1. Wstęp

Pierwsze skąpe informacje o składzie chemicznym wód zbiorników pokopalnianych podał Kozacki (1976), wskazując na silne ich zakwaszenie, zaś obszar na którym one się znajdują nazwali "pojezierzem antropogenicznym".

Zainteresowanie "pojezierzem" wzrosło w drugiej połowie lat 80-tych i na początku lat 90-tych. Przeprowadzone badania wykazały, że w okresie od kilku dziesiątych do przeszło 100 lat pojawiały się w zbiornikach zmiany fizycznno-chemicznych cech ich wód, wskazując na wyraźny postęp ich eutrofizacji.

Na podstawie pomiarów odczynu i potencjału redoks wyróżniono dwie grupy zbiorników: acidotroficzne (o odczynie wody poniżej 4,0 pH) i "obojętne", których odczyn wody mieścił się w granicach od 6,0 pH do 7,8 pH, do grupy acidotroficznej należały zbiorniki młode (Solski, Jędreczak, Matejczuk 1988).

Zmiany fizycznno-chemicznych cech wód zbiorników "obojętnych" w profilu pionowym nie były do tej pory śledzone, bardziej szczegółowym badaniem poddawano zbiorniki o wodach kwasnych (Matejczuk 1986, Jędreczak 1992).

Rysunek 1. „Pojezierze antropogeniczne” (wschodnia część Łuku Mużakowskiego)
Z tych też względów uznano za celowe objęcie badaniami zbiorniki całego "pojezierza" (w wieku od 25 do powyżej 100 lat), prześledzenie zmian fizyczno-chemicznych cech ich wód w całym profilu pionowym, a ponadto poszerzenie zakresu badań o elementy biocenotyczne (organizmy pelagialu, litoralu i głębokiej).

Wśród wybranych 24 zbiorników stwierdzono obecność dwóch zbiorników, reprezentujących grupę przejściową (odczen: 4,18 - 5,60 pH), której dotychczas nie udało się badaczom wykazać.

2. Metody

Analizy fizyczno-chemiczne

Próby wody pobierano w miesiącach letnich 1993 i 1994 r. czerpaczem Ruttnera (3 l) z głębokości: 0, 1, 3, 5 m, następnie co 2 m i 1 m nad dnem.

W czasie poboru prób wody mierzono sondą: temperaturę, odczyn (pH) i potencjał oksydacyjno-redukcyjny. Pozostałe oznaczenia chemiczne wykonano w laboratorium metodami opisanymi przez Hermanowicza i innych (1976).

Sposób pomiaru przeźroczystości produkcji pierwotnej i zawartości chlorofilu a podano w pracy doktorskiej (Najbar 1996).

Analizy biologiczne

Próby wody pobierano czerpaczem Ruttnera w ilości 30-50 l z głębokości jak wyżej. Wodę czedzono przez siatkę planktonową Nr 40, uzyskaną próbkę planktonu utrwalano formaliną bądź etanolom (zooplankton) lub płynem Lugola (fitoplankton). Oznaczenia jakościowe i ilościowe wykonano w laboratorium.

ł Organizmy bentosowe pobierano czerpaczem Eckmana. Pobrany osad przemywano wodą, używając siatki plastikowej o średnicy oczek 1 mm. Pozostałość utrwalano formaliną (4%). Po usunięciu zanieczyszczeń (szczątki roślinne, piasek) próbki przeglądano pod binokularem.

Do oznaczeń organizmów strefy litoralnej, w tym również organizmów bento-

3. Wyniki

3.1. Fizyczno-chemiczne cechy badanych wód

Wyniki badań fizyczno-chemicznych wód pobranych latem 1993 r. obejmują-ce kilkanaście wskaźników przedstawiono w postaci tabel, prezentując w nich wartości minimalne i maksymalne (tabela 1).

Omówienie wyników ograniczono do 3 wskaźników: temperatury, odczynu i potencjału oksydoredukcjnego, dla których sporządzono wykresy ilustrujące ich zmiany w profilu pionowym wody badanych zbiorników, z uwzględnieniem po-
działu na wyróżnione grupy: acidotroficzną (I), przejściową (II) i "obojętną" (III).

Temperatura

Grupa acidotroficzną (I)
Do grupy tej zakwalifikowano 11 zbiorników. Temperatura wody warstwy powierzchniowej wynosiła od 19,8°C (zb. nr 15) do 22,5°C (zb. nr 14), natomiast przy dnie utrzymywała się w granicach od 5,3°C (zb. nr 8 i 17) do 20,5°C (zb. nr 24).

