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The application of fuzzy reasoning techniques and neural network structures to model-based predictive control (MPC) is
studied. First, basic structures of MPC algorithms are reviewed. Then, applications of fuzzy systems of the Takagi-Sugeno
type in explicit and numerical nonlinear MPC algorithms are presented. Next, many techniques using neural network
modeling to improve structural or computational properties of MPC algorithms are presented and discussed, from a neural
network model of a process in standard MPC structures to modeling parts or entire MPC controllers with neural networks.
Finally, a simulation example and conclusions are given.
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1. Introduction

The Model-Based Predictive Control (MPC) technique is
the only one among advanced control techniques – usu-
ally defined as techniques more advanced than the well-
known PID control – which was tremendously successful
in practical applications, exerting great influence on the
directions of the development of industrial control sys-
tems as well as research conducted in this area (Allgöwer
et al., 1999; Brdyś and Tatjewski, 2005; Eder, 1999; Ma-
ciejowski, 2002; Mayne et al., 2000; Morari and Lee,
1999; Qin and Badgwell, 2003; Rossiter, 2003; Tatjew-
ski, 2002). There are several reasons for this success.
First, predictive control algorithms can take into account
in a natural way constraints on both process inputs (con-
trol signals) and process output values (controlled vari-
ables), which often decide on the quality, effectiveness
and safety of production. They generate control signals
taking on-line into account these constraints and, owing
to a direct use of a model, also internal interactions within
the process. Thus, they can naturally be applied to mul-
tivariable process control, also when the numbers of the
control inputs and the controlled variables differ. Third,
the principle of operation of these algorithms is compre-
hensible and relatively easy to explain to engineering and
operator staff, which is a very important aspect when in-
troducing new techniques into industrial practice.

† The work was supported by a statutory research project.

2. Model-Based Predictive Control

2.1. Predictive Control Principle

The general principle of predictive control is the follow-
ing: At each consecutive sampling instant k, the control
inputs u(k) = u(k|k), u(k + 1|k), . . . , u(k + Nu − 1|k)
are calculated, assuming u(k + p|k) = u(k + Nu − 1|k)
for p ≥ Nu, where Nu is the control horizon. The ap-
plied notation ‘u(k + p|k)’ means the prediction of the
control input value for the future time k + p, performed
at the time k. The control inputs are calculated in such
a way as to minimize differences between the predicted
controlled outputs y(k + p|k) and the foreseen set points
for these outputs ysp(k+p|k) over the prediction horizon
N (p = 1, 2, . . . , N). Then, only the first element u(k|k)
of the calculated sequence is applied to the process, i.e.,
u(k) = u(k|k). At the next sample (k + 1), there oc-
curs a new measurement of the process outputs and the
whole procedure is repeated, with the prediction horizon
of the same length N , but shifted by one step forward (the
principle of a receding horizon, also called the repetitive
control principle (e.g., Findeisen, 1997; Findeisen et al.,
1980)). This principle is presented in Fig. 1, for a SISO
(single-input single-output) process.

A model of the process used in the MPC algorithm is
usually only an approximation of reality. Moreover, there
is some uncertainty in the uncontrolled inputs, which can
be inaccurately measured or not measured at all. There-
fore, the output predictions usually differ from the (later)
measured values. This fact is depicted in Fig. 1 as a dis-



P. Tatjewski and M. Ławryńczuk8
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Fig. 1. Principle of predictive control.

turbance d(k), d(k) = y(k)−y(k|k−1), occurring at the
process output at sampling instant k, where y(k|k − 1)
is the output value predicted for the sample k at the pre-
vious sample (k − 1). The dependence of the trajectory
of the process output predicted at sampling instant k on
the currently measured value y(k), and not on the value
y(k|k−1), signifies the application of a discrete feedback
in the control system.

