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2 TADEUSZ WIELGOSZ

I. CZESC TEORETYCZNA.

1. Wstep.

Najbardziej warto$ciowa cze$cig naszych drzew lesnych jest
tak zwany pien, ktéry umocowany zapomoca korzeni w glebie
wznosi sie pionowo do géry i nosi na sobie korone, zlozona
z konaréw i galtezi. Pien, ktéry na calej swej dlugosci pozostaje
w jednym kawalku, nazywa sie takze strzala drzewa.

Strzaly drzew wyroslych w zwartych drzewostanach wyka-
zujag w zasadzie prostolinijng 0% dlugos$ci i wzgledem tej osi
mniej lub wiecej symetryczna budowe: przekroje poprzeczne
tj. prostopadle do osi majg zwlaszcza w czes$ci Srodkowej
strzaly ksztalt zblizony do kola, natomiast w dolnych i gérnych
czeéciach. spotykamy forme nieco nieregularng, co przede-
wszystkiem ma miejsce u drzew liSciastych, podczas gdy drzewa
iglaste odznaczaja sie prawie kolistymi przekrojami poprzecznymi.
Mozemy zatem uwazaé strzaly drzew jako ciala obrotowe po-
wstale przez obrét danej tworzacej okolo osi. Tworzaca te
mozemy sobie przedstawié¢ jako przeciecie sie plaszczyzny prze-~
chodzacej przez o$ strzaly (pl. poludnikowej) z jej pobocznica;
w ten sposéb zdefinjowang tworzaca nazwijmy morfolo-
giczna krzywa strzaly drzewa w odréznieniu do matema -
tycznej krzywej strzaly, ktéra dajac sie¢ wyrazi¢ analitycznem
réwnaniem przedstawia linje geometryczng, zblizona co do
ksztaltu swego najbardziej do morfologicznej krzywej strzaly.
W nastepnych rozwazaniach bedziemy matematyczna krzywe
strzaly nazywali krétko krzywa strzaly. Analityczne réwnanie
krzywej strzaly nazywamy ré6wnaniem krzywej strzaly
drzewa; natomiast matematyczna relacje miedzy powierzchnia
dowolnego przekroju poprzecznego a jego odleglosciag od wierz-
choltka wzglednie poczatku ukladu wspélrzednych nazywamy
ré6wnaniem przekroju strzaly drzewa. Poslugiwanie sie
ta ostatnig relacja zamiast réwnania krzywej strzaly przy wypro-
wadzaniu wzoréw na obliczanie miazszosci strzal jest wolne od
warunku kolistych przekrojéw poprzecznych, dla zastosowania
bowiem swego wymaga tylko, zeby przekroje poprzeczne podle-
galy temu samemu matematycznemu prawu powstawania. Za-~
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stluguje to na podkreslenie z tego wzgledu, ze — jak wyzej
podkreslilismy — przekroje poprzeczne strzal drzew naszych nie
wykazuja $cisle ksztaltu kola.

W literaturze dendrometrycznej wysuwa sie na pierwszy
plan z powodu swego prostego ksztaltu i dostatecznego zbli-
zenia sie do rzeczywisto$ci nastepujgce réwnanie przekroju
strzaly:

G =B it i a e e 4w

przyczem g, oznacza powierzchnie przekroju w odleglosci x od
wierzcholtka strzaly, r zowie sie wykladnikiem ksztaltu, a A jest

stalg, z ktérej obliczamy tak zwany parametr strzaly
A
drzewa wedlug wzoru p = o wykladnik i parametr ksztaltu sa

stalemi charakteryzujacemi ksztalt danej strzaly drzewa, wobec
czego mozemy je nazwa¢ dendrometrycznemi elementami ksztaltu.

Znajac wykladnik ksztaltu r i zastosowujac ogélny wzér na
objetosdé: .
b :
VZ/gxdx........Q
a

otrzymujemy wzory stereometryczne na objeto$¢ dotyczacych
bryl. W dendrometryeznych zastosowaniach przybiera r warto$é
od zera do okolo r=23'5; wieksze warto$ci na r wystepuja
w praktyce tylko wyjatkowo, wobec czego mozemy wszystkie
mozliwe powyzszym interwalem zmiennej r objete bryly nazwac
brylami dendrometrycznemi. Najprostsze z nich
sa te, dla ktérych r przybiera wartosci: 0, 1, 2, 3, tj. walec,
paraboloida, stozek zwykly i nejloida; te cztery bryly nazywac
bedziemy zasadniczemi lub podstawowemi brylami
dendrometrycznemi w odréznieniu od bryl przejsciowych,
ktére odpowiadaja pozostalym warto§ciom zmiennej r. Dosdwiad-
czenie uczy nas, ze strzaly drzew w pewnych swych czeéciach
zblizajg si¢ w wigkszym lub mniejszym stopniu do odpowiednich
bryl dendrometrycznych i tak naogé! mozemy powiedzieé, ze

wierzcholek strzal drzew le$nych ma ksztalt mniej wiecej
1*
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zwyklego stozka, srodkowa cze$é strzaly waha sie miedzy para~
boloida a walcem, a dolna czes$¢ strzaly czyli tak zwany odzio-
mek zbliza sie do nejloidy.

Dla systematycznego ugrupowania bryl dendrometrycznych
stuzy¢ moze nastepujacy szemat:!)

strzaly drzew, ktérych r posiada nizej podane wartosci,
przyjmuja okreslenia

warto§é
wykladnika okreslenie
ksztaltur bryt

r=0 walcowate
0<<r<< 05 podwalcowate
0'5<r<<1 nadparaboloidalne
r==1 paraboloidalne
1<<r<<1'5 podparaboloidalne
1'5<r<<2 nadstozkowate
r=2 stozkowate
2<<r<<2'5 podstozkowate
2'5<r<<3 nadnejloidalne
r=23 nejloidalne
3 <<r<<3'5 podnejloidalne

Z nauki o kubaturze bryl wiemy, ze objetos¢ konoid calko-
witych wyraza sie wzorem:

V:.;%zah-f(r) d e e
tj. objetos¢ calkowitej konoidy réwna sie iloczynowi z objetosci
walca o przekroju podstawy i calkowitej wysokosci konoidy,
czyli objetosci walca podstawowego i funkcji, ktérej jedynym
argumentem jest wykladnik ksztaltu; funkcja ta przedstawia
w tym szczegélnym wypadku dendrometryczng absolutng liczbe
ksztaltu, czyli liczbe wyrazajaca stosunek rzeczywistej migzszo$ci
strzaly do walca poréwnawczego o tej samej wysoko$ci i tym
samym przekroju podstawowym.

1) Vide: Ferd. L. Langenbacher und Emanuel Nossek
Lehr und Handbuch der Holzmesskunde. Die Kubierung des Holzes im
liegenden Zustande. Leipzig 1889.
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Azeby zakresem naszych badan objaé nietylko calkowite

bryly dedrometryczne, lecz réwniez i $ciete czyli czedci tych

bryl, wychodzimy od znanego ogélnego wzoru na objetosé
écietych konoid, ktéry brzmi:

e I .
V_—____h__g_i:ﬁf MIrE S (e e
r+1 1 1
ar_gr

przyczem (G oznacza powierzchnie przekroju podstawowego
(w czole), g powierzchnie przekroju wierzcholkowego (w czubie),
h wysoko$é, r wykladnik ksztaltu.

Wyciagajac w liczniku i mianowniku G z odpowiednim
wyktadnikiem potegowym przed nawias, odpowiednio skracajac

\ 2

i zastapiwszy iloraz g:(g) = u* kwadratem z ilorazu $rednic
krancowych u tj. stosunkiem $rednicy w czubie do $rednicy
w czole, otrzymujemy:

2r+‘__
Gh 1—ur’
V—-—r_’_f——*g =Gh:F (v, u) 5
1—u’

Widzimy zatem,~ ze objetos¢ wszystkich bryl dendro-~
metrycznych i ich czesci da sie ogélnie przedstawi¢ jako
iloczyn z objetosci walca podstawowego i funkcji o dwéch
zmiennych 7 i u; réwniez i w tym wypadku wyraza funkcja
o dwu zmiennych stosunek rzeczywistej migzszodci strzaly lub
jej czesci do objetosci walca podstawowego. ‘

Interwal zmiennej niezaleznej r zostal wyzej ze wzgledu
na wymagania nauki o dendrometrji ustalony jako wahajacy sie
od r=0 do r=23'5; dolna granica tego interwalu tj. r=20 jest
$cisle oznaczona, gdyz wprowadzenie ujemnej wartosci dla r
wykazywaloby dia 0>r=>—1, ze objetos¢ danej strzaly jest
wieksza od objetosci walca podstawowego, czyli ze powierzchnie
poprzecznych przekrojéw wyzej polozonych musialyby byé wieksze
od powierzchni przekroju podstawowego, co w odniesieniu do
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budowy drzew naszych jest wykluczone, dalej dla r=—1
objetosé wedlug wzoréw 3 lub 5 réwnalaby sie nieskoriczonosci,
a przy r<-—1 otrzymaliby$my warto$¢ ujemna, co w zastosowa-
niu do dendrometrji jest réwniez bez znaczenia praktycznego; nato-
miast wyb6r gérnej granicy r = 3'5 jest raczej aktem subjektywnego
uznania, opierajgcego sie na dotychczasowych ogélnikowych
badaniach w tym kierunku. W przeciwieristwie do zmiennej r
obydwie granice interwalu drugiej zmiennej niezaleznej u tj.
ilorazu $rednic kraricowych dadza sie $cisle okreslié, a miano-
wicie jako wykazujgce wartosci u=0 i u=1, przyczem nalezy
podkresli¢, ze z chwilg, gdy u przybiera warto$¢ kraricowa
jednostki, musi réwnoczesnie r przybra¢ warto$¢ zera t.zn. dana
bryla staje sie walcem, czyli w tym momencie funkcja staje sie
nieciagla, a zmienne niezalezne stajg sie stalemi; ten matema-
tyczny zwiazek odegra wazna role w czesci zastosowanej niniej~
szej publikacji. Réwniez nalezy zauwazy¢, ze z chwilg gdy u
przybierze warto$é zera, to wtedy méwimy o brylach catkowitych
i wzér 5 przechodzi we wzér 3.

Nastepnie biorac pod uwage te okolicznosé, ze calkowite
bryly drzew nie moga wykazywaé wyktadnikéw ksztaltu zblizonych
do zera t. zn. swym calkowitym ksztaltem nie zblizaja sie do
walca, lecz raczej do paraboloidy i bryl o bardziej zbiezystej
budowie, a tylko cze$ci strzaly, wykazujace dla u wartosci zbli-
zone do 1, zblizaja sie swym ksztaltem do walca czyli: bryly
dendrometryczne o ksztalcie podwalcowatym tj. o r zblizonem
do zera musza byé w praktyce brylami Scietymi o u zblizonem
do jednostki.

Dla celéw praktycznych waznem jest zatem ustalenie krari-
cowej wartosci dla r, ktéra calkowite strzaly drzew moglyby
wykazywaé. Poniewaz jednak dotychczas nie mamy przeprowa~
dzonych dokladnych badan co do $cislejszego interwalu wy-
kladnika ksztaltu drzew lesnych, a nawet w literaturze nie znaj-
dujemy jeszcze opracowania $cislejszych metod co do sposobu
przeprowadzenia tych badan,?) dlatego obecnie nie pozostaje
nic innego, jak dla naszych teoretycznych badan przyja¢ od-

2) Metody oznaczania dendrometrycznych elementéw ksztaltu sa w toku
opracowania i zostang wkrétce opublikowane,
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powiednia kraricowg warto$é¢ na r. Opierajac si¢ na obserwacji
drzew zdaje sie uzasadnionem byé¢ zalozenie, ze r calkowitych
strzal drzew le$nych nie bedzie mniejsze od wartosci 0°5 tj. strzaly
drzew w swej calkowitej wielkosci nie beda co do ksztaltu pelniejsze
od najpelniejszej nadparaboloidalnej bryly dendrometryczne;j.

Powyzsze interwaly zmiennych r (0, 3'5) i u (0,1) nazwijmy
og6lnymiinterwalami w odréznieniu do $cislejszych
interwaléw, gdyby nam chodzilo o wezsze amplitudy wahan
zmiennych r i u w ramach ogélnych interwaléw.

Wyrazajac objeto$¢ bryl dendrometrycznych w odsetkach
objetosci walca podstawowego tj. dzielagc prawa strone réwnania 5
przez Gh i mnozac przez 100 otrzymujemy wyrazenie, ktére
nam umozliwia blizsze poznanie F (r, u), a mianowicie:

2r+2
Pe =
100~F(r,u)=£01 L b . 6
l—u;'

Wzér powyzszy obliczamy przez kolejne podstawianie w od-
stopniowaniu wynoszagcem 01 wartoéci na r i u, zawartych
w powyzej ustalonych ogélnych interwalach; otrzymane w ten
sposéb warto$ci wzoru 6 sa tabelarycznie zestawione wedlug
argumentéw r i u w tabeli nr. 1. Z tego zestawienia widzimy,
ze objetos¢ bryl dendrometrycznych jest w pro-
stym stosunku do v a w odwrotnym do r i tak np.
wartoé¢ wzoru 6 maleje z 100%0 dla r=0 na 2222°0 dla r=235
w odniesieniu do bryl calkowitych tj. przy u=0, natomiast
zmienia sie¢ powyzsza warto$¢ dla r=35 z 22'22%0 przy u=0
na 90°26°/o przy u=0'9, a na 100°0 przy u=1, rozumie sie,
ze dla u=1 musi r przybraé warto$é zera, czyli ze mamy do
czynienia z walcem, dla ktérego otrzymujemy warto$é 100°/o.

Nauka o dendrometrji wyprowadza wzory stereometryczne,
ktére podaja $ciSle objetosé badzto wszystkich czterech (np.
wzory Rieckiego, Simonyego, Breymanna) badito
niektérych z zasadniczych bryl dendrometrycznych, jak wzory
Smaljana i Hubera walec i paraboloide, wzér Hoss-
felda walec, paraboloide i stozek zwykly. Wzory te nosza
nazwe wzoréw ksylometrycznych i przeszly (zwlaszcza
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odznaczajace sig¢ prostota i latwoécia wykonania) do praktycznej
dendrometrji. Wzory ksylometryczne dadza sie réwniez — jak
sig o tem w czedci zastosowanej przekonamy — analogicznie
do $cistych wzoré6w na objetoéé konoid przedstawié jako iloczyny
z objetosci walca podstawowego i funkcji o dwu zmiennych
r i u wzglednie jednej tylko zmiennej r (dla bryl catkowitych)
lub u (wzér Smaljana). Oznaczajac zatem objetosé bryl
dendrometrycznych, obliczona na podstawie wzoréw ksylometrycz-
nych przez V' mozemy napisaé:

VE==IGh Diley a)r ~ =5 o el i e S

Wzory ksylometryczne podaja objetosé przejsciowych bryt
dendrometrycznych i ewentualnie niektérych z zasadniczych
z bledami stalemi, ktérych wielko$é, abstrahujac od rodzaju
bledéw, zalezna jest od danego wzoru ksylometrycznego oraz
od r i u. Dla poznania zatem i charakterystyki dokladnosci,
z jakg dany wzér ksylometryczny oznacza miazszo$é strzal
drzew, wazng jest rzecza okresli¢ wielkosé bledéw, z ktérymi
dany wzér podaje objetos¢ tak bryl zasadniczych jak tez przejscio-
wych, czyli poznaé przebieg tych bledéw.

Poniewaz w dotychczasowej literaturze dendrometrycznej
nie znajdujemy badari nad dokladnoscia wzoréw ksylometrycz-
nych w odniesieniu do bryl przejsciowych ani tez ujecia czyto
cyfrowego -czyto graficznego caloksztaltu przebiegu bledéw od-
noszacych sie do wszystkich bryl dendrometrycznych, przeto
zadaniem niniejszej publikacji bedzie podaé w pierwszej linji
ogélng teorje obliczania wielkosci poszczegélnych rodzajow
bledéw stalych czyli teorje dokladnosci wzoréw ksylometrycz-
nych, nastepnie zastosowaé te teorje do najwazniejszych z tych
wzoréw tj. Smaljana, Hubera, Hossfelda, Rieckego,
Simonyego i Breymanna, a wkoncu przedstawi¢ graficznie
przebieg wielko$ci przynajmniej niektérych z wyprowadzonych
bledéw odnoszacych sie tak do calkowitych jak tez do $cietych
bryl.

Przechodzac do szczegélowego przedstawienia wspomnianej
teorji konieczna jest rzecza podaé klasyfikacje bledéw, ktére
w naszych badaniach wystepowaé beda.



TEORJA DOKLADNOSCI WZOROW KSYLOMETRYCZNYCH 9

2. Klasytikacja bledéw stalych.

Typem?) bledéw wystepujagcych w naszych zagadnieniach sa
bledy systematyczne czyli regularne wzglednie stale t. j. bledy
majace za zrédlo swe nie dajacy sie usunaé, a na uzyskane wy-
niki w sposéb prawidlowy dzialajacy blad przyrzadu wzglednie
metody, a w naszym wypadku wzoru.

Objetos¢ danej bryly dendrometrycznej obliczona na podstawie
wzoru 5 wzglednie 3 zowiemy rzeczywistg, ktéra oznaczy-
lismy przez V, natomiast objeto$é obliczona zapomoca dotycza-~
cego wzoru ksylometrycznego i oznaczong przez V' uwazamy za
przyblizona; azeby zatem oznaczyé dokladnos¢ danego
wzoru ksylometrycznego mozemy objetosci rzeczywista i przybli-
zona poréwnywaé ze soba badzto przez odejmowanie badzto
przez dzielenie czyli tworzac stosunek badZto arytmetyczny
badito geometryczny, dalej waznem jest poznanie warunkéw, dla
ktérych nastepuja najwieksze bezwzgledne wartos$ci danych ble-
déw, w koncu nieodzowng jest rzecza podaé miare dokladnosci,
z jaka oznacza¢ mozemy miazszo$é wiekszej grupy drzew. Wi-
dzimy zatem, ze do scharakteryzowania dokladnosci wzoréw ksy-
lometrycznych musimy postugiwaé sie kilkoma rodzajami bledéw,
ktérych systematyczne ugrupowanie czyli klasyfikacje podajemy.

a) Bilqd absolutny.

Réznice miedzy objetosciag przyblizongirze-
czywistag nazywamy bledem absolutnym (Av) czyli
w ksztalcie wzoru:

Av=WV—V . . ¢ i & s s '8

Av podaje wielko$¢ bledu, ktéry musimy odja¢ od wartosci przy-
blizonej, azeby otrzymaé objeto$é rzeczywistag. Dodatni znak
przy Av méwi, ze dany wzér podaje w danym wypadku obje-~
to$¢ za wielka, a ujemny znak przy Av jest dowodem, Zze obli-
czona objeto$¢ jest w poréwnaniu z rzeczywista za mala.

3) Patrz: T. Wielgosz. Pomiar drzew na podstawie metody naj-
mniejszych kwadratéw. Roczniki Nauk Rolniczych. Tom IX. Zeszyt 1.
Rok 1923.



10 TADEUSZ WIELGOSZ

Moznaby réwniez blad absolutny oblicza¢ jako réznice miedzy
V a V', w ktérym to wypadku znak dodatni przy Av wskazywalby,
ze dany wzér podaje.objetos¢ za mala i odwrotnie, co nie byloby
zgodnem z duchem jezyka i dlatego tez dla pojecia bledu abso-
lutnego ustaliliSmy powyzsza definicje.

Uwzgledniajac wzory 5 i 7 otrzymujemy na blad absolutny
wyrazenie:

AV:Gh{(D(r,u)—F(r,u): s S S B PR

Azeby otrzymaé wartoéci na Av, nadajace sie do poréwny-
wania, staramy sie uwolni¢ od czynnika Gh w ten sposéb, ze
blad absolutny wyrazamy w odsetkach objeto$ci walca podstawo-
wego i oznaczamy go przez «:

a={O(u)—F(,u)}100 . . . . . . 9

Dla bryt calkowitych wzér ten redukuje sie¢ do wyrazenia:

o« ={o@)—f(@}100 . . . . . . 9a

b) Bledy procentowe.

Bledy procentowe przedstawiajg procen-
towy stosunek bledu absolutnego do jednej
z dwéch danych wartodci na objetos$¢; zaleznie
zatem od- tego, czy warto$¢ przyblizona V' czy rzeczywista V
tworzy mianownik bledu procentowego, rozrézniamy zasad -
niczy blad procentowy (p;), i wtérny btad pro-
centowy (p,), z ktérych pierwszy oznacza, o jaki procent
swej objeto$ci musi byé objetosé przyblizona poprawiona, azeby
otrzymaé warto$é rzeczywista, a drugi okresla o jaki procent swej
objetosci jest rzeczywista objetos¢ blednie podana.

Z powyzszych definicyj widzimy, ze w praktyce bedzie zasad-
niczy blad procentowy mial wieksze znaczenie.

We wzorach na bledy procentowe wystepowaé bedzie iloraz
objetosci (0), przedstawiajacy stosunek objetosci rzeczywistej do
przyblizonej:

_V_F(u

0 — =—

V' 9 (r,u) 0
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wzglednie dla bryl calkowitych t. j. dla u=0:

L)
=alr) Oa
Bledy procentowe we formie wzoréw przedstawiajg sie na-
stepujgco:
Zasadniczy blad procentowy oblicza sie jako stosunek pro-
centowy bledu absolutnego do objetosci przyblizonej:

e 4 _(_l{
="y 100_\1 V,)mo

czyli wprowadzajac ¢ lub wymienione we wzorach 5 i 7 funkcje:

o | F(r,u)|
p1=(1—0) 100 |1 ‘I’(’")lwo g

wzglednie dla bryl calkowitych

=] —1" :l (I’)' a
pi=(1—0")100 |1 (p()lmo MRS

Analogicznie dochodzimy do wzoréw na wtérny blad pro-
centowy:

p2:(1_‘])100 { "’”)—1}100 RGPl
wzglednie dla bryl calkowitych:

’ 1 l‘?(”) '

pz—(6—1)100—|f()—1[100 2 s g

¢) Btedy maksymalne i kulminacyjne.