Skok termiczny występował w pięciu zbiornikach (nr 8, 15, 17, 18 i 21) w pozostałych zbiornikach (nr 14, 19, 20, 22-24) nie stwierdzono typowego dla stagnacji letniej uwarstwienia termicznego. W tej grupie znalazł się zbiornik meromiktyczny (nr 21) z wyraźnie zaznaczonym monimolimnionem.

Grupa przejściowa (II)
Do tej grupy należą dwa zbiorniki (nr 4 i 7). Temperatura wody przy po-
wierzchni sięgła 20°C (zb. nr 7) i 21°C (zb. nr 4), przy dnie wynosiła 13,5°C.
(zb. nr 7) i 16,5°C (zb. nr 4). Są to zbiorniki płynne (głęb. maks. 3 i 4 m), pozbawione uwarstwienia termicznego.

Grupa "obojętna" (III)

Do tej grupy zaliczono 11 zbiorników (nr 1-3, 5, 6, 9-13, i 16), temperatura powierzchniowych warstw wody wahała się w granicach od 6,6°C (zb. nr 13) do 18,5°C (zb. nr 2).

Jakkolwiek są to zbiorniki płynne (głęb. maks. od 1-8 m), uwarstwienie typowe dla jezior głębokich podczas stagnacji letniej (obecność epil.- meta.- i hypolimnionu) stwierdzono w pięciu zbiornikach (nr 3, 9, 11-13).

Tabela 1.
Odczyn pH

Grupa acidotroficzna (I)

Odczyn wód tej grupy zbiorników w profilu pionowym wahał się od 2,4 do 4,0 pH. Pominięto monominolimniony dwóch zbiorników meroniktycznych (nr 18 i 21), w których to warstwach wartości odczynu wzrastały do 5,9 pH (zb. nr 18). Przyczyną wzrostu odczynu w monominlunionie (pozbawionego tlenu) było wykorzystanie jonów wodorowych do procesów redukcyjnych.

Grupa przejściowa (II)

Odczyn wód zbiorników grupy przejściowej (zb. nr 4 i 7) mieścił się w granicach od 4,18 do 5,60 pH. W powierzchniowych warstwach wody wynosił od 4,18 (zb. nr 4) do 5,07 pH (zb. nr 7). W warstwie przydennnej mieścił się w przedziale od 5,26 pH (zb. nr 4) do 5,58 pH (zb. nr 7).
Grupa "obojętna" (III)
Odczyn wód zbiorników zaliczanych do grupy "obojętnej" (nr 1-3, 5, 6, 9-13, 16) wynosił od 6,0 pH do 7,9 pH. W powierzchniowych warstwach wody wahał się od 6,65 pH (zb. nr 13) do 7,85 pH (zb. nr 12). W warstwie przydenny mieścił się w granicach od 6,15 pH (zb. nr 1) do 7,54 pH (zb. nr 2).

Potencjał redoks

Grupa acidotroficzna (I)
Zakres zmian potencjału redoks w profilu pionowym zbiorników acidotroficznych mieścił się w granicach od 280 mV (zb. nr 18) do 798 mV (zb. nr 21). Najwyższe wartości potencjału redoks wystąpiły w powierzchniowych warstwach wody i wynosiły od 643 mV (zb. nr 119) do 772 mV (zb. nr 21).
W przydennych warstwach wody potencjał redoks wahał się od 280 mV (zb. nr 18) do 766 mV (zb. nr 24).

Grupa przejściowa (II)
Potencjał redoks w profilu pionowym zbiorników przejściowych wynosił od 566 mV (zb. nr 7) do 614 mV (zb. nr 4). Zmiany w profilu pionowym wód były nieznaczne; są to zbiorniki płytkie.

Grupa "obojętna" (III)
Zakres zmian potencjału redoks w profilu pionowym tej grupy zbiorników był zróżnicowany i mieścił się w przedziale od 224 mV (zb. nr 3) do 633 mV (zb. nr 16). W trzech zbiornikach (nr 1-3) wartości tego wskaźnika stopniowo maleły ze wzrostem głębokości, w kolejnych zbiornikach (nr 6, 9, 10) maleły dopiero w warstwach głębszych oraz przy dnie (zb. nr 12 i 13). W pozostałych trzech zbiornikach potencjał redoks utrzymywał się w profilu pionowym na podobnym poziomie (zb. nr 13) lub w sposób różny (nietypowy).