Determination of the control input trajectory over the
control horizon is realized in the predictive algorithms on
the basis of a model, by minimizing a cost function de-
scribing the control quality over the prediction horizon.
A prime component of this function is the cost of devia-
tions of the predicted outputs from the set points, i.e., the
cost of predicted control errors. Moreover, it is also typ-
ical to include into the cost function penalties on control
changes. As regards the two components, the following
most commonly used quadratic cost function can be for-
mulated (see, e.g., (Maciejowski, 2002; Tatjewski, 2002)

for more general or alternative formulations):

J(k) =
N∑

p=N1

‖ysp(k + p|k) − y(k + p|k)‖2

+ λ

Nu−1∑
p=0

‖�u(k + p|k)‖2 , (1)

where the vectors ysp(k + p|k) and y(k + p|k) are of
dimensionality ny = dim y equal to the number of the
controlled outputs, while the vector of control increments
�u(k + p|k) is of dimensionality nu = dimu and
1 ≤ N1 ≤ N (N1 > 1 is reasonable if there is a delay
causing no reaction of the outputs at the sampling instants
k + 1, . . . , k + N1 − 1 to the change in the control input
at the sampling instant k). The length of the control hori-
zon Nu must satisfy the constraints 0 < Nu ≤ N . It
is usually assumed that Nu < N , as this results in a de-
creased dimensionality of the optimization problem, and
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thus leads to a smaller computational load. The role of the
coefficient λ is to scale the second sum of squared con-
trol increments against the first sum representing squared
predicted control errors.

The optimal trajectory of control inputs is evaluated,
at every sampling instant, by the minimization of the cost
function (1) subject to several constraints:

min
�u(k|k),...,�u(k+Nu−1|k)

⎧⎨
⎩

N∑
p=N1

∥∥[ysp(k + p|k)

−y(k + p|k)
]∥∥2 + λ

Nu−1∑
p=0

‖�u(k + p|k)‖2

}
(2)

subject to

y(k + p|k) ∈ Y, p = 1, . . . , N,

u(k + p|k) ∈ U, p = 0, . . . , Nu − 1,

u(k + p|k) = u(k + Nu − 1|k), p = Nu, . . . , N − 1,

�u(k + p|k) = u(k + p|k) − u(k + p − 1|k),

where the values of predicted outputs are calculated us-
ing a dynamic process model, in general, a nonlinear one.
Assuming that it is in the input-output form, the following
formulation is fairly general:

y(k + p|k) = fp

(
u(k + p − 1|k), . . . ,

u(k|k), u(k − 1), . . . , u(k − nB), y(k), y(k − 1),

. . . , y(k − nA), d(k)
)
, p = 1, . . . , N. (3)

The class that the process model belongs to is critical, as
model equations are equality constraints in the MPC opti-
mization problem with the quadratic cost function. There-
fore, nonlinear models result in nonquadratic, generally
nonconvex optimization problems – thus creating serious
problems for on-line applications, as required in MPC al-
gorithms. A classification of basic classes of MPC algo-
rithms is presented in Fig. 2. It should be treated as a
rather simplified one, i.e., many classes of nonlinear op-
timal MPC algorithms (with optimization using nonlinear
process models) can be further distinguished, but this is
beyond the scope of this paper.

2.2. MPC with Linear Process Models

So far, MPC algorithms with linear process models have
been of the greatest importance. First of all, the range
of direct applications of these algorithms is fairly wide.
Secondly, they constitute a basis for the construction of
relatively simple and efficient nonlinear algorithms using
linearizations of nonlinear models.

MPC ALGORITHMS

LINEAR
(with linear model)

NONLINEAR
(with nonlinear model)

ANALYTICAL
(control law -
linear, explicit

linear-quadratic)

NUMERICAL
(constrained

QP optimization
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(optimization
with nonlinear

process model)

NUMERICAL
(optimization

simplified to QP)

ANALYTICAL
(local control laws

FUZZY

SUBOPTIMAL
with

process model
linearizations

in a TS fuzzy structure)

Fig. 2. General classification of basic MPC algorithms.

