - 2 .1 ~ u--;;- -- - - . 1 00 

(r+ 1)(1 + u2)(1-u~) l 
. . 26 

względnie 

' -' 1 2
1100 P t- 1 -r + tj . . 26a 

y) Wtórny .błąd procentowy 

- r (r + 1) (1 + u2) ~-_u~) - 1 

P2 -1 
2 

(
1 
_2: ;- 2) 1100 

l 
. . 27 

względnie 

p'2= l~ (r + 1)-1) 100=50(r~ 1) . .. 27a 

Obliczenia i wykresy powyższych trzech rodzajów błędów 
znajdują się w tabelach 2, 3, 4 i tablicy I i uprawniają do 
następujących wniosków: 

1. Ze wzrostem u bezwzględna- wartość błędów podstawo­
wych maleje czyli największe co do wartości błędy wykazują 

bryły całkowite. 
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2. Błędy maksymalne błędów podstawowych występują jako 
wartości krańcowe. 

3. Dla r =O i u= O błędy podstawowe wykazują nastę~ 

pu}ące . wartości: a'= - 50°/o, p\=-100°/o, p'2 =- 50°/o. 
Z początkowych rozważań części teoretycznej wiemy, że dla 
r = O musi u być równe 1 t. z n. że mamy wtedy do czynienia 
z walcem, dla którego błędy podstawowe równają się zeru; 
zjawisko to staje się zrozOJmialszem, jeśli sobie uprzytomnimy, 
że dany przebieg błędów odnosi się przy u= O do brył całko­

witych, podczas gdy walec o skończonej długości przedstawia 
bryłę ściętą, u której przekrój górny równa się podstawie. 

Również z poprzednich rozważań wiemv, że jako krańcową 
wartość na wykładnik kształtu r dla c ałkowitych brył dendra­
metrycznych ze względu na wymagania praktyki co do kształtu 

drzew leśnych przyjęliśmy r = 0'5 gdyż strzały drzew o kształcie 
podwalcowatym muszą być w praktyce brytami ściętemi, zatem 
o u większem od zera, wobec tego przebieg błędów podsta­
wowych będzie w rzeczywistości inny niż teoretycznie obliczony, 
tj. od mniej więcej r = 0'5 krzywa błędów będzie zbliżała się 

do początku układu spółrzędnych, a nie twor;yła skoków. 
W analogicznych wypadkach będziemy mówili, że przebieg 

błędów danego wzoru ksylometrycznego wykazuje dla walca 
punkt nieciągły tworząc skoki o dotyczących teoretycznych war­
tościach, natomiast dla rzeczywistego przebiegu błędów przyj~ 

mować bęoziemy we wszystkich wypadkach jako największe 
możliwe wartości dla brył podwalcowatych te, jakie funkcja 
błędów posiada dla u =O i r = 0'5. 

4. Wtórny błąd procentowy przedstawia się dla brył całko­

witych jako prosta. 
W literaturze znajdujemy obliczenia wielkości błędu absolut­

nego w odniesieniu do s tożka zwykłego i nejloidy w stanie 
ściętym; do tych samych wyników dochodzimy, jeśli we wzorze 
na .1 v podstawimy za r wartość: 2 i 3: 

Dla r = 2 otrzymujemy .1 v = ~ Qh (1 - u)2 t. z n. błąd abso­

lutny w tym wypadku jest dodatni i wprost proporcjonalny do 
kwadratu uzupełnienia u do jednostki czyli odwrotnie proporcjo­
nalny do u. 
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1 J( h 
Zastępując u średnicami obliczymy: 1'1 v= 6 -;;f (D-d)2 tj. błąd 

absolutny, jaki popełniamy przy zastosowaniu wzoru S m a l ja n a 

do stożka zwykłego, jest dodatni i wynosi ~ objętości walca 

różnicy średnic krańcowych. 

Dla r = 3 oblicza się 1'1 v = 1 Oh (1 - u21a- u41a + u2
) czyli 

4 

prawie równe ( · ) ~ (1 - u)2 względnie 1'1.v ,..-'--: ~ n
4
h (D-d)2 tj. 

w odniesieniu do nejloidy jest również dodatni i wynosi prawie 
1 
4 

objętości walca różnicy średnic krańcowych. 

W ogólności możemy zatem powiedzieć, że błąd absolutny 
przy zastosowaniu wzoru S m a l j a n a do brył dendrometrycz­
nych jest, dla danej wartości na r, wprost proporcjonalny do 
różnicy średnic krańcowych i do długości danej części strzały 

czyli z tego wynika praktyczna reguła, że pełniejsze odcinki 
strzały mogą być dłuższe niż odcinki, których grubość szybko 
maleje, jeśli błąd w objętości ma pozostawać na tej samej 
wysokości. 

Przebieg błędów podstawowych wzoru S m a l j a n a jest 
następujący: 

Dla walca wynoszą błędy podstawowe zero tworząc tak 
zwany punkt nieciągły o skokach, wykazujących następujące teore­
tyczne wartości.:. (- a') =- 50°/0 objętości walca podstawowego, 

r=O 

(-p'1)=- 100°/o objętości przybliżonej (-p'2) =- 500fo 
r=O r=O 

objętości rze czywistej.9) Błędy podstawowe przebiegu błędów 
określonego jako rzeczywisty wyk.azują dla r = 0'5 i u= O nastę­
pujące wartości, przedstawiające równocześnie ujemne błędy 

maksymalne: 

max [-a'] = - 16'670fo, max [- -p']= - 33'33°/r., 
r = o·s r = o·s 

max [- p'2] =- 25'00°/o. 
r = o·s 

9) Należy zapamiętać, że odsetek przy u. odnosi się do objętości 

walca podstawowego, przy p 1 do objętości przybliżonej , a przy p 2 do obję ­

tości rzeczywistej; przy dalszych rozważaniach określenia te będą opusz ­
czane. 
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Bląd przeciętny. 

Ponieważ funkcje błędów, jakie popełniamy przy zastoso­
waniu wzoru S m a l j a n a , są stosunkowo proste i wobec tego 
umożliwiają w łatwy sposób obliczenie błędów przeciętnych 

sposobem ścisłym zapomocą całkowania , dlatego wykonamy kilka 
przykładów celem porównania z wynikami uzyskanymi sposobe m 
przybliżonym, a dopiero następnie przystąpimy do przykładów, 

mających nam służyć do porównawczej charakterystyki oma­
wianych ·wzorów ksylometrycznych. 

Przykłady dające się obliczyć sposobem ścisłym : 

b 

r= b 100 f ( 1 1 ) 
1. t (a)~~~ = b- a 2 - rł- 1 dr = 

a 

prżyczem e jest zasadą logarytmów naturalnych ; j eś li a = 0'5 
b = 2'3, to: 

r=2·3 _ ( 2log 2 '2 1- . 0 t(u.) u= O - 50 [ 1- -
1

.
81 

- 1- 6197 /0 
r=0'5 og e 

a sposobem przybliżenem na podstawie tabeli nr. 2 : 

r - 2'3 0'1 (1 
t [a] ~~g.5 = f8l 2(19'697 - 16'667) + 139'243-29'511) = 6'180°/0 

2. t (p 1) ~~~ = bJ OO Jb(1 - +2 - ) dr = 1 00 [ 1- -~ 1?~~;4) l 
r=a -a a r 1 l (b- a) log ej 

t(p1 ) ~~~-3 = 100 l 1 -
21 .~0f 2'

2 t = 12'394% 
r=O·s og e l 
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r = 2·3 r 1 } 
t (pJ u= O = 50 l-

2
(2'3 + 0'5) -1 = 20'00°/o 

r = O·s 

r=2,3 
t [p 2] u= O = 20'00°/o 

r= 0,5 

b 

u= b 100 f 
4. t(n)~~~ = 6 (b=-a) (1 - u)2 du = 

a 

albo 

= _1_20 f (1 - - a)<~- (1 - b)31 
18(b-a) l f 

u= 1 100 
t (n) r= 2 = - = 5'560fo 

u = O 18 

u= 1 J1 1 
t [a] r= 2 = 0'1 

1
- 16'667 + 47'496/ = 5'58°/o 

u= O • 2 

b 

u =::_ b 100 f ( 2 1 +u + u 2
) 5. t (p1 ) r -2= -- 1 - --0- du = 

u = a b- a 3 1 + u-
a 

= 1oo f af1- 2 ( 1 + _u ) ] du = 1Qo 

1
11_1og (~~;~)l 

b- a . 3 1 +u2 
• 3 (b- a) loge l 

b 

u = 1 100 J log 2 \ 
t (p 1) r = 2 = -

3 
) 1-

1
-- Jt = 10'229°/o 

u = o t og e 

u - 1 {1 t t [p1] r ;;;;; 2 = 0'1 
2 

(6'667 + 85'467) J = 10'2.13 °/o 
u = O 
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b 

6. t(a)~~~ = 100
. ~J(1-u~1> -u4 ~+ u2)du = 

u =a b-a 4 
a 

=--- -a- - ~- a 3 _ _ o-a H -- - a 1 00 { b 3 (ból· :,;. ) 3 (b'l· 7 ') + 1 (b3 3) } 
4 (b-a) 5 7 3 

u = 1 J 3 3 1 1 
t(a) r=3 = 25 1- - - - + - = 7'61 °/o 

u=O l 5 7 3 J 

u = 1 {1 } t[a] ~~~ = 0'1 
2 

·25 + 64'583 = 7'708 °/o 

Jak z powyższych przykładów widzimy wyniki na błędy prze­
ciętne, obliczone sposobem przybliżonym na podstawie tabel 
różnią się nieznacznie w miejscach dziesiętnych od wyników 
otrzymanych sposobem ścisłym przez całkowanie, wobec czego 
możemy przyjąć, że obliczanie błędów przeciętnych na podstawie 
tabel jest całkowicie wystarczające dla celów dendrometrycznych. 

Nadmienić jeszcze należy, że gdybyśmy mieli cyfrowe dan e 
co do częstości występowania pewnych kształtów strzał lub ich 
części dla pewnych wartości na r i u, to przy obliczaniu błędów 
przeciętnych należałoby wprowadzić wagi dla poszczególnych 
szczegółowych wartości funkcji i zastosować wzór na kwalifiko­
waną średnią arytmetyczną. 

Przykłady dla celów porównawczych: 

Prócz tych trzech pierwszych przykładów obliczonych także 
sposobem ścisłym, a służących do celów porównawczych możemy 
również do tych samych celów użyć następujących przykładów, 

opierających się na funkcjach błędów o dwu zmiennych: 

r = 2'3, u = o·s 0'01 { 1 
1. t[((] = 1~8. 0'3 4 [ 5'475 - 8'818] + 

r = o·s. u = o·s 

-f- ~ [ 46'941 - 21'308] + 36'454 - 11'819} = 0'67990fo = 0'680°/0 

r = 2'3, u = 0'8 0·01 1 1 
2. t [p]] = 0'54 14 [8'450 - 13'607] + 

r=O·S,u=O·s ( 

+ ~ [71'257- 31'960] + 51'922- 16'870 ~ = 0'989°/o 
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r = 2'3, u = o·s 0'01 ) 1 . 
3. t [p 2] = 

0
,
54 4 

[9'098- 12'296] + 
r = 0'5, u = o·s 

+ ~ [75'807- 30'278] + 53'398- 16'334 ( = 1'0930fo 

6. Wzór Hubera 

nosi w praktyce nazwę "kubikowania ze środka" i wyraża się 

następującym wzorem matematycznym, który podaje przybliżoną 
objętość tak całkowitych jak też ściętych brył dendrametrycznych : 

V' =g• , ·h 

. gdzie g•,, oznacza powierzchnię przekroju środkowego, a h długość 
osi strzały drzewa względnie konoidy. 

Na podstawie wzoru 17 wyrażamy przekrój środkowy przez 
krańcowe: 

i wprowadzając zmienną u = (-b-t~ . przekształcamy wzór H u -

b e r a na odpowiednią funkcję o dwu zmie~nych r i u: 

wobec czego błąd absolutny brzmi: 

względnie dla brył całkowitych: 

2r +2 
1 - u r 

----

(r + l) (1 + u~) 

u v' = Qh l (J ) r - _1 l 
2 r + 1 ( 

29 

29 a 

3 
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Również iloraz objętości wyraża się wzorem: 

(i= 

( 2 r +~) 
2r 1-u r 

(r + 1) ( 1 + u~ rr_ u~ r 30 

względnie dla brył całkowitych: 

30 a 

Zatem błędy podstawowe dla wzoru H u b er a obliczają się: 

u) Błąd absolutny wyrażony w odsetkach objętości walca 
podstawowego 

2r + 2 _l 
1 -u r _ 

(r + 1) C - u ~)f 
a dla brył całkowitych 

a' = l ( 1_) r - 1 ]100 
l 2 r+ 1 / 

[3) Zasadniczy błąd procentowy : 

względnie: 

, - r 2r l 
p I - l - r + 1 f 1 00 

y) Wtórny błąd procentowy 

100 . 31 

31 a 

100 32 

32 a 

100 33 
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względnie 

33a 

Obliczenia i wykresy wszystkich trzech rodzajów błędów 

znajdują się w tabelach 5, 6, 7 i tablicy II i uprawniają do na­
stępujących wniosków: 

1. Ze wzrostem u bezwzględna wartość błędów podstawowych 
maleje. 

2. Dodatni błąd kulminacyjny o znaczeniu teoretycznem dla 
brył całkowitych występuje dla u.' przy r ~.'= 0"35, a dla p\ i p'2 

przy t' ·~ 0"45; rzeczywisty dodatni błąd maksymalny występuje 
dla przyjętego r = 0"5. 

Również należy podkreślić, że ze zwiększaniem się u punkt 
kulminacyjny poszczególnych błędów podstawowych przybliża się 

ku początkowi układu współrzędnych. 

3. Ujemny błąd maksymalny błędów podstawowych występuje 
jako wartość krańcowa dla r = 3"5 i to równocześnie dla wszystkich 
wartości na u, a mianowicie: 

max (- a 'J = -13"38% , max [-p'1] =' -151,42 
r = 3·5_ r = 3'5 

i max [-p':!] = - 60"25°/o. 
r = 3'5 

4. Omawiany przy wzorze S m a l j a n a t. zw. punkt nie~ 

ciągły jaki powstaje dla walca, staje się przy wzorze H u b er a 
pozornie ciągłym, wobec czego przebieg błędów podstawowych 
nie wykazuje tu skoków. 

Ażeby obliczyć wartość maksymalnego błędu dodatniego 
błędów podstawowych, należy wpierw obliczyć wartości dla r, 
dla których następuje kulminacja krzywych, przedstawiających 

przebieg poszczególnych błędów podstawowych dla brył całkowi­

tych, co uskuteczniamy na podstawie zasad teorji o minimum 
i maximum. 

3* 
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Przebieg obliczenia dla n' jest następujący 

' 1 u.= 
2r 

r!_u.' = - L<:.g 2 + _1 = O lo) 
dr 2 r (r + 1)2 

czyli : (r + 1 )2 log 2 -2r log e= O 

Ostatnie równanie rozwiązujemy metodą N e w t o n a, 11) po­
legającą na tern, że dla danego równania wyrażającego się funkcją 
np. z(r) = o przyjmujemy przybliżoną wartość pi erwiastka np. ro, 
a następnie poprawimy r0 o h0, które oblicza się za pomocą wzoru: 

X. Cro) 
h = - --

0 -z'Cro) 

wskutek czego otrzymujemy dokładniej szą wartość na r, a miano­
wicie r1 = r0 + h0, z którą postępujemy analogiczni e tak długo, 
aż dwie po sobie następujące wartości na r (nie będą lub) 
prawie nie będą między sobą się różnić . 

W naszym wypadku mamy : 

z (r) = (r + 1)2 log 2- 2r loge 

a x' (r) = { 2 (r + 1) - 2r } log 2 

Pr..zyjmując, że r0 = 0'35 obliczamy z (0'.35) = - 0'0049, 
a t.' (0'35) = 0'4291, z czego h0 = 0'0114192. Widzimy zatem, że 
różnica dwu po sobie następujących wartości na r uwydatnia się 
dopiero na drugiem miejscu po kropce dziesiętnej, wskutek 
czego możemy przyjąć tę ostatnią wartość za wystarczającą. 

Zatem 
max (+ a') = 4'387 °/0 

r = 0'3614 

l O) Symbol Log. odnosi się do logarytmów naturalnych, a symbol log. 
log a 

do logarytmów zwyczajnych . wobec czego : Log a = foge 

11 ) Bliższe objaśnienie tej metody można po za odnośnym i podręczn i­

kami matematycznemi znaJeść również w pracy: 
T a d e u s z W i e l g o s z: .Pomiar drzew na podstawie metody naj ­

mniejszych kwadratów" Roczniki nauk rolniczych . tom IX. Zeszyt 1. Rok 1923. 
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Dla obydwóch odmian błędu procentowego obliczenie po­
wyższe przedstawia się następująco: 

Zrównana z zerem pochodna funkcji błędu po opuszczeniu 
c~ynnika stałego 100 brzmi: 

czyli 

z czego 

Zatem 

(r + 1) 2r Lo~ 2- 2_"__ =O 
(r + 1)2 

(r + 1) log 2- log e = O 

max ( -+- p\) = 5"79 Ofo 
r = 0"442 

max ( + p'2) = 6'15 Ofo 
r = 0"442 

Celem stwierdzenia identycznośsi z wynikami, podanymi 
w podręcznikach dendrometrycznych, obliczymy wartości błędu 

absolutnego .1 v w odniesieniu do stożka zwykłego i do nejloidy. 