3.2. Fitoplankton

Liczebność wybranych grup taksonomicznych fitoplanktonu w trzech wyróżnionych grupach zbiorników przedstawia ryc. 2.
Plankton roślinny, zasiedlający wody badanych zbiorników, składał się łącznie ze 188 gatunków reprezentowanych przez: grzyby (Mycophyta) - 2 gatunki, sinice (Cyanophyta) - 20 gatunków, złotowiciolce (Chrysophyta) - 12 gatunków, cugleniny (Euglenophyta) - 8 gatunków, okrerki (Bacillariophyceae) - 41 gatunków, różnowiciolce (Xanthophyceae) - 1 gatunek, tobołki (Pyrophyta)
Grupa acidotroficzna (I)

W grupie zbiorników charakteryzujących się najniższym odczynem pH (2,1-4,0 pH) nie stwierdzono grzybów (Mycophyta). Pozostałe grupy systematyczne były reprezentowane przez 40 gatunków: Chlorophyta (12 gatunków), Bacillariophyceae (12 gatunków), Cyanophyta (7 gatunków), Pyrophyta (5 gatunków), Chrysophyta i Euglenophyta (po 2 gatunki). Obecność prawie wszystkich wyróżnionych jednostek systematycznych stwierdzono tylko w zbiorniku nr 22. Najliczniejsza grupa (Chlorophyta) wystąpiła w 6, Pyrophyta w 8, Chrysophyta w 6, zaś Xanthophyceae tylko w jednym zbiorniku (zb. nr 22).

Za gatunki acidofilne, spotykane we wszystkich zbiornikach tej grupy należy uznać: Eunotia exiqua (Bacillariophyceae), Lyngbya ochracea (Cyanophyta) i Euglena mutabilis (Euglenophyta). Ten ostatni okazał się gatunkiem ubikwitycznym, wystąpił bowiem we wszystkich badanych akwenach.

Najliczniej reprezentowane były w zbiornikach acidotroficznych okrzemki. Niekiedy stanowiły one ponad 90% wszystkich stwierdzonych organizmów żywnych.

Rysunek 2. Wpływ stopnia zakwaszenia wód na występowanie wybranych grup taksonomicznych fitoplanktonu
Grupa przejściowa (II)

Fitoplankton zbiorników przejściowych (nr 4 i 7) był bogatszy o 24 gatunki w stosunku do zbiorników o wodach kwaśnych. Łączna liczba wynosząca 64 gatunki, reprezentowana była przez Chlorophyta (20 gatunki), Cyanophyta (11 gatunków), Bacillariophyceae (17 gatunków), Chrysophyta (7 gatunków), Euglenophyta (4 gatunki), Pyrrrophyta (2 gatunki), Mycophyta (2 gatunki) i Xanthophyceae (1 gatunek). W zbiornikach tej grupy, do której zaklasyfikowano tylko 2 akwény (nr 4 i 7), liczba gatunków fitoplanktonu wynosiła - 53 (zob. nr 4) i - 43 (zob. nr 7).

Grupa "obojętna" (III)

Liczba gatunków, zasiedlających wody grupy "obojętnej", wynosiła - 184. Udział gatunków w wyróżnionych jednostkach systematycznych przedstawiał się następująco: Chlorophyta (98 gatunków), Bacillariophyceae (37 gatunków), Cyanophyta (20 gatunków), Chrysophyta (12 gatunków), Euglenophyta (8 gatunków), Pyrrrophyta (6 gatunków), Mycophyta (2 gatunki), Xanthophyceae (1 gatunek).

3.3. Zooplankton

Liczność wybranych grup taksonomicznych zooplanktonu w trzech wyróżnionych grupach zbiorników przedstawia ryc. 3.

![Rysunek 3. Wpływ stopnia zakwaszenia wód na występowanie wybranych grup taksonomicznych zooplanktonu](image-url)
Plankton zwierzęcy, zasiedlający wody badanych zbiorników, składał się ze 119 gatunków reprezentowanych przez: wiciowce (Flagellata) - 7 gatunków, korzenionożki (Rhizopoda) - 13 gatunków, orzęski (Ciliata) - 12 gatunków, brzuchorzęski (Gastrotricha) - 1 gatunek, wrotki (Rotatoria) - 61 gatunków, wioślarki (Ciadiocera) - 11 gatunków, małżoraczki (Ostracoda) - 3 gatunki i widlonogi (Copepoda) - 11 gatunków.

Grupa acidotroficzna (I)
Łączna liczba gatunków, zasiedlających zbiorniki acidotroficzne wynosiła - 21. W tej grupie zbiorników Copepoda reprezentowane były przez 2 gatunki i wystąpiły tylko w jednym zbiorniku (nr 22). Cladocera reprezentowane przez 2 gatunki stwierdzono w dwóch zbiornikach (nr 17 i 22). Badane zbiorniki najliczniej zasiedlały Rotatoria (8 gatunków) i Rhizopoda (5 gatunków). Arcella sp., A. vulgaris (z wyjątkiem zb. nr 8) i Amoeba sp. (z wyjątkiem zb. nr 21) reprezentujące Rhizopoda wystąpiły we wszystkich zbiornikach. Flagellata reprezentowane były przez dwa gatunki: Bodo sp., który występował we wszystkich badanych zbiornikach, oraz Oicomonas sp., również we wszystkich zbiornikach z wyjątkiem zb. nr 20 i 21. Ciliata reprezentowały dwa gatunki, pojawiały się one w trzech zbiornikach (nr 8, 14 i 15).