In a linear case, by applying the principle of super-
position it is possible to present the trajectory of the pre-
dicted outputs y(k + p|k) in the form of a sum of a free
trajectory y0(k + p|k) dependent only on the realized
(past) process inputs, and a trajectory �y(k + p|k) de-
pendent only on the decision variables (current and future
control inputs u(k + p|k)), called the forced output tra-
jectory. Thus we have

y(k+p|k) = y0(k+p|k)+�y(k+p|k), p = N1, . . . , N.

The above partition is convenient, though not necessary
for the realization of a predictive control algorithm, be-
cause the values y0(k + p|k), as dependent only on the
past of the process, are calculated at a given sampling in-
stant k only once, and remain then as fixed parameters in
the following optimization of the control moves. On the
other hand, the increments �y(k + p|k), as dependent
on the current and future control moves �u(k + p|k),
are calculated many times in the process of numerical op-
timization. As regards the presented decomposition, the
cost function (1) can be written in the form

J(k) =
N∑

p=N1

∥∥[ysp(k + p|k) − y0(k + p|k)
]

−�y(k+p|k)
∥∥2+λ

Nu−1∑
p=0

‖�u(k+p|k)‖2
, (4)

where free and forced output trajectories are given by the
linear models

y0(k + p|k) = y(k) + gp

[
u(k − 1) · · · u(k − nB)

]T
+ hp

[
y(k − 1) · · · y(k − nA)

]T
, (5)

�y(k + p|k) = mp

[�u(k|k) �u(k + 1|k)

· · ·�u(k+p−1|k)
]T

, p=N1, . . . , N, (6)
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Fig. 3. Predictive control with a linear process model.

(this is a SISO case, in MIMO cases row vectors gp, hp

and mp become matrices). The principle of predictive
control for a linear process model is shown in Fig. 3 (com-
pare it with Fig. 1).

Owing to the linearity of the model, the optimization
problem (2) is a strictly convex quadratic programming
problem. Therefore, it has a unique, global minimum
which can be fast and reliably computed numerically in
a constrained case. In a constraint-free case the solution
can be computed analytically as a linear feedback control
law, i.e., in the following general form (for the set point
ysp constant over the prediction trajectory):

�u(k) = �u(k|k)

= ke
(
ysp(k) − y(k)

)
+ (ku)T

[
u(k − 1) · · · u(k − nB)

]T
+ (ky)T

[
y(k) · · · y(k − nA)

]T
, (7)

where ku and ky are the (column) vectors of feedback
coefficients (SISO case).

We shall describe MPC algorithms formulated as
control laws given by an explicit analytical formula (or
a set of formulas) as explicit MPC algorithms. This class
of algorithms consists of two basic groups:

• simple, unconstrained algorithms given by
constraint-free control laws (7),

• more sophisticated, constrained algorithms given by
a number of constrained linear control laws, each
valid for a different set of active constraints, and a
switching mechanism (originally defined as explicit
linear quadratic algorithms for constrained systems
(Bemporad et al., 2002)) – they are in fact nonlinear
algorithms.

On the other hand, the MPC algorithms solving numeri-
cally, at each sampling instant, constrained QP problems
will be described as numerical MPC algorithms (see also
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Fig. 2). Unconstrained linear feedback control laws for
two most popular MPC algorithms using input-output type
process models will be briefly shown as examples.

When the process model is in the form of a dis-
crete step response, then the linear MPC algorithm is the
well-known, most popular in process control applications
DMC (Dynamic Matrix Control) algorithm (Cutler and
Ramaker, 1979; Maciejowski, 2002; Rossiter, 2003; Tat-
jewski, 2002). The feedback control law (7) takes then the
following form of an explicit DMC algorithm:

�u(k) = ke
(
ysp(k) − y(k)

)
+(ku)T

[�u(k−1) · · ·�u(k−nB+1)
]T

, (8)

where nB = D denotes the process dynamics horizon,
i.e., the number of step response coefficients s i present
until their values become constant, (si = const for i ≥
D). The structure of the control law (8) is shown in Fig. 4.