Dla r = 2 obliczamy .1 v = - /
2 

Oh (1 -uf t. zn. błąd ab­

sol utny w tym wypadku jest ujemny i wprost proporcjonalny do 
u; jego absolutna wartość równa się połowie odpowiadającego 

błędu przy wzorze S_m a l j a n a. 
Wyrażając iloraz średnic u przez średnice otrzymujemy 

~ v =- /
2

. rr
4
h (D - d)2 tj. błąd absolutny, jaki popełni~my przy 

zastosowaniu wzoru H u b er a do stożka zwykłego, jest ujemny 

równa s ię /
2 

objętości walca różnicy średnic krańcowych. 

Dla r · 3 oblicza się .1 v = -
1 

Oh (1 - u 1 'a - u 11o + u") czyli 
8 

1 
prawie równa sie: 1 v · -

8 
Oh (l - u) 2 względnie .1 v 

1 ;r h - 8 
4 

(D- d)ł tj. w odniesieniu do nejloidy jest błąd absolutny 

również ujemny i wynosi prawie 
8
1 objętości walca różnicy średnic 

krańcowych. 
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Analogicznie jak przy wzorze S m a l j a n a możemy i w od­
niesieniu do wzoru H u b er a powiedzieć, że błąd absolutny 
przy zastosowaniu tegoż ostatniego do brył dendrametrycznych 
jest wprost proporcjonalny do różnicy średnic krańcowych i do 
długości danej części bryły, czyli dochodzimy do tej samej 
praktycznej reguły, że odcinki pełniejsze mogą być dłuższe niż 

odcinki zbieżyste, jeśli błąd w objętości ma posiadać tę samą 

wielkość. 

Przebieg błędów podstawowych wzoru H u b e r a jest na­
stępujący: 

Dla walca wynoszą błędy podstawowe zero tworząc punkt 
pozornie ciągły, następnie przybierają wartość dodatnią, wy­
kazują następujący teoretyczny błąd kulminacyjny: kul (+o.')= 

r = 0"351 

= 4"39°/ 0, kul ( + p 1') = 5"790fo i kul (+ p/) = 6"150fo. Rzeczy-
r = 0"442 r = 0"442 

wisty przebieg wykazuje dla . r = 0"5 następujący dodatni błąd 

maksymalny max [+ a'] = 4"050fo, max [-f- p1]' = 5"72°/0 i max 
r = 0"5 r = 0"5 

[ + p/J = 6"06() /0 , następnie błędy podstawowe dla paraboloidy 
r = 0"5 

maleją do zera, przechodzą w wartość ujemną, stale wzrastają 
i opuszczają interwał zmiennej r ujemnym błędem maksymal­
nym: max [-- o.']=-13"38°/0, max [-p/J =- 151"42°/0 i max 

r = 3"5 r = 3"5 

[-p/] = - 60"250fo. 
l' ~ 3·5 

Bląd przeciętny. 

Przykłady dające się obliczyć spcsobem ścisłym : 

b 

1 . t (n) ~~ ~ ~ = b1 00 f( 1r - _!_ 1 ) dr = 
r=a a 2 r -t-

a 

J (b+1)1 
_ 1 OQ_ ) log-e [ 1 ~ _ _] l_ log a + 1_ { 
-b- a t log 2 2a 2b l log e 
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r = 2·3 100 f log e l1 1 l log 2'2l . 0 t(a )LI=O =~1 .8 ) ~l 
2 
(8- ~2.3 - ~1~ =-340 /0 

r = o·s l og 2 2 og e 

r = / ·3 0'1 f 1 l 
t [a] ~;::S-s= T-8) 2 ( 4'045- 9'997) + 9'044- 67'349 = - 3'40°/o 

b 

2. t(a)r=2 =- ~- . - (1-u)-du= Ll=b 100 1J 9 

Ll = a b-a 12 
a 

= -
100 

(1-(b + a) + 
1 

(b 2 + ab + a2
)} 12 3 

LI= 1 ~ 1 l 
t [a]~~~= 0'1/ 2 (- 8'333) + (- 23'767) \ =- 2'79°/0 

a 

b ' 

~ -~100 - J(1-u)
2
du ~ -~190 \b(b + 2) - 1_ 

~ 3(b-a) 1 + u ~ 3(b-a) / b + 1 
a 

_a (a t 2) - _ 3 _ 4 log(~ ! i) fl 
a + 1 log e 

t ( ) LI : 1 ~ 2._90 ~ + 3 ,__ 4 log 2) = _ 7.4701 P l r ~ 2 ~ - 3 l ń \ o 
LI=O Ose 
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Przykłady dla celów porównawczych: 

r = 2·3 
1. t(a)u=O = - 3'40°/0 

r = o·s 
r =- 2·3 

2. t [p 1] u = O = - 13'83°/0 
r = o·s 
r = 2·3 

3. t [pJ u= O = - 10'43°/0 
r = o·s 

r = 2·3, u = 0'8 0'01 ( 1 
4. t [a] = 

0
.
54 4 

(3'524- 2.739) + 
r = o·s. u = o·s 

+ ~ (9'428- 19'397) + .5'527 -18'197 l = - 0'323% 

r = 2·3, u = 0'8 
5. t [Pt] =- 0'52°/0 

r = 0'5, LI = 0'5 

r = 2'3, u = 0.8 
6. t [pt] = - 0'560fo 

r = o·s. l/ = o·s 

7. Wzór Hossfelda 

podaje przybliżoną objętość ściętych brył dendrametrycznych za~ 
pomocą następującego wzoru matematycznego: 

V' = ~ (3g•:.-l- g) 

który dla brył całkowitych redukuje się do k s ztałtu: 

V" = } g•lnh 

przyczem g •;,. oznacza powierzchnię przekroju znajdującego się 

1 k ' . d d w 
3 

wyso osct o po stawy. 

Na podstawie wzoru 18 wyrażamy g 11, przez przekroje krań­
cowe: 
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wobec czego wzór H o s s f e l d a przekształca się na następu­
jącą funkcję o dwu zmiennych: 

34 

względnie dla brył całkowitych: 

V" = ! (~r . Q· h 34a 

a iloraz objętości przedstawia się: 

a= 
( 2 r + 2) 

4 1 - U r 

(r + 1)-(1- ~2/r) [31 - r (2 + u2 ry + u2] 
35 

względnie : 

4 
o' = 

3(r+ n (~r 
35 a 

31 - r . 2 r- 2(r + 1) 

Znając wartości V, V', V", o i a' możemy na podstawie wzorów 
9, 9 a, 11, 11 a, 12, 12 a, obliczyć funkcje błędów podstawowych, 
których szczególne • wartości są podane w tabelach 8, 9 i 1 O 
(wykres na tablicy III) i up~awniają do następujących wniosków: 

1. Ze wzrostem u bezwzględna wartość błędów podstawo­
wych maleje. 

2. Dodatni błąd maksymalny błędów podstawowych wystę­

puje we formie kulminacji, a mianowicie max (+a') dla l' ---"-- 1'4, 
a max ( + p'1) i max ( + p'2) dla r . · _ 1'45. Ze zwiększaniem się 
u punkty kulminacyjne błędów przybliżają się stale do początku · 

układu spółrzędnych. 

3. Rzeczywisty ujemny błąd maksymalny występuje dla przy ­
jętej wartości r = 0'5. 

4. Tak zwany punkt nieciągły dla walca wykazuje skoki 
o wartościach teoretycznych. 
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Wyszukiwanie wartości na r, spełniających funkcje błędów 

podstawowych do kulminacji: 

Dla błędu absolutnego mamy: 

da' 3 (2 ) r ( 2 ) 1 
dr = 4 3 · Log .3 + Cr + 1? = 0 

czyli 

(r + 1)2 (log 2 - log 3) + 2 Z- r . 3 r - 1 ·log e= O 
zatem 

z (r) = 2 2- r · 3 r - l log e- (r + 1 )2 (log 3- log 2) 

a z' (r) = 3 r-1 log 3 - 2 Z-r . log 2- 2 (r + 1) (log 3 -log 2) 

Przyjmując, że r0 = 1'4 otrzymamy z(1'4) = 0'007, /(1'4) = 
- 0'561 O czyli 

h0 =-f--- 0'125, a r1 = 1'4125 
dalej 

z (1'4125) = + 0,00184, z' (1'4125) = - 0,5513, hl = + 0,00334 

a r2 = 1,4158, zatem max(+ a')=0,849 °/o. 
r = 1'416 

Dla błędów procentowych analogiczne obliczenie przed­
stawia się : 

Pochodna z a' zrównana z zerem i odpowiednio uproszczona 
brzmi : • 

z czego 

(r + 1) (log 3 - log 2) - log e = O 

r = log e-_log1'5 = 1.4663 
log 1'5 

zatem max ( + p'1 ) = 2'0295 °/o, max ( + p'2) = 2'071 °/o 
r = 1"466 r = 1'466 

Dla r = 3 oblicza się .1 v = - ;
6 

n:'(02hl - d2i3)3, 12) względnie 
zastępując przekrój albo średnicę dolną przez przekrój albo 

12) M a x K u n z e : ,. Lehrbuch der Hol zzmesskun st ", 1873. s tr. 61. 
wzór. 15. 
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l ' 

1 3( .'"- "" )3 
średnicę na 

3 
h od podstawy otrzymujemy: _'l v = -

4
\ g~ g h 13) 

3 'J[ h (d~i3-d''" )3 

względnie _'l v = -
16 

-" 
2 

Przebieg błędów podstawowych wzoru Hossfelda brzmi: 

Dla walca wynoszą błędy podstawowe zero, tworząc 

równocześnie skoki o następujących teoretycznych wartościach 

[a'] = -250fo, [-p'1] = -33'33, [- p4] = -25°/o, dla przyjętego 
r=O r=O r=O 

r = 0'5 wykazują następujące wartości: max [-a']=- 5'429°/o, 
r = o·s 

[-p' t] = - 8'865 % , [-- p'2l = - 8'122 °/o, następnie maleją 
r = 0'5 r = 0'5 

do zera dla paraboloidy, poczem przybierają wartość do­
datnią i zdążają do kulminacji tworząc następujący dodatni 
błąd maksymalny: max [+a'] = 0'85 0fo, max [+ p' t] = 2'03 0fo, 

' r = 1'415 r=1·466 

max r + p' 2] = 2·o1No, dalej maleją do zera dla stożka zwykłego, 
r = 1'4156 

stają się ujemnymi i opuszczają interwał zmiennej r przy na­
stępujących wartościach: [- a'J =- 4'078°/o, max [- p'1] = -

r = 3'5 r = 5'5 

- 22'47 0fo, max [- p'2] = - 18'35°/o. 
r = 3'5 

B!qd przeciętny. 

Dla celów porównawczych obliczamy następujące przykłady: 

2•3 
r=2'3 100 f ( 1- r r - 2 1 ) 

1. t(a) ~=g·5 = r8 \ 3 2 - r + J dr = 
o·s 

00 f 
3 

log e l(2) 2'3 (2 ' 0'51 I · j . -
1
- 4 I -(2 ) - - ) . _ o g 

2 2 
= - 0'34° l 

- 1'8 l og 3 .3 3 log e 
0 

13) F er d. L a n g e n b a c h er u. E m. N o s s e k : "Lehr und Hand­
buch der Holzmesskunde ", str. 74. wz ór 43. 
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r = 2'3, u = O·B 
4. t [a] =- 0'0472°/o 

r = 0'5, u= 0'5 

r = 2'3, u = o·s 
5. t (pd =- 0'0665% 

r = 0'5, u = 0'5 

r = 2'3 u = 0'5 
6. t [pJ ' = - 0'0658 °/o. 

r = 0'5, u = 0'5 

6. Wzór Riecke'go 

podaje przybliżoną objętość ściętych brył dendrametrycznych 
zapomocą następującego wzoru matematycznego 

który dla brył całkowitych redukuje się do kształtu: 
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uwzględniając wzór 17 przekształcamy wzór powyźszy : 

względn ie w kształcie funkcji o dwu zmi ennych : 

36 

względn ie 

. 36a 

a iloraz o b jętości 

względnie 

. 37 a 

Znając V, V', V", u i u' możemy obliczyć funkcję błędów 
podstawowych, których szczególne wartości dla brył całkowitych 

są podane w tabeli 11 (częściowy wykres na tablicy IV) i upra­
wniają do następuj~cych wniosków: 

1. Ze wzrostem u bezwzględna wartość błędów podstawowych 
maleje (obliczeń dla brył ściętych nie podano w tabelach). 

2. Dodatni błąd maksymalny błędów podstawowych występuje 
jako wartość krańcowa dla r = 3'5; dodatni błąd kulminacyjny 
występuje dla a ' przy r · 1'35, a dla p'1 i p'2 przy r ·'- 1'4, 

3. Rzeczywisty ujemny błąd maksymalny występuje dla· przy~ 
jętego r = 0'5 ; ujemny błąd kulminacyjny występuje dla a ' przy 
r · 2'5, a dla p\ i p'2 przy r -' - 2'55. 

4. Tak zwany punkt nieciągły dla walca wykazuje skoki 
o warto ściach teoretycznych. 

Wyszukiwanie wartości na r, dla których występują błędy 

kulminacyjne. 
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Dla błędu absolutnego: 

da' 1 2-r 1 
dr =- 6. 2 . Log 2 + (r + 1)2 =O 

czyli 

6-2r -łoge-4(r+ 1)2log 2 = O 

z czego 

z{r) = 3. 2r -log e- 2 (r + 1)2log 2 

z'(r) = log2 [3. 2r -4(r + 1)], 

Jeżeli r0 = 1'35, to: z (1'5) =- 0'0037, l (1'5) = - 0'52, h0 = 
- 0'00698, z czego r1 = 1'3430, a 

kul ( +a') = 0'270fo. 
r=1'343 

Jeżeli r0 = 2'5, to: z (2'5) =- 0'005, z' (1'5) = 0'8942, h0 = 
0'0056 z czego r1 = 2'5056, a 

kul(- a') =-0'12°/0 • 

r = 2'5056 

Dla błędów procentowych wychodzimy od ilorazu objętości 

względnie odwrotności tegoż, przyczem pochodna odwrotności 

ilorazu objętości zrównana z zerem przedstawia się: 

czyli 

z (r) = (1 + 22 - r) log e- (r + 1) 22 - r log2 

l (r) = 22 - r log 2 {log 
2

(r + 1) - 2} 
log e 

Jeżeli r0 = 1'4, to: z (1'4) = - 0'0025, z' (1'4) = - 0'15351, 
h0 = - 0'0163, z czego r 1 = 1'3837, a 

kul r+ p'J = 0'624 °/o; kul(+ p'2) = 0'628°/o 
r = 1'384 r = 1'384 

jeżeli r0 = 2'55, to: z (2'55) =0'001, / (2'55) =0'0947, h0 =-0'01056, 
z czego r1 = 2'5394, a 

kul(- p'1) = - 0'423 0fo , kul(- p'2) = - 0'422 'l/o 
r=2·5394 r=2'5394 
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Przebieg błędów podstawowych wzoru R i e ck e g o jest na~ 
stępujący: 

Dla walca wynoszą błędy podstawowe zero, tworząc równo­
cześnie skoki o następujących teoretycznych wartościach: 

[-a'] = -16'67 °/o , [- p'1] = - 20'00 0fo , [-p'2] = -16'67 °/o, 
r=O r=O r=O 

dla przyjętego r = 0·5 wykazują rzeczywisty ujemny błąd maksy~ 
maksymalny o wartościach : 

max [-a.'] = -2'859°/o, max[- p'1]=-4'481 0fo, max [- p'2]=- 4'290°/o, 
r=0"5 r= 0'5 r=0'5 

następnie maleją do zera dla paraboloidy, przechodzą w wartość 
dodatnią i dążą do kulminacji z następującymi wleJkościami: 

kul (+ u.') = 0'27%, kul ( + p' 1) = 0'624 % , kul ( +r'~ ) = 0'628 °/o, 
r=1"3ł3 r=1'384 r=1 '384 

następnie maleją do zera dla stożka zwykłego, stają się ujemnymi 
dążąc powtórnie do kulminacji o następujących wartościach: 

kul (- a ') =-0'120fo, kul(- p' 1) = - 0 '423°/o, ku! (- p'2) = -0'422°/o, 
r=2'506 r = 2'539 r=2"530 

poczem zrównują się znowu z zerem dla nejloidy i opuszczają 
interwał zmiennej r dodatnim błędem maksymalnym: 

max(+u'] = 0'337°/o, max(+ r'd = 1'492°/o, max[ +p'2 J = 1'524°/o. 
r=3"5 r=3'5 r=3·5 

B!ąd przeciętnv. 