Badajac analitycznie funkcje przedstawiajaca przebieg da-
nego rodzaju bledéw dotyczacego wzoru ksylometrycznego
w okreslonych przez nas interwalach ogélnych obu argumentéw
zauwazymy, ze dana funkcja wykazuje albo punkty kulminacyjne
albo, jesli kulminacja w danych interwalach nie wystepuje, punkty,
dla ktérych dana funkcja posiada najwieksza lub najmniejsza
szczegblng swa warto$é, a dla ktérych przynajmniej jeden z argu-
mentéw przedstawia warto$¢ koricowa swego interwalu,
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Najwieksza wartoé¢ dodatnia i najmniejsza warto$é ujemna*)
danej funkcji, przedstawiajgcej przebieg odnosnego bledu w inte-
resujacych nas interwalach swych zmiennych niezaleznych nazy-
wamy biedem maksymalnym dodatnim wzglednie
ujemnym. Bledy te maksymalne moga wystepowaé albo jako
kulminacja albo jako warto$é¢ kraricowa, jesli w tym
drugim wypadku przynajmniej jedna z dwu zmiennych nieza-
leznych wystepuje jako warto§é krancowa swego interwatu.?)

Warto$é bledu odpowiadajaca danemu punktowi kulmina-
cyjnemu funkcji tego bledu nazywamy bltedem kulmina-
cyjnym; zatem blad maksymalny wystepujacy jako kulminacje
jest najwiekszym co do swej bezwzglednej wartosci bledem kul-
minacyjnym o danym znaku algebraicznym.

Przy obliczeniu warto$ci bledéw kulminacyjnych i maksy-
malnych najwazniejsza rzecza jest oznaczenie warto$ci zmiennych
niezaleznych, ktére spelniaja dang funkcje bledéw do jej war-
tosci kulminacyjnej wzglednie maksymalnej. Przy funkcjach
bledéw o jednej zmiennej niezaleznej przedstawia sie wyszuki-
wanie warto$ci argumentu, ktéra prowadzi do kulminacyjnej
wzglednie maksymalnej wartosci funkcji stosunkowo tatwo, a mia-
nowicie badzto przez zastosowanie teorji o minimum i maximum,
jesli chodzi o kulminacje, badZto przez wywnioskowanie z prze-
biegu krzywej bledu, ze maksymalna warto$é funkcji nastepuje
dla krancowej warto$ci zmiennej niezaleznej.

Trudniej przedstawia sie rzecz przy funkcjach bledéw o dwu
zmiennych niezaleznych, gdyz z powodu zbyt skomplikowanego
ksztaltu funkcji bledéw naszych wzoréw ksylometrycznych, zasto-
sowanie teorji 0 minimum i maximum nie da sie przeprowadzié,
wobec czego pozostaje szukanie warto$ci argumentéw przez pré-
bowanie obliczajgc wartosci danej funkcji dla szeregu par zmien-

%) Przez .najmniejsza warto$é ujemna” nalezy rozumieé szczegdlna
warto$¢ funkeji bledéw, ktéra przedstawia najwieksza warto$é bezwzgledna
ze wszystkich rozwazanych ujemnych wartosci funkcji.

%) Jesli przebieg danego bledu wykazywalby wartosci albo tylko do-
datnie, albo tylko ujemne, to interesowalyby nas réwniez bledy minimalne,
przedstawiajace najmniejsza bezwzgledna warto$é takiej funkcji bleddw;
bledy omawianych w niniejszej publikacji wzoréw ksylometrycznych wyka-
zuja w interesujacych nas interwalach warto$ci tak dodatnie jak tez ujemne.
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nych niezaleznych, a kulminujace wzglednie maksymalne wartosci
funkcji przyjmujac za odpowiednie bledy.

Obliczenie jednak omawianych rodzajéw bledéw u wyzej
wymienionych szesciu wzoréw ksylometrycznych ogranicza sig
tylko do badania funkcji o jednej zmiennej, gdyz jak z przebiegu
bledéw, obliczonych w cze$ci zastosowanej zobaczymy, najwieksze
wartoéci bledéw wystepuja dla bryl calkowitych tj. przy u==0.

Symbolicznie bedziemy oznaczaé bledy maksymalne wyra-
zeniem ,,max‘ z nastepujagcym nawiasem owalnym, jesli chodzi
o blad maksymalny wystepujacy jako kulminacja, lub z nawiasem
prostokatnym, jesli mowa o bledzie maksymalnym, przedstawia-
jacym sie jako warto$¢ kraficowa; w nawiasie za$ umieszczaé
bedziemy oznaczenie danego rodzaju bledu z odpowiednim zna-
kiem algebraicznym. Warto$¢ argumentéw, dla ktérych blad
maksymalny wystepuje, podana bedzie u dolu nawiasu; poniewaz
jednak — jak juz wyzej podkreslilismy — bledy maksymalne
w naszych dalszych rozwazaniach w cze$ci zastosowanej beda
sie odnosié do bryl calkowitych, dlatego okreslenie u=0 u dolu
nawiasu mozna opuszczaé¢ i tak np. u wzoru Hubera posiada
maksymalny blad absolutny dodatni, wystepujacy jako kulminacja
dla r=0'3614 warto$é: 4'39°/,, a ujemny wystepujacy jako
warto$é krancowa dla r=23'5 osigga warto$é: — 13°38"/, obje-
to§ci walca podstawowego, co symbolicznie piszemy:

max (+ d) , — 53614 =4:39°/o | max [—a'] , = 55=—13"38"/,

Dla oznaczenia bledéw kulminacyjnych, ktére nie sa réw-
nocze$nie bledami maksymalnymi w naszych ogélnych inter-
walach zmiennych, uzywaé bedziemy zamiast symbolu ,,max‘
symbol , kul® z nawiasem owalnym.

d) Btedy przecietne.

Wzory ksylometryczne stuzg w praktyce przewaznie do ozna-
czania lacznej miazszosci wiekszej grupy drzew badzto tworza-
cych pewne sortymenty badZto zlaczonych wedlug pewnych
zasad dendrometrycznych, dlatego wazna jest rzecza poznac
miare dokladnosci, z jakg oznaczaé mozemy migzszo$é wiekszej
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grupy drzew, ktérych wykladnik ksztaltu i iloraz $rednic kran-
cowych wahaja sie w pewnych w danym wypadku miarodajnych
interwalach.

Jako miernik teoretycznej dokladnosci, jaka uzyskujemy
przy pomiarze objetosci wiekszej grupy bryl dendrometrycznych
stuzyé bedzie przecietny blad, ktéry w nastepstwie omawiaé
bedziemy. Celem latwiejszego uzmyslowienia sobie pojecia ble-~
du przecigtnego zajmiemy sie¢ wpierw tym rodzajem bledéw
systematycznych w odniesieniu do funkcji o jednej zmiennej
przyjmujac kazdorazowo zaleznie od danego zagadnienia dla
drugiej zmiennej warto$¢ stala, a nastepnie dopiero rozszerzymy
nasze badania na fukcje bledéw o dwu zmiennych niezaleznych.

o) Jesli dany blad wyrazony jest za pomoca funkcji o jednej
zmiennej np. \ (r) lub , (u) to geometrycznie otrzymujemy jako
przebieg bledu linje przewaznie krzywa, przyczem dla danego
$cislejszego interwalu argumentu zawartego w granicach np.
r=r, i r=r, wzglednie u =u, i u=u, obliczaja sie kranicowe
rzedne  (r;) i Y (ry) wzglednie \; (uy) i W, (uy), ktére wraz
z osig odcietych i dana linja bledu, wyrazona analitycznie przez
y (r) wzglednie y, (u), zamykaja powierzchnie, ktéra obliczyé
mozemy zapomoca wzoru na kwadrature:

Ty ug
/ ) (r) dr wzglednie / Uy () du
v Py uy

Zamieniwszy te powierzchnie na prostokat o podstawie
r, — r; wzglednie u, — u; otrzymujemy wysokos¢ prostokata, ktéra
przedstawia nam zadany blad przecietny wobec czego blad
przecietny przy funkcji bledu o jednej zmiennej przedstawia
sie¢ jako calka oznaczona z funkcji bledu o granicach zadanego
interwalu podzielona przez réznice wartoéci krancowych tegoz
interwalu®).

6) W wypadku; kiedy krzywa bledu przecina o$ odcietych mamy do
czynienia z wielkoSciami o réznych znakach algebr., zatem bledy przecietne
przy bledach systematycznych uwzgledniaja znaki algebraiczne poszczegél-
nych warto$ci odnosnych bledéw, (w przeciwienstwie do bledéw prze-
cietnych przy bledach przypadkowych, ktére obliczaja sie¢ z absolutnych
warto$ci odnosnych bleddw).
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Qznaczajac blad przecigtny przez t z nastepujacym nawiasem,
w ktérym umieszcza si¢ oznaczenie danego rodzaju bledu, oraz
z podaniem u dolu i géry nawiasu granic $cislejszego interwalu
zmiennej, o ktéra nam w danym wypadku chodzi, jak tez umiesz-~
czeniem posrodku tych granic stalej wartosci drugiej zmiennej,
otrzymujemy wzér ogélny na blad przecietny przy funkcji o jednej
zmiennej n. p. dla zasadniczego bledu procentowego u bryt
calkowitych:

]

(oazd= L [v@a ... .1
r=r 2 1
il

Obliczenie . wystepujacych we wzorach na bledy przecietne
calek oznaczonych napotyka przewaznie na znaczne trudnosci,
dlatego jestesmy czesto zmuszeni poslugiwaé sie sposobami przy-
blizonymi do obliczenia powierzchni, ktéra zamieniamy na prosto-
kat, jak n. p. wzorem trapezowym, polegajacym na podzie-
leniu danej powierzchni na wazkie paski, ktérych powierzchnie
oblicza sie jako trapezy, i zesumowaniu otrzymanych powierzchni
poszczegblnych paskéw.

Dzielac interwal r,—r;, wzglednie u,—u; na pewna iloéé
réwnych czesci, obliczajac dla punktéw podzialu szczegélne
warto$ci danej funkcji bledéw i przyjmujac stosownie do przyjetego
przy obliczeniach-tabelarycznych zestawien, ze najmniejsza dzialka
podzielonego interwalu wynosi 0’1 oraz réwnoczeénie zastepujac,
celem oznaczenia uzycia sposobu przyblizonego, w symbolu na
blad przecietny nawias owalny nawiasem prostokatnym, otrzy-
mujemy dla bledu przecigtnego n. p. bledu absolutnego wyrazonego
w odsetkach objetosci walca podstawowego dla bryl calkowitych
wzoér:

fli=8= 2L v el v 0D v +H02) +

+w(r2—o-1)} VAR R 1
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o 0r 1 X ry 4T

2R Dt
t. z. blad przecigtny danego rodzaju bledu, wyrazonego przez
funkcje o jednej zmiennej, obliczony zapomoca wzoru trapezo-
wego réwna sie¢ sumie algebraicznej z polowy wartosci funkcji
bledu dla kraricowych wartosci interwalu i z pelnych wartosci
funkcji dla innych punktéw podzialu danego interwalu zmiennej
niezaleznej, podzielonej przez réznice krancowych wartosci
interwalu oraz pomnozonej przez najmniejsza dziatke podzie-
lonego interwalu tj. 0°1,

B) Jezeli wzér na dany rodzaj bledéw przedstawia funkcje

o dwu zmiennych tj. ¥ (r, u) to do pojecia bledu przecietnego
dochodzimy w ten sposéb, ze uzmyslawiamy sobie bryle, ktérej
objetosé okresla sie nastepujaca podwéjna calka okreslona:

L] Ty
| dr / Y (r, u) du,

ry r

a nastepnie dzielimy otrzymana objeto$¢ przez powierzchnie
prostokata o bokach ry,—r; i u,—u, tj. zamieniamy bryle na
prostopadlo$cian, ktérego podstawa jest prostokat o bokach od-
powiadajacych $ciélejszym interwalom zmiennych r i u, a ktérego
wysokos$é przedstawia zadany blad przecietny.

Zatem blad przecietny np. absolutnego bledu wyrazonego
w odsetkach objetoéci walca podstawowego dla $ci$lejszych inter-
waléw r=r, i r=r, oraz u =u; i u=—u, okresla sie zapomoca
cgélnego wzoru

o) Tao s l)fdr f\p(r,u)du. . 14

ry u,

7) Symbol ; | (r = rl) oznacza sume dwdch szczegélnych wartosci
7 ry

funkcji ¢ (#) dla r =r; i r = ry; symbol za$ E P (r;ﬁ;';) oznacza Sume

szczegdlnych wartosci funkcji bledéw dla r obejmujacego przy danem od-
stopniowaniu wszystkie warto$ci zawarte mledzy ry i r, z wylaczeniem
warto$ci krancowych ry i ry
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t. zn. wzér na przecietny blad danego rodzaju bledéw stalych,
wyrazonych przez funkcje bledéw o dwéch zmiennych, przedstawia
sie jako podwéjna calka oznaczona o granicach krancowych war-
tosci $cislejszych interwaléw zmiennych r i u z funkcji bledu
podzielona przez iloczyn z ré6znic kraricowych warto$ci interwatéw.

Obliczenie powyzszej podwéjnej calki odbywa sie metoda
przyblizong, polegajaca na tem, ze dane interwaly ro—r; i u,—u,
dzielimy na pewng ilo§¢ réwnych czesci i dla poszczegélnych
par warto$ci argumentéw tych podzialéw obliczamy szczegélne
wartoéci funkcji bledéw, przez co otrzymujemy w danej bryle
szereg wysokosci, z ktérych najpierw za pomoca wzoru trapezo-
wego obliczamy powierzchnie przekrojéw w réwnych od siebie
odleglosciach sie znajdujacych i réwnoleglych do jednej pary
$cian prostopadlych do podstawy, a nastepnie z tych powierzchni
przekrojéw obliczamy za pomoca wzoru znanego w dendrometrji
pod nazwa wzoru sekcyjnego opartego na wzorze ksylometry-~
cznym Smaljana objetosé calej bryly. Zastosowanie tego
wzoru sekcyjnego do obliczenia objetosci bryly polega na za-
lozeniu, ze calag bryle dzielimy na wazkie warstwy, ktérych
objetos¢ obliczamy jako iloczyn z grubosci i $redniej arytmety-
cznej powierzchni podstaw danej warstwy, ktére to zalozenie
przy malej grubosci warstw jest uzasadnione.

Zatem w my$l tej metody przyblizonej wyprowadzenie ogél-
nego wzoru na objeto§¢ wspomnianej bryly przedstawia sie na-
stepujaco: >

Bryle funkcji bledéw o dwu zmiennych r i u w interwalach
(ry,ry) i (uy,u,) dzielimy np. na m warstw o grubosci ¢ i o pod-

stawach: Py, Py, P,....P,,, z ktérych kazda powierzchnia podzie-~
lona jest na n paskéw o szerokoscid i o bokach: ay,ay,a,....a,
w przekroju Py; by, by, b,....b, w przekroju P;; c,, cl,c:....c,',
w przekroju Py; Iy, I, I,.... I, w przekroju P, _1; mg, my, my...m,

w przekroju P,,.

Na podstawie wzoru trapezowego obliczamy powierzchnie
poszczegélnych przekrojéw:

p(,/_(s:; P o +a2+...+a,,_,}
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=53 o b) bt bbby

P.z:b{Q ko) s tn i ey

Pm~.1=b-:; T +/._,+...+ln_1}

Po==bly (o -my) -y s o, |

Objetos¢ bryly oblicza si¢ zapomocag wzoru:

5 Pot )P Pact.. +Pm_1‘

Podstawiajgc powyzej otrzymane warto$ci na powierzchnie prze-
krojéw w ostatnim wzorze otrzymujemy:
_m{i[a(,+an+mo+m,,] RIS ST it o
+b9"f_bn+co+cn+---+lo+[n "+‘m1+m2 bttty gl
+by+bs .+ by g Fateat...teg it

+/1+12+...+1,,_1:

Jesli otrzymanag w ten sposéb objetosé bryly podzielimy
przez iloczyn z interwaléw zmiennych: (r, — r,).(u, — u,), dalej
jesli wezmiemy pod uwage, ze w naszych pézniejszych oblicze-
niach najmniejsza dzialka obydwéch interwaléw wynosi: e=06=0"1
i na miejsce powyzszych oznaczen wprowadzimy symbole sumy
funkcji bledu z analogicznym okresleniem interwaléw, jakto mialo
miejsce przy funkcji bledu o jednej zmiennej, otrzymujemy na-
stepujagcy wzér na przecietny blad np. dla zasadniczego bledu
procentowego w interwalach (ry,r,) i (uy, u,):

e ek { \“w( =)+

r=r1,u=ul—(_‘_1’1)(u2—u])
g D=t w0 —Zf)]%

—{—\1‘[’(ri,,l,u#5:)} g Tt T RS

:&
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t. zn. blad przecietny danego rodzaju bledu, wyrazonego przez
funkcje o dwu zmiennych, obliczony sposobem przyblizonym
réwna sie iloczynowi z najmniejszych dzialek, na jakie interwaly
obu zmiennych zostaly podzielone — w naszym wypadku 001 —
podzielonemu przez iloczyn z réznic kraficowych wartodci tych
interwaléw i pomnozemu przez sume, zlozona z trzech grup
szczeg6lnych wartosci danej funkcji bledéw, a mianowicie pierwsza
grupa z czynnikiem l obejmuje sume algebraiczna czterech szcze-
gélnych wartosci funkcji bledu obliczonych dla kraricowych war-
toéci interwaléw zmiennych r i u; druga grupa z czynnikiem 9
obejmuje sume algebraiczng tych wszystkich szczegéinych war-
tosci funkcji bledu, przy obliczaniu ktérych posiada na przemian
jedna z dwu zmiennych kraricowe wartosci swego interwalu,
podczas gdy druga wlasnie wszystkie inne wartosci précz dwu
kraricowych swego interwalu, a trzecia grupa z czynnikiem 1 obej-
muje sume algebraiczna reszty szczegélnych wartosci danej funkcii,
przy obliczaniu ktérych zadna z obu zmiennych nie posiada war-
tosci kraricowych swego interwalu.

Ze wzgledu na cyfrowe zestawienie szczegélnych wartosci
funkcyj poszczegélnych bledéw dla pojedyriczych wzoréw ksylo-
metrycznych zgrupowane w tabelach, dolaczonych do niniejszej
publikacji, mozemy podaé dla obliczenia przecietnego bledu
btedéw, wyrazonych za pomoca funkcji o dwu zmiennych, na-
stepujacy spos6b obliczenia :

Zgrupowane szczegélne wartosci funkcji bledéw dla danych
$cidlejszych interwatéw (ry, r,) i (uy, u,) tworza prostokat liczb,
ustawionych tak, ze cztery liczby znajdujace sie na wierzchol-
kach prostokata liczb, przedstawiaja pierwsza grupe liczb, ktérych
algebraiczng sume dzielimy przez cztery; liczby tworzace boki
prostokata z wylaczeniem liczb wierzcholkowych daja druga
grupe liczb, ktérych algebraiczng sume dzielimy przez dwa;
pozostale liczby znajdujace sie wewnatrz tego prostokata liczb,
tworzg trzecig grupe liczb. Sume algebraiczng tych trzech grup
liczb mnozymy przez 0°01 i dzielimy przez iloczyn z réznic
warto$ci kraricowych interwaléw zmiennych; otrzymany w ten
sposéb wynik jest zadanym przecigtnym bledem.

2*
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-Zastosowanie jednak bledu przecietnego do okreslania do-
ktadnoéci wzoréw ksylometrycznych napotyka o tyle na trudnosci,
ze dotychczas — jak wyzej podkreslono — nie mamy przepro-
wadzonych dokladnych badan co do $cidlejszego interwalu wy-
kladnika ksztaltu r ani w odniesieniu do poszczegélnych gatunkéw
drzew, ani w zastosowaniu do pewnych grup drzew, zlaczonych
wedlug pewnych zasad dendrometrycznych,

Wobec tego zadaniem niniejszej publikacji zwlaszcza jej
cze$ci zastosowanej w odniesieniu do bledéw przecietnych
hedzie przedstawi¢ w jaki sposéb odbywa sie w konkretnym
wypadku $ciste obliczenie bledu przecietnego danego rodzaju
bledéw i wykazaé na cyfrowych przykladach, ze wyniki oblicze-~
nia $cislegc sa zgodne z wynikami, otrzymanymi sposobem
przyblizonym; nastepnie celem utworzenia skali dokladnosci
wzoréw ksylometrycznych przyjmiemy na podstawie pewnych
danych $cislejsze interwaly zmiennych r i u i obliczymy bledy
przecigtne dla poszczegélnych rodzajéw bledéw dla wszystkich
omawianych wzoréw ksylometrycznych.