When the process model is in the form of a discrete
transfer function or, equivalently, the difference equation
(ARX-type model):

y(k) = −
nA∑
j=1

ajy(k−j)+
nB∑
j=0

bju(k−j−1)+d(k), (9)

then we obtain the popular GPC (Generalized Predictive
Control) algorithm (Camacho and Bordons, 1999; Clarke
et al., 1987; Maciejowski, 2002; Rossiter, 2003; Tatjew-
ski, 2002). The feedback control law (7) can then be for-

mulated in the following form (Tatjewski, 2002):

�u(k) = ke
(
ysp(k) − y(k)

)
+(ku)T

[�u(k − 1) · · · �u(k − nB)
]T

+(ky)T
[�y(k) · · · �y(k−nA+1)

]T
, (10)

illustrated in Fig. 5. By comparison with Fig. 4, it can
easily be seen that nA measured past outputs are added as
additional feedback information, but there are fairly fewer
feedback instances from past inputs (usually nB � D).

The explicit MPC algorithm (control law; DMC,
GPC or other) can be easily implemented, as defined by
the appropriate formula, if there is no risk that the gener-
ated control signal will exceed limits defined by physical
possibilities of the process actuator, i.e., if constraints on
the process input are always inactive, as they have been ig-
nored when constructing the laws. However, this is often
not the case and the constraints must be taken into account
in order to get practically applicable controllers. This can
be done effectively only if the following two principles
hold:

• the past control values �u(k − j) which are fed
back into the controller structure must be those corre-
sponding to the process past constrained inputs, not
the past values generated by the constraint-free con-
trol law (7),

• an anti-windup scheme must be added.

This is illustrated for a case of the DMC algorithm in
Fig. 6, where models of input constraints (rate of change
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Fig. 6. Structure of the explicit DMC controller taking into account constraints on the rate of change and
amplitude of the controller output, with an additional anti-windup scheme (upper feedback loop).

and amplitude saturations) are elements of the controller
structure within its inner feedback loop, and an additional
anti-wind up feedback loop has been added (compare this
with Fig. 4). In (Tatjewski, 2002), simulation examples
are presented comparing the results of MPC control with
an explicit controller in structures where input constraints
are and are not taken into account. These results show
that implementation as in Fig. 4 leads to drastically de-
creased control quality (or even instability) when input
constraints are active, while implementation in the struc-
ture as in Fig. 6 works usually very well, often compara-
bly to numerical MPC implementation (with constrained
optimization at each sampling instant). A further discus-
sion of this point is beyond the scope of the paper, and the
reader is referred to the cited reference for more details.

Obviously, explicit MPC algorithms can be recom-
mended in constraint-free cases, also when input con-
straints can become active, but a simple and fast (short
sampling periods) controller is needed – in this case con-
troller implementation must be augmented taking into ac-
count the constraints, as has just been discussed. When
implementing numerical MPC algorithms with linear
models, significantly more powerful controllers are re-
quired, especially for shorter sampling periods, but the
control is optimal (in the sense of the applied cost func-
tion).

There is no need for soft computing methods in MPC
algorithms with linear models. But these algorithms and
their philosophy are basic for more involved MPC algo-
rithms with nonlinear plant models, when soft computing
methods play an important role.

3. Soft Computing in Nonlinear MPC
Algorithms

The general formulation of the MPC optimization prob-
lem has been previously defined as (2), where predic-
tions of controlled outputs are calculated using an input-
output process model (3). When this model is nonlinear,

then the optimization problem (2) is certainly not linear-
quadratic; it is generally a nonconvex and even multi-
modal one. For such problems there are no sufficiently
fast and reliable numerical optimization procedures, i.e.,
procedures yielding always an optimal point and within
predefined time limit – as is required in on-line control
applications. Therefore, many attempts have been made
to construct simplified (and generally suboptimal) nonlin-
ear MPC algorithms avoiding full on-line nonlinear opti-
mization, first of all using model linearizations or multiple
linear models in fuzzy structures, see Fig. 2. The resulting
predictive control algorithms apply soft computing tech-
niques to a great extent. On the other hand, there are also
many designs of predictive algorithms based on nonlinear
optimization and also using soft computing, mainly those
applying artificial neural network techniques.