Dla celów porównawczych obliczamy następujące przykłady : 

2"3 

1. t (a') ~~~~3 = 1 ~oJf 1_( 1 + 22- r) - _1 ] dr = 
r=0·5 1 8 l6 r + 1 

· o·5 

_ 1_.()_0 f . log e r 1'5 - 0'3] log 2'2l . o 
- 1.8 )03 + -- 2 --·2 - --- = -0204 /o. 

l 6log2 log e 

r=2'3 
t[u.'] u= O =-0'209°//o 

r=0·5 
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r = 2'3, 11 = o·s 
4. t [a'] = - 0'014 °io 

r = o·s, '.J = o·s 

r = 2'3, u = o·s 
5. t [p'1 ] = - 0'0198 °/o 

r = o·s, u = o·s 

r = 2·3, u = 0'8 
6. t [p' 2] - =- 0'01 96 0Jo 

r = o·s, u = 0'.:> 

9. Wzór Simony'ego 

podaje przybliżoną objętość całkowitych i ściętych brył dendro~ 

metrycznych za pomocą następującego wzoru matematycznego: 

Na podstawie wzorów 17,20,21 wiemy, że 

_ (1_)r (GUr+ 1/r) r 
gJ/J- 4_~ g 

(1)r(G1/r + 1/r)r 
gs/.t = 4 g 

= (1_)r (G1 1r + 1tr) r 
gJ , ~ 2 g 

wskutek czego wzór powyższy przekształca się na funkcję o dwu 
zmiennych: 

względnie dla brył całkowitych: 

V"=~ Ch (~)r )21-r (Y + 1) - 1 f 38a. 
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a iloraz objętości 

( 
2 r_+ 2) 

3 1-ur 
a = --- --- - - 39 

(r+ 1) ( 1-u21r) { 21-r[(3+ u21r)r + ( 1 + 3u21r)r] _ 2-r( 1 + u21r)r) 

względnie 

39a. 

Na podstawie V, V', V", u i u' możemy obliczyć funkcje błę­
dów podstawowych, których szc7ególne wartości dla brył całko­

witych są podane w tabeli 11 (częściowy wykres na tabl. IV.), 
i uprawniają do następujących wniosków: 

1. Ze wzrostem u bezwzględna wartość błędów podstawo­
wych maleje, (obliczeń dla brył ściętych nie podano w tabelach). 

2. Dodatni błąd kulminacyjny o znaczeniu teoretycznem dla 
brył całkowitych występuje dla a przy r -=.c 0'255 a dla p'J i p'2 
przy r . o·3; rzeczywisty dodatni błąd maksymalny występuje 

dla przyjętego r = 0'5; dodatni błąd maksymalny występuje dla 
fi przy r · 2'5, a dla p\, p'2 przy r · 2'55. 

3. Ujemny błąd maksymal11y występuje jako krańcowa war­
t o ść przy r = 3'5; ujemny błąd kulminacyjny występuje dla a przy 
r 1'37, a dla p 1 i p2 przy r · 1'43. 

4 Tak zwany punkt nieciągły dla walca jest pozornie ciągłym. 
Wyszukiwanie wartości na r, dla których występują bł'ędy 

kulminacyjne: 

Dla błędu absolutnego: 

d()'= 3 - 1 ) 2 1 - 2 
r · 3" ·Log 3-2 (3 r + 1) 2 1

-
2 

r ·Log 2 -f-
dr l 

-1' 1 1 -+ 2 . Log 2 1 + ( r + 1 )i - O 

z czego 

y_ (r) = (r + 1/ l 2 r Jog 2- 2 [3 r (2 · log 2 - log 3) + 2log 2]} + 
2r 

+ 3.2 log e 

z' (r) = 2 (r + 1){ 2" log 2-2 [3'' (2log 2 -log 3} + 2log 2]} - f--
(r + 1)2 f t' r l r + -
1 

- l2 (log 2)2-2.3 .Jog 3 (2log 2-log3) 1 +6.2 log 2 
og e 

4 
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Jeżeli r0 = 0'255, to: z (0'255) = 0'00385, / (0'255) =- 0'9753, 
ho = o·oo3g z czego l't = 0'2589, zatem 

max (+ a')= 1'152°/o· 
r = 0"259 

Jeżeli r0 = 1'37, to: z (1'37) =- 0'0113, z' (1'37) = - 6'6029, 
hJ = -0'0017, z czego r1 = 1'3683, zatem 

kul{- a') = - 0'159°/o 
r=1 '368 

Jeżeli l'o= 2'5, to: z(2'5) =0'2084, / (2'5) = - 51'45, ho = 0'00405, 
z czego rt = 2'50405, zatem 

kul(+ a')= 0'0970fo 
r = 2'504 

Dla błędów procentowfch wyjdziemy od odwrotności ilorazu 
objętości, przyczem otrzymamy: 

l ' r r 
z(r)=[2(3 + 1l-2 ]log e - (r + 1l t2(2log2 - log3) -f-

+ 21og2]-2rlog2 

z' (r) = 2.31' log 3- 2[31' (2log 2 - log 3) + 

l' + 1 l' r . 
+ 2log 2] -

1 
[2.3 (2log 2 - log 3) log 3-2 . (log 2)2

] 
og e 

Jeżeli l'o = 0'3, to: z (0'3) = 0'00645, /(0'3) = -0.387, ho=0'01666, 
z czego r1 = 0'3166, zatem 

max r+ p\) = 1'".·63% , ma x (+ p'2) = 1'4·85°/o 
r = 0'317 r = 0'317 

J eże li r = 1'43, to: z {1'43) = 0'00106, z' (1 '43) = 0'341 48, 
h0 = - 0'0031 , z czego 1'1 = 1'4269, zatem 

kul(- p'1) = - 0'385% , kul(- p'2) =- 0'384% 
r = 1'427 r = 1'427 

Jeżeli r0 = 2'55, to : z (2 '55) = 0 '004·7, z' (2'55) = -1'3155, 
h0 = 0'00357, z czego r1 = 2'55367, zatem 

kul(+ p'1 ) = 0 '337% , kui ( r p'~J = 0'338°/o 
r = 2'5536 r = 2'5536 
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Przebie~ błędów podstawowych wzoru S i m o n y'e g? jest 
następujący: 

Dla walca błędy podstawowe wynoszą zero tworząc punkt 
pozornie ciągły, następnie przybierają wartość dodatnią i wykazują 
następujący teoretyczny dodatni błąd kulminacyjny: 

kul C+ u. )= 1'152°/o, kul ( + p'1) = 1'4630fo, kul C+ p'2) = 1'485°/o, 
r = 0'259 r = 0'317 r = 0'317 

Rzeczywisty przebieg wykazuje d[a przyjętego r = 0'5 nastę­
pujący dodatni błąd maksymalny: 

max [+ u.']= 0'831 Ofo, max [+ p' d = 1'231 Ofu, 
r = 0·5 r = 0'5 

oraz max [+ p' 2] = 1'2460fo, 
r = o·5 

następnie błędy podstawowe maleją dla parabolidy do zera, 
przybierają wartość ujemną i kulminują wartościami: 

kul (-c/)=- 0'1590fo, kul (- p\) =- 0'3850fo, 
r = 1'368 r = 1'427 

kul (-p' 2) =- 0'3840fo, 
r = 0'427 

maleją do zera dla stożka zwykłego, przechodzą w wartość 

dodatnią i kulminują wartościami: 

kul (+c/) = 0'097°/o, kul ( + p'1) = 0'337 0/o i kul (+ p'~)= 0'3380fo, 
r = 2"504 r = 2"554 r = 2·554 

następnie maleją do zera dla nejloidy i stają się ujemnemi oraz 
opuszczają interwał z;;·liennej r ujemnym błędem maksymalnym : 

max [- u.']=- 0'292% , max [-p' d= -1'3515°/o, 
r = 3'5 r = 3·5 

max [- p'2 ] = -1'314°/o. 
r = 3·5 

Bląd przeciętny. 

Dla ce lów porównawczych obliczamy następujące przykłady: 

r=2'3 
1. t [a'] u=O = 0,047% 

r=0'5 

, r=2,3 _ 
0 2. t [p 1] u=O - 0,051 /0 

r = 0·5 

4* 
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r=2'3 
3. t [p'2]u=O - 0,052°/0 

r=O·s 

4. t [a] 
r=2'3, u=O·B 

r=0·5, u=0'5 

r=2·3, u=0'8 
6. t [p 2 ] =---c 0,01890fo 

r= 0·5, u = 0·5 

10. Wzór Breymanna 

podaje przybliżoną objętość brył dendram etrycznych zapomocą 
wzoru matematycznego: 

V' = ~ l G + 3 (g•,a + g'!a) + g} 

który dla brył całkowitych redukuje się do kształtu: 

V" == ~ J G + 3 (g•·, + g"a) ! 

Na podstawie wzorów 18 i 19 wi emy, że : 

wskutek czego wzór B r e y m a n n a możemy przekształcić na 
funkcję o dwu zmiennych : 

V'=~ Oh {1 + 3
1

- r r (2 + u21r) r + (1 + 2 u21r) r ] + u 2} 40 

względnie 
1 1- r 

V" = 8 GhJ1 + 3 (2r + 1)} . 40a 

a iloraz objętości 
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względnie 

. . . 41 a 

Na podstawie V, V', V", u i u' możemy obliczyć funkcje błę­
dów podstawowych, których szczególne wartości dla brył całko­
witych są podane w tabeli 11 (częściowy wykres na tablicy IV) 
i uprawniają do następujących wniosków: 

1. Ze wzrostem u bezwzględna wartość błędów podstawo­
wych maleje, (obliczeń dla brył ściętych nie podano w tabelach). 

2. Dodatni błąd maksymalny błędów podstawowych wystę­

pu je jako wartość krańcowa dla r = 3'5; dodatni błąd kulmina­
cyjny występuje dla a' przy r · 1'33, a dla p\ i p'2 przy r ' -1'36. 

3. Rzeczywisty ujemny błąd maksymalny występuje dla r= 0'5; 
ujemny błąd kulminacyjny występuje dla n' przy r · 2'5, a dla p'1 

i p' 2 przy r · 2'53. 

4. Tak zwany punkt nieciągły dla walca wykazuje skoki 
o wartościach teoretycznych. 

Wyszukiwanie wartości na r, dla których występują błędy 

kulminacyjne: 

Dla błędu absolutnego 0trzymujemy: 

x(r) ~ 8.3r ·log e_-3(r + 1)2 [2,. (log 3-log2) + 1og3] 

/ (r) = 8.3 r. log 3 - 6 (r + 1) [2 1
' (log 3 -log 2) + log 3]­

- 3.2r (r + 1 ) 2 (log 3 -log 2) 1

1

og 2. 
og e 

Jeżeli r0 = 1'33, to: z (1'33) = - 0'0031, y_' (1'33) = -1'4019, 
h0 =- 0'00221, z czego r 1 = 1'32779, zatem 

kul ( + u.') = 0'151 Ofo. 
r = 1'328 

Jeżeli r = 2'5, to: z(2'5)=0'0181, /(2'5)=3'1882, h0 =­

- 0'005677, z czego 1'1 = 2'4943, zatem 

kul (-a')=- 0'0575°/0 . 

r = 2'494 
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Dla błędów procentowych wychodzimy od odwrotności ilo­
razu objętości, przyczem otrzymujemy : 

z(r) = [3r + 3 (2r -f-1)] log e-3 (r + 1) [2~" (log 3 -log 2) + log3] 

z' (r) = 3r log 3 + 3 · 2r ·log 2 - 3 [2r (log 3 -log 2) + log 3]-

-3 · 2~" (r + 1) (log 3 -log 2) lo~ 2. 
log e 

Jeżeli ro=1'36,to : z(1'36)=0'00397, /(1'36)= - 0'56168, 
h0 = 0'00706, z czego r1 = 1'36706, zatem 

kul (-f- p/)= 0'3495, kul (-f- p 2') = 0'3506°/0• 

r = 1'367 r = 1'367 

Jeżeli r0 = 2'53, to: z (2'53) = 0.0015, /(2'53) = 0'9547, h0 = 
- 0'00157, z czego r1 = 2'52843, zatem 

kul(- Pt'l =- 0'2020fo, kul (-p/)= - 0'20 'J90fo. 
r = 2.528 r = 2'528 

Przebieg błędów podstawowych wzoru B r e y m a n n a jest 
następujący: 

Dla walca wynoszą błędy podstawowe zero, tworząc równo~ 
cześnie skoki o następujących teoretycznych wartościach: 

[- a'] =-12'500fo, [-p/] =-14'29% , [-p/] =-12'50°/0 , dla 
r=O r = O r = O 

r = o·5 wykazują rz eczywisty ujemny błąd maksymalny o war­
tościach: max [- G'] = - 1'898°/0, max [-p/] = - 2'930°/0 i max 

- r = 0'5 r = o·s 
[- p / ]=- 2'848°/0, następnie maleją do zera dla paraboloidy, 

r = Q.5 

przechodzą w wartość dodatnią i tworzą kulminację z nastę­

pującemi wartościami: 

kul ( + (/) = 0'151 °/0, kul (+ p' 1) = 0'349% , kul (+ p' J = 
r=1 '328 r=1'367 r=1 '367 

= 0'351 °/o, poczem maleją do zera dla stożka zwykłego, przybie­
rają wartqść ujemną z kulminacją o wartościach: 

kul (-u') =-0'0575% , kul (- p'1)=-0'201 °/o, kul (-p' 2)= 
r = 2'494 r = 2·528 r = 2528 

=- 0'2019°/o, maleją do zera dla nejloidy, stają się dodatnimi 
i opuszczają interwał zmiennej .r dodatnim błędem maksymalnym 

·o wartościach: 

max [-f- a] =0'1520fo, max [ + p'J] = 0'682°/0, max [ + p'2] =0'6830fo. 
r = 3'5 r = 3·5 r = 3·5 
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B! q d przeciętny. 

Dla celów porównawczych obliczono przykłady : 

r=2·3 
1. t [a']u=O =-0'142% 

r=0·5 

r = 2·3 u = 0'8 
4. t [a] ' = - o·oo80Jo 

r = 0'5, u- 0·5 

r = 2·3, u = 0'8 
5. t [p1] =-0'01°/o 

r = 0"5, u = 0"5 

r = 2'3, u= 0'8 
6. l' [p2] =-0'010Jo 

r = o·5, u = 0'5 

t 1. Zestawienia i wnioski. 

55 

Ponieważ, jak już poprzednio podkreślono, nie mamy jeszcze 
ustalonych na podstawie pomiarów doświadczalnych ściślejszych 
interwałów wykładnika kształtu r i ilorazu średnic krańcowych 

u, dlatego też przy omawianiu relatywnej dokładności poszcze­
gólnych wzorów ksylometrycznych t. z. przy zaszeregowaniu ich 
ze względu na stopień dokładności będziemy opierali się również 

nadal na węższych interwałach zmiennych r i u, które poprzednio 
przyjęliśmy za ściślejsze, a mianowicie obraliśmy dla r ściślejszy 
interwał wahający się od r1 = 0'5 do r2 = 2'3, a dla u, o ile nie 
bę c zie chodziło o bryły całkowite, wartości od u 1 = 0'5 do 
u 2 = 0'8, jak to już uczyniliśmy przy obliczaniu błędów prze­
ciętnych dla pojedyńczych wzorów ksylometrycznych. 

Wychodząc z tego założenia sporządziliśmy cyfrowe zesta­
wienie błędów charakterystycznych tj. maksymalnych i prze­
ciętnych dla naszych sześciu wzorów ksylometrycznych przy 
przyjętych ściślejszych interwałach, wykazane w tabeli 12; na 

' 
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podstawie tego zestawienia możemy omawiane w niniejszej 
publikacji wzory ksylometryczne podzielić pod względem ich 
dokładności na trzy grupy, a mianowicie do pierwszej grupy za­
liczamy wzory S m a l ja n a i H u b er a, dokładniejszym jest 
wzór H o s s f e l d a, który tworzy grupę środkową, a grupę naj­
dokładniejszych wzorów przedstawiają wzory R i e ck e g o, S i~ 
m o n y e g o i B re y m a n n a, przyczem co do dwóch ostatnich, 
które podają ściślej objętość brył dendrometrycznych od wzoru 
R i e ck e g o, trudno ogólnie rozstrzygnąć, który wysuwa się na 
pierwsze miejsce. 

Ponieważ z tego cyfrowego zestawienia widzimy, że bez­
względna wartość błędów przeciętnych dla brył ściętych w od~ 
niesieniu do n i p 1, o który w praktyce przedewszysthiem 
nam cho~zi, nie przekracza dla wszystkich sześciu wzorów ksy­
lometrycznych wartości 1 °/0 , a w odniesieniu do pz przybiera 
dla wzoru S m a l ja n a wielkość 1"09°/0 podczas gdy dla innych 
wzorów również pozostaje poniżej 1 °/0 , z czego możemy wnios­
kować, że zastosowanie wzoru S m a l ja n a, a przedewszystkiem 
H u b er a do pomiarów metodą sekcyjną prowadzi do wyników, 
leżących w granicach dokładności wymaganej przy pomiarach 
doświadczalnych w dendrometqi. 

Na podstawie rozważań w części zastosowanej dochodzimy 
poza wnioskami natury ogólnej, umieszczonemi przy końcu częś~i 
teoretyC"Lnej, do następujących szczegółowy c h twierdz e ń, 
odnoszących się do omawianych sześciu wzorów ksylometrycznych: 

1. Błędy podstawowe wykazują w obrębie ustalonych ogól~ 

nych interwałów zmiennych r i u a n a l o g i c z n y przebieg; na~ 
leży bowiem zauważyć, że - jak orjentacyjne w niniejszej 
publikacji niepodane obliczenia wykazały - przebieg dla innych 
wartości na r może być dla poszczególnych rodzajów błędów 

podstawowych bardzo odmienny. 

2. Wzory ksylometryczne, nie posiadające przekroju w czu~ 
bie (H u b er, S i m o n y), wykazują dla walca t. zw. punkt 
pozornie ciągły; natomiast inne wzory (S m a l j a n, H o s s f e l d, 
R i e ck e, B re y m a n n) tworzą dla walca t. zw.punkt nie­
ciągły robiąc skoki o wartościach, mających tylko -teoretyczne 
znaczenie. Błędy te dla walca obliczają się dlatego, że funkcje 
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błędów przybierają dla górnego przekroju walca zero, co jest 
niedopuszczalnem. 