W wymienionym poprzednio w uwadze 1. podreczniku Lan -
genbachera i Nosseka znajdujemy obliczenie wykladnikéw
ksztaltu dla poszczegélnych 18 sekcji — dlugich po 16 m
i wierzcholku o dlugosci 2°9 m — strzaly drzewa o calkowitej
dlugosci 31'7 m za pomoca znanego wzoru:

log g, —log g»

paglog ¥1-—log y,
log x; —log %,

B ks, wzglednie r==

Otrzymane, w mysl ostatniego wzoru pojete, wykladniki
ksztaltu wahaja si¢ w podanym przykladzie od r=0'517 do.
r=2'304, wobec czego mozemy — abstrahujgc od rozwazan
nad trafno$cig takiego sposobu obliczenia wykladnika ksztaltu —
przyjaé dla naszych pézniejszych pokazowych przykltadéw, ze
Scislejszy interwal jest zawarty miedzy r, =05 a r,=2'3.

Réwniez mozemy na podstawie obserwacji przyjaé, ze sto-
sunek érednic kraficowych dla klocéw, spotykanych w praktyce,
waha sie w $cislejszym interwale od mniej wiecej u; =05 do
u, —0°8.
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3. Ogolne twierdzenia o wzajemnym stosunku poszczegélnych
rodzajéow bledéw podstawowych.

Definicje bledu absolutnego i obydwéch odmian bledu pro-
centowego opieraja sie na okresleniach noszacych pietno pod-
stawowych pojeé, podczas gdy bledy kulminacyjne, maksymalne
i przecietne przedstawiaja pewne fazy wzglednie tworza niejako
dalsza budowe poprzednich rodzajéw bledéw, dlatego mozemy
bledy absolutne i procentowe nazwaé podstawowymi.

Zréwnujac wzory na bledy podstawowe z zerem i rozwig-
zujac otrzymane w ten sposéb réwnania, otrzymujemy wartosci
na r wzglednie pary wartoéci na r i u, dla ktérych odnosne
bryly dendrometryczne obliczaja si¢ zapomoca danego wzoru
ksylometrycznego bez bledu, przyczem przekonujemy sie, ze
nastepuje to dla tychsamych wartosci argumentéw réwnoczesnie
dla wszystkich rodzajéw bledéw podstawowych dotyczacego wzoru
ksylometrycznego, gdyz dochodzimy we wszystkich wypadkach do
tego samego warunku, a mianowicie do nastepujgcych réwnan:

D (r,u) — F(r,u) =0 wzglednie ¢{r) —f(r)=0

Azeby znale$¢ wartoéci argumentéw, dla ktérych wystepuja
kulminacyjne bledy absolutne, musimy pierwsze pochodne funkcyj
bledéw absolutnych zré6wnaé z zerem i rozwigzaé nastepujgce
réwnania: o

¥ () —F,(,u)=0i®,(r,u)—F,(r,u) =
wzglednie ¢’ (r) —F# (r)=0

Azeby znale$¢ wartosci argumentéw, dla ktérych wystepuja
kulminacyjne bledy procentowe, musimy pierwsze pochodne
funkcyj bledéw procentowych zréwnaé z zerem, przyczem dla
obydwéch odmian bledu procentowego dochodzimy do tych-
samych réwnan, ktérych pierwiastki przedstawiaja zadane wartosci
argumentéw. Rdéwnania te brzmia.

©(r,u) F', (r,u) —F(r,u) ', (r,u) =0
i ®(r,u)F ,(r,u)—F(r,u) ¥, (r,u)=0
wzglednie @ (r) f'(r) —f(r) ¢’ (1) =0
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Funkcje F(r,u), ®(r,u), f(r), ¢ (r) przedstawiaja dla usta-
lonych przedtem interwaléw ogélnych zmiennych r i u czynniki,
przez ktére mnozymy objetosci dotyczacych walcéw podstawowych,
azeby otrzymaé rzeczywiste wzglednie przyblizone objetosci bryl
dendrometrycznych i ich cze$ci, wobec czego musza one przed-
stawia¢ wartosci dodatnie i z wyjatkiem zastosowania do walca,
w ktérym to wypadku réwnaja sie jednostce, musza by¢ zawsze
ulamkami wlasciwymi.

Opierajac si¢ na powyzszych rozwazaniach mozemy ustali¢
nastepujace ogélne twierdzenia odnoszace si¢ do podsta-
wowych i kulminacyjnych bledéw:

1. Rzeczywiste pierwiastki réwnania ¢ (r,u) —F(r,u) =0
wzglednie ¢ (r) — f(r) =0 przedstawiaja te pary wartoéci na
r i u wzglednie warto$ci na r, dla ktérych dotyczace bryly
dendrometryczne obliczaja sie za pomoca danego wzoru ksylo~
metrycznego bez bledu tj. dla ktérych bledy podstawowe sa
réwne zeru.

2. Rzeczywiste pierwiastki réwnarn:
Y (u)—F,(e,u)=0 i¥,(,u) —F,(r,u)=0
wzglednie 3
¢ (@)—f ®)=0
przedstawiaja te pary wartodci na r i u wzglednie r, dla ktérych
wystepuja kulminacyjne bledy absolutne.
3. Rzeczywiste pierwiastki réwnan:
® (e, u) F'y (1, 1) — F (r,) ¥, u) =0
i ®(r,u)Fly(c,u) —F(r,u) ¥,(r,u) =0
wzglednie
@Of@—9" @ f@)=0

przedstawiaja te pary wartosci na r i u wzglednie na r, dla
ktérych otrzymujemy kulminacyjne bledy procentowe tak zasad-
" nicze jak tez wtérne.

Na podstawie twierdzen 2 i 3 dochodzimy do wniosku, ze
kulminacja bledu absolutnego z jednej strony a procentowych



TEORJA DOKLADNOSCI WZOROW KSYLOMETRYCZNYCH 23

z drugiej nie nastepuje w zasadzie dla tychsamych wartosci
swych argumentéw.
4. 7 zasadniczych wzoréw na pojecia bledéw podstawowych

wynika, ze
o

wzglednie p," = (-}')

(¢4
P0G w) ‘

1!

3 e ,,(,/",,,. l d = ’—,(,,
bt T TT AR aae R

Poniewaz funkcje na przyblizone i rzeczywiste objetosci bryl
dendrometrycznych sa warto$ciami dodatnimi i z wyjatkiem
zastosowania do walca, dla ktérego przybierajg wartosé jednostki,
ulamkami wlasciwymi, dlatego wszystkie rodzaje bledéw
podstawowych posiadajag dlatychsamych argu-
mentéw jednakowe znaki algebraiczne, a bledy
procentowe sa wieksze od bledu absolutnego,
wyrazonego w odsetkach objetosci walca pod-
stawowego, o ile wogéle bledy podstawowe nie sa réwne
zeru i z wyjatkiem wypadkéw, jak sie w cze$ci zastosowanej
przekonamy, tylko o teoretycznem znaczeniu, w ktérych f(0)
bedzie rownala sie jednostce, a ¢’ bedzie rézne od zera.®)

5. Ze wzoréw 11 i 12 wynika wz6ér: 51 =0, czyli p, =0 p,,

2
z czego wylania sie.nastepujaca dyskusja:

a) jesli o=1 tj. jesli blad absolutny réwna sie zeru, to
wtedy p;=p,=0

) jesli 6 =1 czyli bledy podstawowe sa ujemne to p; =>p,

v) jesli 6 << 1 czyli bledy podstawowe sa dodatnie to p; << p..

Zatem wniosek:

Bledy podstawowe sa sobie réwne, jes$li sie
réwnaja zeru; przy ujemnym znaku bledéw pod-
stawowych zasadniczy blad procentowy jest
wiekszy od wtérnego, a przy dodatnim znaku
wtérny jest wiekszy od zasadniczego.

§) Patrz: Wtérny blad procentowy u wzoréw Smaljana, Hoss-
felda, Rieckego, Breymanna dlar=0iu=0,
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1. CZESC ZASTOSOWANA.

4. Ogélny wzér odnoszacy sie do wzajemnego stosunku
przekrojéow poprzecznych u bryl dendrometrycznych.

Zastosowanie teorji, wyluszczonej w czesci teoretycznej, do
wzoréw ksylometrycznych prowadzi do zbyt skomplikowanych
funkcji, azeby na podstawie algebraicznego rozwigzania utworzo-~
nych z tych funkcji réwnan mozna nad niemi dyskutowaé, rzecz
sie jednak staje rozwiazalna, jesli sobie uprzytomnimy, ze dla
argument6éw r i u ustaliliSmy $cisle ograniczone interwaly ogélne.
Azeby zatem przedstawié¢ przebieg warto$ci omawianych rodzajéw
bledéw systematycznych u wzoréw ksylometrycznych dla wszyst-
kich bryl dendrometrycznych i ich czesci, uciekamy sie do
szczeg6lowego obliczenia i tabelarycznych zestawien szczegél-
nych wartoéci naszych funkcji bledéw przez kolejne podstawianie
w odstopniowaniu wynoszacem 0'1 na r i u wartodci objetych
odno$nymi interwalami ogélnymi.

Otrzymane tabelaryczne zestawienie cyfrowe zuzytkujemy
do sporzadzenia wykreséw, ktére précz potwierdzenia slusznosci
twierdzeri ogélnych, podanych przy koncu czesci pierwszej sa
nam potrzebne przy ustalaniu nowych szczegélowych wnioskéw,
odnoszacych sie juz specjalnie do poszczegélnych wzoréw ksy-
lometrycznych.

Zanim jednak przejdziemy do szczegélowego omawiania
przebiegu i charakterystyki bledéw systematycznych u poszcze-
gélnych wzoréw ksylometrycznych musimy podaé wzér odno-
szacy sie do wzajemnego stosunku przekrojéw poprzecznych
u bryl dendrometrycznych, a mianowicie:

Matematyczna relacja miedzy przekrojami krancowymi i prze-
krojem dowolnym, lezagcym miedzy temi u bryl dendrometrycz-
nych:
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Jezeli przez n oznaczymy stosunek odleglosci przekroju g,
od podstawy () do calkowitej dlugosci (h) $cietej bryly den-
drometrycznej, to h,= (1 —n) h a nastepnie:

g=Au", g,=Ala+00-—-—nhl", G=Aw+hH"
1 1 1
e A e e A
z czego: u—(A) yru- (1 n)h—(A) ’ u-|—h——<A

\

Mnozac u przez n, a u-+h przez 1—n; otrzymamy jako
rezultat u + (1 —n) h czyli podstawiajac za te wyrazenia prawe
strony powyzszych réwnan i mnozac powstale w ten sposéb

1

ré6wnanie przez A" dostaniemy jako rezultat zadany wzor:

1 1 1.
ng"—}—(l—n]G”:gn’j B S G .

wzglednie dla catkowitych bryl dendrometrycznych tj. przy g =2=0

PR R TR e R

Dyskusja réwnan 15 i 16:
. 1 1 o
to: g"+ G"'=2g", wzgl. gp= (%) a 11

T 1
ay Jezeli n =5

] 1 ]

1 Lt r
B » n=g5 ., ¢g"+2G0"=3g"w , 92(2) G 18
1 1 1
2 2 7 1\F
W . n=3 ,2%"+G=3"% , gun=(3]aG 19
1 1 1 %
1 P e
6) ” n:E' 5 gr +3Gr :4.9",’/1 " gq/,: (—2—) G 20

1 1 1
3 £ r
€) » n:Z; » Sgr—}_ar :4gr"/1 »” g‘“:(%) a 21
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Po tych wstepnych rozwazaniach przechodzimy do zastoso-
wania naszej teorji do poszczegélnych, wyzej wymienionych wzo-
réw ksylometrycznych.

5. Wz6r Smaliana

nosi w praktyce miano ,kubikowania z koncéw” i wyraza sie
nastepujacym wzorem matematycznym:

V=1 (G+a)h

gdzie (G oznacza przekréj podstawowy (w czole), g przekréj
gérny (w czubie), a h dlugo$¢ osi strzaly drzewa.
Dla bryl calkowitych przybralby wzér ten wobec g =0 naste-

pujacy ksztalt:
" __ 1
4 = Gh

Wzér Smaljana przeksztalca sie przez wyciagniecie G przed

nawias i zastapienie wyrazenia g przez u’:

|
V:Gh-{;(1+u2)i R Doy

Przez odjecie wzoru 5 od ostatniego wzglednie przez po-
dzielenie wzoru 5 przez ostatni dochodzimy do wzoru na blad
absolutny (Av) i na iloraz objetosci (), a mianowicie

I 2r +2
1 o 1—u ’ ‘ :
Av=Gh 2(1+u')~ 3 23
i (r+1)(1—u")
wzglednie dla bryl catkowitych:
1 : B
Nt Ll e
v Gh|2 SRy 23 a
( 2r+2)
i 4 r
o= il — : oo o 24

r+1 (@ +u"’)(1 —u?;)
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wzglednie

: e 5

r-+1

Na podstawie wzoréw 23 do 24 a obliczamy bledy podsta-
wowe dla wzoru Smaljana:

24 a

(0]

«) Blad absolutny wyrazony w odsetkach objetosci walca
podstawowego réwna sie:

’ 2r42 }
1 5 1=u "
w=!o0+u)— ”-( 51100 . . . 25
‘ (r+1) \1——u")
wzglednie
(L’:‘1'—-- ! I]00 25 a
ey Aehin SNl S s
) Zasadniczy blad procentowy
l ( 2r+2) ’
= At
p=11— it bose , (100 . . 26
‘ (r—}—‘l)(1—}—u2)(1—u")
wzglednie
= 0% Ak Lt G208

LRG0 I et 10
p 1 l r +1 l
v) Wtérny blad procentowy

(r+1)(1+u2)(1-—u%)_1 ’100 . » 21

Pi== 2r + 2
e

pa f;(r-Fl)—1}100=50(r—1). 1278

Obliczenia i wykresy powyzszych trzech rodzajéw bledéw
znajdujg sie w tabelach 2, 3, 4 i tablicy | i uprawniaja do
nastepujacych wnioskéw:

wzglednie

1. Ze wzrostem u bezwzgledna warto$¢ bledéw podstawo-
wych maleje czyli najwieksze co do wartoéci bledy wykazuja
bryly calkowite,
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2. Bledy maksymalne bledéw podstawowych wystepuja jako
wartosci- kraricowe.

3. Dla r=0 i u=0 bledy podstawowe wykazuja naste~
pujace wartoéci: o =—50%0, p’; = —100%0, p'y= —>50%.
Z poczatkowych rozwazan cze$ci teoretycznej wiemy, ze dla
r=0 musi u byé réwne 1 t. zn. ze mamy wtedy do czynienia
z walcem, dla ktérego bledy podstawowe réwnaja sie zeru;
zjawisko to staje sie zrozumialszem, jesli sobie uprzytomnimy,
ze dany przebieg bledéw odnosi sie przy u=0 do bryl calko-
witych, podczas gdy walec o skoriczonej dlugo$ci przedstawia
bryle $cieta, u kiérej przekréj gérny réwna sie¢ podstawie.

Réwniez z poprzednich rozwazan wiemy, ze jako krancowa
warto$¢ na wykladnik ksztaltu r dla celkowitych bryl dendro-
metrycznych ze wzgledu na wymagania praktyki co do ksztaltu
drzew lesnych przyjelismy r=10'5 gdyz strzaly drzew o ksztalcie
podwalcowatym musza byé w praktyce brytami $cietemi, zatem
o u wiekszem od zera, wobec tego przebieg bledéw podsta-
wowych bedzie w rzeczywistosci inny niz teoretycznie obliczony,
tj. od mniej wiecej »=0'5 krzywa bledéw bedzie zblizala sie
do poczatku ukladu spélrzednych, a nie tworzyla skokéw.

W analogicznych wypadkach bedziemy méwili, ze przebieg
bledéw danego wzoru ksylometrycznego wykazuje dla walca
punkt nieciagly tworzac skoki o dotyczacych teoretycznych war-
tosciach, natomiast dla rzeczywistego przebiegu bledéw przyj-
mowaé bedziemy we wszystkich wypadkach jako najwigksze
mozliwe wartoéci dla bryl podwalcowatych te, jakie funkcja
bledéw posiada dla u=0 i r=0°5.

4. Wtérny blad procentowy przedstawia sie dla bryl calko-
witych jako prosta.

W literaturze znajdujemy obliczenia wielkosci bledu absolut-
nego w odniesieniu do stozka zwyklego i nejloidy w stanie
$cietym; do tych samych wynikéw dochodzimy, jesli we wzorze
na Av podstawimy za r warto$é: 2 i 3:

Dla r =2 otrzymujemy Av= 16 Gh (1 —u)? t. zn. blad abso-

lutny w tym wypadku jest dodatni i wprost proporcjonalny do
kwadratu uzupelnienia u do jednostki czyli odwrotnie proporcjo-
nalny do u.
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Zastepujac u $rednicami obliczymy: Av= % rc_4[1 (D—d)* tj. blad

absolutny, jaki popelniamy przy zastosowaniu wzoru Smaljana

do stozka zwyklego, jest dodatni i wynosi objetosci walca

L
réznicy $rednic krancowych. :
Dla r=3 oblicza si¢ Av= % Gh (1 — u*s—u's 4 u®) ‘czyli

170 h_ 2 ¢
24(0 d)t).

w odniesieniu do nejloidy jest réwniez dodatni i wynosi prawie

prawie réwne (=) % (1 —u)* wzglednie Av ==

} objetosci walca réznicy $rednic kranicowych.

W ogélnosci mozemy zatem powiedzie¢, ze blad absolutny
przy zastosowaniu wzoru Smaljana do bryl dendrometrycz-
nych jest, dla danej wartoéci na r, wprost proporcjonalny do
ré6znicy $rednic krancowych i do dlugosci danej czesci strzaly
czyli z tego wynika praktyczna regula, ze pelniejsze odcinki
strzaly moga byé dluzsze niz odcinki, ktérych grubo$é szybko
maleje, jesli blad w objetosci ma pozostawaé na tej samej
wysoko$ci.

Przebieg bledéw podstawowych wzoru Smaljana jest
nastepujacy:

Dla walca wynosza bledy podstawowe zero tworzac tak
zwany punkt nieciagly o skokach, wykazujacych nastepujace teore-

tyczne wartoéciz (— ') = — 50%/, objetoéci walca podstawowego,
r=0
(—p'y)=— 100°/0 objetosci przyblizonej i (— p’s)=— 50%,
r=20 r=20

objetosci rzeczywistej.’) Bledy podstawowe przebiegu bledéw
okreslonego jako rzeczywisty wykazujg dla r=0'51 u =0 naste-
pujace wartodci, przedstawiajace réwnocze$nie ujemne bledy
maksymalne:

max [— '] =— 1667%,, max [— p'] =— 33:33%/,,
r=105 r=209%§
max [— p’s] = — 25°00°/0.
r =05

9) Nalezy zapamiegtaé, ze odsetek przy o odnosi sie do objetosci
walca podstawowego, przy p, do objetosci przyblizonej, a przy p, do obje-
tosci rzeczywistej; przy dalszych rozwazaniach okreslenia te beda opusz-
czane.
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Btqgd przecietny.

Poniewaz funkcje bledéw, jakie popelniamy przy zastoso-
~ waniu wzoru Smaljana, sa stosunkowo proste i wobec tego
umozliwiaja w latwy sposéb obliczenie bledéw przecietnych
sposobem $cislym zapomoca catkowania, dlatego wykonamy kilka
przykladéw celem poréwnania z wynikami uzyskanymi sposobem
przyblizonym, a dopiero nastepnie przystapimy do przykladéw,
majacych nam stuzyé do poréwnawczej charakterystyki oma-
wianych wzoréw ksylometrycznych.

" Przyklady dajace sie obliczyé sposobem $cistlym:

b
r=b 100 ({1
L i [
a ..
b+171
ol )

przyczem e jest zasada logarytméw naturalnych; jesli a =05
b=23, to:

2:3
t(u)u 0 =5011 oLl LA

. 0
=0 11— 18loge | —6'197Y/,

a sposoben; przyblizonem na podstawie tabeli nr. 2:

= 01 (1 | 0
t[a]u=0 =2 |- (19697 —16'667) } 139:243—29'511 | =6180"/,
i POt 1T £ |
b : b+1
—b 100 2 ]
2. ¢ 0= (1— r)d=1oo 1— 2708\at
(pl)l;—-a b—aj £-1-1 X \ (b—a)logpl
a
210g 22 _ 52940
t(pl)l;_g _1oo§1~ TG }_12594 o

=23
t[p] u=0 = 12:361%/,
‘5
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b
r=b
3. t(p.z)igzéglf’ia)f(p—n dr:5oz;(b—{—a)—1z

r=23 (1 I
t(p;)u=0 =50 ' (2:3+05)—1 = 20°00°/0
r=0'5 2

r=23 v
t [p.] u=0 = 2000/
r=0,5

b
u=>b
100 5
s 0@r=t= 0?0 fa—urdu=

a

="M=+ @)+ 6+ ab+ o)

albo

=100 Corl
=18 (b—a) ' G R

u=1 100

t (@) ;‘zg: 18 = 5560

=1
([«] r=2=0'1 | 16°667 -+ 47496 | — 5'58")o

b
u=>b r
e 100 ( 21+u-t+ u2)
=2 %Y ol o
L i sl Lt B v L
a
: e )]
__ 100 [1_2(1_1_ u )]d __100} log \a¥+1.
b——ab 3 Ty R (b—a) loge

u=1__100 | ]og‘Z[
t —2 = 11— 8"l=10220%
(p]):-—_o 3 loge] /¢

=}
I e 2 =07 { ; (6'667 - 85'467) } — 102130
u =

31
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b
6. t(a)l;_:b_mo jU——U’/“—u 1L u?)du=
:*1—00 —a— = (b8 — g8 i 3 e— g3 3__ l
4(b_){b a— 3 @—a)—2 b )+ 5 (& |
: ’_ i_,_f_,l__. i
t(t):;;g 2511 2 k. 3 7'61%/0
t[a] v =3—01]) .25 64583 } =7"708"/o
Wi=110 12 :

Jak z powyzszych przykladéw widzimy wyniki na bledy prze-
cietne, obliczone sposobem przyblizonym na podstawie tabel
r6znig sie nieznacznie w miejscach dziesietnych od wynikéw
otrzymanych sposobem $cislym przez calkowanie, wobec czego
mozemy przyjaé, ze obliczanie bledéw przecietnych na podstawie
tabel jest calkowicie wystarczajace dla celéw dendrometrycznych.