Therefore, the presentation of predictive control al-
gorithms using soft computing techniques will be done
within the following groups:

• MPC algorithms using fuzzy reasoning:

– Multi-model explicit algorithms in the fuzzy
Takagi-Sugeno (TS) structure (Babuška et al.,
1999; Marusak and Tatjewski, 2002; Tatjewski,
2002),

– Algorithms with on-line linearization of a fuzzy
TS model (usually with the same structure of
all fuzzy rule consequents) and QP optimiza-
tion (Babuška et al., 1999; Tatjewski, 2002).

• MPC algorithms using artificial neural networks:

– Algorithms with nonlinear optimization and
a neural network process model or a neural
network prediction model (Ławryńczuk, 2003;
Ławryńczuk and Tatjewski, 2001a; 2001b;
2004; Najim et al., 1997; Nørgaard et al.,
2000; Ortega and Camacho, 1996; Temeng et
al., 1995; Trajanoski and Wach, 1998; Yu and
Gomm, 2003),
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Fig. 7. Structure of the explicit (unconstrained) fuzzy DMC controller.

– Algorithms with on-line linearization of a
neural network model and QP optimization
(Ławryńczuk, 2003; Ławryńczuk and Tatjew-
ski, 2002; 2004; Nørgaard et al., 2000),

– Neural network modeling applied to reduce
computational complexity and to approximate
the controller (optimizer) (Liu and Daley, 1999;
Liu et al., 1998; Parisini and Sacone, 2001;
Parisini et al., 1998; Parisini and Zoppoli,
1995; Piche et al., 2000; Vila and Wagner,
2003; Wang and Wan, 2001).

4. MPC Algorithms Using Fuzzy Reasoning
Techniques

4.1. Multimodel Explicit Algorithms in the Fuzzy TS
Structure

A simple and effective way to generalize a linear ex-
plicit MPC algorithm (a linear control law) to the case
of a nonlinear process model is to apply fuzzy reasoning
techniques. In particular, fuzzy systems with the Takagi-
Sugeno (TS) structure are most suitable for the design of
fuzzy controllers (Tatjewski, 2002). This design can be
divided into the following stages:

1. Design a TS fuzzy model of the nonlinear process
considered, i.e., with fuzzy rules with functional con-
sequents which are linear dynamic models of the
process in particular local subdomains. The range
of variability of the input and output signals should
cover the entire operation domain of the designed
controller:

(a) Define variables occurring in rule antecedents.
The values of these variables will describe
the membership of the current state (operating

point) of the process to local subdomains, in
which the process can be approximated by lin-
ear models, for control purposes.

(b) Divide the range of variability of each vari-
able of rule antecedents into overlapping fuzzy
sets (in relation to process non-linearity), defin-
ing the number of these sets and assigning the
shape and values of the parameters of the mem-
bership function of each set. This creates a
division of the whole domain into a number
of overlapping subdomains (multidimensional
fuzzy subsets).

(c) Formulate a linear process model for each sub-
domain constructed so far (each subdomain is
defined by one fuzzy rule).

2. For each linear model (submodel) of the process, de-
sign an unconstrained explicit MPC controller oper-
ating correctly in the assigned subdomain. Create a
TS fuzzy MPC controller – a TS fuzzy system with
rule antecedents created in the previous point (divi-
sion into fuzzy sets as in the TS fuzzy model of the
process) and functional consequents which are the
designed explicit MPC control algorithms.

3. Perform the analysis of the obtained TS fuzzy algo-
rithm. If the results are not satisfactory, return to
the previous points and correct the design of the TS
fuzzy process model and/or local linear MPC con-
trollers.

The resulting fuzzy MPC controller structure, in the case
of r fuzzy rules (r subdomains) with local DMC con-
trol laws as rule consequents, is depicted in Fig. 7, where
w̃i(k) denotes the normalized activation level of the i-th
fuzzy rule at the k-th sampling instant, i = 1, . . . , r.