3. U tych czterech wzorów ksylometrycznych, które posia­
dają przekrój w czubie, spostrzegamy jeszcze to zjawisko, że 

wtórny błąd procentowy dla r = O i u = O równa się błędowi 

absolutnemu, wyrażonemu w odsetkach objętości walca podsta·· 
wowego, pomimo że posiadają wartość różną od zera. Wielkość 

tych teoretycznych wartości, które tworzą skoki w t. zw. punkta ch 
nieciągtych da się obliczyć według wzoru 

' ' 100 ' 100 
u.= p 2= m , apl=m-1' 

jeśli przez m rozumiemy sumę algebraiczną czynników przy 
poszczególnych powierzchniach przekrojów poprzecznych wystę­
pujących u dotyczących wzorów ksylometrycznych i tak m dla 
wzoru S m a l ja n a wynosi 2, dla wzoru H o s s f e l d a 4, dla 
wzoru H i e c k e g o 6, a dla wzoru B r e y m a n n a 8. 

4. Ze zwiększaniem się wartości na u bezwzględna wartość 

błędów podstawowych maleje t. zn. bryły całkowite wykazują 

największe błędy; z tego wynika wniosek, że wielkość btędów 

podstawowych jest wprost proporcjonalna do różnicy średn i c 

krańcowych. 

5. Ze zwiększ.aniem się wartości na u ewentualna kulminacja 
błędów podstawowych następuje dla r o wartości zmniejszającej 
się t. zn. kulminacja przy wzrastającem u cofa się w kierunku 
początku ukł.adu współrzędnych. 

6. Kulminacja błędów procentowych następuje dla większych 
wartości na r niż kulminacja odpowiadającego błędu absolutnego. 

Moim asyst. pp. E. Lorenzowi, Z. Selensowi i St. Smólskiemu 

skiadam serdeczne podziękowanie za laskawą pomoc przy żmud­

nych obliczeniach, które w niniejszej publikacji występują. 
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Objaśnienia i uwagi do tabel i tablic. 

Dwanaście dołączonych tabel odnosi się do następujących zagadnień: 

a) Tabela 1 podaJe wartości rzeczywistych objętości brył dendro­
metrycznych, wyrażonych w odsetkach objętości walca podsta­
wowego. 

b) Tabele 2, 3, 4 podają wartości funkcji błędów podstawowych 
dla wzoru S m a l ja n a. 

c) Tabele 5, 6, 7 podają to samo dla wzoru H u b er a. 

d) 8, 9, lO H o s s f e l d a. 

c) Tabela 11 podaje wartości funkcji błędów podstawowych dla · 
brył ca.Jkowitych dla wzorów R i e c k e g o, S i m o n y e g o 
i B r e y m a n n a. 

f) Tabela 12 podaje cyfrowe zestawienie błędów maksymalnych 
i przeciętnych dla sześciu wzorów ksylometrycznych przy inter­
walach r (0'5, 2'3) i u = O względnie u (0'5 i 0'8). 

Obliczenia szczególnych wartości funkcji błędów podstawowych usku­
teczniono zopomocą pięciacyfrowych logarytmów, w wypadkach wątpliwych 
posługiwano si ę również siedmiocyfrowymi logarytmami, a miejscami trzeba 
było uciec się do interpolacji poszczególnych wartości . 

Z powodów technicznych znaki algebraiczne umieszczono tylko dla 
u =O. przyczem należy rozumieć, że wartości funkcyj błędów dla wyższych 
warto ś ci na u p o siadają te same znaki iak dla u= O. 

C z te~ tablice przedstawiają wykresy następujących błędów: 
a) Tablica l. przedstawia przebieg błędów podstawowych przy 

wzorze S m a l j a n a dla wart ości na LI = O, 0·2, o·4, 0'6 i 0'8, 
b) Tablica II. przedstawia tosamo przy wzorze H u b er a. 
c)· Tablica III. przedstawia tosamo przy wzorze H o s s f e l d a 

dla wartości na LI = O, 0·2 i 0'4. 
d) Tablica IV. przedstawia przebieg błędów u' i p '1 przy wzorach 

R i e ck e g o, S i m o n y e g o i B re y m a n n a dla brył całko­
witych tj. LI= O, przyczem należy zauważyć, że z linij kresko­
wanych ta, która wykazuje mniejsze odchylenia od osi od­
ciętych , odnosi się do wzoru B re y m a n n a. 
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Tabela l. 

Rzeczywista objętość brył dendrometrycznych, 
wyrażona w odsetkach objętości walca podstawowego. 

[Wartości wzoru 6.) 

u 
03 o·4 o·s 0'6 0'7 
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o·8 (/ 9 

100'000 1 00'0001100'000 100'000 100 000 1 oo·ooo 1 oo ooo 1 oo·ooo 1 oo·ooo 1oJ·ooo 
90'910 90'91 0 90'9 10 90'910 90'910 909 10 90'914 90'948 91'290 93'299 
83'334 83'334 83'334 83 334 83'340 83•393 83'656 84'567 86'942 91'725 
76'923 76'923 76925 76'947 77"068 77"498 78'614 80'934 85'006 91'271 
71 '428 71 '428 71 "450 71 '585 72'048 73•158 75'282 78'786 83'964 90'998 
66'667 • 66'673 66'771 67'163 68'138 70'000 73'0201 77'412 83'318 90'833 
62'500 62'529 62'783 63'546 65'099 67'661 71'41 o 76'462 82'882 90'720 
58•823 58'903 59'395 60'596 62'710 65 886 70'220 75'765 82'570 90'643 
55'556 55'729 56'528 58'176 60'809 64'501 69'304 75'243 82•332 90'584 
52'632 52•946 54'085 56'175 59'270 63'399 68'583 74'832 82'145 90 541 
5o·ooo 50·5oo 52'000 54'500 58'000 62'500 68·'000 74 500 82 OllO 90'498 

47 '619 48'346 50'209 53086 56 '940 61 '756 67'521 . 74'230 81'878 9J"470 
45'455 46'445 48'659 51 '879 56'045 61'131 67 '117 74'003 81'780 90'445 
43'478 44'761 47'309 50 839 55•279 60'597 66'774 73'812 81'692 90'422 
41'667 43'261 46'129 49'937 54'619 60'137 66'483 73'645 81'622 90'405 
40'000 41'928 45'087 49'148 54'040 59'738 66'228 73'502 81 '557 90'388 
38'462 40'732 44'163 48'452 53'535 59'390 66'006 73'377 81 '498 90'375 
37'038 39'655 43'339 47 '831 53•084 59'080 65'808 73267 81'452 9J'363 
35'714 38 681 42'600 47'278 52'683 58'803 65'631 73'167 81 "405 9J•351 
34'483 37'801 41'935 46'781 52•324 58'557 65'474 73'082 81'370 90'342 
33'333 31'001 41 '334 46'333 52'001 58'334 65'334 73'000 81'334 90'333 

32'258 36'268 4Qoo787 45'926 51'708 58'133 65'205 72'930, 81'302 93'326 
31 250 35'601 40 287 45'556 51'440 57'951 65'088 72'862 81'276 90'317 
30'303 34'988 39'831 45219 51'195 51'781 64'983 72 803 81'244 90'312 
29'411 34'420 39'412 44'908 50'971 57'628 64'884 72'752 81'216 90'306 
28'571 33'898 39'025 44'621 50•766 51'489 64'794 72'702 81'195 90'301 
27'778 33'415 38'668 44'356 50•576 57•355 64'714 72'657 81'174 90'295 
27'027 32'967 38 336 44'111 50'399 57236 64'639 72'610 81'158 90288 
26'316 32 '549 38'028 43'883 50 •237 57'123 64'567 72'568 81138 90'286 
25'641 32'160 37 743 43'672 50'083 57'019 64'494 72•530 81'133 90'282 
25'000 31 '796 31'473 43'475 49'941 56'921 64434 72'495 81'1 04 90'278 

24'39 1 31'456 37'224 43'290 49'809 56'830 64'377 72•4631 81 098 90'273 
23 809 31'136 36'989 43' 115 49'682 56'745 64'320 72 '435 81 '082 90 270 
23 256 30'837 36'768 42'953 49'564 56'661 64'271 72 '405 8 1'070 90' :?67 
22'727 30'554 36'561 42'848 49'456 56'586. 64 223 72'380 81'060 90 266 
22'223 30'289 36'365 42'655 49'351 56 '519 64'18~ 72'357 81 052 90'262 
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T a b e l a 2. 

Wzór Smaliana. 
Bląd absolutny u, wyrażony w odsetkach objętości walca podstawowego . 

u 
o·o 0'2 o·4 o·5 (',•7 08 0'9 

l l 

o·o - 5o·ooo - 49·5oo -48·ooo -45·5oo --42·ooo -37·5oo - 32·ooo - 25·5oo '- 18·ooo- 9·5oo 
01 -40'910 40'410 , 39'910 36"410 32'910 28'410 22'914 16'448 9.290 2'80) 
0'2 -33'334' 32'834 31'334. 28'834 25'340 20'893 15'656 1 10 067 4'942 1'225 
0'3 - 26'923 26'423 2ł'925 22'447 19'068 14'993 1 0'614 6.434 3'006 0'771 
0'4 -21 '428 20928 19'450 17'085 14'048 10'658 7"282 4'286 1'964 0.493 
05 - 16,667 16'173 14'771 12'663 1 0'138 7'5')0 5"020 2'912 1'318 0'333 
0'6 - 12.500 12'029 10'783 9'046 7"09;) 5.161 3'410 1'962 0'8821 0'220 
0'7 - 8'823 8'403 7'398 6'095 4'710 3'386 2'220 1'265 0"570 0' 143 
0'8 - 5'556 5'229 4'528 ' 3'676 2'809 2'001 1'304 o·7-B 0'332 0'084 
o·9 - 2'632 2"446 2•085 1'675 1'270 0'899 0'583 0"332 ' 0'145 0'041 
1'0 o o o '· o o o o o o o 

1'1 + 2'381 + 2"154'+ 1'791 + 1'414 + 1'060 + 0'744 + 0'479 + 0"270 + 0'122 + 0'030 
1'2 + 4'5ł5 4'055 3'341 2'621 1'945 1'369 0883 0'497 0'220 0'055 
1'3 + 6'522 5"739; 4'691 3'661 . 2'721 1'903 1.226 0'688 0'308 : 0"078 
1'4 + 8'333 7'235 5'871 4'563 3'381 2"353 1'517 0'855 0'378 0'098 
1'5 -t-10'000 8"572 6"913 5'352 3'960 2'762 1'772 0'998 0'443 0'112 
1'6 + l 1'538 9'768 7'837 6'048 4'465 3'110 1'994 ['123 0'502 0'125 
1'7 -t- 12'962 10'845 8'661 6'669 4'916 3'420 2'192: 1'233 0'548 0'137 
1'8 -t- 14'2861 11'819 9'400 7'222 5'317 3'697 2 3691 1'333 0"595 0'149 
1'9 -t- 15'517 , 12'699 10065 7"719 5'676 3'943 2'526 • 1"418 0'630 0'158 
2'0 + 16.667 13'499 10'666 8'167 , 5'999 4'166 2'666 1'500 0'666 0'167 

2'1 -t- 17'742 -t- 14'~32 -t- 11'213 + 8'574 + 6'292 + 4'367 + 2'795 + 1"570 + 0698 + 0'175 
2'2 -t- 18'750 14'899 11'713 8'944 6'560 4'549 2'912 1'638 0'724 0'183 
2'3 -t- 19'697 15'512 12'169 9"281 6'805 4'719 3'017 1"697 0'756 0' 188 
2'4 + 20'589 16'080 12'588 9'592 7'029 4'872 3'116 1'748 6'784 0'194 
2'5 + 21'429 16'602 12'975 9'879 7 234 5'011 3'206 1"798 0'8051 0'200 
2'6 -t- 22'222 17'085. 13'332 10'144 7'424 5'145 3'286 1'843 0'8261 0'206 
2'7 + 22"973 17'533 13'664 10'389 7'601 5'264 3'361 , 1'890 0'842 0'212 
2'8 + 23'684 17'951 13'972 10'617 7"763 5"377 3'433 1"932 0'862 0'215 
2'9 + 24'359 18'340 14'257 10'828 7'917 5"481 3'506 1'970 0'867 0'218 
30 -t- 25'00\l 18'704 14'527 11'025 8'059 5'579 3 '566 2'005 0'896 0"222 

3'1 + 25'609 -t- 19'044 -t- 14'776 -t- 11 '210 + 8'191 + 5'670 ~ + 3'623 + 2'037 + 0'9J2 i+ 0'227 
3'2 -t- 26'191 19'364 15'011 11'385 8'318 5"755 3 '680 2'065 0'918 ' 0'230 
3'3 -t- 26'74~ 19'6631 15'232 11'547 8'436 5'839 3'729 2"095 0'930 0'233 
3'4 + 27'273 19'946, 15'439 11'652, 8'544 5"914 3'777 2'120 0'940 0'234 
3'5 + 27"777 20'211 15'635 11'845 8'649 5"981 3'819 2'143 0'948 0'234 
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T a b e l a 3 . 

Wzór Smaliana. 
Zasadniczy błąd procentowy p 1• 

r 1- o·o 0'1 

u 
()'4 - , - o·5 0'8 0'9 

o·o - 1oo·ooo - 98·o2o - 92'308
1
- 83'486(-72'414 - - 6o·ooo - 47 '059!-34'2281-21'951 - 10·497 

0'1 - 81 '820 80'020 74'8271 66'8071 56'741 45'456 33 697 22'078 11 '329 3'094 
0'2 - 66'668 65'018 60'258 52'906 43'690 33'429 23'024 13'513' 6'027 1'353 
0'3 - 53'846 52'323 47'933 41'187 32'876 23'996 15'609 8'6361 3'666 0'852 
o.4 - 42'856 41·441 37'404 31'349

1 

24·221 17'053 1 o·7o9 5·753 2·395 o·55o 
o·5 - 33·334 32'422 28·466 23·23s 11·474 12·ooo 7'382 3·909 1·507 o·35~ 
0'6 - 25'000 23'820 20'737 16'598 12'240 8'258 5'015 2'634 1'076 0'245 
0'7 - 17'646 16'640 14'227 11'185 8'121 5'418 3'265 1'698 0'695 , 0'157 
o 8 - 11·112 10 354 8'708 5·745 4·843 3·202 1'918 o·997 o·4o5 · o·u92 
0'9 - 5'264 4'844 4'010, 3'073 2'190 1'438 0'857 0'446 0'177 0'045 
1'0 o o o l o l o o o o o o 

1'1 + 4'762'+ 4'265'+ 3'4441+ 2'595 + 1'828 + 1'1901+ 0'704 + 0'3621+ 0'1491+ 0'033 
1'2 + 9'090 8'030 6'425 4'809 3'369 2'1901 1'299 0'667 0'268 0'067 
1'3 + 13'044 11'364 9'021 6'717 4'691 3'045

1 
1'803 0'9231 0'376 , 0'086 

1'4 + 16'666 14'329, 11'290 8'372 5 829 3'781 2'231 1'148 0'461 G'105 
1'5 + 20'000 16'9741 13'294' 9'820 6'828 4'419 2'606 1'340 o 540 0'124 
1'6 + 23'076 19'343 15'071 11'097 ' 7'698 4'976 ' 2'932 1'507 0'612 0'139 
1'7 + 25'924 21 '4751 16'656 12'2371 8'476 5'472 3'224 1'655 0'6681 0'157 
1'8 + 28' 572 23'404 18'077 13'251 9'167 5'915i 3'482 1'7891 0'726 o 164 
1'9 + 31'034 25'147 19·356 14'163 9'786 6'3091 3'7151 1·903 0·76SI 0·175 
2'0 + 33'3341 26'731 20'512 14'9351 10'343 6'0661 3'921 2'0131 0'812: 0184 

2'1 + 35'484l-!-'28'1821+ 21'51i3 + 15'732[+ 10'848 + 6'9871+ 4'1101+ 2'1071+ 0'851 1+ 0'193 
2'2 + 37 '5001 29'503· 22'525 16'411 11'310 7•278 . 4'282 2'199 0'8831 0'202 
2'3 + 39'394 30'717 23'402 17'029 11'73.3 7'550 ' 4•437• 2'278 0'900• 0'208 
2'4 + 41'178 31'8421 24'208 17'600

1 

12'119 7'7951 4'582, 2'346 0'956
1 

0'215 
2'5 + 42 '858 32'8751 24'952 18'127 12'472 8018, 4'715 2'413, 0'982 0'220 
2'6 + 44'444 33'832 25'6381 18'613 12'800 8'2321 4'812 2'474 ' 1'007 0'226 
2'7 + 459461 34'7291 26'2771 19'0621 13'105 8'422 4'943; 2"537 1'027 0•234 
2'8 + 4 7 3681 35'547 26'8691 19'481 1 13'384 8'603 5'049 2'593: 1'051 0·236 
2'9 + 48'718 36'317 27.417 19'868 13'650 87701 5'156 2'644 . 1'057 0'240 
3·o + 5o·oooi 37·0381 27.937 202291 13.895 s ·926 5'244 1 2·591 1 1·093 ~ o·245 

3'11 + 51'218 + 37'711 1+ 28'415 + 20'5691+ 14'122 + 9'0721+ 5'3281+ 2'7341+ 1'1001+ 0'249 
3'2 + 52'382 38'345 28'867 20'8901 14'341 9'2081 5'412 2 7721 1'120 0'253 
3'3 + 53•488 38'9371 29'292 21'187 14 545 9'3421 5'484 2'812 1'134 0'257 
3'41+ 54'546 39'4971 29'690 21'379 14'731 9'4621 5'5541 2'846 1'146' 0'258 
3'5 + 55'554 40'022 i 30 067 21'734 14'912 9'5701 5'616 2•877 1'155 0'263 
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T a b e l a 4. 