Nadmienié jeszcze nalezy, ze gdyby$my mieli cyfrowe dane
co do czestosci wystepowania pewnych ksztaltéw strzal lub ich
czedci dla pewnych wartosci na riu, to przy obliczaniu bledéw
przecigtnych nalezaloby wprowadzi¢ wagi dla poszczegélnych
szczeg6lowych warto$ci funkcji i zastosowaé wzér na kwalifiko-
wana $redniag arytmetyczna.

Przykiady dla celow poréwnawczych :
Précz tych trzech pierwszych przykladéw obliczonych takze

sposobem $cistym, a sluzacych do celé6w poréwnawczych mozemy
réwniez do tych samych celéw uzy¢ nastepujacych przykladéw,
opierajacych sie na funkcjach bledéw o dwu zmiennych:

r=23u=08 001 1
tla _— 5415 — 8'818] +
[ ]r=0'5,u=0'5 18'05]4[ ]

|- ;12 [46:941 — 21:308] -+ 36°454 — 11819} = 0°6799°/0 = 0°680° 0

|
J
r= 23, u=08 007 1
2.1 8'450 — 13607
[p]]r=0’5,u=05 054’4[ ]+

+ ; [71°257 — 31°960] + 51922 — 16°870 | = 0'989°/0
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r=23u=08 0011

3. tlps = 9°098 — 12:296
[p']pzos.u:o's 054}4[ 1+

-+ ; [75:807 — 30°278] - 53398 — 16°334 g = 1"093%0

6. Wzo6r Hubera

nosi w praktyce nazwe ,kubikowania ze $rodka” i wyraza sie
nastepujacym wzorem matematycznym, ktéry podaje przyblizona
objetos¢ tak calkowitych jak tez $cietych bryl dendrometrycznych:

V’ — g| PR h
gdzie gi. oznacza powierzchnie przekroju srodkowego, a A dlugosé¢
osi strzaly drzewa wzglednie konoidy.

Na podstawie wzoru 17 wyrazamy przekréj Srodkowy przez
krancowe: ;
1 1

on,=(2)7 (% +o7)"

1
i wprowadzajac zmienng u =( g”) przeksztalcamy wzér Hu -

a
bera na odpowiednia funkcje o dwu zmieimych riu:
& 1 & r
v'zah(z)"(1+ur) Ftae ok S

wobec czego blad absolutny brzmi:

2r +2
1 2t i—u "
el S e
l (r+ 1)(1 -+ u")
wzglednie dla bryl calkowitych:
o /A
Av—Gh;(Q) 3ol TR 29 a
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Réwniez iloraz objetosci wyraza sie wzorem:

2r+2)

it
= il S G ety o 50

(r—f—l)(l—}—uf)r(‘]—uf)

wzglednie dla bryl calkowitych:

o = 2" T R SR
r-+1
Zatem bledy podstawowe dla wzoru Hubera obliczaja sie:
@) Blad absolutny wyrazony w odsetkach objetosci walca
podstawowego

’ . 2r+ 2 |
= (%)'(1+u:)r— i 1100 . . 3
‘\ ’ (r#—])(1fu")
a dla bryl calkowitych
(,.':1(-;—:')"—17_11}100 ESrle srony T

[}) Zasadniczy blad procentowy:

PP
r 1 R r
P e eSS —1100 . . 32
2, ]
\ (r—%—1)(1ﬂ!—u")'(1——u")
wzglednie:
P G T SRR
L p )
v) Wtérny blad procentowy
2 / 2
{
PN O
Ll e e P e e e

2 l Qr(1_;j’r:;+2) I



TEORJA DOKLADNOSCI WZOROW KSYLOMETRYCZNYCH 35

wzglednis
T L i B L
Pa==) or 1|100 B S s v T

Obliczenia i wykresy wszystkich trzech rodzajéw bledéw
znajduja sie w tabelach 5, 6, 7 i tablicy Il i uprawniajg do na-
stepujacych wnioskow:

1. Ze wzrostem u bezwzgledna warto$¢ bledéw podstawowych
maleje.

2. Dodatni blad kulminacyjny o znaczeniu teoretycznem dla
bryl calkowitych wystepuje dla « przy r =035, a dla p’; i p/,
przy r - 045; rzeczywisty dodatni blad maksymalny wystepuje
dla przyjetego r=05.

Réwniez nalezy podkresli¢, ze ze zwiekszaniem sie u punkt
kulminacyjny poszczegélnych bledéw podstawowych przybliza sie
ku poczatkowi ukladu wspélrzednych.

3. Ujemny blad maksymalny bledéw podstawowych wystepuje
jako warto$¢ kranncowa dla r =35 i to réwnoczesnie dla wszystkich
wartosci na u, a mianowicie:

max [—(LJ*-—]S 380/0, max [—p 1] =——51 AQ
» =55, r=35
i max [— p’2] =— 60°25°/o.
r=3

4. Omawiany przy wzorze Smaljana t. zw. punkt nie-
ciggly jaki powstaje dla walca, staje sie przy wzorze Hubera
pozornie ciaglym, wobec czego przebieg bledéw podstawowych
nie wykazuje tu skokéw.

Azeby obliczy¢é warto$¢é maksymalnego bledu dodatniego
bledéw podstawowych, nalezy wpierw obliczyé wartosci dla r,
dla ktérych nastepuje kulminacja krzywych, przedstawiajacych
przebieg poszczegélnych bledéw podstawowych dla bryl calkowi-
tych, co uskuteczniamy na podstawie zasad teorjii o minimum
i maximum.

3*



36 TADEUSZ WIELGOSZ

Przebieg obliczenia dla «’ jest nastepujacy

o = 1 — 1
gt e
‘ia’o—— o, LOgQ 1 e 10
dpas or 7 (r+1)2——0 )

czyli: (r+1)%log2—2"loge =0

Ostatnie réwnanie rozwigzujemy metoda Newtona,!') po-
legajaca na tem, ze dla danego réwnania wyrazajgcego sie funkcja
np. 7.(r) =0 przyjmujemy przyblizong warto§é pierwiastka np. ry,
a nastepnie poprawimy r, o A, ktére oblicza sie za pomoca wzoru:

e 7. (ro)
o == 3
wskutek czego otrzymujemy dokladniejsza wartosé na r, 2 miano-
wicie r, =r,+4 h,, z ktéra postepujemy analogicznie tak dlugo,
az dwie po sobie nastepujagce wartoéci na r (nie beda lub)
prawie nie beda miedzy soba sie réznic.
W naszym wypadku mamy:
7.(0) =( +1)*log2—2" loge
ar(@={2@+1)—2"}log?2
Przyjmujac, ze ry= 035 obliczamy 7 (0'35) = — 00049,
a 7/ (0°35) = 04291, z czego h,=00114192. Widzimy zatem, ze
r6znica dwu po sobie nastepujacych wartosci na r uwydatnia sie
dopiero na drugiem miejscu po kropce dziesietnej, wskutek
czego mozemy przyjaé te ostatnig warto$¢ za wystarczajaca.
Zatem

max (- a’) = 4'387 %/,
r = 03614

10) Symbol Log. odnosi si¢ do logarytmdéw naturalnych, a symbol log.
log a
do logarytméw zwyczajnych, wobec czego: Loga = 1635
1) Blizsze objasnienie tej metody mozna po za odnosnymi podreczni-
kami matematycznemi znale$¢ réwniez w pracy:
Tadeusz Wielgosz: ,Pomiar drzew na podstawie metody naj-
mniejszych kwadratéw” Roczniki nauk rolniczych, tom IX. Zeszyt 1. Rok 1923.
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Dla obydwéch odmian bledu procentowego obliczenie po-
wyzsze przedstawia sie nastgpujaco:

Zréwnana z zerem pochodna funkcji bledu po opuszczeniu
czynnika stalego 100 brzmi:

_ (r+1)2"Log2—2°

(e 12 y
czyli
(r+1)log2—loge=0
z czego
I e AT
log 2
Zatem

max (- p’1) =579 %/,
r = 0442

max (+ p’,) =615/,
r = 0442
Celem stwierdzenia identyczno$ci z wynikami, podanymi
w podrecznikach dendrometrycznych, obliczymy wartosci bledu
absolutnego Av w odniesieniu do stozka zwyklego i do nejloidy.

]12 GBI )% . 25 blad nb-

solutny w tym wypadku jest ujemny i wprost proporcjonalny do
u; jego absolutna warto$¢ réwna sie polowie odpowiadajacego
bledu przy wzorze Smaljana.

Wyraiajq% iloraz $rednic u przez $rednice otrzymujemy
1
12" 4
zastosowaniu wzoru Hubera do stozka zwyklego, jest ujemny

Dla r =2 obliczamy A==

By ==— (D —d)? tj. blad absolutny, jaki popelniamy przy

: 1 2 g
i réwna sie 19 objetosci walca réznicy s$rednic kraricowych.

Dla r = 3 oblicza sie \v—=— 18 Gh (1 —u'3—u's +u*) czyli

prawie réwna sie: Av = — . Gh (1 — u)® wzglednie A v

8
19
e T4h (D —d)? tj. w odniesieniu do nejloidy jest blad absolutny

réwniez ujemny i wynosi prawie _ objetosci walca réznicy $rednic

8
krancowych.
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Analogicznie jak przy wzorze Smaljana mozemy i w od-
niesieniu do wzoru Hubera powiedzie¢, ze blad absolutny
przy zastosowaniu tegoz ostatniego do bryl dendrometrycznych
jest wprost proporcjonalny do réznicy $rednic krancowych i do
dlugosci danej czesci bryly, czyli dochodzimy do tej samej
praktycznej reguly, ze odcinki pelniejsze moga by¢ dluzsze niz
odcinki zbiezyste, jesli blad w objetosci ma posiadaé te sama
wielkosé.

Przebieg bledéw podstawowych wzoru Hubera jest na-
stepujacy:

Dla walca wynosza bledy podstawowe zero tworzac punkt
pozornie ciagly, nastepnie przybieraja warto$¢ dodatnia, wy-
kazuja nastepujacy teoretyczny blad kulminacyjny: kul (4 «') =

r = 0361

=4'39%,, kul (+p1') 579°/, i kul (4 p,") =615%0. Rzeczy-
442 r = 0442

wisty przebieg wykazu]e dla ,r = 05 nastepujacy dodatni blad

maksymalny max [} «'] = 405°/,, max [-} p;] =572, i max
r=109 r=0%§

[+ p: J“GOG’/O, nastepnie bledy podstawowe dla paraboloidy

r=0
maleja do zera, przechodza w warto$¢ ujemna, stale wzrastaja
i opuszczaja interwal zmiennej r ujemnym bledem maksymal-

nym: max [-- «'] =— 1338/, max [—p,’] =—151"42°, i max
- r=23$5 r=395

[— p.'] = — 60°25Y%,.
=35

Btqd przecietny.

Przyklady dajace sie obliczyé spcsobem $cislym:
b

r=b 100 -(1 i
i t(f/.)uzo———b_aj or —I’"i—'l,)dr

r=a
a

100 !loge[1 1 lo (bj;]
o

“b—alog?2 24 ob log e
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S()Iloge[ Povey ] log 22]:_3,400/0

r=2 1
G el A |log2[205 7 223]  log e
:?-3 .
T :308’ {;(4045—9997)+9044—67 o S
r=05 J

b
=b
(@ =y = — 10 [ —updu—
a

u=a

100 il o
_*TQ—{1—(b+a)—}—3(b-fi—ab+a-)}

i =1 100 1 ps
Hla)e g~ g ==
=1
t[a]r=2=01 3 ; (— 8'333) + (— 23767) % =—279%,
=10
b

=6 " 100 41-+u-+u? o
i - )
a

b
Pl L S s A T 100 Vo (b+2)—3
= 3b—a) 1+u) olhasiRgs e b1
a
(’b—}—1)l
_a(@+2)—3 _ 4logla+t1
a1 log e I
u=1 100 L Alog @ . o/
t(Pl)zzg:_ 3 §+5 log e | L

]t = o= 01 :2 (—33:333) +(—50° 974)} — 7'66°/,
0

Eb ==
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Przyklady dla celéw poréwnawczych:

r=23 .
1, t(@)u=0 =—340%,
r=2095

=2'3
2 t[pJu=0 =—1383%,
5

r=0

r=23
3. t[ps]Ju=0 =—1043%,
r=05

=23, u=08 .
ST u=08 _ 001 [1

= 3524 — 2.739
r=05u=0s5 054 ]‘4( R

+; (9428 — 19°397) -+ 5527 — 18197 Jl =523,

r=25, 1 =08
5. t[pi] = —0'52¢/,
r=05 u=095
r=23 u=08 ;
6. t[p.] el ) i
=105, 1 =05

7. Wzér Hossielda

podaje przyblizong objeto$é $cietych bryl dendrometrycznych za-
pomoca nastepujacego wzoru matematycznego:

i i :
V'=, Bg T9)

ktéry dla bryl calkowitych redukuje sie do ksztaltu:
w_3
% =g .h

przyczem gv. oznacza powierzchnie przekroju znajdujacego sie

1
W g wysokoséci od podstawy.

Na podstawie wzoru 18 wyrazamy gi. przez przekroje kran-
cowe:

\

9.,=(3) @a" +4""
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wobec czego wzér Hossfelda przeksztalca sie na nastepu-
jaca funkcje o dwu zmiennych:

’ 1 1— 2/ 2
V=2Gh{3" " "@+u ) +u . . . . 34
wzglednie dla bryl calkowitych:

i O
v _4(

g)”.a.h Mgl S S S

a iloraz objetosci przedstawia sie:

e

ﬁl—u

= (1)1 —u?T)[3177 (2 +u?7) +u?] 35

wzglednie:

o= e ] 35
g Dhn g r—2 Ny &
3(p+1)(3) 3l gt Ay

Znajac wartosci V,V’,V"”, 6 i ¢’ mozemy na podstawie wzoréw
9, 94, 11, 114, 12, 12 a, obliczy¢ funkcje bledéw podstawowych,
ktérych szczegélne .warto$ci sa podane w tabelach 8, 9 i 10
(wykres na tablicy III) i uprawniaja do nastepujacych wnioskéw:

1. Ze wzrostem u bezwzgledna warto$é bledéw podstawo-
wych maleje. :

2. Dodatni blad maksymalny bledéw podstawowych wyste-
puje we formie kulminacji, a mianowicie max (') dlar = 14,
a max (+p’)) i max (-+p’,) dla r - 1'45. Ze zwiekszaniem sie
u punkty kulminacyjne bledéw przyblizaja sie stale do poczatku
ukladu spélrzednych.

3. Rzeczywisty ujemny blad maksymalny wystepuje dla przy-
jetej wartosci r—05.

4. Tak zwany punkt nieciaggly dla walca wykazuje skoki
o wartosciach teoretycznych.
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Wyszukiwanie wartosci na r, spelniajacych funkcje bledéw
podstawowych do kulminacji:

Dla bledu absolutnego mamy:

R

(r+1)2(log 2—log3)+22".3"1.lopge=0

czyli

zatem
y(p)=22—". 351 loge— (r+1)*(log 3—log 2)
a Y ()y=58"1log3—92%".log2—2 (r-+1) (log 3—1log 2)

Przyjmujac, ze r,=1'4 otrzymamy y(1'4) =0007, 7'(1'4) =
— 0°5610 czyli
hy=-L0125, a r,=14125
dalej

7 (1°4125) = -+ 0,00184, ¥ (1'4125) = — 0,5513, h, = -+ 0,00334

r, = 1,4158, zatem max (+ «’) = 0,849/,
r =1416

Dla bledéw procentowych analogiczne obliczenie przed-
stawia sie:

Pochodna z o' zréwnana z zerem i odpowiednio uproszczona
brzmi: =

(r+1)(og3—1log2)—loge=0

z czego
__loge—1log1§5 .
e o
zatem max (-+ p';) = 202950/0 max (-+ p’s) =2'071%0
r=14 r = 1'466
1 nh

Dla r=3 oblicza si¢ Av=— (D% — d*%)3,12) wzglednie

36 4
zastepujac przekréj albo s$rednice dolna przez przekréj albo

2y Max Kunze: ,Lehrbuch der Holzzmesskunst”, 1873. str. 61.
wzor. 135.
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:Jf;— 3\8 4
érednice na ;h od podstawy otrzymujemy: \ v=— Z( St 3 g ) h18)
3ah (d’f‘?;'t—df'w )3

wzglednie Av=— 16 9

Przebieg bledéw podstawowych wzoru Hossfelda brzmi:

Dla walca wynosza bledy podstawowe zero, tworzac
réwnoczesnie skoki o nastepujacych teoretycznych wartosciach
[0']=— 25%0, [—p':] = — 3333, [— p,] = — 25°/0, dla przyjetego

r=20 r=40

r=0
r=0'5 wykazuja nastepujace warto$ci: max [— '] =— 5429,
r=05
[—p'i] = —8865%, [—p's] =—28122°0, nastepnie maleja
r=035 =09

do zera dla paraboloidy, poczem przybierajg wartos¢ do-
datnia i zdazaja do kulminacji tworzac nastepujacy dodatni

blad maksymalny: max [-} ¢/] =0'85%0, max [+ p’y] =203%/0,
r=1415 r = 1-466

max [+ p’s] =2°07°/0, dalej maleja do zera dla stozka zwyklego,
r = 1466

staja sie ujemnymi i opuszczajg interwal zmiennej r przy na-

stepujacych wartoéciach: [— '] =—4078%0, max[—p’1]J=—
r=235 =39

— 2247%0, max [— p's] = — 18:35%..
r = 315
Btqd przecietny.

Dla celéw poréwnawczych obliczamy nastepujgce przykltady:

23

r=2'3 100 1—r r—2 i e
1. (@) y=0 = ( 9 e il e
( )izo-s 18 f \3 I’Jr") N
05
 3loge : :

100 l —= (2 2:3 2105 log 2’2‘
_— 2 — = = — () 0
= |4log(3)[3) (3) I_ oge | 0'34°/0

" Ferd. Langenbacher u Em. Nossek: ,Lehr und Hand-
buch der Holzmesskunde”, str. 74. wzdr 43.
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r=23 01 ‘ 1

flal u=p = - (—6-216)+5-526—_8'708|: -~ 0°349°/,
r—0°5 1'8 ‘2 I

r=

r=2'3
it [p;] u=0 :—0.4880/0
'S

2:3
r=23 100 1519\ ¥ i =
05

log e log e ) i
100 |3 oy 2\ 05 1928 )
-1 el 07617

133 (g) 715 @) s

r=23, u =048
4, t[a] = —0'0472%0
=100 10 =05

r =23, u—=08
5, t[p:l = — 00665/,
r=05, 4 =903
- r=23 u=095
6. t{p] =—200658"/0.

r=095, u=095

6. Wzor Riecke'go

podaje przyblizona objetos¢ Scietych bryl dendrometrycznych
zapomoca nastgpujgcego wzoru matematycznego

V’zg (G+4gr.+g)
ktéry dla bryl calkowitych redukuje sie do ksztaltu:

V=" (G +4g.)
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uwzgledniajac wzér 17 przeksztalcamy wzér powyzszy:
v=t1a+2"7(@" +4") +
wzglednie w ksztalcie funkcji o dwu zmiennych:
V’:16 Ghfrde a4ty Ll .

wzglednie
V":éah(1+22"”). AT TR

2r—¢—2)
6(1—u’ .

e+ D0+ 0+ L]

a iloraz objetosci

(= 37
wzglednie
, 6

0 el el .97 a
A+27 " e+1)

0

Znajac V, V', V", 6 i ¢ mozemy obliczyé funkcje bledéw
podstawowych, ktérych szczegélne wartoséci dla bryl calkowitych
sa podane w tabeli 11 (czesciowy wykres na tablicy IV) i upra-
wniaig do nastepujdcych wnioskéw:

1. Ze wzrostem u bezwzgledna warto$¢ bledéw podstawowych
maleje (obliczen dla bryl $cietych nie podano w tabelach).

2. Dodatni btad maksymalny bledéw podstawowych wystepuje
jako warto$¢ kraricowa dla r =3'5; dodatni blad kulminacyjny
wystepuje dla « przy r—-1'35, a dla p’; i p’y przy r = 1'4.

3. Rzeczywisty ujemny blad maksymalny wystepuje dla przy-
jetego r=0'5; ujemny blad kulminacyjny wystepuje dla o' przy
r==2'5, a dla p’; i p'y przy r==2°55.