The presented approach leads to a very simple con-
troller implementation if each local process model and
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thus each local MPC controller are precisely of the same
structure (have the same number of parameters). For ex-
ample, if each of r explicit DMC controllers is of the
form (8)

�ui(k) = ke
i

(
ysp(k) − y(k)

)
+(ku

i )T
[�u(k−1) · · · �u(k−nB+1)

]T
,

i = 1, . . . , r, (11)

then fuzzy reasoning results in the following fuzzy con-
troller output:

�u(k) =
r∑

i=1

w̃i(k)�ui(k)

=
[ r∑

i=1

w̃i(k)ke
i

](
ysp(k) − y(k)

)

+
[ r∑

i=1

w̃i(k)(ku
i )T
]

× [�u(k−1) · · · �u(k−nB+1)
]T

, (12)

that is, the nonlinear fuzzy controller equation is struc-
turally identical to the linear DMC equation (8), and only
the values of gain coefficients (given in square brackets
in (12)) are time-varying, being time-varying weighted
sums of local controller gains.

When constraints on process inputs are to be taken
into account, then the structure of the presented fuzzy TS
predictive controller, as shown in Fig. 7 or in a simplified
version following from (12), should be modified exactly
in the same way as the structure from Fig. 4 was modified
to obtain that of Fig. 6.

4.2. Algorithms with On-line Linearization of Fuzzy
TS Models

The explicit fuzzy TS MPC controller presented in the
previous section was designed as an unconstrained con-
troller, and process input constraints can be taken into ac-
count only in a suboptimal way as discussed at the end
of that section. Moreover, constraints on process outputs
could not be taken into account. As has been mentioned
earlier, numerical MPC algorithms numerically solving at
each sampling instant an optimization problem yield op-
timal constrained solutions, but, in general, there are no
fast and reliable numerical procedures for solving opti-
mization problems with nonlinear process models. One of
the most natural suboptimal solutions to this problem is to
linearize the nonlinear process model at each sampling in-
stant, and then to use a linear MPC algorithm to evaluate

the controller output signal – we get in this way MPC-
NSL (MPC-Nonlinear with Successive Linearization) al-
gorithms (Maciejowski, 2002; Tatjewski, 2002).

However, this is not the most clever use of a lin-
earized process model in the MPC algorithm. To see the
reason, let us recall the general principle of predictive con-
trol with a linear process model, depicted in Fig. 3. The
predicted process output trajectory is divided here into two
parts: the free output trajectory dependent on past process
inputs and outputs, and the forced output trajectory de-
pendent on controller decision variables – actual and fu-
ture process input moves. The difference between the two
trajectories is fundamental from the computational point
of view: at each sampling instant the former is calculated
only once (and serves as a set of constant parameters in
the optimization problem) whereas the latter must be eval-
uated every time the future control moves are changed,
i.e., several times during the optimization process, thus its
properties define the properties of optimization. There-
fore, if the free trajectory is calculated using the nonlin-
ear process model but the forced trajectory is calculated
using the linear (linearized) process model, then the opti-
mization problem is still a QP (Quadratic Programming)
problem that can be solved fast and reliably. This is the
basic idea of probably the most clever use of linearization
in nonlinear MPC structures – the idea of the MPC-NPL
(MPC with Nonlinear Prediction and Linearization) algo-
rithm (Garcia, 1984; Tatjewski, 2002). It is explained in
Fig. 8, where the free output trajectory calculated at the
k-th sampling instant is denoted by Y 0(k),

Y0(k) =
[
y0(k + 1|k) y0(k + 2|k) · · · y0(k + N |k)

]T
,

(13)

whereas the nonlinear model linearization (over the free
trajectory) is used only to calculate the dynamic matrix
M(k) describing the relation between the future control
moves and the corresponding elements of the forced tra-

PROCESS
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Linearization to get
M( )k