Wzór Smaliana. 
Wtórny błąd procentowy p2. 

u = 
0'2 0'4 l 05 06 0'7 o·8 0'9 

l 
o·o - 5o·ooo - 49 ·soo -48·ooo - 4S·5oo - 42 ooo - 37'5001- 32 000 --25'500 -18'000 - 9'500 
0'1 - 45'000 44'450 42'800 40'051 36'201 31'252 25'204 18'085 10•176 3'001 
0'2 - 40'000 39'400 37 '600 34'601 30'406 25'054 18•714 11 '904 5'684 1'335 
0'3 - 35'000 34'350 32'402 29172 24'742 19'352 13'501 7'950 3'536 0'875 
0'4 - 30'000 29'299 27'222 23'867 • 19'498 14'568 9'673 5'440' 2'339 0'547 
o·s - 25'000 24'257 22'122 18'854 14'879 10'714 6'875 3'7621 1'582 0'365 
0'6 - 20'000 19'237 11'1751 14'235 10'905 7 628 4'775 ' 2'566 1'064 0'242 
0'7 - 15·oao 14'265 12'455 10'050 7'511 5'139 3'150 1'670 0'690 0'157 
o·8 - 10'00J 9'383 8'0101 6'319 4'619 3'102 1'1S82 0'987 1 0"403 0'092 
o·9 - 5·ooJ 4'620 3 855 2'982 2'142 1'418 o·8so 0'444 0'177 0'045 
1 '0 o o o o o o o o l o o 

1.1 + 5'0)0 + 4'455 + 3'558 + 2'654 + 1'862 + 1'2051+ 0'709 + 0'364 + 0'149 + 0'033 
1'2 + 10'000 8'731 6 865 5'0521 3'486 2'2401 1'3161 o 672 0'269 0'061 
1'3 + 15000 12'821 9 916 7'201 4']22 3'14::1 1'836 0'9321 0'377 o·o85 
1'4 + ~o ooo 15'725 12'727 9'138 6 '190 3'929 2'282 1'161 1 0'463 0104 
1'5 + 25'000 20'445 15'333 10•890 7'328 4'624 2'6761 1'35S 0'543 0'124 
1'6 + 30000 23 981 17•746 12'482 8'340 5'237 3'021 1'530 0'616 0'129 
1'7 + 35'000 27'348 19'984 13'9 t3 9'261 5'789 3 331 1'683 0'673 0'151 
1'8 + 4J'OOO 3)'555 22'065 15'275 10'092 6'287 3'óiO 1'822 0'731 0'164 
1'9 + 45'000 33•594 24'001 16'50J 10'848 6'7341 3"858, 1'940 0'774 0'175 
2'0 + 50 000 36'483

1 
25'8()41 17'627 1 11 '536 7'142 4'081 2'0551 0'819 0'185 

2'1 + 550Q) + 39"!41 + 21'492 ,+ 18'670 + 12'168 + 7'512 + 4'286 + 2'153 -f 0'859
1
+ 0'192 

2'2 + 60'000 41'850 29074 19 633 12'753 7'850 4'474 2'248 0'891 0'203 
2'3 + 65'00J 44'335 30'552 20'525 13 '292 8'167 4'643 2'331 0'931 0'208 
z·.J. + 70'000 46'717 31'940 21'359 13'790 8'454 4'802 2'403 0'955 0'215 
2'5 + 75· J OO 48'976 33'247 22'140 14 250 8'7161 4 948 2'473 0'991 0'221 
2'6 + 8:)'000 51'130 34'478 22'870 14'679 8'970 5'0781 2'573 1'018 o·227 
2'7 + 8s·ooo 53'183 35'6441 23'552 15'082 9'197 1 5'200 2'603 1'037 0'235 
2:8 + 9o·ooo 55'151 36'741 24'194 15'453 9'413 5'317 2'662 1'062 0'237 
2'9 + 95·0JO 57'027 37 774 24'794 15'808 9'613 5'436 2 716 1'059 0'241 
30 + 100'000 58'825 38'768' 25359 16'137 9'801 1 5 534 2'766 1 '105 0'246 

l l 

3'1 + 105'000 + 60'542 + 39695 + 25'895 1+ 16'445 + 9'9771+ 5'6281+ 2'811 + 1'112 + 0'251 
3'2 + 11 o·oo9 62·192 40·582 26'406 1 16'742 10'1421 5'721 1 2 851 l 132 0'254 
3'3 + 115'001) 63'764 41'427 26'883· 17'020 1 0'305 5'8021 2'893 1'147 0'258 
3•4 + 120·QOO 65'281 42'228 27 ' 19~ 17'276 10'451 5881 2'930 1'160 0'259 
3'5 + 125'000 6 ~' 727 42'995 27•769 17'525 1 o·582 5'950 2'962 1'170 0'263 



.TEORJA DOKŁADNOSCI WZORÓW KSYWMETRYCZ NYCH 63 

T a b e l a 5. 

Wzór Huber'a. 
Bląd absolutny u., wyrażony w odsetkach objętości walca podsta.vowego. 

r l o·o o·1 0'3 

u 
o.4 o·5 0'6 08 09 

o·o o o ~: o o o o o o o o 
0'1 + 2'394 + 2•394+2"394 + 2"394 + 2 394 + 2"394 + 2"390 + 2"362 + 2•122 t-1'081 
0'2 + 3"720 3"720 3'720 3'720 3•716 3"677 3 502 2'973 1'906 0'696 
03 + 4'302 4'302 4"300 4'285 4"212 3'967 3'410 2'482 1'338 0376 
0'4 + 4'358 4"358 4'347 4'275 4'048 3"567 2"808 1'860 1)'920 0'246 
o·5 + 4'045 ' 4'042 1 3'997 3'834 3"474 2'888 2'133 1'332 0"636 0'165 
0'6 + 3475 3'464 3'377 3"1421 2'726 2'167 1"533 0'924· 0'430 0'112 
0'7 + 2'734 2'714 2"593 1 2'337 1"958 1'501 1"031 0'613 0'278 ' 0"071 
0"8 + 1"879 1'8521 1'728 1'514 1'231 o 922 0'623 0'362 0'166 0'042 
o·9 + 0'956 0'932 0"850 0'725 , 0'574 0"424 0"280 0'161 0'075 0014 
1'0 o o o o o o o o o o 

1'1 - 0'967 -0.913 -0 798 - 0'655 - 0'502 -0'360 -0'238 - 0 135 - 0'058 - 0'015 
1'2 - 1928 1'790 1'536 1'238 0'942 0'672 0'437 0'250 0'112 0'029 
1'3 - 2'865 2'606 2"2021· 1"755 1'324 0'937 0"60b 0'344 0"152 0'038 
1'4 - 3"774 3"378 2'808 2"215 1'663 1'166 1 0"753 0"427 0'192 0'047 
1 5 - 4'644 4'081 3353 2"624 1'954 1'368 0'882 0'495 0'219 0'054 
1'6 - 5475 4'728 3'838 2"986 2"215 1'549 0"997 o·5o2 0'248 0'063 
1'7 - 6'260 5"311 4'273 3'308 2'446 1'705 1'094 0"619 0"274 o·o j 9 
1'8 - 6'996 5'837 4'665 3'593 2 650 1 845 1181 0·6M 0•292 0'072 
1'9 - 7'689 6'317

1 

5"017 3"850 2'836 1'971 1"261 0'710 0'315 0"079 
2'0 - 8"333 6'752 , 5 334 4"084; 3'001 2"084 1'331 0"750 0"336 0"083 

2'1 - 8'9321-7'140 - 5'619 --4'291 -3'150 - 2'1841-1'398 - 0'788 - 0"350 ·-0'087 
2'2 - 9'486 7'494 - 5"875 4'481 3'284 2·280 1·457 o·M 5 o·3'58 o·o9o 
2.3 - 9'997 7'814 6'11 o 4"654 3'408 2'3621 1'51 o 0"850 0'377 o 094 
2'4 - 10'464 j 8'102 6'323 4 811 3"521 2'442 1"560 0877 0'384 0"096 
2'5 -10'893 8'362 6'516' 4'951 3'622 2'512 1'603 0'904 0'395 o 099 
2'6 - 11'284 7'600 6'692 5•083 3'717 2 575 1'647 0'927 0'408 0'102 
2•7 ·-11"6381 8'816 6'853 5"204 • 3'805 2"633 1'637 0"945 0"418 0'104 
2'8 - 11"957 9010 7'000 5'316 3'887 2"688 1'720 0'963 0'422 0"106 
2'9 -12'244 9'188 7"139 5'419 3'960 2'741 1 1'748 0"983 0'433 0•110 
3'0 - 12 500 9"352 7'262 5'514 4'029 2'790 1'778 0998 0'442 0"111 

3•] - 12'7281- 9'501 - 7"3801- 5 6021- 4'094 -2'835!- 1·808 - 1'0151--0'454 - 0'112 
3'2 - 12'927 9'636 1'487 5"683 4'155 2'879 1'838 1'037 0'459 0'115 
3•3 13'103 9'762 7'587 5'7591 4'212 2'918 1'858 1'045 0"462 0'116 
3'4 - 13'254 9'876 7'6791 5 880 4'263 2'9531 1'8871 1'0581 0'474 1'118 
3'5 - 13'384 9'932 7 764 5"898 4'313 2'986 1"911 1'070 0'475 1' 118 

l 



o· o 
0'1 + 
0'2 + 
0'3 + 
0'4 + 
o·5 + 
0'6 + 
0'7 + 
o·8 + 
o·9 + 
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T a b e l a 6. 

Wzór Huber'a. 
Zasadniczy bład procentowy p1• 

o·o o 1 0'2 0'3 0'6 

l 
o o o o o o o 

2'565 + 2"556 + 2'5661+ 2'566 + 2'556 + 2'566 + 2'562 
4'274 4'274 4'274 4'274 4"270 4222 4'018 
5"296 5'296 5"294 5'276 5'180 4'870 4"157 
5'750 5'750 5'735 5'635 5"320 4'650 3'597 
5'718 5'714 5'646 5'3981 4'847 3'960 2837 
5267 5'250 5'106 4'712

1 
4'020 3'102 2'102 

4'442 4'404 4'184 3'715 ' 3'027 2'220 1'447 
3•272 3'217 2'967 2'537 1'982 1'408 0'890 
1'785 1'730 1'547 1'275 0'960 o·6S5 0'407 

1'0 . o o o o l o 
l 

o o 

1'1 - 2'072 - 1'926- 1'616 - 1'2421 -0'891 -0'586 ' -0'353 
1'2 - 4'429 4'010 3"257 2'445 1'712 1'112 0'653 
j·3 - 1'056 6'183 4'881 3"576 2'455 1'571 0'916 
1'4 - 9"959 8'470 6'456 4'640 3138 1'977 1'147, 
1'5 - 13'138 10'785 8'032 5'641 3'755 2'345 1'351 
1'6 - 16"595 13'131 9'515 6"568 4'317 2'676 1'533 
1'7 - 20'333 15'462 10'938 7'429 4'831 2'971 1'691 
1'8 - 24"353 17'773 12'297 8•225 5295 3·240 1'833! 
1'9 - 28'694 20'0641 13'592 8'968 5'731 3'483 1'965· 
2'0 - 33'333 22'036 14'8181 9"665 6'123 3'7051 2'084 

l 

o 
+ 2'532 

3'397 . 
2'976 
2'305 
1'690 
1'195 
o·8o2 
0"477 
o 214 

o 

- 0'182 
0'340 
0'468 
0'581 
0'681 
0'772 
0851 
G·914 
0'981 j 
1'0371 

2'1 - 3s·294J----124·5141-15'9761- 1 o·3o5J - 6-485 - 3'902: -2'190: -1'093 
2'2 - 43'590 26'663 17'076 1 0'91 o 6'820 4'095 2•290 1'133 
2'3 - 49'231 1 28'753 18'118 11'474 7'133 4'263 2'379 1'181 ' 
2'4 - 55"236 30'782 19'108 11'997 7'420 4'424 2'464 1'219 
2'5 - 61'6261 32'748 20'044 12'484 7"680 4•571 2'540 1 1'260 
2'6 - 68'4151 34'6531 20•9251 12'944 7933 4'700 2'612 1'293 
2'7 - 75'624 36'503 21'767 13'376 8'165 4"824 2'679 1'319 
2'8 - 83'274 38'274 , 22•563 13'784' 8'380 4"937 2•733' 1'347 
2'9 - 91'395 40'000 23'3281 14'166 8'585 5'051 2'788 1'374, 
3.0 - 1oo·ooo, 44'671 1 24"040 14'524, 8'775 5"152, 2'8401 1'395 ' 

o·8 o·9 

o o 
+ 2'272 + 1'147 

21 46 0'754 
1'550 0'410 
1'085 0'269 
1"755 0'181 
1"517 0'121 
0'335 0'078 
0'200 0'045 
0'092 0'016 

o o 

--0'072 -0'017 
0'139 0'028 
0'186 0'041 
0'237 0'053 
0'272 0'061 
0'307 0'069 
0'337 0'076 
0'360 o·o81 
0'388 0'087 
0'414 0'092 

l 

-0'432 - 0'097 
0'455 0'100 
0'465 0"105 
0'475 0'106 
0'491 0'111 
o·5o5 0'114 
0'516 0'115 
0•523 0'119 
0'539 0'122 
0'547 0'124 

3'1 -1091291-43'2771- 24'7261-14'8561 -8'955 -5'25 ti -2'888! -1'421 1 - o·563 ' - 0·125 
3'2 - 118'800 44'820 25'3771 15'184f 9'128 5'344 2'938, 1'451 0'569 0'127 
3'3 - 129'0471 46'323 ~ 26'000 15'4841 9'290 5 432 1 2'979 1"465 0572; 0'129 
3'4 -139'911 47'762 26'588 15'7721 9'433 5'507 3"0261 l 484 1 0'588 0'130 
3'5 -151'418 49"159 27.144 16 049 9'578 5'580 3'071 ' 1 '502 0591 0'130 
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T a b e la 7. 

Wzór Huber'a. 
Wtórny bląd procentowy p2• 

u 
Q•] 
------------------- ~-----------------

0'4 l o·s o·6 o ·2 0'3 0'7 0'8 o·9 

o·o o o o o o o o o o o 
0'1 + 2"633 + 2"633 + 2'633 + 2'633 + 2"633 + 2'633 +2"629 + 2'598 + 2'324 + 1"158 
0'2 + 4'46-1 4'464 4'464 4'464 4'460 4·41 o l 4·186 3·517 2·193 o·76o 
0'3 + 5'593 5"593 5"590 5'571 5'463 5'1191 4'3381 3"067 1"574] 0"412 
o·4 + 6'101 6'100 6'083 5971 1 5"620 4'4761 3 731 2'360 1'098 0"269 
o· s + 6'063 6 os9 s·983 s 101 s·o9s 4124 2·919, 1·119 o·16o, 0·181 
0'6 + 5'551 1 5'541 5"380 4'944 4"188 3'2021 2'148 1'209 0'5191 0'122 
0'7 + 4'648 4'607 4'367 3'857 3"121 2"270 1'467 1'809 0"337 0'079 
o·8 + 3'383 3'324 3'057 2'602 2'023 1'428 o·898 ' 0'480 0'200 0'045 
o·9 + 1'817 1'760 1'571 1'291 0"970 0'670 0'409 0'214 0'093 o·o15 
1'0 o o o o o o o o o o 

1"1 - 2"030 - 1'888 - 1'590 - 1'227 -0"882 - 0·582 - 0 352 - 0'1 82 - 0'072 - 0"017 
1'2 - 4"240 3'854 3'154 2•386 1"682 1'100 0'650 0"337 0'138 0030 
t·3 - 6'590 5'822 4 655 3'452 2'395 1"547 0'907 0'466 0'1 86 0"041 
1"4 - 9"056 7'808 6'064 4 435 3"042 1'938 1'132 0'578 0'237 0'052 
1'5 - 11'•i12 9'735 7'434 5'3401 3'620 2"292 1"334 0'677 0'272 0060 
1 6 - 14'233 11'606 8'688 6'164 4'137 2'606 1'510 0"766 0'.306 0'068 
1"7 - 16 898 13'392 9"860 69151 4'608 2'886 1'662 0'844 , 0'335 0'076 
1'8 - 19'590 15'092 10'950 7'600 5'030 3'138 1'800 0'905 0'351!1 0'081 
1'9 -22'2971 16"710 11'966 8'230 5'420 3"366 1'927 0'972 1 

0"3861 0•087 
2'0 -2s·ooo, 18'058 12.906 8 8141 5'570 3'572 2'042 1'026 0•412 0'092 

2'1 - 27 '690 - 19'688 - 13'H6 - 9 '344 -6'090 - 3'757]- 2"144 - 1'080 - 0'430 -0'096 
2'2 -30'357 21'050 14'586 9•8361 6'384 3'934 2'238 1·120 o·452 o·o99 
2'3 -32'990 22"332 15 340 10'292 6'657 4'088 2'324 1'167 0'464 0' 104 
2"4 -35"581 23'537 16'042 1 0'712 6906 4'236 2'405 1'204 0'472 0'107 
2'5 - 38'129 24'670 16'692 11"078 7'134 4'370 2'476 1'245 0'490 0'111 
2"6 - 40'623 25'735 17'305 11'460 7'350 4'490 2'546 1"277 0'502 0'113 
2'7 - 43'060, 26'742 17'876 11 '798 7"550 4'602 2'608 1'302 o 515 0'114 
2"8 -45'436 27'680 18'410 12'114 7'732 4'705 2"660 1"330 0'522 0'118 
2'9 -47'752 28•572 18'915 12'408 7'906 4'808 2'71 2 1'356 0.536 0" 121 
3'0 -- so·ooo 29'413 19'380 12"682 8"067 4'900 2'760 1·376 0'544 0'123 

3'1 - 52'182 - 30'206 - 19'825 -12'9421-8'220 - 4·99o:- 2·8o3 - 1'402 - o·sGo - o 124 
3'2 - 54'297 , 30'949 20'242 13182 8'364 s·o12 2·355 1'430 o· 565 o·125 
3'3 - 56" 341 31'657 20'635 13'408 8'500 5•152 2"892 1'445 0570 0'128 
3'4 - 58•3!8 32'323 21'003 13'622 ' 8'620 5'220 2'938 1'462 o 585 0'132 
3'5 - 60"226 32'957 21 '350 13'830 8'740 5'285 2'980 1'480 0'587 0'132 

l 

5 
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T a b e l a 8. 