Grupa przejściowa (II)
Grupę zbiorników przejściowych zasiedlały - 72 gatunki. Najliczniej reprezentowane były one przez: Rotatoria (35 gatunków), następnie Rhizopoda (10 gatunków), Flagellata, Ciliata i Copepoda po - 7 gatunków, Ostracoda - 2 gatunki, Cladocera - 3 gatunki i Gastrotricha - 1 gatunek.

Grupa "obojętna" (III)
Łączna liczba gatunków, zasiedlających wody zbiorników grupy "obojętnej", wynosiła 119. Najliczniej wystąpiły Rotatoria (61 gatunków). Do jednostek systematycznych, reprezentowanych przez mniejszą liczbę gatunków należały: Rhizopoda (13 gatunków), Ciliata (12 gatunków), Cladocera i Copepoda (po 11 gatunków), Flagellata (7 gatunków), Ostracoda (3 gatunki), Gastrotricha (1 gatunek). Wspomniane już wyżej gatunki: Bodo sp. i Oicomonas sp. (Rhizopoda) stwierdzono we wszystkich zbiornikach tej grupy.
3.4. Organizmy bentosowe i strefy litoralnej

Rośliny (makrohydrofity)

Dno i brzegi niektórych z badanych zbiorników pojezierza porastały mehy (Musci) i rośliny naczyniowe (Macrophyta). Mehy reprezentował jeden gatunek - Drepanoclados fluitans, który pojawił się w sześciu zbiornikach (nr 1-6). Macrophyta reprezentowane były łącznie przez 31 gatunków. Do najbardziej rozpoznanych, występujących we wszystkich zbiornikach grupy "obojętnej" należały: trzecina pospolitca (Phragmites communis), palka wąskolista (Typha angustifolia), palka szerokolistna (T. latifolia), skręp błotny (Equisetum liomon-sium) i rdestnica pływająca (Potamogeton natans).

Obecność roślin wyższych w zbiornikach acidotroficznych należała do rzadkości, ich występowanie stwierdzono w 5 zbiornikach (nr 14, 15, 17, 20, 22). Liczba gatunków reprezentująca rośliny naczyniowe w zbiornikach acidotroficznych wynosiła - 5, przeciętnych - 13 i "obojętnych" - 30. W grupie zbiorników "obojętnych" nie stwierdzono występowania situ drobnego (Juncus bulbosus), charakterystycznego gatunku dla zbiorowisk wód kwaśnych.

Zwierzęta

W badanych akwenach stwierdzono obecność - 77 gatunków zwierząt, reprezentujących: pajęczaki (Arachnoidea), owady (Insecta), siatkoskrzydłe (Neuroptera), żaby (Ephemeroptera), ważki (Odonata), pluskwiaki różnoskrzydłe (Heteroptera), chrząszcze (Coleoptera), chruciki (Trichoptera) i muchówki (Diptera).

Spośród 8 wyżej wyróżnionych grup bezkręgowców, najliczniej reprezentowane były chrząszcze (Coleoptera) - 25 gatunków, pluskwiaki różnoskrzydłe (Heteroptera) - 12 gatunków oraz ważki (Odonata) i muchówki (Diptera) - po 9 gatunków. Do mniej licznych należały: żaby (Ephemeroptera) - 2 gatunki i siatkoskrzydłe (Neuroptera) oraz pajęczaki (Arachnoidea) - po 1 gatunku.

Oprócz tego stwierdzono 14 gatunków plazów (Amphibia).

Grupa acidotroficzna (I)

Grupa przejściowa (II)

W zbiornikach przejściowych stwierdzono obecność 49 gatunków owadów reprezentowanych przez: Coleoptera - 20 gatunków, Heteroptera - 10 gatunków, Odonata - 8 gatunków, Trichoptera i Diptera po 4 gatunki, Ephemeroptera - 2 gatunki i Neuroptera - 1 gatunek. Dwa zbiorniki, zaklasyfikowane do grupy przejściowej różniły się dość znacznie co do ilości zasiedlających je gatunków owadów: zb. nr 4 - 45 gatunków, zb. nr 7 - 36 gatunków.