I

Optimization
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linear model

0
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M( )k
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( )k u k( )
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d k( )

u k-( 1)

u k( )D

( )k

0
( )k

I
1

1-z-1

Y

Y

YNonlinear prediction of

the local dynamic matrix

Fig. 8. Structure of the MPC-NPL controller.
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jectory, c.f. (6),

M =

⎡
⎢⎢⎢⎢⎣

m1

m2

...

mN

⎤
⎥⎥⎥⎥⎦ . (14)

A computationally simple linearization can be ob-
tained when the nonlinear process model is a fuzzy TS
model with all rule consequents of the same structure, i.e.,
when all local linear process models are of the same kind
and structure. Denoting the vector of variables of a gen-
eral process model by x, x = [x1, x2, . . . , xn]T , where
the elements of x can consist of process inputs and out-
puts (current and delayed), the rules R i of a TS fuzzy
model can be written is the following form:

Ri : IF x1(k) is Ai
1 and · · · and xn(k) is Ai

n

THEN yi(k+1) = ai
0+ai

1x1(k)+· · ·+ai
nxn(k).

The output of the fuzzy model is known to be given by the
formula

y(k + 1) =
r∑

i=1

w̃i(k)
[
ai
0 +

n∑
j=1

ai
jxj(k)

]
, (15)

where r denotes the number of rules and w̃ i(k) are nor-
malized activation levels of the fuzzy model at the sam-
pling instant k (at a point x(k)). Due to the linearity and
identical structure of all consequents of the rules, we can
present (15) as follows:

y(k + 1) = a0(k) +
n∑

j=1

aj(k)xj(k), (16)

where

aj(k) =
r∑

i=1

w̃i(k)ai
j , j = 0, . . . , n. (17)

In this way we obtain a fuzzy model in the form of a lin-
ear model with variable coefficients, with values depend-
ing on the current process state. If at the current step the
process state is x(k), then the simplest and most natural
way of generating a local linear model to be used in the
optimization problem of a predictive algorithm is to take
the model in the form (16).

For example, let us assume that local models of
process dynamics (identified at a number of process equi-
librium points) are in the form of the difference equation

yi(k) = −
nA∑
j=1

ai
jy(k − j)

+
nB∑
j=0

bi
ju(k − j − 1) + d(k). (18)

Each equation (18) will be then a consequent of a cor-
responding fuzzy rule of the nonlinear fuzzy TS process
model. Then, the linearization of this model at the k-th
sampling instant will simply be given by

y(k) = −
nA∑
j=1

aj(k)y(k − j)

+
nB∑
j=0

bj(k)u(k − j − 1) + d(k), (19)

where

aj(k) =
r∑

i=1

w̃i(k)ai
j , j = 1, . . . , nA, (20)

bj(k) =
r∑

i=1

w̃i(k)bi
j , j = 0, . . . , nB, (21)

and the matrix M(k) will be calculated as in the standard
GPC algorithm using the coefficients aj(k) and bj(k),
instead of aj and bj .

If local linear models are given by the local step re-
sponse coefficients si

j , j = 1, . . . , D, i = 1, . . . , r (r
stands for the number of fuzzy rules), then at each sam-
pling instant the matrix M(k) will be composed of the co-
efficients of a “fuzzy” step response given by the formula

sj(k) =
r∑

i=1

w̃i(k)si
j , j = 1, . . . , D. (22)

5. MPC Algorithms Using Artificial Neural
Networks

5.1. Neural-Network Model of the Plant

Let the single-input single-output (SISO) process under
consideration be described by the following nonlinear
discrete-time equation:

y(k) = g
(
u(k − τ), . . . , u(k − nB),

y(k − 1), . . . , y(k − nA)
)
, (23)

where g : R
n

A
+nB−τ+1 −→ R, g ∈ C1, τ ≤ nB . In the

sequel, it is assumed that the feedforward neural network
with one hidden layer and linear output (Haykin, 1999) is
used as the function g in (23). The structure of the neural
network is depicted in Fig. 9. The output of the model can
be expressed as

y(k) = w2(0) +
K∑

i=1

w2(i)vi(k)