4. Tak zwany punkt nieciggly dla walca wykazuje skoki
o wartosciach teoretycznych.

Wyszukiwanie warto$ci na r, dla ktérych wystepuja bledy
kulminacyjne.
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Dla bledu absolutnego:

da’ 1 2—r 1
a’r'__ﬁ'2 -Log2+(r+1)2—0
czyli :
6.2" . loge—4(r+1)log2 =0
z czego
7(r) =3.2".loge —2(r+ 1)?log 2
7 () =log2[3-2"—4(r+ 1)],
Jezeli ry = 1'35,to: 1 (1°5) = — 00037, 7' (1'5) = — 052, h, =
— 0°00698, z czego r; = 1'3430, a
kul (4 ') = 0 27“/
r=13
Jezeli ry=2'5, to: 7(2'5) =—0005, 7' (1'5) =08942, h,=
0°0056 z czego r, =2'5056, a
kul (— o) = — 0127/,
r = 25056
Dla bledéw procentowyech wychodzimy od ilorazu objetosci

wzglednie odwrotnosci tegoz, przyczem pochodna odwrotnosci
ilorazu objetosci zréwnana z zerem przedstawia sie:

14+22—"—(r+1)22""Log2=0

czyli
1)) =(1-4+22 ""loge—(r+1)2% " "log?2
A log2 |
7 (r) = 22 "logz{%g—e(p+1)—2}
Jezeli ry =14, to: 7 (1'4) = — 0°0025, 7’ (1'4) = — 015351,

h,=—00163, z czego r; =1'3837, a
kulH—p]]_0624°’0, kul (+p's) = 06280/n

r =13 r=1384
jezeli ry=2'55, to: 7(2°55) =0'001, 7’ (255) =0'0947, hy=—~0"01056,
z czego r; =2'5394, a

kul (— p’y) =—0423°/0, kul (— p’,) =— 0422/
r=2'5394 r=2'5394
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Przebieg bledéw podstawowych wzoru Rieckego jest na-
stepujacy :

Dla walca wynosza bledy podstawowe zero, tworzac réwno-
czeénie skoki o nastepujacych teoretycznych wartosciach :
[—a'] =—16'67%, [—p 1] ——20 00%, [—p's] = — 16'67%,

r=0 r=0
dla przyjetego r=05 wykaZU]q rzeczywisty ujemny-blad maksy-
maksymalny o wartosciach:
max [—a']=—2"859"/0,max [— pl]——4481°/0,max[—p »]=—4'290°0,

r=0"5 : r=05 r=05
nastepnie maleja do zera dla paraboloidy, przechodza w wartosé
dodatnig i daza do kulminacji z nastepujacymi wielko$ciami:
kul (- (1'1) = 0270, kul (-+ p’ }) = 0624 °/o, kul(j—p ) = 0 6289/0,
r= r=
nastepnie maleja do zera dla stozka zwyklego, staja sie ujemnymi
dazac powtérnie do kulminacji o nastepujacych warto$ciach :
kul (—a')=—012%0, kul (—p’,) = —0"423°/0, kul (—p’,) =—0422°/0,
r=2'506 r=2'539 r=2530
poczem zréwnuja sie znowu z zerem dla nejloidy i opuszczaja
interwal zmiennej r dodatnim bledem maksymalnym:

maxH—u'] 0 337°%o, max[+p ,] —1 "492°/0, max[ +p’s] =1:524°/0
r=35

Btqgd przecietny.

Dla celéw poréwnawczych obliczamy nastepujace przyklady:

23
=53 \
100 —r
’ =0 el
1. ¢(w)u=0= 18 I IS S +1]dr
100 | loge [ —0'3} log 22 |
= ziry iy i) SR 0
18[05+ g2 2 2 logej_ 0°204°/0.
r=2'3

JJu=0 —— ¢ 0
t[] IP=0.5 0°209°//0

=23
2. t[p']u=0 = — 0'297%
r=0'5
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r=2'5
3. t[p’,]u=0 = —0283%
r=05

r=23 u=08
4. t[] =—0'014%0
pie=05, =05
r=23 u=08
5.'tlp =—100198"/
[p’]rzo-s.uzo-s £
r—=23 u=08
6. tlps =—00196"%
[p']r—O‘S u=05 3

9. Wzér Simony’ego

podaje przyblizona objetosé¢ calkowitych i $cietych bryl dendro-
metrycznych zapomoca nastepujacego wzoru matematycznego:

h
V' = 3 32(91/4+93'1)—91/2$-
Na podstawie wzoréw 17,20,21 wiemy, ze

a=(z) (6" +¢")"

-

- gni=(3) (6" +4")"
g]/;,:(%)r((f p+g1rr)r

wskutek czego wzér powyzszy przeksztalca sie na funkcje o dwu
zmiennych:

3
v =2 Gh(3) (2" [+ V-0 + 52 —(1 +u27)} 38,
wzglednie dla bryl calkowitych:

n_'J ]r’ 1—r(zr
% _sch(é) jol—riar 1)l 38a.
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2r—{—2)
3(1——u"

o (r+1)[1_u?'rj{21:—}'[(5_{_1;2/1')}'_{_ (1 +3u2/r]r]_2¥r(1 +u2/r]r}

a iloraz objetosci
39

wzglednie 3

T etnlkr e +n—2]

Na podstawie V, V', V", ¢ i ¢’ mozemy obliczy¢ funkcje ble-
déw podstawowych, ktérych szczegélne wartosci dla bryl catko-
witych sg podane w tabeli 11 (cze$ciowy wykres na tabl. IV.),
i uprawniaja do nastepujacych wnioskéw:

1. Ze wzrostem u bezwzgledna warto$¢ bledéw podstawo-
wych maleje, (obliczeri dla bryl $écietych nie podano w tabelach).

2. Dodatni blad kulminacyjny o znaczeniu teoretycznem dla
bryl calkowitych wystepuje dla d przy r=-0'255 a dla p'; i p’,
przy r * 0'3; rzeczywisty dodatni blad maksymalny wystepuje
dla przyjetego r=0'5; dodatni blad maksymalny wystepuje dla
d przy r—-2'5, a dla p'y, p’s przy r-=2'55.

3. Ujemny blad maksymalny wystepuje jako krancowa war-
to$é przy r=3'5; ujemny blad kulminacyjny wystepuje dla  przy
r==1:37, a dla p; i p, przy r==1'43.

4 Tak zwany punkt nieciagly dla walca jest pozornie ciaglym.

Wyszukiwanie wartosci na r, dla ktérych wystepuja bledy
kulminacyjne:

39a.

Dla bledu absolutnego:

‘2‘; =3_1321‘2’.5".Log3—2(3”+1)2’—2".Log2+
LS ek e S ey
S R TR
z czego
(1) = (r+1)2]2 log2 — 2[3" (2 - log 2 — log 3) -+ 2 log2]| -+
—{—5.22rloge
/() =20 +1)]2" log2—2[3" (2log 2 — log 3) + 2 log 2]| -+
2
4 [”,j;e] { 2" (log 2)2—2.3" - log 3 (2 log 2—log 3)} +6.2" log 2

4
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Jezeli r, = 0255, to: 7(0°255) = 0°00385, ' (0°255) = — 09753,
h,=00039 z czego r, = 02589, zatem

max (- ') = 1°152°/0
r = 0259

Jezeli ry =137, to: 7(1'37) =— 00113, 3’ (1'37) = — 6°6029,
hy=—0'0017, z czego r; =1'3683, zatem

kul (— o) =—0°159°/0
r = 1368

Jezeliry=25, to: 1(2'5)=02084, y/ (2°5) = —51°45, h,= 000405,
z czego ry = 2'50405, zatem

kul (-+ ) = 0°097°/0
r = 2504

Dla bledéw procentow§fch wyjdziemy od odwrotnoéci ilorazu
objetosci, przyczem otrzymamy:

) =[2B" +1)—2" Jloge— (r -+ 1):2 (2log 2 —log 3) -+
+2log2]—2" log 2
7' (1) =2.3" log3 —2[3" (2log 2 — log 3) +

+21log 2] — 'l;g"; [2.3" (2log 2 —log 3) log 3 — 2" - (log 2)?]

Jezelir,=0°3, to: 7(0'3)= 000645, 1’(0°3)= —0.387, h,=0"01666,
z czego r; = 0'3166, zatem

max (+ p’ 1] — 1 *463°/0, max (- p’s) = 1'485°/0
r—= r= 0317

Jezeli r =143, to: y{1'43) = 000106, y’ (1'43) = 034148,

hy=—00031, z czego r; = 14269, zatem
kul (— p’;) = — 0385°/0, kul (— p’s) = — 0°384°/0
r = 14217 r=14217

Jezeli ry=2'55, to: 7(2'55) = 0:0047, 7' (2'55)=— 13155,

h,=0'00357, z czego r, =2'55367, zatem

kul (+P1]—0337“0 kul ( ~p’.) = 0°338%0
p='2:5 r = 2'5536
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Przebieg bledéw podstawowych wzoru Simonyego jest
nastepujacy:

Dla walca bledy podstawowe wynosza zero tworzac punkt
pozornie ciagly, nastepnie przybieraja warto$¢ dodatnia i wykazuja
nastepujacy teoretyczny dodatni blad kulminacyjny:
kul (- @) = 1°152%0, kul (+ p’,) = 1 *463%0, kul (+p’,) = 1°485°/0,

r = 0259 r=203 r=0317

Rzeczywisty przebieg wykazu1e dla przyjetego r =05 naste-
pujgcy dodatni blad maksymalny:

max [—}—(/’] O 831%/0, max [f%p'1]0:51'251°/(,,
ot ¥
oraz max [} p’,] = 1246°/o,
r=2095

nastepnie bledy podstawowe maleja dla parabolidy do zera,
przybieraja warto$¢ ujemna i kulminuja wartosciami:
kul (— ') = —0°159%0, kul (— p’;) = — 0°385"/0,
r = 1368 r = 1421
kul (—p's) = — 0°384°/o,
r = (427
maleja do zera dla stozka zwyklego, przechodza w wartosé
dodatnig i kulminuja wartosciami:
kul (-+ «”) = O 097°/0, kul ( J,~ P ,) 0 3370/0 i kul (-+ p’s) = 0°338°/0,
ri=28 r = 2554
nastepnie malejq do zera dla nej]oidy i staja sie ujemnemi oraz
opuszczajg interwal zmiennej r ujemnym bledem maksymalnym:
max [— '] = —0'292°/0, max [—p 1] = —1'3515%o,
r=395 35

max [— p’s] = — 1°314%a.
=35

Btgd przecietny.
Dla celéw poréwnawczych obliczamy nastepujace przyklady:

: r=2:3
t [‘l ] =0 :0,0470,/U
=05

r=2.3
2.t [p']] u=0 = 0,05]0/0
=05

4%
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r=23 .
3.t [p's] u=0 0,052°/,
r=05
r=23, u=08
4, ¢t [Ol] 0,0137°%,
i r=0'5;, u=0'5
=23, u=08
5.¢[pd YT —0,0186Y,
r=05, u=05
r=2'3, u=038
6. t [p] — 0,0189°/,
=005 =05

10, Wz6r Breymanna

podaje przyblizong objetos¢ bryl dendrometrycznych zapomoca
wzoru matematycznego:

Rk
V' =216 +3(gn + g0 + )
ktéry dla bryt calkowitych redukuje sie do ksztaltu:
” h
V=516 +3(g:+ gt

Na podstawie wzoréw 18 i 19 wiemy, ze:
r

% 1\r : : ol :
gl’/ﬂ = (3) (2 G1 r’ﬁ—g‘] I')I’ 1 g_-_, —= (3) (G1wr—f—291./r)r

wskutek czego wzér Breymanna mozemy przeksztalci¢ na
funkcje o dwu zmiennych:

V'=g5 Gh {1 +3' e +u?nr+ @ +2u?"")"l+u2} 40

wzglednie
fi=2
v":;ch;1+s BTN U 80

a iloraz objetosci ;
( 2r +2
8 1—u T’ )

T 0—) @) T (O 2a?) ] ot

4
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wzglednie

g g wrist it 4la

"TerDO LI e+

Na podstawie V, V’, V", 6i ¢’ mozemy obliczyé¢ funkcje ble-
déw podstawowych, ktérych szczegélne wartosci dla bryl catko-
witych sa podane w tabeli 11 (czesciowy wykres na tablicy V)
i uprawniaja do nastepujgcych wnioskéw:

1. Ze wzrostem u bezwzgledna warto$¢ bledéw podstawo-
wych maleje, (obliczen dla bryl $cietych nie podano w tabelach).

2. Dodatni blad maksymalny bledéw podstawowych wyste~
puje jako wartosé kraricowa dla r=3'5; dodatni blad kulmina-
cyjny wystepuje dla o przy r = 1'33, a dla p’y i p’s przy r--1'36.

3. Rzeczywisty ujemny blad maksymalny wystepuje dla r=0'5;
ujemny blad kulminacyjny wystepuje dla « przy r * 2'5, a dla p/,
i p's przy p=253.

4. Tak zwany punkt nieciggly dla walca wykazuje skoki
o warto$ciach teoretycznych.

Wyszukiwanie wartosci na r, dla ktérych wystepuja bledy
kulminacyjne:

Dla bledu absolutnego otrzymujemy:
1(r) =83" - loge—3(r+1)*[2" (log 3 —log?2) + log 3]
7' (r)=83".log3—6( +1)[2"(log 3—Ilog2) + log 3] —

—3.97 (r+1)* (log3—log2) }gg 2

Jezeli ry =133, to: 7(1'33) =— 00031, 7' (1°33) =— 14019,
h, =—000221, z czego r, =1'32779, zatem

kul (4 o) = 0°1519/,.
Fe=11328
Jezeli r=2'5, to: 7 (2°5) = 00181, y' (2°5) = 31882, h,=—
— 0005677, z czego r, = 24943, zatem

kul (— «') =— 0°0575%,.
r = 2494

4



54 TADEUSZ WIELGOSZ

Dla bledéw procentowych wychodzimy od odwrotnosci ilo-
razu objeto$ci, przyczem otrzymujemy:

=[3" 32" +1)]loge—3(r+ 1) [2" (log 3 —log 2) + log 3]
7 r') =3"log3+3-2".log2—3[27 (log 3—log 2) -+ log 3] —
. # ol log2 .
3.2"(r+ 1) (log 3 logQ)1 s
Jezeli ry, =136, to: y(1'36) = 000397, 7' (1'36)=— 0'56168,
h, = 000706, z czego r, = 1'36706, zatem

kul (£ p,) = = 0'3495, kul (+ p) = 035067,
r =13 r = 1'367

Jezeli ry, =253, to: 7(2°53) =0.0015, y'(2'53) = 09547, h,=
—0°00157, z czego r; = 2°52843, zatem _
kul (— p{) =— 0202%,, kul (— ps') =—02019%,.
r =2.528 r = 2:528
Przebieg bledéw podstawowych wzoru Breymanna jest
nastepujacy:
Dla walca wynosza bledy podstawowe zero, tworzac réwno-
czednie skoki o nastepujacych teoretycznych wartosciach:
[— ] 3—12 50/, [— pl’] =—1429%,, [—p ’% =—12'50%/,, dla
T —
r=05 wykazuja rzeczywisty ujemny blad maksymalny o war-
tosciach: max [— '] = — 1'898°/;, max [— pl’] =—2'930"/, i max

r=05 r=0

—p,’ ——2848‘, , nastepnie maleja do zera dla paraboloidy,
p s 0 J
r=0;

przechodza w warto$é dodatnia i tworza kulminacje z naste-
pujacemi wartosciami:

kul (- o) =0151%,, kul (- p’y) =0349%, kul (4 p'.) =
r = 1328 r=1:367 r =1'367

=0'351°/0, poczem maleja do zera dla stozka zwyklego, przybie-
raja warto$¢ ujemna z kulminacja o wartodciach:
kul (— ') =—0'0575%, kul (—p';)=—0201%0, kul (—p's)=
r = 2494 r = 2:528 r= 29528
=-—0'2019°0, maleja do zera dla nejloidy, staja sie dodatnimi
i opuszczaja interwal zmiennej r dodatnim bledem maksymalnym
‘0 warto$ciach:

max [~ {—a] =0152°%/0, max [+p,]—0682° 0y Max H—p ] 0683O 0.
='3'5

=
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Btqd przecietny.
Dla celéw poréwnawczych obliczono przyklady:

=23 ’
1. ¢t []u=0 =—0142%
r=05

r=2'3 -
2. t[p'1]u=0 =—0211%
r=0:5

r=2'3 ]
3. t[p’g] u=0 =— 02060

r=0'5
=23 u=08§8 )
4. t [a] ="— 0008/
r=05 u—05

r=23 u=08 :
5. t[p] =—001%
.= 0:5, 11 = 05

=23, u=08 _
. =—001%
=09, a=0:9

11, Zestawienia i wnioski.

Poniewaz, jak juz poprzednio podkreslono, nie mamy jeszcze
ustalonych na podstawie pomiaréw doswiadczalnych écislejszych
interwaléw wykladnika ksztaltu r i ilorazu érednic kraricowych
u, dlatego tez przy omawianiu relatywnej dokladnosci poszcze-
g6lnych wzoréw ksylometrycznych t. z. przy zaszeregowaniu ich
ze wzgledu na stopieri dokladnos$ci bedziemy opierali sie réwniez
nadal na wezszych interwalach zmiennych r i u, ktére peprzednio
przyjeliémy za $cislejsze, a mianowicie obraliémy dla r $cislejszy
interwal wahajgcy sie od r, = 0°5 do r, = 2'3, a dla u, o ile nie
bedzie chodzilo o bryly calkowite, wartosci od u, =05 do
u, = 0'8, jak to juz uczyniliémy przy obliczaniu bledéw prze-
cietnych dla pojedyrczych wzoréw ksylometrycznych.

Wychodzac z tego zalozenia sporzadziliémy cyfrowe zesta-
wienie bledéw charakterystycznych tj. maksymalnych i prze-
cietnych dla naszych szeéciu wzoréw ksylometrycznych przy
przyjetych Scislejszych interwalach, wykazane w tabeli 12; na
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podstawie tego zestawienia mozemy omawiane w niniejszej
publikacji wzory ksylometryczne podzieli¢ pod wzgledem ich
dokladno$ci na trzy grupy, a mianowicie do pierwszej grupy za-
liczamy wzory Smaljana i Hubera, dokladniejszym jest
wzér Hossfelda, ktéry tworzy grupe $rodkows, a grupe naj-
dokladniejszych wzoréw przedstawiaja wzory Rieckego, Si-
monyego i Breymanna, przyczem co do dwéch ostatnich,
ktére podajag $cislej objetos¢ bryl dendrometrycznych od wzoru
Rieckego, trudno ogélnie rozstrzygnaé, ktéry wysuwa sie na
pierwsze miejsce.

Poniewaz z tego cyfrowego zestawienia widzimy, ze bez-
wzgledna warto$é bledéw przecietnych dla bryl $cietych w od-
niesieniu do « i p;, o ktéry w praktyce przedewszystkiem
nam chodzi, nie przekracza dla wszystkich szesciu wzoréw ksy-
lometrycznych wartosci 1%, a w odniesieniu do p, przybiera
dia wzoru Smaljana wielkos¢ 1°09%, podczas gdy dla innych
wzoréw réwniez pozostaje ponizej 1%, z czego mozemy wnios-
kowaé, ze zastosowanie wzoru Smaljana, a przedewszystkiem
Hubera do pomiar6w metoda sekcyjna prowadzi do wynikéw,
lezacych w granicach dokladnosci wymaganej przy pomiarach
doswiadczalnych w dendrometryi.

Na podstawie rozwazan w czesci zastosowanej dochodzimy
poza wnioskami natury ogélnej, umieszczonemi przy koricu czesci
teoretycznej, do nastepujagcychszczegétowych twierdzen,
odnoszacych sie do omawianych szesciu wzoréw ksylometrycznych:

1. Bledy podstawowe wykazuja w obrebie ustalonych ogél-
nych interwaléw zmiennych r i u analogiczny przebieg; na-
lezy bowiem zauwazyé, ze — jak orjentacyjne w niniejszej
publikacji niepodane obliczenia wykazaly — przebieg dla innych
warto$ci na r moze byé dla poszczegélnych rodzajéw bledéw
podstawowych bardzo odmienny.

2. Wzory ksylometryczne, nie posiadajace przekroju w czu-
bie (Huber, Simony), wykazuja dla walca t. zw. punkt
pozornie ciagly; natomiast inne wzory (Smaljan, Hossfeld,
Riecke, Breymann) tworza dla walca t. zw. punkt nie-
ciggly robiagc skoki o warto$ciach, majacych tylko teoretyczne
znaczenie. Bledy te dla walca obliczajg sie dlatego, ze funkcije
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bledéw przybierajg dla gérnego przekroju walca zero, co jest
niedopuszczalnem. :

3. U tych czterech wzoréw ksylometrycznych, ktére posia-
daja przekréj w czubie, spostrzegamy jeszcze to zjawisko, ze
wtérny blad procentowy dla » =0 i u=0 réwna sie bledowi
absolutnemu, wyrazonemu w odsetkach objetosci walca podsta-
wowego, pomimo Ze posiadaja warto$¢ r6zna od zera. Wielkosé
tych teoretycznych wartosci, ktére tworzg skoki w t. zw. punktach
niecigglych da sie obliczy¢ wedlug wzoru

R (S
Espy=t AP =

jesli przez m rozumiemy sume algebraiczng czynnikéw przy
poszczegblnych powierzchniach przekrojéw poprzecznych wyste-
pujacych u dotyczacych wzoréw ksylometrycznych i tak m dla
wzoru Sm aljana wynosi 2, dla wzoru Hossfelda 4, dla
wzoru Hieckego 6, a dla wzoru Breymanna 8.

4. Ze zwiekszaniem sie wartosci na u bezwzgledna wartosé
bledéw podstawowych maleje t. zn. bryly calkowite wykazuja
najwieksze bledy; z tego wynika wniosek, ze wielkosé bledow
podstawowych jest wprost proporcjonalna do réznicy srednic
kraricowych. ;

5. Ze zwiekszaniem sie wartosci na u ewentualna kulminacja
bledéw podstawowych nastepuje dla r o wartodci zmniejszajacej
sie t. zn. kulminacja przy wzrastajgcem u cofa sie w kierunku
poczatku ukladu wspélrzednych.