Grupa "obojętna" (III)

W zbiornikach "obojętnych" wystąpiły wszystkie gatunki zwierząt, które napotkano podczas kilkukrotniej penetracji badanych zbiorników. Owady w liczbie 62 gatunków były reprezentowane przez: Coleoptera (25 gatunków), Heteroptera (12 gatunków), Odonata i Diptera (po 9 gatunków), Trichoptera (po 9 gatunków), Ephemeroptera (2 gatunki) oraz Neuroptera (1 gatunek). Spośród pajęczaków stwierdzono również 1 gatunek.

4. Dyskusja

Geneza i rozwój zbiorników "pojezierza antropogenicznego" odbywały się w szczególnych warunkach, każdy z nich w początkowym okresie rozwoju ontogenicznego przechodził etap zakwaszenia, powstawał jako zbiornik acidotroficzny, którego odczyn wahał się około 3,0 pH.

W zależności od powstania (typ wyrobiskowy i zapadliskowy) morfometrii misy i jej głębokości, otoczenia (łasy, haldy) rodzaju wód, wypełniających misę (podziemne, powierzchniowe), zasobności tych wód w solę pokarmową (fosfor, azot), wapni i magnezu oraz dopływu piaru, zbiorniki ulegały stopniowym przemianom chemicznym i biologicznym, prowadzącym do zbojnośćwania ich wód.

Na 24 zbiorniki, które objęto badaniami, w zależności od odczynu i potencjału redoks wody, wyróżniono trzy grupy: acidotroficzną (2,4-4,0 pH), przejściową (4,18-5,6) i "obojętną" (6,0-7,9 pH). W grupie przejściowej znalazły się tylko dwa zbiorniki (nr 4 i 7), jest to zatem najmniej liczna grupa, co wskazuje na krótki okres trwania tego stanu i tym samym "skokowego" przechodzenia ich do grupy zbiorników o wodach obojętnych.

Należy przypuszczać, że intensywny rozwój zbiorników "pojezierza", charakteryzujący się wzrostem biomasy planktonu, zaczął się od ustabilizowania odczynu ich wód na poziomie zbliżonym do obojętnego.

W ciągu około 100 lat, wody polowy zbiorników "pojezierza" uległy przekształceniu z silnie kwaśnych w obojętne (naturalne). A zatem w ciągu stosunkowo krótkiego czasu w rozwoju zbiorników zaszły istotne zmiany, co potwier-
dziły wyniki badań fizyczno-chemicznych i biologicznych ich wód. Podkreślić tutaj należy, wiek zbiorników "pojezierza", który waha się obecnie od 25 do powyżej 100 lat.

Powyższe stwierdzenie znalazło swój wyraz we wskaźnikach określających produkcyjność wód badanych zbiorników oraz jakościowym i ilościowym składzie biocenoz (tabela 2).

Tabela 2. Zakresy zmian wskaźników fizyko-chemicznych i biocenotycznych (sierpień 1993-czerwiec 1994 r.)

<table>
<thead>
<tr>
<th>Typ</th>
<th>Zbiorniki (grupa)</th>
<th>Zbiorniki (grupa)</th>
<th>Zbiorniki (grupa)</th>
<th>Zbiorniki (grupa)</th>
<th>Zbiorniki (grupa)</th>
<th>Zbiorniki (grupa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Przeciętność</td>
<td>Produkcja pchłowa</td>
<td>Chloryfyl</td>
<td>Wężel organizmów</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligotroficzny</td>
<td>acidotroficzne (I)</td>
<td>3,0-6,7</td>
<td>0,1-0,7</td>
<td>0,04-12,30</td>
<td>1,6</td>
<td>2,7-13,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eurotroficzny</td>
<td>przejściowe (II)</td>
<td>1,2-1,4</td>
<td>0,1-1,3</td>
<td>1,2-3</td>
<td>2,3</td>
<td>1,6-36,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"obojętne" (III)</td>
<td></td>
<td>0,6-2,1</td>
<td>0,1-4,8</td>
<td>0,2-4,9</td>
<td>5,6</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ</td>
<td>Zbiorniki (grupa)</td>
<td>Liczba gatunków</td>
<td>szt.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligotroficzny</td>
<td>acidotroficzne (I)</td>
<td>4-21</td>
<td>1272-1453</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eurotroficzny</td>
<td>przejściowe (II)</td>
<td>43-53</td>
<td>8813-17602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"obojętne" (III)</td>
<td></td>
<td>54-137</td>
<td>13506-33582</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mimo ogromnej złożoności genczy i dalszych losów zbiorników "pojezierza", kierunek ich rozwoju prowadzi od oligotrofii (acidotrofii) do eutrofii.

Większość akwenów "pojezierza" to zbiorniki płytkie, które tracąc z upływem lat cechy wód kwaśnych, już ze względu na głębokość zostały niejako skazane na przynależność do typu eutroficznego. Ze względu na małą głębokość, pojawienie się wyższej roślinności naczyniowej na znacznym powierzchniach badanych zbiorników, zaliczono je za Stangenbergiem (1936) do podtypu stawowego.