Wzór Hossfeld'a. 
Bł4d absolutny a, wyrażony w odsetkach objętości walca podstawowego. 

u= 
r 00 0'1 0'2 0'3 o 4 l 0~5 0'6 0-7 o·8 o·9 

o·o 25·ool l-24'750
1

-24·ooo -22·75o:-21·oo:J -18'75o
1

-J6·oool-12'75o1- 9·ooo1- 4·75~ 
O'i · -18'8991 18·6~0 17'890 16'640' 14'890 12'6401 9'8941 7'304\ 3·2321 0'604 
0'2 - 14'1 74 t 13•9:25 13"175 1 11'9251 10'181 7"9771 5 4551 2'966 1'058 0'142 
0'3 - 10'5131 102631 9'515 8'284 6'637 4'740 2'8761 1•364 0'428 0'0Ci3 
oA - 7'657 7·4o7 6'675 5·5341 4'147 2·741

1 
1·53o o·675 o·2oo o·o24 

o·5 - 5·429 5·134 4·5o9 3·551 1 2·510 1 5631 o·83o o·3s1 1

1 

o·1o1 o·o12 
o·6 - 3'6951 3·466 2·395 2= 1741 1·457 o·873 o·4491 o·1s5 o·o53 o·oo6 
o·7 - 2·355 2·153 1'731 1·z4s o·8o8 o·457 o·237 o·o95 o·o21 o·oo3 
0'8 - 13331 1'185 0'916 0'637 0'401 0'227 0'112 0'0451 0'013 0"001 
o·9 - o·s631 o·4B6 0·352 o·245l o·152 o·o84 o·o41 1 o·o16 o·oo5 o·oo1 
1'0 o o o l o o o o o o o 

1·1 + o·394[+ o·3191+ o 222!+ o 1241

1

+ o·o89 + o·o47 + o·r 21 + o·oo9 + o·o J31+ o·ooo 
1·2 + o·651 l o 5181 o·3451 o·221 o·131 o·o11 o·o35 o·o12 o·o:J4 o·ooo 
1·3 + o·795 o·597 o·398l o·252 o·148 o·o79 o·o38 o•ot5 o·oo4 o·oo1 
1·4 + 0'847 o·614 o·4o1 o·25ol o·144 o·o?B o·o37 o·o14 o·oo4 o·oo1 
1.5 + o·8251 o 57 o o 371 1 o 23o o·134 o·o72 o·o34 l o•o13 o·oo3 o·oo1 
1.6 + o·741 o·499i o·317 o·194 o·111 o·o6o o·o3o o·o11 o·oo3 o·ooo 
1·7 + o·6081 o·397 o·250 o·154 o·o88 o·o45 o·o24 o·oo9 o·oo2 o·ooo 
1·8 + o·4351 o·275 o·1121 o·1 o3 o·o6o o·o31 o·o11 o·oo6 · o·oo2 o·ooo 
1·9 + o·23ol o·141 o·os6 o.o54 o·o3o o·o16 o·oo9 o·oo3 o·oo1 o·ooo 
2'0 + o o o o o o o o l o o 

2·1 - o·24!l - o·143- o·o87 ~- o·o5ol- o·o31 - o·o161- o·oo8- o·oo3- ooo1 1- o·ooo 
2 2 - 0·512 o 290 o·17-ł o·1o3 o·o5o o·o34 o·o14 o·oo61 o·oo2l o·ooo 
2·3 - o·787 o·437 o·251 o·1571 o·o88 0'048 o·o24 o·o'19 o·oo2 o·ooo 

~:~ = ~-~~~ l g:~~~ g:~~~ ~ g:~~~ l g: ~ l~ g:g~~ g. g~~ g: g~ 11 g:gg~ g:gg? 
2·5 - 1'6421 o·8so , o·5oo o·299 o·11o o·o9o o·o43 o·o15 o·oo5 o·oo1 
27 - 1·9301 o·98ol o·581 0'34.>1

1 

o·195 o·1o4l o·o51 o·o19! o·oo5 o·oo1 
2'8 - 2"2171 1'1 06 0'656 0'387 0'222 0'117 o 058 0'021 0'006 0'001 
2·9 - 2'499 1·225l o·724 o·423 o·243 o·13ol o·o52 o·o24 o·oo7 o·oo1 
3'0 - 2'778 1'341 0'789 o 466 0'265 0'141 0.064 0'0261 0.007 0'001 

3·1 - 3·o5a- 1·4521- o·857 - o·5J4- o·287- o·152'- o·o691- o·o281- o·oo8 1
- o·001 

3'2 - 3'318 1"557 0'918 0'5'8 0'307 0'162 0'074 0'030 0'009 0'001 
3·3 - 3·579 1·o6D o·975 o·576 · o·325 o·111 o·o8o l o·o321 o·oo9 o·oo1 
3·4 - 3'832 1'756 1·0.>1 o·6o8 o·347 0'183 o·o86 o·o34 o·o10 o·oo1 
3'5 - 4'077 1'851 1'0851 0•640 0'364 0'195 0'094 0'036 0'010 0'001 
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Tabela 9. 

Wzór Hossfeld'a. 
Zasadniczy błąd procentowy p 1• 

r ~ -----~-----------,-----,----u_,----~------,-----,-----,----
1 o·o o 1 o·2 1 o 3 o·4 1 o· s o·6 o·1 o·8 o·9 

o·o -33 333
1

-32·889 -31·5801-29 449
1
- 26·581 --23'078

1
-19'0471-14'61 31- 9'890 - 4·977 

o·1 -26·2291 2s·191 24soo1 22'4os ! 19'589 16·1521 12·2121 7·919 3670 o·651 
o·2 -20·495 2o·o5o 18'779

1 
16'7oo

1
1 13·915 1 o 581 1·224 3'635 1·232, o tss 

o·s -15'832 15·393 14·111 12o6s 9·425 6'515 3·s6o t ·715 o·so6 o·os8 
o·4 -12·oo8 11 ·571

1 
1 o· 3M 8·3781 6108 3 8921 2·o1s o·864 o 239 o·o26 

o· s - 8'865 8'430. 7'243 j s·882l 3·325 2"285 1·149 o 455 o·123 o·o10 
0'6 - 6 285 5'8691 4'773 3"543 2 303 1'307 0'633 0'243 0"064 o 007 

g:~ = n~bl ~ :~~~ ~ f:~~~ ~:~~~ ~, ~:~~~ g:~1; g:f~i g:~~~ g:gf~ ~ g:~~~ 
o·9 - 1·081 o·928 o·575 o·438l 0256 o·131 o·o52 o·o22 o·oo6 1 o·oo1 
1'0 f, o o l o o o o o o o l o 

1·1 + o·82ol+ 0656 1+ 0441 1+ 0211 + o·1s4 + o·o76/+ o·o32:+ o·o12l+ o·oo3
1
+ o·ooo 

1·2 + 1·4131 1·081 o·7o4 0·423 0·232 011s o·os31 o·o18/ o·oos o·oo1 
13 + 1·795 1·318 0'8321 o·492 o·267 o·129 ooss o·o2o o·oos j o·oo1 
1·4 + 1·912 1 '397 o·864 o·493 o 264 o·131 1 o·oss ' o·o2o' o·oos o·oo1 
1·5 + 2·022 1·355 o·819 o·464 o·245 o·12o o·os3 o·o18 o·oosl o·oo1 
1·6 + 1·391 1·213 o·111 1 o·3981 o·2o5 o·1o1 o·o41 o·o1s1 o·oo4 1 o·oo1 
1·1 + 1615 o·992 o·s74 o·32o j o·168 0'076 o·o35 o·o121 ooo31 o·ooo 
1"8 + t ·202 0"707 o·4ool o 216 0'113 0'051 1 0'025 0'0081 o 002 o 000 
1 9 + o·662

1 
o·372 o2os1 o·11s o·os8 o·o28 o·oo9 ooo41 6·ool o·ooo 

2·o + o 1 o , o 1 o 1 o o 1 o o 1 o 1 o 

2·1 - 07791- o·4o1 ~- 0·2141- o·111 1
- o·os8 - o·o321- o·ot41- o·oo1 1

- o·oQ11
1
- o·ooo 

n - 1 '668 o·830 o·434 o·228 o·1'18 o·o6o
1 

o·o21 1 o·oo9 o 002 o·ooo 
2·3 - 2'6691 1'263 0'661 1 o·348

1 

o·175 o·o8s l o·o37 o·o13) o·oo31 o·oo1 
2•4 - 3'771 1 1'7001 0'8881 0"457 0'228 o 106 0'0441 0'016 0004

1 
0'001 

2·s - 4·974 2·181 1·1os o·s73 o·284 o·129 o·oss ; o·o2ol o·oos 1 o·oo1 
2'6 - 5·235 , 2·610 1 ·323l o·579 o·337 o·1 s7 o 067 o·o24 o·oo6 o·oot 
2'7 - 7'6901 3'062 1"5381 0'784 0'388 0'1821 0'078 11 0'0271 0'007 0'001 
2'8 - 9·2oo 3'517 1·754 o·890 o·443 o·2os o·o9o o·o3o o·oo1 o oo1 
2·9 - 1o·8oo 3·953 1'958 o·988 o·489 0231 o·o94 o·o331 o·oo8 o·oo1 
3·o - 12·5oo1 4·4os 2·1s3i 1·083 0533 02471 o·Jo6 j o·o36 • o·oo9 o·oo1 

3'1 - 14'297 - 4'836- 2"355 - 1'179 - 0'580- 0'270 1
- 0'110- 00391- 0'0101- 0'001 

3'2 - 16189 5·266 2542 1'265 o·521 o·288 o·11s o·o4 2 o·o1o o·oo1 
3'3 -18187 5'689 2'721 1'361 0'661 0304 0127 0'045 0'011 0'00 1 
3·4 -2o 281 6·099 2·903 1'438 o·1o1 o·325 o·134 o 047 , o· od o·oo1 
3·5 - 22·4721 5·sos 3·074 1·522 o·744 0.346 o·147 o·oso1 o·o12 o·oo2 

l l 

5* 
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T a b e l a 10. 

Wzór Hossfeld'a. 
Wtórny błąd procentowy p,. 

r l o O l 
u= 

0'4 l o 5 o·8 · 1 02 0'1 o·9 0'3 0'6 

o·o -25ooo

1

1

-24·749[-24·ooo -22·750 -2o 999 -18'75ol-16·ooo -12·130- 9·ooo- 4 750 
0'1 - 20 778 20'503 19'679 18'304 16 380 13'907 11'293 7"338 3 540 0'647 
0'2 - 17010 16'708 15'810 14'310 12.215 9'568 6'737 3•508 1'217 0"155 
0'3 -13'671 1 13'344 12'371 10'766 8'614 6'116 3'437 1'6861 0'503 0'058 
0'4 -10"720 10'371 9'341 7"730 5.768 3•746 2'033 0857 0232 0'026 
o·5 - 3·122 7·775 5·754 5·281' 3.68~ 2·234 1·135 o·4s3 o 121 o·o1o 
0'6 - 5•9121 5"544 4'556 3'422 2 252 1'290 0'629 0'242 0'063 0'006 
o·7 - 4 oo5 3·66 ł 2·913 2·018 1.290 o·7o9 o·:ns o 126 o·o33 o·oo3 
o·8 - 2·4001 1·128 1 619 1·097 o·661 o·352 o·151 oo5o o·o15 o·oo2 
0'9 - 1'070 o 919 0'670 o 437 0'255 0•131 0'0621 0'022 0'0061 0'001 
1'0 o o o o o o o o o o 

1·1 + o·8281+ o·660 + o·443 + 02121+ o·15-1 + o·o76 + o·o321+ o·o121= o·oo3 + o·ooo 
1 2 + 1 A33 1 ·o93 o·7o9 o·425 o·2.33 o·115 o·o53 o 018 o o os o oo1 
1'3 + 1 8291 1'335 o 839 0'494 0'267 0'129 o 055 0'020 o 005 0'001 
1·4 + 2·033 1 417 o·872 o·5o1 o·255 o·131 o·o55 \ o·o191 o·oo5 o·oo1 
1·5 + 2"063 1 1 315 0'825 o·455 o·247 o·122 o·o53 o·o18 o·oo5 o·o01 
1'6 + 1 ·9271 1·228 o·116 o·399 o·2o5 o·1 01 o·o41 o·o15 o·oo4 o·oo1 
1·7 + 1 6421 1·oo2 o·577 o 321 0'168 o·o76 o·o35 o·o12 o·oo3 o·ooo 
1·8 + 1·216 1·112 o·4o1 o·211 o·113 o·o51 o·o25 o·oo8 o·oo2 o·ooo 
1 9 + 1·557 o 374 o·2o5 o·115 o·o57 o·o28 o·oo9 o·oo4l o·oo1 o·ooo 
20 + o l o o o o o l o o o o 

2·1 - o·772- 0:4oo- o·214- o·11 o - o·o58- o·o32 - o·o14- o·oo1 - o·oo1 ~ - o·ooo 
2 2 - 1 ·540 o 823 o·432 o·228 o·111 o o5o o·o21 o·oog o·oo2 o·ooo 
23-2600 1 ' 2ł7 0'656 0'347 0175 0'085 0037 0'013 0'003 0'001 
2A - 3'635 1·571 o·880 o·455 o228 o·105 o·o44 o·o15 o·oo4 o·oo1 
2 s - 4'740 2·1 34

1 
1 0951 o 559, o·283 o·129 o·o55 o·o2o o·oo5

1 

o·oo1 
2'6 - 6 0121 2 544 1'306, 0'675 0'334 o 157 0'067 o 024 0'006 0'001 
2 7 - 7•1421 2'971 1 1'515 o 778 0'386 0'182 0'0781 0'027 0'007 0'001 

~:~ = ~:~~~ ·1 ~:~i~ l ~ :~~~ g·~~~ g::~~ g:~~~ ! g:g~~ g:g~~ ~ g:gg~ l g:gg~ 
30 -11·111 , 4'219 2·101 , o·o72 o·53o o·246 o·1 o5 o·o35 i o·oo9 j o·oo1 

31 - 12'510- 4'6131- 2'301 (-1'165 - · 0'576- 0'269 - · 0110-0039- 0'010 - 0"001 
3'2 - 13 934 5'003 2•479 1 249 0'617 0'287 o 115 0'042 0'91 o o 001 
3·3 - 15·3881 5·3s3 2·549 1·343 o·656 o·3o3 o·121 o·ot5 o·o11 ooo1 
3'4 -16'862 5"748 , 2•822 1'417 0'702 0'324 0"133 0'047 0'012 0"001 
3'5 - 18'350 5·108 2'983 1·499 0'739 · o·345 o·147 o·o5o o·o12 o·oo2 

__ ............. 
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Tabela 11. 

Wzory: Riecke'go, Simony'ego i Breymann'a. 
B l,ędy podstawowe dla brył c ałkow itych t. j. dla u = O. 