6. Kulminacja bledéw procentowych nastepuje dla wiekszych
wartosci na r niz kulminacja odpowiadajacego bledu absolutnego.

Moim asyst. pp. E. Lorenzowi, Z. Selensowi i St. Smdlskiemu
sktadam serdeczne podzigkowanie za taskawq pomoc przy zmud-
nych obliczeniach, ktére w niniejszej publikacji wystepujq.

SR AN W TR TR T A Ty rsgr s
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Objasnienia i uwagi do tabel i tablic.

Dwanascie dolaczonych tabel odnosi sie do nastepujacych zagadnien:

a) Tabela 1 poda)je wartosci rzeczywistych objetosci bryl dendro-

metrycznych, wyrazonych w odsetkach objetosci walca podsta-
wowego.

b) Tabele 2, 3, 4 podaja wartosci funkcji bledéw podstawowych
dla wzoru Smaljana.

c¢) Tabele 5, 6, 7 podaja to samo dla wzoru Hubera.
d)is 5,0 "800 - AN »ie o o Hossfelds;

c¢) Tabela 11 podaje wartosci funkcji bledéw podstawowych dla”
bryl calkowitych dla wzoréw Rieckego, Simonyego
i Breymanna.

f) Tabela 12 podaje cyfrowe zestawienie bledéw maksymalnych
i przecietnych dla szesciuv wzoréw ksylometrycznych przy inter-
walach r (0'5, 2'3) i u =0 wzglednie u (05 i 0'8).

Obliczenia szczegdlnych wartosci funkcji bledéw podstawowych usku-
teczniono zopomoca pieciocyfrowych logarytmoéw, w wypadkach watpliwych
poslugiwano sie réwniez siedmiocyfrowymi logarytmami, a miejscami trzeba
bylo uciec sie do interpolacji poszczegdlnych wartosci.

Z powoddéw technicznych znaki algebraiczne umieszczono tylko dla
u =0, przyczem nalezy rozumieé, ze wartosci funkcyj bledéw dla wyzszych
wartosci na u posiadaja te same znaki jak dla u =0.

Cztery tablice przedstawiaja wykresy nastepujacych bleddéw:

a) Tablica l. przedstawia przebieg bledéw podstawowych przy
wzorze Smaljana dla wartosci na u =0, 02, 04, 0'6 i 0'8.

b) Tablica II. przedstawia tosamo przy wzorze Hubera.

c) Tablica IIl. przedstawia tosamo przy wzorze Hossfelda
dla wartosci na u =20, 02 i 04.

d) Tablica IV. przedstawia przebieg bledéw «’ i p’; przy wzorach
Rieckego, Simonyego i Breymanna dla bryl catko-
witych tj. u = 0, przyczem nalezy zauwazyé, ze z linij kresko-
wanych ta,- ktéra wykazuje mniejsze odchylenia od osi od-
cietych, odnosi sie¢ do wzoru Breymanna.
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Toa bred al il

Rzeczywista objetosé bryl dendrometrycznych,
wyrazona w odsetkach objetosci walca podstawowego.

(Wartosci wzoru 6.)
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Blad obsolutny «, wyrazony w odsetkach objetosci walca podstawowego.

TADEUSZ WIELGOSZ

Tabela 2.
Wzér Smaliana.

00

01

02

>
04 05

06

07

09

—50°000 —49°500 —-48'000 —45°500 —42°000

—37°500 —32°000 —25'500 —18°000 — 9°500

—40910 40410 39910 36410 32910| 28'410 22:014 16448 2:80)
— 33334 32834 31'334 28834 25340 20893 15656 10067 1225
—26'023 26'423 24925 22447 19:068| 14993 10614  6.434 0771
—21'428 20928 19450 17:085 14:048| 10658 7:282  4'286 0.493
5 |—16,667 16173 14771 12663 101138] 7520 5020  2:912 0333
‘6 [-12.500 12:020 10783 9046  7:093| 5161 3410  1'962 0220
‘7 |- 8823 8403 7398 6005 4710 338 2220 1'265 0'143
08 |— 5556 5229 4528 3676 2:809] 2001 1304 0743 0084
09 |— 2632 2446  2:085 19675 1270] 0899 0383 0332 0041
10| o 0 g |~ 0 0 0 0 0 0
111 |+ 2:381 + 2:154 + 1791 + 1'414+ 1:060|+ 0744 + 0479+ 0-270 0030
12 |+ 4545 4055 3341 2621 1945 1369 0883 0497 0055
13 |4+ 6'522 5739 4601  3661. 2721 1°903  1.226 0688 0:078
14 |+ 8333 7235 5871 4563 3381 2:363 1517 0855 0098
15 |--10:000 8572 6913 5352 3960 2762 1772 0998 0112
16 |4+-11'538 0768  7:837 6048 4465 3110 1994 1123 0125
17 |+12:062 10845 8661 6669 4'916| 3420 2192 1233 0137
18 [+14286 11819 9400 7222 5317 3697 2369 1333 0149
19 [+15517 12:699 10065 7719  5676| 3943 2526 1418 0158
2:0 |--16.667 13499 10666 8167 5999 4166 2666  1:500 0167
21 |+17742 +14'932 11213 + 8574 + 6'292]+ 4367 4 2795+ 1'570 + 0175
22 |4+18750 14'899 11713 8944  6'560| 4549 2912  1'638 0183
23 [+19697 15512 121169 9281 6805 4719 3017 1697 0188
24 |4+20'580 16080 12588  9'502  7-020| 4872 3116  1'748 0'194
25 |[-1-21420 16602 12975 9879 7234 5011 3206 1798 0200
26 [--22:222 17:085 13332 101144 7424] 5145 3286 1'843 0206
27 |4+22:973 17533 13664 10389  7601| 5264 3361  1:890 0212
28 |+23684 17951 13972 10617 7763| 5377 3433 1:032 0215
29 [+24350 18340 14257 10828 7917 5481 33506  1:970 0218
30 |+-25000 18704 14527 11-025 8059| 5579 3566 21005 0222
31 |-+25600|-+-19:044 --14-776 --11°210 + 8191+ 5670 + 3623 + 2:037 - 0227
32 |+26:191| 19364 15011 11385 8318] 5755 3680  2:065 0230
33 |-26744| 19663 15232 11547 8436| 5839 3720  2:095 0233
34 |4+27273| 19946 15439 11652 8544 5014 3777 21120 0234
35 |+27777] 20211 15'635 11845 8649 5981 3819 2143 0234
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Tabela. 3.

Wzér Smaliana.
Zasadniczy blad procentowy p,.

61

u

"1 00 o1 02 03 04 | 05 06 07 08 09

0:0| 100000 —08:020 92:308 83486 —72:414| 60000 —47050 —34-228 —21:951 10497
01| 81'820 80020 74827 66'807 56741 45456 33697 22078 11320 3094
02|— 66668 65018 60258 52006 43690 33420 23024 13513 6021 1353
03|— 53846 52323 47033 41187 32:876| 23096 15608 8636 3666  0:852
0.4|— 42856 41441 37404 31340 24221 17053 10700 5753 23395 0550
05| — 33334 32422 28466 23235 17474 12000 7382 3909 1607 0365
06| 25000 23820 20737 16508 12240| 8258 5015 20634 1076 0245
07|— 17646 16640 14227 11185 &121| 5418 3265 1698 0695 0157
08|— 11112 10354 8708 6745 4843| 3202 1918 0997 0405 0092
00— 5264 4844 4010 3073 2190 1438 0857 0446 0177 0045
10 0 0 o 0 0 0 0 0 0 0

11|+ 4762+ 4265+ 3444+ 2595 - 1'828|+ 1190 - 0704 | 0'362 + 0149 - 0033
12|+ 0000 8030 6425 4809 3369 21190 1299 0667 0268 0067
13| 13044 11364 9021 6717 4601 3045 1803 0923 0376 0086
14| L 160666 14320 11200 8372 5829 3781 2231 1148 0461 G105
15[+ 20000 16974 13294 9820 6:828| 4410 2606 1340 0540 0124
16|41 23076 19343 15071 11097 7698| 4076 2032 1507 0612 0139
17|+ 25924 21475 16656 12237 8476 5472 3224 1655 0668 0157
18|+ 28572 23404 18077 13251 9161 5915 3482 1789 0726 0164
19|+ 31038 25147 19356 14163 978 6300 3715 1903 0763 0175
20|+ 33334 26731 20512 14035 10343 6066 3921 2013 0812 0184
91 [+ 35484128182 121563 115732/ +10'848|+ 6087+ 4110 + 2107 + 0851+ 0193
22|+ 37500 29503 22525 16+411 11:310| 7278 4282 2199 0883  0:202
23|+ 39304 30717 23402 17020 11733 7550 4437 2278 0900  0-208
24|+ 41178 31842 24208 17600 12119| 7795 4582 2346 09056 0215
25|+ 42858 32875 24952 18121 12:472( 8018 4715 2413 0082 0220
26|+ 44444 33832 25638 18613 12800 8232 4812 2474 1001  0:226
27|+ 45946 34720 26277 19062 13105 8422 4943 2531 1021 0234
28(+ 47368 35547 26:860 19481 13384 8603 5040 2503 1051 0236
29[+ 48718 36317 27.417 19868 13650 8770 5156 2644 . 1057 0240
30|+ 50000 37038 27031 20220 13805 8026 5244 2691 1093 0245
31|+ 51218431711 +28'415 20560 -14-122|+ 9072+ 5328+ 2734+ 1100+ 0249
32|+ 52382 38345 28867 20890 14341 208 5412 2772 11120 0253
3314 53488 38037 20202 21187 14545 0342 5484 2812 1134 0257
34|+ 54546 30497 20690 21379 14731 0462 5554 2846 1146 0258
35|+ 55554 40022 30067 21734 14912) 9570, 5616 2877 1155 0263
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TADEUSZ WIELGOSZ

Tabela 4.
Wz6r Smaliana.

Wtorny blad procentowy p,

u =
69 02 03 04 05 06 07 08 09
— 50000 —49°500 —48°000/ —45500 —42 000] —37'500 —32:000 —-25'500 — 18000 — 9500
— 45'000 42800 40051 36201 31252 25204 18085 10176 3001
— 40000 37600 34601 30406 25054 18714 11°904 5684 1:335
— 35000 32°402 29172/ 247421 19352 13°501 7950 3536 0875
— 30000 27222 23867 19'498| 14568 9673 5440 2:339 0547
— 25'000 22'122| 18854 14879 10°714 6875 = 3762] 1582  0'366
— 20000 17175 14'235 10°905 7628 4775  2'566 1'064 0242
— 15000 12455 10060/ 7-511 5139 3160 1670  0'690 0157
— 107000 8010 6319 4619 3102 1'882 0987 0403 0092
— 5000 3855 2982 2142 1418 0850 0444 0177 0045
0 0 0 0 0 0 0 0 0
11|+ 5030 + 4455 + 3558 + 2664 + 1'862|+ 1205+ 0709 4 0364 + 0149 -~ 0033
1214 10000 6866 5052 3486 22400 1316 0672 0°269 0061
1-3 |+ 15000 9916 7201 4322 3140 1'836| 0:932( 0:377 0085
14+ 20000 12721 9138 6190 3929 2282 1161 0463 0104
15 (+ 25000 15333 10890 7°328 4624 2:'676] 1°358| 0543 0124
1'6 |-+ 30000 17746 12482 8340 5237 3021 1530 0616 0129
17 |-+ 35000 19984 13943 9261 5789 3331 1'683 0673 0151
1-8 |-+ 40°000 22:066 15275 10092 6287 3610 1'822 0731 0164
1'9 |+ 45000 24001  16'500 10848 6734, 3858 1'940 0774 0175
20 |-+ 50000 25804 17627 11536 7142, 4°081 2055 0819 0185
21 |+ 5500) +27°492 +-18'670|+12'168 7512 + 4286+ 2153/ 4= 0859 + 0192
22 |-+ 607000 29074 19633 12'753 7850 4474 2248 0891 0°203
2:3 |+ 65000 30'552 20‘525‘ 13:292 8'167 4643 2:331 0931 0208
24 |4 70°000 31940 21-359; 13790 8454 4802 2:403 0865 0215
25 |-+ 75300 33'247 22'140| 14250 8716/ 4948 2473 0991 0221
26 |-+ 80000 34418 22870 14'679 8970 5078  2'573 1018 0227
27|+ 85000 35644 23552 15082 9197, 5200 2603 1037 0235
2'8 |-+ 90-000 36'741 24194 15'453 9413 5317 2662 1062 0237
2914 95030 37714 24794 15808] 9613 5436 21716 1069 0241
30}+4-100000 38768 25359 16'137 9801 5534 2766 1105 0246
31 [4-105'000 460542 +-39'695 +-25'895 416445+ 9977+ 5628/ 2811/ 1112 0251
32 |--110009 40'582 26'406 16742 10142 5721|2851 1132 0254
33 |+115:000 41427 26883 17'020f 10°305 5802 2'893 1:147 0258
34 1--120000 42228 27194 17276 10451 5881 2'930 1-160 0259
35 |+125°000 42:995 27769 17525 10°582 5959 2962 1-170 0263
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Tabela &.

Wzér Huber'a.
Blad absolutny ¢, wyrazony w odsetkach objetosci walca podstawowego.

LN B
00 | o1 [ 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09

~

0 00 0 0 0 0 0 0 0 0
2:394 +2'394 42394 {-2:394 --2:394|-+-2'394 2390 4-2:362 2122 1081
37200 37200 3720 3720 3716/ 3677 3502 2973 1906 0'696
4302 4302 4300 4285 4212 3967 3410 2482 1338 0376
4358 4358 4347 4275 4048 3567 2:808 1'860 0920 0246
4045 4042 3997 3834 34741 2'888 2133 1332 0636 0165
3415 3464 3377 3142 2726 2167 1533 0924 0430 0112
2134 2°714) 2:593| 2337 1'958] 1°501 1031 0613 0278 0071
1'879, 1:852| 1'728| 1'514 1'231] 0922| 0623 0362 0166 0042
0956 0932 0850 0725 0574 0424 G280 0161 0075 0014

0 0 0 0 0 0 0 0 0 0

2000009090
QOO UERAUN—=O
T+t

— 0967 —0.913 —0'798 —0'655 —0°502{—0360 —0'238 —0°'135 —0'358 —0'015
— 1928 1790, 1536, 1238 0942 0672 0437 0250 0112 0029
— 2865 2°606 2:202|, 1755 1-324] 0937 0606 0344 0152 0038
— 3774 3318 2808 2215 1'663] 1166/ 0753 0427 0192 0047
— 4644 4081 3353 2624 1654 1368 0882 0495 0219 0054
5475 4728 3'838 2:086 2215 1549 0997 0552 0248 0063
— 6260 5311 4273 3308 2446/ 1705 1094 0619 0274 0039
— 6995 5837 4665 3593 2650 1845 1181 0664 0292 0072
— 7689 6317 5017 3850, 2'836] 1971 1261 0710 0315 0079
— 8333 6752 5334 4084 3001 2084 1331 0750 0336 0083

S S GG

— 8932 —7140 —5'619 —-4291 —3°150| —2'184 —1'398 —0-788 —0'350 -—0'087
— 9486 7494 T 5875 4481 3284 2280 1457 0815 0358 0090
— 9997 7814 6110 4654 3°408] 2:362 1'510 0'850 0377 0094
—10'464) 8'102 6323 4811 3521 2:442 1560 0877 0384 0096
—10893] 8362/ 65167 4951 3622 2'512 1'603 0904 0395 0099
—11284/ 7600 6692 5083 37170 2575 1647 0927 0408 0102
—11'638/ 8816 6853 5204/ 3805 2633 1687 0945 0418 0104
—11'957' 9010 7000 5316 3887 2688 1720 0963 0422 0106
—12244 9188 7139 5419 3960| 2741 1748 0983 0433 0110
—12500 9352 7262 5514 4029 2790 1778 0998 0442 0111

S © 00 G AN —

—12'728/— 9501 —7-380 — 5 602/ — 4:094| —2:835—1'808 —1'015 0454 —0'112
—12927| 9636, 7487 5683 4155 2'879| 1838/ 1037 0'459 0115

13'103 97621 7581 5759 4212 2918 1858 1°045 0462 0116
—13254| 9876 7679 5880 4263 2953 1'887 1'058 0474 1118
—13'384 9932 7764 5898 4313 2986, 1911 1070 0475 1118

CA(')_IDIOJU_J wtx}lg'.\.)t\?x\.n\_’)!\gl\?w | NS QN QU S QU i G Qe

ST
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Tabela 6.
Wzé6r Huber'a.
Zasadniczy blad procentowy p,.
u =

00 01 02 03 04 05
00 0 0 0 0 0 0
01 2566 + 2'566 + 2'566 + 2'566 -+2°566] -+ 2:566 +2:832 {2272
02 4274 4274 4274 4274 4270 4222
03 5296 5296 5294 5276 5180 4870
04 5750 5750 5135 5635 5320 4'650
05 5718 5714 5646 5398 4847 3960
06 5267 5250 5106 41712 4020 3102
07 4442 4404 4184 3715 3027 2:220
08 3272 3211 2967 2:537 1-982 1408
09 1'785 1730 1-547 1°275 0960 0'655
10 0 0 0 0 0 0
11 2072 — 1926 — 1'616— 1242 —0'891] —0'586
1:2 4429 4010 3257 2445 1712 1°112
31— 7056 6'183 4881 3576 2455 1°571
14 9959 8470 6456 4640 3138 1977
15 13138 10785 8:032 5'641 3755 2345
1'6 16'595 13131 9515 6:568 4317 2676
17 20:333 15462 10938 7429 4831 2971
1'8 24353 17°773! 12:297 8225 5295 3240
19 28694 20064 13'592 8'968 5:731 3483
20 33333 22036 14818 9665 6123 3705
2t | 38294 —24'514 —15'976 —10:305 —6°485| —3'902
2z 43590 26°663 17076/ 10°910 6820 4'095
23 49231 28753 18118 11'474 7133 4263
2'4 55236 30782 19108 11°997 7420 4424
2'5 61626 32748 20044 12'484 7680 4571
26 68415 34653 20925 12944 7933 4700
27 75'624 36503 21767 13'376 8165 4824
2'8 83274 382714 22563 13784 8380 4937
29— 91-395 40000 23328 14'166 8585 5051
3.0 |—100000 44671 24040 14524 8715 5152
31 [—109 129 —43:277/—24'726/ —14:866, —8955| —5'251
3'2|—118800 44'820 25377 15184 9128 5344
3'3|—129:047| 46'323 26°000 15484 9290 5432
341—139911) 47762 26'588 15772 9433 5507
35(—151418 49159 27.144 16049 9578 5580
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Tabela 7.

Wzoér Huber‘a.
Wtérny blad procentowy p..

u

00 01 02 03 04 05 06 07
00 0 0 0 0 0 0 0 0
01 |+ 2633 + 2633 + 2633 + 2'633 +4-2'633|+2'633 {2629 4-2'598 +-2'324|+1°158
02 (4 4464  4'46% 4464 4464 4460 4410 4186 3517 ; 3
03 |4+ 5593 5593 5590 5571 5463| 5119 4338 3067
04 |+ 6101 6:100 6083 5971 §620| 4476 3731 2360
05 |-+ 6063 6059 5983 5707 5095 4124 2919 1719
06 |+ 5561 5541 5380 4944 4188 3202 2148 1:209
07 |+ 4648 4607 4367 3857 3121 2270 1467 1:809
08 |4 3383 3324 3057 2602 2:023] 1428 0'898 0480
09 |4 1817 1760  1-571 1291 0970 0670 0409 0214
10 0 0 0 0 0 0 0 0
11 |— 2°030|— 1°888 1:590 1:227 —0882]—0582 —0'352 —0°182
12 |— 4240 3854 3154 2386 1682 1100 0650 0337
1'3 |— 6590 5822 4655 3452 2395 1547 0907 0466
14 |— 9056 7808 6064 4435 3042 1938 1132 0578
15 |—11'612 9735 7434 5340 3620 2292 1334 0677
16 |—14'233 11606 8688 6164 4137 2606 1'510 0766
17 | —16:898 13392 9860 6915 4608 2'886 1662 0844
1'8 |[—19-590 15092 10950 7600 5030 3138 1:800 0'905
19 [—22:297 16710 11°966 8230 5'420| 3366 1927 0972
20 [—25000 18058 12.906 8814/ 5570 3572 2042 1026
21 |—27'690/ —19688 —13'726 — 9344 —6:090| —3'757 —2:144/ —1°080
22 |—30°357 21°050 14'586  9:836 6384 3934 2238 1'120
2:3 |—32:990 22332 15340 10292 6'657| 4'088 2324 1167
24 |—35'581 23537 16'042 10712 6906 4236 2405 1204
25 | —38129 24670 16692 11078 7134f 4370 2476 1245
26 |—40623 25735 17305 11460 7'350] 4490 2546 1277
27 | -43'060, 26742 17'876 11798 7:550] 4'602 2608 1°302
2:8 | —45'436 27680 18410 12114 7732 4705 2650 1330
2'9 |—47-752 28572 18915 12408 7'906] 4'808 2'712 1356
30 [—50°000 29413 19380 12682 8067 4900 2760 1-376
31 |—52'182/—30'206 —19'825 —12:942|—8-220]—4'990 —2:808 1402
32 |- 54297 30949 20242 13182 8364 5072 2 855 1430
33 |—56'341 31657 20635 13408 8500 5152 2 892‘ 1:445
34 |—5%318 32323 21003 13622 8620 5220 2938 1462
35 |—60226 32957 21350 13830 8740 5285 2980 1:480

l |
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Tabela 8.