W wodach acidotroficznych za pionierskie organizmy uważa się bakterie z rodzaju Thiobacillus, zaś gatunkiem uznany jako pierwszy jest Thiobacillus ferrooxidans (Jędrczak 1992). Dopiero w następnej kolejności pojawiły się typowe acidohionty i acidofile (Berg, Petersen - 1958, Popova - 1966, Langworthy - 1978), do których zaliczają się Eunota exiqua oraz Euglena mutabilis. Oba gatunki zostały również stwierdzone w akwenach "pojezierza". E. mutabilis stwierdzono we wszystkich badanych zbiornikach, gdzie tworzy ona łatwo widoczne darnie. Przy odczynie zbliżonym do obojętnego jej liczebność nie przekraczała 2-4% wszystkich stwierdzonych organizmów (zb. nr. 1-3, 6, 9, 10, 12), zaś przy odczynie 2,41-3,89 pH (zb. nr 8, 14, 15, 17, 18-24) stanowiła nawet
90-100% wszystkich organizmów spośród Euglenophyta. Wraz z towarzyszącym gatunkiem - E. exiqua stały się dominantami, zasadzającymi najbardziej "niedoskonałe" zbiorniki acidotroficzne i decydującymi zarazem o produktywności zbiornika oraz jego możliwościach rozwojowych. Wspomniany wyżej przedstawiciel okrzemek (Bacillariophyceae) - Eunotia exiqua, do niedawna uważany za niemalże kosmopolityczny i słodkowodny gatunek, jest spotykany głównie w zatorfionych wodach oraz na wilgotnych mchach (Siemińska - 1964). Jego występowanie w jeziorkach torfowcowych tzw. "sucharach" w okolicach Wigier nie zostało potwierdzone przez Ryppową (1927). Dziś uważa się iż faktycznie jest to bardzo pospolit gatunek, znacznie zwiększający swą liczebność w wodach, podlegających antropogenicznemu przekształcaniu, zwłaszcza w zbiornikach, w których duży wpływ na zakwaszenie wód powierzchniowych mają "kwaśne deszcze" (Eloranta 1988). Badania fińskich jezior, ulegających stopniowemu zakwaszeniu, wykazały, że E. exiqua zasiedla zbiorniki o odczynie 4,5-7,2 pH, i maksymalnie stanowiła 4,5% ogólnej liczby występujących okrzemek. Badania własne wykazały występowanie tego gatunku w 15 zbiornikach (na 24), w których odczyn wahał się od 2,4 do 6,6 pH. Potwierdziły one wyniki badań Matejczuka (1989, 1992), który stwierdził obecność E. exiqua w wodach o odczynie od 2,7 pH do 6,4 pH. O ile w zbiornikach o wyższych wartościach odczynu wody, okrzemka ta nie jest gatunkiem dominującym, (liczebność w 4,5-5,9 pH wynosiła 2,5-8,8%; zaś w 6,0 pH - poniżej 4,2%), o tyle w wodach o niższym odczynie (ponizej 4,5 pH) jej liczebność wzrastała i wynosiła 76-99,7% (Matejczuk 1992). Badania własne wykazały, że w wodach zbiornika nr 21 o najniższym odczynie (2,4 pH) gatunkiem dominującym była również okrzemka E. exiqua, stanowiąca niemalże 100% składu gatunkowego i ilościowego organizmów. Yoshimura (1933) stwierdził występowanie okrzemek z rodzaju Eunotia w środowisku bardzo kwaśnym (1,4 pH). Należy tu podkreślić, że tak silne zakwaszenie wody może być dla E. exiqua środowiskiem zbliżonym do krytycznego. Duży procent panceryków E. exiqua pobranych ze zbiornika nr 21, wykazywał mniejsze lub znaczne deformacje, co wskazywałoby na trudne warunki życia. Matejczuk (1992) za zgodnym odczyn wody dla życia E. exiqua uznał 3,1 pH. Okrzemce E. exiqua często towarzyszy Eunotia tenella, którą również można uznać za wskaźnik wód kwaśnych. Kolejnym, zasługującym na uwagę gatunkiem, powszechnie występującym w zbiornikach "pojezierza" jest sinica Lyngbia ochracea, tworząca w wypływających się i szybko nagrzewających wodach zbiorników kwaśnych widoczne gołym okiem skupiska. Jej występowanie stwierdzono w 15 zbiornikach.