Wzór ~-~~ k e'g o ____ , S i m o n y'e g o l B re y m a n n 'a 
l , , l l , l ' , l , ' r = a . P 1 P 2 a P 1 P 2 u. 1 P 1 , p 2 

o·o - 16·667l-2o·ooo l- 16·657 o j o l o -12·5ooi- 14'284!- 12'50o 
0'1 -12'039 -15'266,- 13'244 --j- 0'8031+ 0 876 + 0'8'l3 - 8'802 - 10'717 - 9'680 
0'2 - 8'630 - 11 556 - 10'356 --ł- 1 '1 11 --ł-1'3 1 ó + 1'333- 6151 - 7'970- 7•380 
0'3 - 6'1 06 1- 8'6231- 7•933 --ł- 1 ' 140 1 --ł- 1'450 1 + 1'482- 4'248- 5·8 ~6 1- 5 524 
0'4 - 4'233,- - 6 310- 5'934--ł- 1020+1'408 + 1'428- 2'878- 4' 1981- 40311 
o·5 - 2'859 - 4"481 i- 4'230-+ 0-831 + 1 · 231 1 +1 ·2~6 - 1·898 1- 2'930 - 2'848 
0'6 - 1·8501- 3'05 ::> ~- 2'960 --!- 0'624 --j- 0 989 --j- 0 997 - 1'200- 1'958 - 1'920 
o·7 - 1·119- 1 9łO- 1 9::>2 + 0'427 + 0'7221+ o·726 - o 709- 1·220- 1·206 
0'8 - 0"599

1

- 1'091 ,- 1'078 --ł- 0 '252 --j- 0•4521--j-0'454- 0'373 - 0'677 - 0'673 
0'9 - 0·239

1
- 0 ' 457 ~- O 455 --j- 0 1091--j- 0 207 --j-0 207- 0·145- O 279- 0·280 

1'0 o o o o o o o o o 

1·1 + o·149--ł- o·312 + o·314 -o·on i-0' 164 !-o·16~ + o·o87 1+ o2ool+ o·2oo 
1·2 + 0·230'+ o·5J2 + o·sos -0'129 1 -0'285 ~-0 286 + 0·132 + o·303r+ o·3o3 
1'3 + 0'2641+ 0"604

1
1+ 0:607 - 0'154 - 0'355 - 0'354 + 0'1491+ 0'3421+ 0'343 

1·4 + o·2621 + o·625 + o·628 - o 160 - o-385 - o 384 + o·145 + 0·331 + o· 332 
1·5 + o·237 l+ o 5s1 + o 591 -o·15JI- o 377 ~-o-37 5 + o·129 ,+ o·291 + o·293 
1·6 + o·197 + o·51o + 0·512 - o·11o-o·339 - o·333 + o·1o5 + o·244 + o·244 
1"7 + 0'149 + 0'402 + 0'402 -0'102 -0'27ó - 0·275 + 0078 + 0'186 + () '1 86 
1·8 + o o98+ o·2121+ 0272-o·o67 ~ -o-188 ' -9·193 + o·o51 + 01 21 + o·121 
1'9 + 00471+ 0'138 --j- 0139 - 0034 - 00991- 0'099 --j- 0'025 + 0'060 + 0'061 
2'0 o o o o o o o o 

2·1 - 0041 ~- 0'1271...- 0·121 --j- 0'031 I+0·096I+ 0·099 - o·o2o j-- o·u70 ~- 0'070 
2 2 - 0'074- 0'237 - 0'237 --j-0'056 --j- 0'179 --j-0'179- 0'037- o 133- 0'133 
2'3 - 0'099- 0·328 - 0'326 + 0'077 1--j-0'253 --j-0'254- 0'048 - 0'168 - 0'167 
2·4 - o·1111- o·388

1
- o·386 +o·o9o 1 +J·:~os l+o·3o6- o·o551_ o·189

1
- o·189 

2'5 - 0'119 - 0'420- 0'418 --j- 0'096 --ł- 0'335 --j-0'336- 0'057- 0'20J- 0'200 
2·5 - 0·1151- o·1181- o·416 + o·o921+ o·33o + 0·331 - o·o5s- o·193- 0193 
2'7 - 0' 101 - 0•374 - o 372 --j- 0'082 --j- 0"302 --ł- 0'303- 0'047 - 0'172 - 0'172 
2'8 - o·on - o·2931- 0·292 + o·o63 --ł- 0 ' 238 + 0-246 - o·o36 - o·133- o·133 
2'9 - 0'043- 0'168- 0'167 --j- 0•036 + 0'140 --ł- 0 ' 140- 0'020 - 0'074 - 0'075 
3'0 o o o o o o o o o 

3'1 
3'2 
3'3 
3'4 
3'5 

+ o 052 + 0'212 + o 212 - 0'044 - 0'1 86 -0'180 + 0'024 + 0'1 03 + 0'103 
+ 0'111 + 0'466 + o 468 -0'0941- 0'3961- 0'395 + 0'052 + 0'228 + 0'228 
+ 0'180 + 0'768 + 0'774 -0'154 - 0'667 -0'662 + 0'082 + 0'368 + 0'368 
+ o·255 + 1·108 + 1·121 -0·219 ~-o-973 -0·964 + o·115 + o·52o + o·520 
+ 0'337 1+ 1'492 --j- 1•514-0'292 - 1'331 1-1'314 --j- 0'152 --ł- 0'682--ł- 0683 
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T a b e l a 12. 

Cyfrowe zestawienie charakterystycznych błędów wzorów ksylometrycznych 
dla ściśl ejszych interwałów zmiennych : r (0'5, 2'3) i u (0·,5, 0'8). 

Wzór 

ksylome­

tryczny 

Smaliana 

Hubera 

Hossfel da 

Rieckego 

Sirnonyego 

::1 o 
"c:J~ 
2~ 
..Q O 

Błąd przeciętny dla brył 

·-s 
"' "' 

Błąd maksymalny dla brył 
całkowitych w interwale 
od rl = 0'5 do r~ = 2'3 całkowitych ś ciętych 

1

1 r (0'5, 2'3) ~'t; dodatni 1 ujemny 
o '"C ~----,...-----1 
~ g_ dla r =l wartość dla r =l wartość 

znak 

a 2'3 1 19'70 % 1 0'5 16'67 0/o 
p1 , 39"39 °/0 l " 33"33 °/0 
P·• .. l 65'00 Ofo ,. 25'00 Ofo 

+ 
t l 

P1 " 5'72 °;0 " 49'23 °/0 -
al 0'5 4'05 % l 2·3 1o·oo o;0 l - 1 

P~ ,. 6'06 % ,. 32·99 °10 -
1"42 
1'47 

" 134 
1"38 

o·5 

1'33 
1'37 

o·8s 0fo 1 o·5 
2'03 OJ0 l 

i 2'67 OJ0 , 

0'27 % l 
0'63 % 
0'63 % 
o 83 OJ0 l 
1'23 % 
1'25 % l 
0"15 °10 l 
0·349 OJ0 
0'351 OJ0 , 

o·5 

1'37 
1'42 

05 

r (0·5, 2'3) 
u=O 

6.20 0/ 0 
12.40 °/0 
20'00 0/o 

3'40 % 
13'83 0/o 
10'43 % 
035 % 
0'49 Ofo 
0'40 % 

0'204 % 
0'297 % 
0'283 o;o 
o·o47 Ofo 
0'051 % 
0'052 o, o 
0'14 % 
0·21 Oj o 
0'21 % 

znak l 

+ 
l + 
l + 

u (o·5, o·8) 

0'68 
o·99 
1'09 

- l 0'32 
0"52 

- l 0'56 

l + 
+ 
+ 

0'047 % 
0"067 % 
0'066 Ofo 

0'014 OJ0 
0'0186 % 
0'0189% 
o·oo8· % 
0'01 Ofo 
0'01 % 
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Thaddaus Wielgosz. 

Theorie der Genauigkeit der xylometrischen 
Formeln. 

lnstitut fiir Holzmesskunde, Waldwertrechnung und Forststatik an der 
Universitiit in Poznań (Polen). 

Z u s a m m e n f a s s u n g. 

Die Disposition der Abhendlung lautet : 

J. THEORETISCHER TElL. 

1. Einleitung. Dendrometrische Korper. 
2. Klassifikation der konstanten Fehler 

a) Der absolute Fehler 
b) Die prozentuellen Feh/er 
c) Die Kulminations- und Maximalfehler 
d) Die durchschnittlichen Fehler. 

3. Allgemeine Siitze i.iber das gegenseitige Verhiiltnis der 
einzelnen Arten der Grundfehler. 

II. ANGEWANDTER TElL. 

4. Die allgemeine Formel betreffend das Verhiiltnis der 
Ouerschnitte bei den dendrometrischen Korpern. 

5. Die xylometrische Formel von Smalian. 
6. 
7. n 

8. n 

11 Huber. 
n Hossfeld. 
• Riecke. 

9. » • Simony. 
10. 11 Breymann. 
11. Zusammenstełlung und Folgerungen. 

Die in kurzer Form verfasste lnhaltsangabe der einzelnen 
Punkte der obigen Disposition folgt: 

1. Die auf der Ouerschnittgleichung 1 (Formel 1 im pol­
nischen Texte) basierenden und von dem zwisohen den Werten 
O bis 3'5 liegenden Intervalle der Veranderlichen r (Formexpo­
nent) eingeschlossenen Konoide und cleren Abschnitte werden 
als d e n d r o m e t r i s c h e K o r p e r bezeichnet, wobei die 
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einfachsten derselben d. h. die Walze, das Paraboloid, der Kegel 
und das Neiloid (r =O, 1, 2, 3) ais d e n d r o m e t r i s c h e 
G r u n d k o r p e r und die den Ubrigen Werten von r ent­
sprechenden Korper ais d e n d r o m e t r i s c h e D b e r -
g a n g s k o r p e r benannt werden. 

Aus den formeln 3 und 5 sehen wir, dass das Volumen der 
dendrometrischen Korper sich ais das Produkt aus dem Volumen 
der Grundwalze (Gh) und einer funktion, und zwar von einer 
Veranderlichen (r), wenn es sich nur urn die ganzen Konoide han­
delt, beziehungsweise von zwei Veranderlichen (r, u), wenn es 
auch von den Abschnitten der Konoide die Rede ist, darstellen 
iasst (u ist das Verhaltnis des obersten zum untersten Durch­
messer). 

Wenn wir das Volumen der dendrometrischen Korper in 
Prozenten des Grundwalzenvolums ausdrUcken, erhalten wir die 
formeJ 6, cleren einzelne fUr die Abstufung 0'1 der Verander­
lichen r und u sich ergebende Werte in der Tabelle 1 zusam­
mengestellt sind, woraus zu entnehmen ist, dass d a s V o -
lumen der dendrometrischen Korper di­
rekt propartionaJ dem u und umgekehrt 
p r o p o r t i o n a l d e m r i s t. 

Die Grenzwerte der Intervalle der Veranderlichen r und u 

werden n ach folgenden Erwagungen festgesetzt: 
Die untere Grenze r = O ist genau festgesetzt, weil die 

Einfiihrung eines negativen Wertes fUr r bedeuten wUrde: a) fUr 
O> r >- 1, dass das Stammvolumen grosser ais das Volum der 
Grundwalze ist, was in der Wirklichkeit nicht z utreffen kann; 
~) fUr r =- 1 mi.isste das nach den formeln 3 und 5 berechnete 
Volum unendlich gros s werden; y) fUr r < - 1 wUrde da s 
Volum negativ, was praktisch anwendungslos ist. Dagegen ist 
die obere Grenze r = 3'5 eher ein Akt der subjektiven An­
schauung, die sich auf bisherige ganz allgemeine Erhebungen 
stUtzt. · 

Die lntervallsgrenzwerte fUr u und zwar u1 = O und u 2 = 1 
lassen sich leicht erklaren, denn fUr u =O haben wir mit den 
ganzen Konoiden zu tun und andererseits fUr u = 1 stossen wir 
an die Walzenform an, wobei zu bemerken ist, das in dem 
Momente, wann u = 1 ist, a uch r = O s e in mus s; in cliesem 
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letzten falle wird die funktion praktisch unstetig und die Ver­
ii.nderlichen werden zu Konstanten. 

Die obigen lntervalle r (O, 3"5), u (O, 1) werden a li g e­
m e i n e I n t er v a li e genannt; wenn es sich aber urn engere 
Variierungen der Veranderlichen in Rahmen der allgemeinen 
lntervalle handeln wird, so werden wir von e n g er e n l n t er­
v a li e n sprechen. 

Der formenponent der ganzen Stamme der Waldbaume 
kann niCht den Wert von Null haben, denn nur die Stammteile, 
die der Einheit sich nii.herndes u besitzen, nahern sich in 
i h rem 1' der N uli z u; fi.ir praktische Zwecke .a ber w a re es vor­
teilhaft festzustellen, welchen Grenzwert fur r man fi.ir ganze 
Baumstamme annehmer. darf. Weil wir aber diesbezi.iglich noch 
keine Versuchserhebungen 14) besitzen, bleibt es nichts iibrig ais 
fi.ir unsere theoretischen Auseinandersetzungen einen aproxima­
tiven Wert anzunehmen. Uns auf die allgemeine Beobachtung 
sti.itzend glauben wir den Satz aussprechen zu konnen, dass der 
Wert von r fi.ir ganze Baumstii.mme nicht unter o·s herabsinken 
kann. 

Die zu besprechenden xylometrischen formeln lassen sich 
auch ais Produkt aus dem Grundwalzenvolum und einer ent­
s prechenden funktion von einer bzgw. zweien Verii.nderlichen 
darstellen. 

2. Klassifik~tion der konstanten fehler, mit denen die xylo­
metrischen formeln behaftet sind. 

a) Die Differenz zwischen dem sog. Naherungsvolumen 
(v'), welches wir bei der Anwendung der betreffenden 
xylometrischen formeJ erhalten, und dem sog. w i r k -
l i c h e n V o l u m e n (v), welches sicn nach der formeJ 
3 o der 5 berech net, wird ais d e r a b s o l u t e f e h l e r 
benannt (ó v). (Siehe formeJ 8 und 8 a). 

Der absolute fehler in Prozenten des Grundwalzen­
volums ausgedri.ickt wird mit a beziehungsweise, wenn es 
sich bloss urn ganze Korper handelt, mit a' bezeichnet. 
(formel 9, 9a). 

14
) Die Methoclen der Bestimmun~ der dendrometrischEn Form­

elemente befinden sich in Bearbeitung und werden baJd veroffentlicht. 
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b) Das Verhaltnis des -wirklichen Volums zum Naherungs­
volum wird der V o l u m q u o t i e n t cr hzgw. cr' genannt. 
(F ormel 1 O, 1 O a). 

D e r p r i m a r - p r o z e n t u e !l e f e h l e r (p1 

bzw. p 1') stellt das prozentuelle Verhaltnis des absoluten 
fehlers zum Naherungsvolumen dar und ist von beson­
derer Bedeutung fur die Praxis, (formel 11, 11 a). 

Der sekundar-prozentuelle Fehler 
(p 2 hzgw. p/) stellt das prozentuelle Verhaltnis des 
absoluten fehlers zum wirklichen Volumen dar. (form. 
12, 12a). 

c) Den grossten positiven und den kleinsten negativen 15) 

Wert der gegebenen fehlerfunktion innerhalb der ange­
gebenen lntervalle der Veranderlichen r und u nennen 
wir den p o s i t i v e n bzw. n e g a t i v e n M a x i m a l -
f e h l er, der entweder in Form von Kulmination (ais 
Kulminationsfehler) oder ais funktionsgrenzwert fiir den 
Grenzwert des lntervalls einer Veranderlichen auftritt. 
Der Maximalfehler wird mit dem Symbol "max" und 
der Kulminationsfehler, der nicht zugleich Maximalfehler 
ist, wird mit "kul" bezeichnet. 

d) Die durchschnittlichen fehler. fiir die fehlerfunktion 
. mit einer Veranderlichen berechnet sich der durch­
schnittliche fehler nach der streng wissenschaftlichen 
formel 13 oder nach einem Naherungsverfahren im Sinne 
der formeln 13a und 13b und stellt sich ais Hohe jenes 
Rechteckes, dessen flache gleich der flache ist, welche 
von der fehlerfunktionskurve und der Abscissenaxe, 
innerhalb der gegebenen engeren lntervallsgrenzwerte 
der betreffenden Veranderlichen eingeschlossen und 
dessen Basis die Differenz der lntervalsgrenzwerte ist. 
Schneidet die fehlerfunktionskurve die Abscissenaxe, 
dann wird die algebraische Summe der Teilflachen in 
Rechnung genommen. 

15) Der kleinste negative Wert ist der grosste absolute Wert aller in 
Betracht fallenden negativen Funktionswerte. 
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Der durchschnittliche Fehler bei der Fehlerfunktion 
mit zwei Veranderlichen stellt sich ais die Hohe jenes 
geraden Parallelepipeds, dessen Vołum durch das be­
stimmte Doppelintegrale der gegebenen Fehlerfunktion 
mit den den engeren Grenzwerten der lntervalle der 
Veranderlichen gleichen lntegralsgrenzen bestimmt ist 
und dessen Grundflache dem Produkte der Differenzen 
der lntervallsgrenzwerte der Veranderlichen: (r2 - r1), 

(u2 - u1) gleicht (F. 14). Tatsachlich wird clieser durch~ 
schnittliche Fehler nur nach dem Naherungsverfahren 
nach der FormeJ 14a berechnet. 

3. Der absolute und die beiden prozentuellen Fehler werden 
als Grundfehler bezeichnet. 

Nachdem die allgemeinen Bedingungen, unter welchen die 
Grundfehler gleich Null werden bzw. unter welchen die Kulmina­
tion der einzelnen Grundfehlerarten erfolgt, auseinandergesetzt 
wurden, wurden folgencle allgemeinen Satze i.iber Grund~ und 
Kulminationsfehler aufgestellt: 

1. Fi.ir dieselben Werte von r und u werden gleichzeitig 
alle Grundfehłerarten gleich Null. 

2. Die Kulmination des absolut~n Fehlers einerseits und 
der beiden Arten des prozentuellen Fehlers anderseits 
erfolgen grundsatzlich nicht fi.ir dieselben Werte fi.ir 
r und u. 

3. Ałle Grundfehlerarten besitzen fi.ir dieselben Werte fi.ir 
r und u dasselbe algebraische Zeichen. 

4. Die prozentuellen F'ehler sind grosser ais der in Prozenten 
des Grundwalzenvolums ausgedri.ickte absolute Fehler 
ausser alle Fehlerarten sind gleich Null und mit Ausnahme 
einer teoretischen Moglichkeit, wenn der sekundar~ 

prozentuelle Fehler gleich a' ist, was - wie am Schlusse 
der Abhandlung erklart wird - fi.ir f(O) = 1 bei gleich­
zeitigem von Null verschiedenem Werte fi.ir a ' geschieht. 