Wzér Hossfeld'a.
Blid absolutny o, wyrazony w odsetkach objetosci walca podstawowego.

u —_—
¥ |
H

010 | 01 (r0020 {08 04 05 | 06 ‘ 0-7 ‘ 08 i 09

0 | 2500724750 —24:000 —22'750 —21-000|—18750 —16:000 —12:750 — 9°000 — 4750
i-|—18899 18640 17890 16'640 14:890| 12640 9804 7:304 3232 0604
2 |-14'174 13925 13175 11925 10181 7977 5455 2966 1058 0142
3 [—10513 10263 9515 8284 60631 4740 2876 1364 0428 0053
4|— 7651 7407 6675 53534 41471 2741 1530 0675 0200 0024
5| 5429 5184 4509 3551 2510|1563 0830 0351 0101 0012
6 |- 3695 3466 2896  2:174 1457|0873 0449 0185 0053 0°006
7 |- 2356 2158 1731 1245 0808] 0467 0237 0095 0027 0003
8|—1333 1185 0916 0637 0401[ 0227 0112 0045 0013 0001
9 |- 0563 0436 0362 0245 0152 0084 0041 0016 0005  0:001
0| o 0] -6 "B |re 0 o o o | o

1 [+ 0304+ 03194+ 0222+ 0124+ 0089+ 0047 + 021+ 0009+ 0073+ 0:000
2 |+ 0651 0518 0345 0221 0131 0071 0036 0012 0004 0000
3 |+ 0795 0597 0308 0252 0148 0079 0038 0015 0004 0001
4 |+ 0847 0614 0401 0250 0144 0078 0037 0014 0004 0001
5|4+ 0825 0575 0371 023 0134 0072 0034 0013 0003 0001
6 |+ 0741 0499 0317 0194 0111] 0060 0030 001 0003 0000
‘7 |+ 0608 0397 0250 0154 0088 0045 (024 0009 0002 0000
8 |+ 0435 0276 0172 0103 0060|0031 0017 00006 0002 0000
o |+ 0230 0141 0085 0054 0030 0016 0009 0003 0001 0000
plp g e e e e o | o o | 0

0'249'— 0143/ — 0087 — 0:050 — 0°031|— 0016 — 0008 — 0003 — 0001/ — 0°000

— 2499 1225 0724 0428 0243 0130, 0062 0024 0‘007} 0001
— 27718] 1°341 0789 0466 0265 0141 0.064 0026, 0.007 0001

7| e

21— 0512 0290 0174 0103 0060 0034 0014 0006/ 0‘002‘ 0000
3 |— 0787 0437 02611 0157 0088 0048 0024 0079  0'002] 0000
4 |— 1069 0575 0347 0205 0117 0062 0028 0011 0003 0000
5 |— 1354 0714 0427 0254 0144 0078 0036, 0013 0'004} 0001
6 |— 1642, 0850 0‘500‘ 0299 0170 0090  0'043 0015 0‘005‘ 0001
7 |— 1930 0980 0581 0343 0195 0104 0051, 0019| 0'005‘ 0°001
8 |— 2217] 1106 0656 0387 0222 0117 0058 0021 0006/ 0001
9

0

GULLL| QBRI REResee e 20000000000

1 |- 3050/— 1452 — 0857 — 0'5)4| — 0°287|]— 0152 — 0:069 — 0028/ — 0008 — 0901
2 [- 3318 1557 0918 058 03071 0162 0074 0030 0009 0001
3 |- 3579 1660 0975 0576 0325 0171 0080 0032 0009 0001
4 |- 38320 1756| 1031 0608 0347 0183 0086 0034 0010 0001
5

— 40771 1'851] 1085 0640 0364 0195 0094 0036 0010 0001
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Tabela 9.

Wzér Hossield'a,
Zasadniczy blad procentowy py.

u =
r — ; 1 ‘ o
00 01 02 | 03 04 05 | 06 07 08 | 09

00 |—33 333 —32:880 —31°580 —29 440 —26581|--23'078 —19:047 —14'613 — 9:890 — 4:977
01 |—26'229 257791 24500 22'405 19'589 16152 12212 7919 3670  065]
02 |[—20495 20060 18779 16700 13915| 10581 7224 3635 1232 0155
03 |—15832) 15398 14117 12065 9426 6515 3560 1715 0506 0058
04 |—12:008 11571 10304 8378 6108 3892 2075 0864 0239 0026

— 8865 8430 7243 5882 3825 2285 11149 0455 0123 0010

— 6285 5869 4713 3543 2303 1307 0633 0243 0064 0007
07 |— 4171, 3803 3001 2122  1307) 0714 0339 0126 0033 0004

08 |— 2450 2174 1646 1109 0665 0353 0161 0060 0015 0002
09 [— 1:081 0928 0675 0438 0256 0131 0052 002 0006 0001
tEe®o | o0 0 | 0 i, 0 S R RN TR 0
11 |+ 0820+ 0656+ 0441+ 0271+ 0154+ 0076 + 0°032 + 0012 + 0003 -+ 0000
12 |4+ 11413 1081 0704 0423 0232 0115 0053 0018 0005 0001
13 [+ 1796 1318 0832 0492 0267 0120 0055 0020 0005 0001
14 [+ 1932 11397 03864 0498 0264 0131 0055 0020 0005 0001
15 [+ 20022 1356 0819 0464 0246 0120 0053 0018 0005 0001
1% |4+ 1891  1-213 0711 0398 0205 0101 0041 0015 0004 0001
17 [+ 1615 00920 0574 0320 0168 0076 0035 0012 0003 0000
18 [+ 1202 0707 0400 0216 0113 0051 0025 0008 0002 0000
19 |4+ 0662 0372 0205 0115 0058 0028 0009 0004 6001  0:000
goprios | 0 | 0 | 0 |0 0 =t <t e g 0
21 [~ 0779 — 0401 — 0214 — 0’111 — 0°058]— 0032 — 0014 — 0007 — 0:001 — 0000
22 |- 1668 0830 0434 0228 0118 0060 0021 0009 0002 0000
23 |[— 2669 1263 0661 0348 0175 0085 0037 0013 0003 0001
24 |— 37711 11700 0888 0457 0228 0106 0044 0016 0004  0:001
25 |— 4974 2181 1105 0573 0284 0129 0055 0020 0005 0001
26 [— 6285 2610 1323 0679 0337 0i57 0067 0024 0006 0001
27 |— 7690 3062 1538 0784 0388 0182 0078 0027 0007 0001
28 |- 9200 3517 1754  0'800 0443 0205 00090 0030 0007 0001
29 |—10:800 3963 1'958 0988 0489 0231 0094 0033 0008 0001
30 |—12:500 4405 2153 1083 0533 0247 0106 0036 0009 0001
31 |—14297 — 4836/ — 2355 — 1'179|— 0°580|]— 0'270 — 0110/— 0039/ — 0:010— 0001
32 |—16189 5266 - 2542 1265 0621( 0288 0115 0042 0010 0001
33 |—18187 5689 2721 1'361} 0661 0304 0127 0045 0011 0001
34 [—20281 6099 2-903 14438/ 0707| 0325 0134 0047 0012 0001
]

—22472 6505 3074 1522 0744] 0346 0147 0050 0012/ 0002

5*
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Tabela 10.

Wzér Hossfeld‘a.
Wtérny blad procentowy p,.

u =
00 |01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09

S

—25000 —24'749| —24'000 —22:750 —20'999| —18750 —16°000 —12:730 — 9:000 — 4750
—20778| 20503 19679 18304 16380| 13907 11203 7:338 3540 0647
—17010 16708 15810 14310 12215 9568 6737 3508 1217 0155
13671 13344 12371 10766 8614 6116 3437 1686 0'503 0058
—10720 10371 9341 7730 5768 3746 2033 0857 0232 0026
— 8122 71775 6754 5287 3.684] 2234 1136 0453 0121 0010
— 5012 5544 4556 3422 2252|1200 0629 0242 0063 0006
— 4005 3664 2913 2078 1.200, 0709 0338 0126 0033 0003
— 2400 1128 1619 1097 0651| 0352 0161 0060 0015 0002
1070 0919 0670 0437 0255 0131 0052‘ 0022 0006 0001
0o | o B2 e S B0 LS 0 ‘ 0 g |- 0

SOXNVO LB WK —

+ 0828+ 0650 4+ 0443+ 0272+ 0154+ 0076 + 0032+ 0012 = 0003+ 0:000
=2 1‘433! 1-093 0709 0425 0233 0115 0053 0018 0005 0001
+ 1829 1'335 0839 0494 0267 0129 0055) 0'0205 0005 0001
+ 2033 1417 0872 0501 0:265]. 0131 0055 0'019‘ 0005 0001
+ 2'063 1315 0‘8251 0466 0247 0'122‘ 0053 0018 0'005‘ 0001
R 1'927; 1228 0716, 0399 0205 0101, 0041 0015 0'004i 0001
+ 1642, 1002 0577 0321 0168 0076 0035 0012 0003 ~ 0000
+ 1:216 1712 0401 0217, 0113 0051 0025 0008 07002 0000
+ 1667 0374 0205 0115 0057 0028 0:009) 0004 0001 0000
el G 0 | 0 0 0 0 ‘ 0 (0 et 0

0772 — 0400 — 0214 — 0110 — 0058|— 0'0321- 0014 — 0007 — 0°001 — 0°000
1640 0825 0432 0228 0117 0060 0'021} 0009,  0002| 0000
2600 1217 0.656i 0347 0175 0'085‘ 0037 0013,  0°003 0001
3635 1671 0830 0455 0228 0106 07044 00! 6‘ 0004 0001
- 4740 211340 1095 0569 0283 0129 0655 0020, 0005 0001
— 6012 2544 1306/ 0675 0334 0157 0067 0024 0006,  0°001
— 7142 2971 1515 0778 0386 0182 0078/ 0027 0007 0001
— 8424 3397 1°723] 0883 0441 0205 0090 0°030 07007, 0001
— 9'747) 3812 1920 0978 0487 0230 0097 0033 0008 0001
—11"111) 4219|2107 0072 0530 0246 0105 0036/ 0009 0001

G

QRN = | cOogneand=

010101 Q1

—12:510|— 4'613:—— 2:301|— 1'165 — 0'576|— 0'269 — 0110 — 0039 — 0°010 — 0°001
—13934 5003 2479 1249 0617 0287 0‘115‘ 0042, 0910 0001

—15388 5383 2'649, 1'343] 0656 0303 0127 0'015‘ 0011 0001
—16'862) 5748 2822 1417, 0702 0324/ 0133 0047  0012[ 0001
—18:350 6108 2983 1499 0739 - 0345 0147 0‘050‘ 0012 0002

s e e
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Tabela 11.
Wzory: Riecke’go, Simony’ego i Breymann’a.
Bledy podstawowe dla bryl caltkowitych t. j. dla u = 0.

Wzér Riecke'go Simonyego Breymann’a

= o’ P’y P, o p's p’s o Py p’s

‘ | ‘ I

00 16:667 —20'000 —16°657 0 i 0 ; 0 —12‘500‘—-14'284:-—12'500
01 |—12039 —15266 —13:244|+0'803 +0876 -0'833] — 8802 —10717|— 9'689
02 |— 8630 —11'556—10356]+1111 +1-316/+1'333|— 6'151|— 7°970 — 7380
03 |— 6106 — 8623 — 7°933|-+1'140 +1°4650 +-1'482|— 4'248 — 5816 — 5524
04 |— 4233 — 6310 — 5934|1020 41408 +1:428|— 2'878 — 4°198 — 4030
05 |— 2859 — 4481 — 4'230[+-0831 +1-231 +-1:246(— 1'898’— 2‘9301— 2848
06 |— 1850 — 3:050 — 2'960|-+0'624 +0 989 4+0'997|— 1200 — 1-958|— 1920
07 |— 11119 — 1940— 1902 —{—0'427%—{—0'722‘—{—0‘726 — 0709 — 1'220/— 1206
08 |— 0599 — 1091 — 1078|0252 +0°452 +0-454(— 0'373 — 0'677 — 0'673
09 |— 0239 — 0457 — 045540109 +0 207i+0 207|— 0'146‘— 0279 — 0280
10 0 o 0 0 0 0 0, 0 0
11 |+ 0149 + 0312+ 0314]—0'078 —0164 —0°161| - 0'087+ 0200+ 0200
12 |+ 02304 0532+ 0505—0129—0'285 —0286|+ 0132+ 0303+ 0'303
1:3 |+ 0264+ 0604+ 0:607 —0'154i—0'3551—0‘354 + 0149 + 0342/ 0343
1'4 |+ 0262 + 0625+ 0628 «0160i—v~0‘385‘—0'384+ 0145+ 0°331|+ 0'332
15 |+ 0237+ 0587 + 0591{—015) —0'377 —0-375|+ 0129 - 0'297/+- 0-298
16 |+ 01974 0510 4 0°512|—0110—0'339 —0:338]-+ 0105 + 0'244‘—}- 0244
17 |+ 0149 + 0402 + 0°402|—0°102—0'276 —0°275|+ 0078 + 0°186|+ ('186
1'8 |+ 00984 0272/4 0272|—0'067 —0-188 —9-193|+ 0051+ 01214 0121
19 |+ 0047 + 0'138‘—% 0'139]—0 034/ —0099 —0°099]+ 0025+ 0060+ 0061
20 B DA 0 0 o o] o
21 |— 0041|— 0127 = 0127 +0'0311+0‘0963—}—0‘099 — 0020 — 0'070‘— 0070
22 |— 0074 — 0237 — 0237]4+0°056 +0179 +0'179]— 0°037 — 0 133 — 0133
2:3 |— 0099 — 0328 — 0°326|+0'077 0253 +6:254|— 0048 — 0168 — 0167
24 |— 0114 — 0°388 — 0'386/-+0°090 3305 +0°306]— 0055 — 0189 — 0189
25 |— 0119/— 0420 — 0°418]+4-0°096 +0°335 -+0°336|— 0057|— 0'200 — 0°200
26 |— 0115 — 0418 — 0'416{+0092 +-0'330 +0°331(— 0055 — 0193 — 0193
27 |— 0101— 0374 — 0372 -{—0'082‘—{—0'302;-{-0'303 — 0047 — 0'1721—— 0172
28 1— 0'077}— 0293 — 0292 -+0063 0238 +4-0°246] — 0'036‘——— 0'133‘— 0133
29 |— 0043 — 0168 — 0167|+0036 +0°140 +0°140{— 0020 — 0074 — 0°075
30 0 | 0 0 0 0 | 0 0 | 0 | 0
31 |4 0052+ 0212+ 0212|—0'044 —0"186 —0°180|+ 0'024“—{— 0'103[—{- 0103
32 |+ 0111+ 0466 4 0468/—0'094 —0°396/—0°395|+ 0°052|-+ 0'223‘—[— 0228
33 |+ 01804 0768 4+ 0°774]—0'154 —0‘667!—-0'662 + 0'082H— 0'368|+ 0368
34 |+ 0255+ 1‘108}—}- 1°121|—0'219 —0'973 —0°964|+ 0116 + 0°520|+ 0°520
35 |+ 0337+ 1'492|+ 1-514]—0'292|—1'331|—1'314|4-

0152 4+ 0682+ 0683
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dla Scislejszych interwaléw zmiennych: r (0'5, 2'3) i u (05, 0'8).
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Tabela 12
Cyfrowe zestawienie charakterystycznych bledéw wzoréw ksylometrycznych

=8 Blad maksymalny dla bryl L
° Blad tny dla bryl
Wzér _‘2‘“3’ catkowitych w interwale ol il ry
=0 . : — - —
ksylome- |.— 2 od ry =05dor,=23 4 calkowitych | 4cietych
tryczny |3 ® dodatni ‘ j . e
'S'g : u1§mny znak | 7 (05 23) | znak | r (05, 23)
& aldla r = wartosé 'dla r = wartosé =0 | u (05, 0'8)
o 23 19709, 05 16'67 %, + 6.20 %, -+ 068 9,
Smaliana P : 39399, | 3333% | + 12.40 %/ + 099 9,
po | . 16500% | , |2500% | 4+ | 2000% | + | 109 %
| 05 | 4059, 23 10000, | — 3400, | — | 032 9,
Hubera ot s 5120, |, 49239, | — | 13839, = — | o052 0,
S 606% | . 320905 | — | 1043% | — | 056 9,
o | 142 | 085, 05 | 5430, | — 0350, | — | 0047 9,
Hossfelda p | 147 2039/, " 8870, — 0499, — 0067 9/,
<l G 261%, 8120, | — 040% | — | 0066 %,
« | 134 | 021 O, | 05 | 286%| — | 02049, | — | 0014 9,
Rieckego | p, | 138 | 063 % |, | 4489, — = 02079, = — 002
pa|l . |o63 0| 4299, | — | 02839 | — | 002
a 05 |083 0| 137 016 9/, 4 00479, + | 0014 0/,
Simonyego | p, . 1123 0, | 142 | 035% | + | 0051% | + | 00186,
1 e 032% | + | 00529% | + | 001899,
a ] 13 | 015 %, 05 | 1900, — | 014 % | — | 0008 9,
Breymanna | p; 137 03499, » 2930/, | — 021 9/, — 001 9,
ps | =, 035104 | . 285% | — | 021 % | — | o001 9
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Thaddaus Wielgosz.

Theorie der Genauigkeit der xylometrischen
Formeln.

Institut fiir Holzmesskunde, Waldwertrechnung und Forststatik an der
Universitdat in Poznan (Polen).

Zusammenfassung.
Die Disposition der Abhandlung lautet:
I. THEORETISCHER TEIL.
1. Einleitung. Dendrometrische Korper.
2. Klassifikation der konstanten Fehler
a) Der absolute Fehler
b) Die prozentuellen Fehler
¢) Die Kulminations- und Maximalfehler
d) Die durchschnittlichen Fehler.
3. Allgemeine Sédtze uber das gegenseitige Verhéltnis der
einzelnen Arten der Grundfehler.

II. ANGEWANDTER TEIL.

4, Die allgemeine Formel betreffend das Verhéltnis der
Querschnitte bei den dendrometrischen Kérpern.

5. Die xylometrische Formel von Smalian.
0. 4 % 4 - ., Huber.
ey " I , Hossfeld.
8. =& . i » Riecke.

Gl o8 % ” » Simony.
10, @ @ » DBreymann,
11. Zusammenstellung und Folgerungen.

Die in kurzer Form verfasste Inhaltsangabe der einzelnen
Punkte der obigen Disposition folgt:

1. Die auf der Querschnittgleichung 1 (Formel 1 im pol-
nischen Texte) basierenden und von dem zwischen den Werten
0 bis 3'5 liegenden Intervalle der Verénderlichen r (Formexpo-
nent) eingeschlossenen Konoide und deren Abschnitte werden
als dendrometrische K&rper bezeichnet, wobei die
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einfachsten derselben d. h. die Walze, das Paraboloid, der Kegel
und das Neiloid (r=0, 1,2, 3) als dendrometrische
Grundkorper und die den iibrigen Werten von r ent-
sprechenden Kérper als dendrometrische Uber-
gangskorper benannt werden.

Aus den Formeln 3 und 5 sehen wir, dass das Volumen der
dendrometrischen Korper sich als das Produkt aus dem Volumen
der Grundwalze (Gh) und einer Funktion, und zwar von einer
Veranderlichen (r), wenn es sich nur um die ganzen Konoide han-
delt, beziehungsweise von zwei Veranderlichen (r, u), wenn es
auch von den Abschnitten der Konoide die Rede ist, darstellen
iasst (u ist das Verhaltnis des obersten zum untersten Durch-
messer).

Wenn wir das Volumen der dendrometrischen Kérper in
Prozenten des Grundwalzenvolums ausdriicken, erhalten wir die
Formel 6, deren einzelne fir die Abstufung 0'1 der Verédnder-
lichen r und u sich ergebende Werte in der Tabelle 1 zusam-
mengestellt sind, woraus zu entnehmen ist, dass das Vo~
lumen der dendrometrischen Koérper di-
rekt proportional dem u und umgekehrt
proportional dem r ist.

Die Grenzwerte der I[ntervalle der Veranderlichen r und u
werden nach folgenden Erwdgungen festgesetzt:

Die untere Grenze r=0 ist genau festgesetzt, weil die
Einfithruig eines negativen Wertes fiir r bedeuten wiirde: o) fiir
0 >> r > —1, dass das Stammvolumen grésser als das Volum der
Grundwalze ist, was in der Wirklichkeit nicht zutreffen kann;
B) fiir r=—1 miisste das nach den Formeln 3 und 5 berechnete
Volum unendlich gross werden; y) fir r << —1 wiirde das
Volum negativ, was praktisch anwendungslos ist. Dagegen ist
die obere Grenze r= 35 eher ein Akt der subjektiven An-
schauung, die sich auf bisherige ganz allgemeine Erhebungen
sttzt.

Die Intervallsgrenzwerte fiir u und zwar u; =0 und u, =1
lassen sich leicht erklaren, denn fiir u =0 haben wir mit den
ganzen Konoiden zu tun und andererseits fiir u = 1 stossen wir
an die Walzenform an, wobei zu bemerken ist, das in dem
Momente, wann u =1 ist, auch r=0 sein muss; in diesem
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letzten Falle wird die Funktion praktisch unstetig und die Ver-
anderlichen werden zu Konstanten.

Die obigen Intervalle » (0, 3'5), u (0, 1) werden allge-
meine Intervalle genannt; wenn es sich aber um engere
Variierungen der Verdnderlichen in Rahmen der allgemeinen
Intervalle handeln wird, so werden wir von engeren Inter~
vallen sprechen.