W wodach zbiorników kwaśnych i ich obrzeży z reguły nie występuje pas amfifitów, natomiast inne zespoły roślinne reprezentowane są przez nieliczne gatunki, należące przede wszystkim do helofitów. W grupie zbiorników acidotroficznych zachodzi zasiedlenie dominującego, najbardziej "niedostosowanego" gatunku zbiornikowego - E. exiqua. Zdecydowanie bardziej agresywny, w stosunku do zbiorników o odczynie neutralnym, jest gatunek E. exiqua, który wykazuje znaczną liczebność w wodach zbiornikowych o odczynie 2,4-7,2 pH, z dominującą liczebnością w wodach o odczynie 4,5-5,9 pH. W wodach zbiornikowych o odczynie 6,0 pH i poniżej, gatunek E. exiqua występuje w niższej liczebności, wynoszącej 2,5-8,8%, a w wodach o odczynie 6,0 pH i poniżej - poniżej 4,2%.
Organizmy strefy pelagicznej, litoralnej i głębinowej... 173
ficznych stwierdzono obecność 5 gatunków, w zb. przejściowych - 13 gatunków i w zb. "obojętnych" - 30 gatunków roślin naczyniowych. W zbiornikach ostatnich dwóch grup, makrofity tworzą typowe zespoły fitosocjologiczne. W wyniku zaa}

wansowanej eutrofii zb. nr 1-3, ilość osadów dennych jest większa od poziomu lawicy przybrzeżnej (brak tu stoku). Dzięki słabym ruchom wody i dużej ilości osadów bardzo dobrze wykształcił się fitolitoral typu stawowego. Prawie wszystkie pasy ekologiczne flory naczyniowej były dobrze rozwinięte.

W dalszej odległości od brzegu na obumarłych szczątkach situ drobnego wyrażały: Juncus effusus i inne. Żadne fitocenozy wodne nie rozwinięły się w zb.: nr 8, 18, 19, 21, 23, 24.

W badanych zbiornikach i ich najbliższym otoczeniu (z wyjątkiem wód acidotroficznych) obserwowano duże zróżnicowanie zespołów roślin naczyniowych. W bezpośrednim otoczeniu zbiorników, na hałdach i brzegach, roślinami pionierskimi są zazwyczaj brzoza (Betula pendula), sosna (Pinus silvestris), robinia (Robinia pseudoacacia) oraz różne gatunki topól (Populus sp.) i olch (Alnus
Pietsch (1965) podaje, że oprócz drzew, jako jedne z pierwszych na haldach pojawiają się: rośliny jedno- i dwuliście (76 gatunków), mchy (9 gatunków), grzyby kapeluszowe (3 gatunki) oraz głony. Przynajmniej 10% gatunków to rośliny jednoroczne. Te zespoły roślinne jako pierwsze zaczynają wpływać na wygląd linii brzegowej, osłaniają taflę zbiorników wodnych przed wiatrem. Jednak ich wpływ nie należy przeceniać, gdyż nie jest on decydujący, biorąc pod uwagę obsadę zbiornikową innych roślin, o wiele bardziej wrażliwych np. na odczyn podłoża.

W wodach badanych zbiorników stwierdzono występowanie - 77 gatunków bezkręgowców, reprezentowanych przez następujące grupy: pajęczaki (Arachnoidea) - 1 gatunek, siatkoskrzydłe (Neuroptera) - 1 gatunek, jetki (Ephemeroptera) - 2 gatunki, ważki (Odonata) - 9 gatunków, pluskwiaki różnoskrzydłe (Heteroptera) - 12 gatunków, chrząszcze (Coleoptera) - 25 gatunków, chruściki (Trichoptera) - 4 gatunki, muchówki (Diptera) - 9 gatunków, płazy (Amphibia) - 14 gatunków. Ryby (Pisces) nic były oznaczane.

Większość przedstawicieli wodnych zwierząt, a zwłaszcza te, które występowały w większej liczbie badanych zbiorników, odznaczają się znaczną eurytopowością i ich obecność przypada na różne zespoły ekologiczne. Niektóre z nich to pospolitą w Polsce gatunki, natomiast w badanych zbiornikach należały do rzadkich.