5. Bei negativem Zeichen der Grundfehler ist der primar· 
prozentuelle Fehler grosser ais der sekundare und urn~ 
gekehrt beim positiven Zeichen ist der sekundare grosser 
ais der primare. 
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4. Die Formeln 15 und 16 stellen die allgemeine matematische 
Relation zwischen den EndquerfHichen und einer dritten da~ 

zwischenliegenden Ouerflache bei den dendrometrischen Korpern 
dar, wobei n das Verhalltniss der Entfernung der Ouerflache gn 
von der Grundflache G zur ganzen Korperhohe h vorstellt. Die 
Formel 16 bezieht sich bloss auf ganze Korper und die formeln 
17 bis 21 stellen Spezialisierungen der allgemeinen Formeln 15 
und 16 fiir 

1 2 '3 
n =2, 3' 3' 4' 4 dar. 

5. Die Formel von Smalian. 

Die formeln 23 und 23a stellen den absoluten Fehler dar, 'den 
w1r bei Anwendung der Smaliansehen FormeJ zur Bestimmung 
der Volumens aller dendrometrischen Korper begehen; die 
Formeln 25 und 25 a beziehen s ich a uch a uf den absoluten 
Fehler, deraber in Prozenten des Grundwalzenvolums au sgedriickt 
i st. Die prozentuellen Fehler werden in den Form e In 26 bis 27 a 
dargestellt. 

Der Verlauf der Grundfehler bei der Smaliansehen FormeJ 
lautet: 

fiir die Walze betragen die Grundfehler Null, bilden aber 
den sog. unstetigen Punkt mit den Spriingen, die folgencle von nur 
teoretisdler Bedeutung Werte aufwei sen: 

(- o.') = - 500fo 
r = O 

des Cirundwałzenvołums, 

(-p'!)=- 1000fo 
r= O 

des Naherungsvołums und 

(- p'2) = - 50°/o 
r=o 

des wirklichen Volumens. 16) 

16) Es ist zu bemerken, dass der Prozent bei o. sich auf das Grund­
walzenvolum bei p 1 auf das Nahrungsvolum und bei p 2 auf das wirkliche 
Volum bezieht; bei d en weiteren Angaben werden diese naheren Be­
zeichnungen weggelassen. 
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Da wir angenommen haben, dass r fiir ganze Korper nicht 
unter o·s herabsinken kann, so mussen wir auch annehnien, das 
auch beilaufig von r = o·s der tatsachliche Verlauf der Grund­
fehler keine Spriinge bilden sondern sich dem Ursprunge des 
Koordinatensystem nahern wird d. h. die Grundfehler zeigen bei 
dem wirklichen Verlauf fiir das angenommene r = o·s und u= O 
folgencle Werte, die zugleich die negativen Maximalfehler vor­
stellen: 

max (-n']= -16"67%, max [- p'I] = -33'33°/o, 
r = o·5 r = o·5 

max [- p'2] =- 25"00% 
1'=0'5 

dann nehmen dieselben immer mehr ab, werden gleich Null fUr 
das Paraboloid, dann iibernehmen sie positive Werte, nehmen 
stetig zu und verlassen das lntervall der Veranderlichen r mit 
dem positiven Maximalfehler fii:r r = 3'5: 

max [ + a'] = 27'770/o, max [ + p'1] =55· 500fo, 
l'= 3'5 r = 3'5 

und max [ + p'2] = 1250fo. 
r= 3·5 

6. Die Formet von Huber. 

In den Formeln 31 bis 33 a s ind die Grundfehler angegeben. 
Der Verlauf der Grundfehler zeigt einen Kulminationsfehler, 
dessen r nach den Regeln der Theorie von Minima und Maxima 
bestimmt wurde, wobei man zwecks Losung der erhaltenen 
Oleichungen zur Methode von N e w t o n greifen musste. 

Der Verlauf der Grundfehler lautet: 

FUr die Walze betragen die Grundfehler Null und bilden 
den sog. scheinbar stetigen Punkt, nehmen positive Werte an und 
weisen folgenden teoretischen Kulminationsfehler aus: 

kul(+a')=4'39°/o, kul C+p'1)=5'790fo, kul(+p'2)=6'15°/o. 
r = 0'36 r = 0'442 r = 0'442 

6 
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Der wirkliche Verlauf weist fur den angenommeńen Wert 
fi.ir r = 0'5 folgenden positiven Maximalfehler aus: 

max [+a.']= 4'05°/o, max [ + p' 1] = 5'72°/o, max [ + p'2] = 6'06%, 
r= 0'5 r= 0'5 r= 0'5 

dann nehmen die Grundfehler ab, gleichen der Null fi.ir das 
Paraboloid, ubergehen in negativen Wert, nehmen stetig zu und 
verlassen das lntervall von r mit dem negativen Maximalfehler: 

max [----"-a'] = --' 13'_38°/o, max [-p\] .'=" -151.:42 und 
r=3·5 r=3·5 

max [- p' 2] = .- 60'25%. 
- r=3·5 

7. Die Formel von Hossfeld. 

Das Naherungsvolum v' bzw. v" und der Volumquotient a 
bezw. a' sind in form von funktion in den formeln 34 bis 35a 
angegeben. 

Der Verlauf der Grundfehler lautet: 

Fur die Walze betragen die Grundfehler Null und bilden 
Spriinge mit den teoretischen Werten: 

[- a'J =- 25°/o, [-- p'1] =- 33'330fo, [-p' 2] =- 250fo. 
r=O r=O r=O 

fUr den angenommenen Wert -von r= 0'5 erhalten wir: 

max [-a']=- 5'420fo, [- p'J] = ....... 8'870fo, [- p'2] = -8'121/o, 
r=O·S r=O·S r=O·S 

dann nehmen die Grundfehler ab bis zur Null fUr das Paraboloid, 
ubergehen in positiven Wert, kulminieren mit dem positiven 
Maximalwert : 

max (+a')= O 85 0/o, max (+ p'1) = 2'03°/o, max (+p'2) = 2'07°/o, 
r=1'42 r=1 '47 r=1'47 

gleichen der Null fUr den Kegel, werden negativ und verlassen 
das lnterval! von r mit den Werten : 

[n']=- 4'080fo, max [- p'1] =- 22'47 /o, max [- p'2] =- 18'35°/o. 
r=3'5 r=3·5 r=3'5 

_J 
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8. Die Formel von Riecke. 

Das Naherungsvolumen und der Volumquotient sind in den 
formeln 36 bis 37a angegeben. 

Der Verlauf der Grundfehler lautet: 
fUr die Walze betragen die Grundfehler Null und bilden 

Sprlinge mit den teoretischen Werten: 

[-a']=- 16'670 /o, [- p'd =- 20'00°/o, [- p'"l =- 16'670fo. 
r= O r=O r=O 

fi.ir den angenommenen Wert fUr r = 0'5 erhalten wir den 

Maximalfehler: 

max [-a']=- 2'86°/o, max [- p'd =- 4'48Dfo und 
r = o·s r=0'5 

max [-p' 2] = - 4'290fo, 
r=0·5 

dann nehmen die Grundfehler ab bis zur Null fiir das Paraboloid, 
i.ibernehmen den positiven Wert und kulminieren mit den Werten: 

kul r+ a')= 0'27°/u, kul r+ p'd = 0'62%, kul r+ p'2) '= 0'630fo, 
r=1'34 r=1'38 r=1'38 

fUr den Kegel gleichen dieselben Null, i.il::ergehe n in den nega­
tiven Wert und kulminieren wiederurn mit den Werten: 

kul (-a')=-0'12%, kul (-p'1) = -0'420fo, kul (-p'2)=-0'422°/0 , 

r=2'51 r=2'54 r=2'54 

gleichen der Null Wr das Neil oid und verlassen das lntervall 
vor r mit dem positiven Maximalfehler: 

max f+ a'] = 0'3370fo, max [+ p'1] = 1'490fc, max [- p'2] = 152°/0• 

r=3'5 r= 3'5 · r=3'5 

9. Die Formet von Simony. 

Das Naherungsvolu.men und der Volumquotient sind in den 
formeln 38 bis 39a angegeben. 

Der Verlauf der Grundfehler lautet: 
fi.ir die Wałze betragen die Grundfehl er Nulł und bilden 

zugleich den sog. scheinbar stetigen Punkt, dann i.ibergehen in 
positiven Wert und kułminieren mit den teoreti schen Werten: 

kul r+ a)= t·t60fo, kuł H- p'1l = 1.46°/0, kuł{+ p'~ J = 1'48°/0• 
r=0'25 r=0'32 r=0·32 · · 

6* 
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Fiir den angenommenen Wert r = 0'5 erhalten die Grund. 
fehler den positiven Maximalwert : 

max [+a'] = 0,83°/ ,, max [+ p'1] = 1'23°/0 , max [+ p'2J= 1'250/ 
. r= O·S r=O'S r= O·s 0 ' 

nehmen bis zur Null fiir das Paraboloid ab, ubergehen in den 
negativen Wert und kulmini eren mit den Grossen : 

kul (-a') = - 0'16°/0 , ku l (-p'1 ) == - 0,39°/0, kul (-p'2) = ---0'380/ , 
r = 1.37 r = 1'43 · r = 1'43 ° 

gleichen der Null fi.ir de n Kegel, werden positiv und kulminieren 
mit den Werten: 

kul (+a-'J = 0'0970fa , kul (+ p'1) = 0'337°/0, kul (+ p'2) = 0'3380f
0

, 

r=2'50 r =2'55 r=2'55 

gleichen der Nu!! fi.ir das Neil oi d, werden negativ und verlassen 
das Intervall von r mit dem negativen Maximalwert : 

max [- a'] = - 0'29Ufo, max [- p\ l = - 1'350fo und 
r = 3·S r = 3'5 

max [-p'~] = 1'31 Dfo. 
r=3'5 

10. Die Formel von Breymann. 

Das Naherungsvolum und .. der Volumquotient und in den 
Formeln 40 bis 41a an gegeben. 

Der V.erlauf der Grundfehler lautet: 
Fur die Walze betragen die Grundfehler Null und bilden 

Sprunge mit den teoretischen Werken : 

[-a']= -12'50 % , [-p'1 ] = -1 4'29°/o, [-p'2] = -12'50{)/o. · 
r=O r=O r = O 

Fur den angenommenen Wert fi.ir r= 0'5 er halten die Grundfehler 
den negativen Ma ximalwert : 

max [- a']= -1'90°/o, max [- p'1] =- 2'93 °/o, 
r = 0'6 r = o·s 

max [-p'2]= -' 2'85 0fo, 
r = o·s 

dann . gleichen der N uli fiir das Paraboloid, werden pos itiv und 
kulminieren mit den Werten : 

kul (+a')= 0'15 °/o, kul ( + p'1) = 0'349 0fo, kul ( + p'2) = 0'351 Ofo 
r = 1'33 r = 1:31 r ;=: 1:3.7 
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gleichen der Null fiir den Kegel, werden negativ und kulminieren 
mit den Werten: 

kul (-a')= -0'058 0fo, kul (-p't) =-0'202°/o, 
r=2'49 r=2'53 

kul(- p'2) =- 0'2019°/o, 
r = 0.53 

gleichen der Null fi..ir das Neiloid, werden positiv und verlassen 
das lntervall von r mit dem positiven Maximalwert: 

max [+a']= 0'150fo, max (+p'J) = 0'682 %, max [ +p' 2]=0'683°/o. 
r = 3'5 . r = 3'5 r = 3·5 

Bei der Besprechung der einzelnen xylometrischen formeln 
wurden die durchschnittlichen fehler fi..ir die lntervalle r (0'5, 
2'3) und u= o dh. fiir ganze dendrometrischen Korper und fi..ir 
die lntervalle r (0'5, 2'3), u (0'5, o·s) dh. fi..ir dendrometrische 
Korperschnitte berechnet 

Ausserdem wurden die durchschnittlichen fehler auch fi..ir 
andere lntervalle berechnet und zwar in den fallen, in welchen 
ma n a uch durch die lntegration z u demselben Resultat _ gelangen 
kann, urn auf diese Weise zu beweisen, dass die naherungsweise 
Berechnung in den Rahmen der ausreichenden Genauigkeit liegt. 

11. Zusammenstellung und Folgerungen. 

fiir die lnterva!Te r(0'5, 2'3), u =0 bezw. r(0'5, 2'3), u(0'5, 0'8) 
wurden in der Tabelle 12 die Maximal~ und durchschnittlichen 
fehler fi..ir alle sechs xylometrischen formeln zusammengestellt. 
Auf Grund der erhaltenen Resultate konnen wir die besprochenen 
xy!ometrischen formeln, was ihre relative Genauigkeit anbelangt, 
in drei Gruppen teile n, und zwar zur ersten Gruppe zahlen wir 
die formeln von S m a l i a n und H u b e l', genauer ist die 
H o s s f e! d'sche formel, die die zweite Gruppe ausmacht, 
und die Gruppe der genauesten formeln bilden die formeln 
von R (e c k e , S i m o n y und B r e y m a n n , wobei von den 
zwei letzten, die das Volumen der dendrometrischen Korper 
genauer ais jene von R i e c h e angeben, schwer zu entscheiden 
ist.J _we_lcher der beiden der Vorrang was die Genauigkeit anbelangt 
zuzuschreiben ist. · · -
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Der absolute Wert der durchschnittl\chen Fehler fi.ir die 
(nterralle r (0"51 2'3), u (0"51 0'8) ubersteigt was a und p1 anbe­
langt sogar nicht 1°/o und was p~ betrifft betragt derselbe fiir 

die Smaliansche Form e l 1'09°/o1 sonst erreicht er a uch nicht 1 °/o, 
woraus wir schliessen ki:innen, dass die Anwendung der Smalian~ 
schen und besonders der Huberschen Formel fur die sektions· 
weise Methode zu den Resultaten fuhrt 1 die innerhalb der 
Grenzen jener Genauigkeit liegen 1 die bei den dendrometrischen 
Versuchsmessungen verlangt wird. 

Auf Grund der Auseinandersetzungen1 die im angewaridten 
Teile besprochen wurden 1 gelangen wir nebst den allgemeinen 
Folgerungen 1 die am Schlusse des teoretischen Teiles angegeben 
sind 1 zu den folgenden s p e z i e li e n S a t z e n 1 die sich a uf 
die sechs xylometrischen formeln beziehen : 

1. Die Grundfehler weisen innerhalb der festgesetzten allge~ 
meinen lnterralle der veranderlichen r und u einen analogen 
Verlauf aus; es ware nahmlich zu bemerken1 dass - wie die in 
der Publikation nicht angegebenen Orientierungsrechnungen be~ 
weisen - · der Verlauf fiir andere Werte von r fiir die einzelnen 
Grundfehlerarten sehr verschieden sein kann. 

2. Die xylometrischen formeln 1 die den obersten Guer­
schnitt nicht enthalten (H u b er, S i m o n y) 1 weisen fur die 
Wal ze den sog. scheinbar stetigen Punkt aus; dagegen die ubrigen 
Formeln (S m a l i a n 1 H o s s f e l d 1 R i e ck e 1 B re y m a n n) 
bilden fur -die Walze den sog. unstetigen Punkt mit den Sprungen 
von nur teoretischen Fehlerwerten. Diese Fehlerwerte be· 
rechnen sich fiir die Walze deshalb1 weil die Fehlerfunktionen 
nehmen fiir den obersten Guerschnitt Null an 1 was fur die Walze 
(von endlicher Lange) unzuHissig i st. 

3. Bei diesen vier xylometrischen Formeln, die den obersten 
Guerschnitt besitzen1 finden wir noch diese Tatsache1 dass der 
sekundar~prozentuelle Fehler fur r-;;::; O und u = O gleich dem 
in Prozenten des Grundwalzenvolum ausgedruckten absoluten 
fehler ist, trotzdem beide einen von Null verschiedene·n Wert 
besitzen. Die Gri:isse clieser teoretischen Fehlerwerte die ais 
Sprunge in den sog. unstetigen Punkten auftreten 1 last sich nach 

f l b h ' ' 1 00 d ' 1 00 den folgenden orme n erec nen·: a =p 2 = - , un p 1 = --
1
, 

m m-
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wenn wir unter m die algebraische Summe der Koiffizienten 
bei den Ouerschnittsflachen in den einzelnen xylometrischen 
formeln verstehen; m betragt fiir die Smaliansche form e! 2, 
fUr die Hossfeldsche 4, fiir die Simonysche 6 und fur die 
Breymannsche 8. 

4. Der absolute Wert der Grundfeh!er nimmt mit dem Zu­
nehmen der Werte von u ab d. h. die ganzen Korper weisen die 
grosten fehler aus, woraus folgt, dass die Grosse der Grund­
fehler direkt propartionaJ der Differenzen der aussersten Durch­
messer ist. 

5. Die eventuelle Kulmination der Grundfehlerfunktion tritt 
mit zunehmendem u fur abnehmendes r ein d. h. die Kulmina~ 
tion nahert sich dem Ursprunge des Koordinationsystems mit 
zunehmendem Werte von u. 

6. Die Kulmination fUr die beiden prozentuellen fehler tritt 
fiir hohere Werte von r ais die Kulmination des korrespondieren­
den absoluten fehler ein. 

!1einen Assistenten Herrn E. Lorenz, S. Selens und St. Smólski 
danke ich herzlichst fiir die freundliche Hi/fe bei den langwierigen 
Rechnungen, die in der Abhandlung auftreten. 
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