Der Formenponent der ganzen Stamme der Waldbdume
kann nicht den Wert von Null haben, denn nur die Stammteile,
die der Einheit sich ndherndes u besitzen, nahern sich in
ihrem r der Null zu; fiir praktische Zwecke aber ware es vor-
teilhaft festzustellen, welchen Grenzwert fiir » man fiir ganze
Baumstamme annehmen darf. Weil wir aber diesbeziiglich noch
keine Versuchserhebungen!*) besitzen, bleibt es nichts {ibrig als
fur unsere theoretischen Auseinandersetzungen einen aproxima-
tiven Wert anzunehmen. Uns auf die allgemeine Beobachtung
stiitzend glauben wir den Satz aussprechen zu kénnen, dass der
Wert von r fiir ganze Baumstamme nicht unter 0'5 herabsinken
kann.

Die zu besprechenden xylometrischen Formeln lassen sich
auch als Produkt aus dem Grundwalzenvolum und einer ent-
sprechenden Funktion von einer bzgw. zweien Veranderlichen
darstellen.

2. Klassifikation der konstanten Fehler, mit denen die xylo-
metrischen Formeln behaftet sind.

a) Die Differenz zwischen dem sog. Naherungsvolumen
(v'), welches wir bei der Anwendung der betreffenden
xylometrischen Formel erhalten, und dem sog. wirk-
lichen Volumen (v), welches sich nach der Formel
3 oder 5 berechnet, wird als der absolute Fehler
benannt (Av). (Siehe Formel 8 und 8a).

Der absclute Fehler in Prozenten des Grundwalzen-
volums ausgedriickt wird mit « beziehungsweise, wenn es
sich bloss um ganze Kérper handelt, mit «' bezeichnet.
(Formel 9, 9a).

1) Die Methoden der Bestimmung der dendrometrischen Form-
elemente befinden sich in Bearbeitung und werden bald versffentlicht.
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b)

c)

d)

15)
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Das Verhaltnis des wirklichen Volums zum Néaherungs-
volum wird der Volumquotient ¢ bzgw. ¢’ genannt.
(Formel 10, 10a).

Der priméar-prozentuelle Fehler (p;
bzw. p,’) stellt das prozentuelle Verhaltnis des absoluten
Fehlers zum N&herungsvolumen dar und ist von beson-
derer Bedeutung fiir die Praxis, (Formel 11, 11a).

Der sekundar-prozentuelle Fehler
(p, bzgw. p,’) stellt das prozentuelle Verhaltnis des
absoluten Fehlers zum wirklichen Volumen dar. (Form.
12, 112a).

Den grossten positiven und den kleinsten negativen!®)
Wert der gegebenen Fehlerfunktion innerhalb der ange-
gebenen Intervalle der Verdnderlichen r und u nennen
wir den positiven bzw. negativen Maximal-
fehler, der entweder in Form von Kulmination (als
Kulminationsfehler) oder als Funktionsgrenzwert fiir den
Grenzwert des Intervalls einer Veranderlichen auftritt.
Der Maximalfehler wird mit dem Symbol ,max” und
der Kulminationsfehler, der nicht zugleich Maximalfehler
ist, wird mit ,kul” bezeichnet.

Die durchschnittlichen Fehler. Fiir die Fehlerfunktion
_mit einer Veranderlichen berechnet sich der durch-
schnittliche Fehler nach der streng wissenschaftlichen
Formel 13 oder nach einem N&herungsverfahren im Sinne
der Formeln 13a und 13b und stellt sich als Hohe jenes
Rechteckes, dessen Flache gleich der Flache ist, welche
von der Fehlerfunktionskurve und der Abscissenaxe,
innerhalb der gegebenen engeren Intervallsgrenzwerte
der betreffenden Veranderlichen eingeschlossen und
dessen Basis die Differenz der Intervalsgrenzwerte ist.
Schneidet die Fehlerfunktionskurve die Abscissenaxe,
dann wird die algebraische Summe der Teilflachen in
Rechnung genommen.

Der kleinste negative Wert ist der griésste absolute Wert aller in

Betracht fallenden negativen Funktionswerte.
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Der durchschnittliche Fehler bei der Fehlerfunktion
mit zwei Veranderlichen stellt sich als die Héhe jenes
geraden Parallelepipeds, dessen Volum durch das be-
stimmte Doppelintegrale der gegebenen Fehlerfunktion
mit den den engeren Grenzwerten der Intervalle der
Verdanderlichen gleichen Integralsgrenzen bestimmt ist
und dessen Grundfliche dem Produkte der Differenzen
der Intervallsgrenzwerte der Veranderlichen: (r, —ry),
(u, — uy) gleicht (F. 14). Tatsdchlich wird dieser durch-
schnittliche Fehler nur nach dem Né&herungsverfahren
nach der Formel 14a berechnet.

3. Der absolute und die beiden prozentuellen Fehler werden
als. Grundfehler bezeichnet.

Nachdem die allgemeinen Bedingungen, unter welchen die
Grundfehler gleich Null werden bzw. unter welchen die Kulmina-
tion der einzelnen Grundfehlerarten erfolgt, auseinandergesetzt
wurden, wurden folgende allgemeinen Séatze iiber Grund- und
Kulminationsfehler aufgestellt:

i

Fir dieselben Werte von r und u werden gleichzeitig

alle Grundfehlerarten gleich Null.

Die Kulmination des absoluten Fehlers einerseits und
der beiden Arten des prozentuellen Fehlers anderseits
erfolgen grundsatzlich nicht fiir dieselben Werte fiir
rund u.

Alle Grundfehlerarten besitzen fiir dieselben Werte fiir
r und u dasselbe algebraische Zeichen.

Die prozentuellen Fehler sind grésser als der in Prozenten
des Grundwalzenvolums ausgedriickte absolute Fehler
ausser alle Fehlerarten sind gleich Null und mit Ausnahme
einer teoretischen Madglichkeit, wenn der sekundar-
prozentuelle Fehler gleich o' ist, was — wie am Schlusse
der Abhandlung erklart wird — fiir f(0) =1 bei gleich-
zeitigem von Null verschiedenem Werte fiir «’ geschieht.

Bei negativem Zeichen der Grundfehler ist der primér-
prozentuelle Fehler grésser als der sekundire und um-
gekehrt beim positiven Zeichen ist der sekundire grésser
als der primare.
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4, Die Formeln 15 und 16 stellen die allgemeine matematische
Relation zwischen den Endquerflaichen und einer dritten da~
zwischenliegenden Querflache bei den dendrometrischen Kérpern
dar, wobei n das Verhélltniss der Entfernung der Querflache g,
von der Grundflache G zur ganzen Korperhohe h vorstellt. Die
Formel 16 bezieht sich bloss auf ganze Kérper und die Formeln
17 bis 21 stellen Spezialisierungen der allgemeinen Formeln 15

und 16 fiir
1

:Z:

1

— 5, dar.

n s

Q| =
(O] \e]
oY

5. Die Formel von Smalian.

Die Formeln 23 und 23a stellen den absoluten Fehler dar, den
wir bei Anwendung der Smalianschen Formel zur Bestimmung
der Volumens aller dendrometrischen Koérper begehen; die
Formeln 25 und 25a beziehen sich auch auf den absoluten
Fehler, der aber in Prozenten des Grundwalzenvolums ausgedriickt
ist. Die prozentuellen Fehler werden in den Formeln 26 bis 27a
dargestellt.

Der Verlauf der Grundfehler bei der Smalianschen Formel
lautet: .

Fir die Walze betragen die Grundfehler Null, bilden aber
den sog. unstetigen Punkt mit den Spriingen, die folgende von nur
teoretischer Bedeutung Werte aufweisen:

(— ) =—1500
r=0
des Grundwalzenvolums,
(—p'1) =—100%
r=:0

des Naherungsvolums und
('— p,g) = — SOO/U
=0

des wirklichen Volumens.'%)

16) Es ist zu bemerken, dass der Prozent bei o« sich auf das Grund-
walzenvolum bei p; auf das Ndhrungsvolum und bei p, auf das wirkliche
Volum bezieht; bei den weiteren Angaben werden diese néheren Be-
zeichnungen weggelassen. i
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Da wir angenommen haben, dass r fiir ganze Korper nicht
unter 0°5 herabsinken kann, so miissen wir auch annehmen, das
auch beildufig von r=0'5 der tatséchliche Verlauf der Grund-
fehler keine Spriinge bilden sondern sich dem Ursprunge des
Koordinatensystem nahern wird d. h. die Grundfehler zeigen bei
dem wirklichen Verlauf fiir das angenommene r=10'5 und u =0
folgende Werte, die zugleich die negativen Maximalfehler vor-
stellen:

max [— /] = — 16"67%0, max [— p 1] =~ 35"33%/0,
r=09%
max [—p’ ]=——-25'00°/o
[

(=}

dann nehmen dieselben immer mehr ab, werden gleich Null fiir
das Paraboloid, dann iibernehmen sie positive Werte, nehmen
stetig zu und verlassen das Intervall der Veranderlichen r mit
dem positiven Maximalfehler fiir r=3'5:

max [+ o'] =27"77%0, max [+ p',] = 5550%b,
r=35 r=2395

und max [+ p's] = 125%.
r=:39

6. Die Formel von Huber.

In den Formeln 31 bis 33a sind die Grundfehler angegeben.
Der Verlauf der Grundfehler zeigt einen Kulminationsfehler,
dessen r nach den Regeln der Theorie von Minima und Maxima
bestimmt wurde, wobei man zwecks Losung der erhaltenen
Gleichungen zur Methode von Newton greifen musste.

Der Verlauf der Grundfehler lautet:

Fiir die Walze betragen die Grundfehler Null und bilden
den sog. scheinbar stetigen Punkt, nehmen positive Werte an und
weisen folgenden teoretischen Kulminationsfehler aus:

kul (+ a') 4 39"/0, kul (+p’ 1) 5 790/0, kul (4 p’,)=6"15%0.
r = 0442

6
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Der wirkliche Verlauf weist fiir den angenommenen Wert
fiir =05 folgenden positiven Maximalfehler aus:

max [-- '] = 4'05°/o, max [+ p’,] =5'72°/0, max [+ p’;] = 606°/0,
r=0'5 r=£'5 r=05

dann nehmen die Grundfehler ab, gleichen der Null fiir das
Paraboloid, iibergehen in negativen Wert, nehmen stetig zu und
verlassen das Intervall von r mit dem negativen Maximalfehler:
max [— «'] = —=13:38%/0, max [-—pl]— —151°42 und
=35

r=395

max [— p'. ]—‘—60250/0
o

7. Die Formel von Hossield.

Das Naherungsvolum v’ bzw. v und der Volumquotient ¢
bezw. ¢ sind in Form von Funktion in den Formeln 34 bis 35a
angegeben.

Der Verlauf der Grundfehler lautet:

Fir die Walze betragen die Grundfehler Null und bilden
Spriinge mit den teoretischen Werten :
[— Dt'J =—25%0, [—p’ 1] =—33'33%0, [—p’,] =—25.
r=0

Fiir den angenommenen Wert-von r=0'5 erhalten wir:
max [—0o'] = — 542%0, [—p',] = = 887%, [—p',] = — 812",
r=0'5 r=095 r=0

dann nehmen die Grundfehler ab bis zur Null fiir das Paraboloid,
ibergehen in positiven Wert, kulminieren mit dem positiven
Maximalwert :

max (4 ') =085,/0, max (4 p’) =2'03%0, max (-+p’,) =207,
r=1'42 r=1417 r=141

gleichen der Null fiir den Kegel, werden negativ und verlassen

das Intervall von r mit den Werten:

[0'] = —4'08°/o, max[—p'1]=—22'47 /o, max[—p’,] = — 1835%v.
15 r=335 5
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8. Die Formel von Riecke,

Das Naherungsvolumen und der Volumquotient sind in den
Formeln 36 bis 37a angegeben.

Der Verlauf der Grundfehler lautet:

Fir die Walze betragen die Grundfehler Null und bilden
Spriinge mit den teoretischen Werten:

[—«'] = — 1667/, [— p'1] = — 20°00%/0, [— p'.] = — 16'67"/e.
r=0 r=0 r=0

Fir den angenommenen Wert fiir r=0'5 erhalten wir den

Maximalfehler :
max [— a] = — 2'86"/0, max [— p/;] =— 4 48°/, und
o r=

max [— p',] = — 429°/,,
r=0'5

dann nehmen die Grundfehler ab bis zur Null fiir das Paraboloid,
itbernehmen den positiven Wert und kulminieren mit den Werten:
kul (- 0') = O 27°/,, kul (4 p";) = 0'62°/;, kul (+ p 3= 0 63%;
r=1 r=138 =13

fir den Kegel gleichen dieselben Null, iitergehen in den nega-

tiven Wert und kulminieren wiederum mit den Werten :

kul (—a ']——0 12°/4, kul (—p',) =—042°/,, kul (—p’,)=—0422"/,,
re=9¢§ r=2'54 r=2'54

gleichen der Null fiir das Neiloid und verlassen das Intervall

vor r mit dem positiven Maximalfehler :

max [+ «’] = 0337%,, max [+ p’;] = 1°46%,, max[— p’.] = 152%/,.
r=3%5 r=35 r=35

9. Die Formel von Simony.

Das Naherungsvolumen und der Volumgquotient sind in den
Formeln 38 bis 39a angegeben.

Der Verlauf der Grundfehler lautet:

Fir die Walze betragen die Grundfehler Null und bilden
zugleich den sog. scheinbar stetigen Punkt, dann iibergehen in
positiven Wert und kulminieren mit den teoretischen Werten :

kul H— a) —2- 1°16%,, kul (-+p’ 1)03 1.46/,, kul (+p',) _3—, 1-489/,,.
r—=0:32--

6*
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Fiir den angenommenen Wert r=0"5 erhalten die Grung.
fehler den positiven Maximalwert:

max [+ «’] =0,83% ,, max [+ p';] =123/, max [+ ps}= 1259/
; =03 r=0'5 r=0s 01

nehmen bis zur Null fiir das Paraboloid ab, iibergehen in den
negafiven Wert und kulminieren mit den Grossen : :
kul (—o’) = —0°16°/,, kul (—p',) = —0,39°/, kul (—p’,) = '—0'380/

1,37 r=143 , r=1'43 .
gleichen der Null fiir den Kegel, werden positiv und kulminieren
mit den Werten:

kul (4 ) = 0:097°/y, kul (+p's) = 0°3537%, kul (+ p',) = 0°338%,,

r=2"50 r=2'585 —=2:55

gleichen der Null fiir das Neiloid, werden negativ und verlassen
das Intervall von r mit dem negativen Maximalwert:

max [— o'] = — 0°29°/,, max [— p’;] = — 1°35%, und
r—=3'5 r=395

max [— p’.] = 1°31°/,.

r=3

10. Die Formel von Breymann.

Das Naherungsvolum und.der Volumquotient - und in den
Formeln 40 bis 41a angegeben.

Der Verlauf der Grundfehler lautet:

Fiir die Walze betragen die Grundfehler Null und bilden
Spritnge mit den teoretischen Werken:

[—— a ] — —12:50"o, [——p ]] =—14'29/0, [—p's] roak 12:50%0.
e
Fiir den angenommenen Wert fur r=0'5 erhalten die Grundfehler
den negativen Maximalwert:
max [— '] =—1'90%0, max[— p’;]=— 293,
r=06 =205
max [— p'Q] =5 —=2'85%,

dann.gleichen der Null fiir das Paraboloid, werden positiv und
kulminieren mit den Werten:

kul(—}—a’)—0150/o kul(—}—pl)——0349°/o kul(+p )——03510/0
333~

|
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gleichen der Null fiir den Kegel, werden negativ und kulminieren
mit den Werten:
kul (—a’) =—0058%0, kul (—p’;) =—0202°/o,
r =249 r=253
kul (— p’s) = — 02019°/0,
r= 0.53

gleichen der Null fiir das Neiloid, werden positiv und verlassen
das Intervall von r mit dem positiven Maximalwert:

max [+ '] = 0'15°/0, max [4p’,] = 0°682°/0, max [+-p’;] =0683°/o.
=109 r= 35 =35

Bei der Besprechung der einzelnen xylometrischen Formeln
wurden die durchschnittlichen Fehler fiir die Intervalle r (05,
2:3) und u=o0 dh. fiir ganze dendrometrischen Kérper und fiir
die Intervalle r (05, 2:3), u (0°5, 0'8) dh. fiir dendrometrische
Korperschnitte berechnet.

Ausserdem wurden die durchschnittlichen Fehler auch fiir
andere Intervalle berechnet und zwar in den Fallen, in welchen
man auch durch die Integration zu demselben Resultat gelangen
kann, um auf diese Weise zu beweisen, dass die naherungsweise
Berechnung in den Rahmen der ausreichenden Genauigkeit liegt.

11, Zusammenstellung und Folgerungen.

Fiir die Intervalle »(0°5,2°3), u =0 bezw. r(0°5, 2'3), u(05, 0°8)
wurden in der Tabelle 12 die Maximal~- und durchschnittlichen
Fehler fur alle sechs xylometrischen Formeln zusammengestellt.
Auf Grund der erhaltenen Resultate kdnnen wir die besprochenen
xylometrischen Formeln, was ihre relative Genauigkeit anbelangt,
in drei Gruppen teilen, und zwar zur ersten Qruppe zdhlen wir
die Formeln von Smalian und Huber, genauer ist die
Hossfeld’sche Formel, die die zweite QGruppe ausmacht,
und die Gruppe der genauesten Formeln bilden die Formeln
von Riecke, Simony und Breymann, wobei von den
zwei letzten, die das Volumen der dendrometrischen Korper
genauer als jene von Rieche angeben, schwer zu entscheiden
ist, welcher der beiden der Vorrang was die Genauigkeit anbelangt
zuzuschreiben ist. '
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Der absolute Wert der durchschnittlichen Fehler fiir die
Interralle r (0°5, 2°3), u (0°5, 0'8) iibersteigt was o und p, anbe-
langt sogar nicht 1% und was p, betrifft betrdgt derselbe fiir
die Smaliansche Formel 1°09°/0, sonst erreicht er auch nicht 1%/,
woraus wir schliessen kénnen, dass die Anwendung der Smalian-
schen und besonders der Huberschen Formel fiir die sektions-
weise Methode zu den Resultaten fithrt, die innerhalb der
Grenzen jener (Genauigkeit liegen, die bei den dendrometrischen
Versuchsmessungen verlangt wird.

Auf Grund der Auseinandersetzungen, die im angewandten
Teile besprochen wurden, gelangen wir nebst den allgemeinen
Folgerungen, die am Schlusse des teoretischen Teiles angegeben
sind, zu den folgenden speziellen S&atzen, die sich auf
die sechs xylometrischen Formeln beziehen:

1. Die Grundfehler weisen innerhalb der festgesetzten allge-
meinen Interralle der verdnderlichen r und u einen analogen
Verlauf aus; es ware nahmlich zu bemerken, dass — wie die in
der Publikation nicht angegebenen Orientierungsrechnungen be-
weisen — der Verlauf fiir andere Werte von r fiir die einzelnen
QGrundfehlerarten sehr verschieden sein kann.

2. Die =xylometrischen Formeln, die den obersten Quer-
schnitt nicht enthalten (Huber, Simony), weisen firr die
Walze den sog. scheinbar stetigen Punkt aus; dagegen die iibrigen
Formeln (Smalian, Hossfeld, Riecke, Breymann)
bilden fiir ‘die Walze den sog. unstetigen Punkt mit den Spriingen
von nur teoretischen Fehlerwerten. Diese Fehlerwerte be-
rechnen sich fiir die Walze deshalb, weil die Fehlerfunktionen
nehmen fiir den obersten Querschnitt Null an, was fiir die Walze
(von endlicher L&nge) unzuldssig ist.

3. Bei diesen vier xylometrischen Formeln, die den obersten
Querschnitt besitzen, finden wir noch diese Tatsache, dass der
sekundér-prozentuelle Fehler fir r=0 und u=0 gleich dem
in Prozenten des Grundwalzenvolum ausgedriickten absoluten
Fehler ist, trotzdem beide einen von Null verschiedenen Wert
besitzen. Die Grosse dieser teoretischen Fehlerwerte die als

Spriinge in den sog. unstetigen Punkten auftreten, last sich nach

0 100
den folgenden Formeln berechnen: o’ =p', = JEO, und p’; = Pt
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wenn wir unter m die algebraische Summe der Koiffizienten
bei den Querschnittsflaichen in den einzelnen xylometrischen
Formeln verstehen; m betrdgt fiir die Smaliansche Formel 2,
fiir die Hossfeldsche 4, fir die Simonysche 6 und fiir die
Breymannsche 8.

4. Der absolute Wert der Grundfehler nimmt mit dem Zu-
nehmen der Werte von u ab d. h. die ganzen Korper weisen die
grosten Fehler aus, woraus folgt, dass die Grosse der Grund-
fehler direkt proportional der Differenzen der dussersten Durch-
messer ist.

5. Die eventuelle Kulmination der Grundfehlerfunktion tritt
mit zunehmendem u fiir abnehmendes r ein d. h. die Kulmina-~
tion nahert sich dem Ursprunge des Koordinationsystems mit
zunehmendem Werte von u.

6. Die Kulmination fiir die beiden prozentuellen Fehler tritt
fir hohere Werte von r als die Kulmination des korrespondieren-
den absoluten Fehler ein.

Meinen Assistenten Herrn E. Lorenz, S. Selens und St. Smélski
danke ich herzlichst fiir die freundliche Hilfe bei den langwierigen
Rechnungen, die in der Abhandlung auftreten.
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