Pierwszymi organizmami zwierzęcymi, które pojawiały się w toni wodnej zbiorników kwaśnych to: pierwotniaki (orzęski i bezbarwne wiciowce) oraz eurytopowe bezkręgowce: Sialis sp. (Neuroptera) i Chironomus plumosus (Diptera). Jako następne pojawiały się niektóre gatunki pluskwiaków różnoskrzydłych, larwy ważek i chrząszcze wodne. W wodach zbiorników acidotroficznym stwierdzono - 23, w zbiornikach przejściowych - 48, a w "obojętnych" - 63 gatunki stawonogów. Tylko 2 z nich (Sialis sp. i Chironomus plumosus) zasiedlały wody wszystkich badanych zbiorników, będąc zarazem jedynymi z najliczniej występujących gatunków, większości zbiorników acidotroficznym. Zasiedlały one wszystkie nies ekologiczne zbiorników, szczególnie miejsca porośnięte przez roślinność wyższą, oraz wypływające i nagrzewające się zatoczkę. W zbiorniku nr 21, gdzie brak jest zbiornisk roślin wyższych, w największych ilościach spotykano je pod kamieniami i innymi zanurzonymi przedmiotami, w zachodniej części akwenu. Oprócz tego prawie we wszystkich zbiornikach (z wyjątkiem nr 21) spotykano przedstawicieli pluskwiaków różnoskrzydłych (Heteroptera, Corixidae). Interesującym jest fakt, że pierwszymi przedstawicielami organizmów wyższych (w tym przypadku stawonogów) były (obok dwóch wyżej opisanych) przede wszystkim właśnie wodne pluskwiaki różnoskrzydłe, występujące w kwaśnych wodach, niekiedy w ogromnych ilościach, wykazując jedną z największych walencji ekologicznych.
Najmniejszą ilość gatunków organizmów (3) stwierdzono w wodach zb. nr 21, który z powodu braku nawet częściowo wykształconej strefy litoralnej od 25 lat pozostaje najmniej "dostępnym" zbiornikiem, zarówno dla organizmów niższych jak i wyższych.

Wrotki (Rotatoria) określane są niekiedy jako organizmy, świadczące o dużej tolerancji względem warunków środowiskowych, innym razem jako dobre wskaźniki trofii wód i warunków środowiskowych. W wodach badanego obszaru liczba stwierdzonych gatunków wrotków wynosiła - 61. W obrębie zbiorników obojętnych ich ilość wahala się od - 17 (zb. nr 9 i 12) do - 52 (zb. nr 2), zbiornikach przejściowych od - 23 (zb. nr 7) do - 31 (zb. nr 4), zaś w zbiornikach aci-dotoficznych od - 0 (zb. nr 21) do - 5 (zb. nr 22). Niewielka ilość gatunków wrotków pelagicznych (uważanych za dobre bioindykatory), stwierdzonych w zbiornikach kwaśnych, wskazuje na wyjątkowo trudne warunki do ich egzystencji. Wyniki badań własnych (nietrójnych akwenów) przyrównać można do tych jakie uzyskano na podstawie obserwacji nielicznych, lekko kwaśnych i obojętnych (odczyn 6,5-7,2 pH) akwenów Górnego Śląska, powstałych również w wyniku działalności górniczej (Bielańska-Grajner 1987). Tam jednak nie występują akweny o tak specyficznych właściwościach fizyczno-chemicznych wód, jakimi są zbiorniki opisywanego regionu.

Wrotkami o dużym znaczeniu ekologicznym "pojezierza" są: Keratella cochlearis, K. irregularis, K. serrulata, Rotaria rotatoria, Synchaeta pectinata, Asplanchna priodonta, występujące w większości badanych zbiorników. Zagęszczenie wrotków było największe w zbiornikach nr: 2, 6, 7, 9-12 i 16. Spod stwierdzonych 2 taksonów wrotków, wystąpiły one po jednym gatunku w 2 zbiornikach (Gastropus stylifer - zb. nr 2, Testudinella sp. - zb. nr 5).

Zwraca uwagę duże zróżnicowanie składu gatunkowego drobnych bezkręgowców w obrębie zbiorników kwaśnych: zb. nr 14 i 22 - 15 gatunków, nr 17 - 5 gatunków, nr 21 - 3 gatunki. Na powyższe zróżnicowanie miała zapewne wpływ powoli rozrastająca się w wypływających, osłoniętych od wiatru zatocech (np. zb. nr 20 i 22) roślinność naczyniowa (jedno- i kilkugatunkowa), w obrębie której liczne owady znajdowały zarówno doskonale miejsca do odżywiania się, jak również kryjówki.

W zjawisku acidotrofii, zwraca uwagę, że oprócz właściwości chemicznych wody dużą rolę w pojawianiu się nowych gatunków roślin i zwierząt, nie-

5. Literatura

42. Siemińska J. 1964: Chrysophyta. Bacillariophyceae - Okrzenki (Flora słodkowodna Polski Tom 2) Warszawa, PWN.
44. Starmach K. 1966: Cyanophyta - Sinice, Glaucophyta - glaukofity (Flora słodkowodna Polski, Tom 2) Warszawa, PWN.
Organizmy strefy pelagicznej, litoralnej i głębinowej...

56. Urbański J. 1957: Krajowe ślimaki i małże - klucz do oznaczania wszystkich gatunków dotąd w Polsce wykrytych. Warszawa PZWS.