= w2(0) +
K∑

i=1

w2(i)ϕ
(
zi(k)

)
, (24)
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Fig. 9. Structure of the neural network.

where zi(k) is the sum of inputs and and vi(k) is the out-
put of the i -th hidden node, respectively, ϕ : R −→ R

is a nonlinear transfer function, K is the number of hid-
den nodes. Recalling the input arguments of the general
nonlinear model (23), one has

zi(k) = w1(i, 0) +
Iu∑

j=1

w1(i, j)u(k − τ + 1 − j)

+
nA∑
j=1

w1(i, Iu + j)y(k − j). (25)

The weights of the network are denoted by w1(i, j),
i = 1, . . . , K , j = 0, . . . , nA + n

B
− τ + 1, and w2(i),

i = 0, . . . , K , for the first and second layers, respec-
tively. The number of the network’s input nodes depend-
ing on the input signal u is Iu = nB − τ + 1. The
total number of weights is (nA + Iu + 1)K + K + 1 =
(nA + n

B
− τ + 2)K + K + 1.

5.2. MPC Algorithms with Nonlinear Optimization
(MPC-NO) and Neural Network Models

In general, there are two methods of using neural mod-
els in MPC schemes with nonlinear optimization. In the
first approach, the gradients of the cost function J(k) are
approximated numerically and the nonlinear optimization
problem (2) is solved on-line. In the second approach, the
structure of the neural model is exploited (Ławry ńczuk,
2003; Ławryńczuk and Tatjewski, 2001a; 2001b; Nør-
gaard et al., 2000). Defining the vectors

Y sp(k) =

⎡
⎢⎢⎣

ysp(k + N1|k)
...

ysp(k + N |k)

⎤
⎥⎥⎦ ,

Y (k) =

⎡
⎢⎢⎣

y(k + N1|k)
...

y(k + N |k)

⎤
⎥⎥⎦ ,

U(k) =

⎡
⎢⎢⎣

u(k|k)
...

u(k + Nu − 1|k)

⎤
⎥⎥⎦ ,

(26)

it is convenient to express the cost function (1) in the fol-
lowing form:

J(k) = ‖Y sp(k) − Y (k)‖2

+ λ
∥∥(I + JNO)U(k) + UNO

∥∥2
, (27)

where the matrices I (unit matrix) and J NO are of di-
mension Nu ×Nu, and the vector U NO is of length Nu,

JNO =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 0
−1 · · · 0 0

...
. . .

...
...

0 · · · −1 0

⎤
⎥⎥⎥⎥⎦ ,

UNO =

⎡
⎢⎢⎢⎢⎣

u(k − 1)
0
...

0

⎤
⎥⎥⎥⎥⎦ .

(28)

Differentiating (27) with respect to a future control se-
quence, U(k), results in

∂J(k)
∂U(k)

= 2
(

∂Y (k)
∂U(k)

)T (
Y (k) − Y sp(k)

)

+ 2λ
(
I + JNO

)T
U(k). (29)
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The matrix of dimension (N −Nu +1)×Nu, containing
partial derivatives of the predicted output with respect to
future control is

∂Y (k)
∂U(k)

=

⎡
⎢⎢⎢⎢⎢⎣

∂y(k + N1|k)
∂u(k|k)

· · · ∂y(k + N1|k)
∂u(k + Nu − 1|k)

...
. . .

...
∂y(k + N |k)

∂u(k|k)
· · · ∂y(k + N |k)

∂u(k + Nu − 1|k)

⎤
⎥⎥⎥⎥⎥⎦ .

(30)

The predictions y(k + p|k) for p = N1, . . . , N are cal-
culated from the general prediction equation

y(k + p|k) = y(k + p) + d(k), (31)

where the quantities y(k + p) are calculated from the
model. The above formulation uses the “DMC type” dis-
turbance model (Maciejowski, 2002; Tatjewski, 2002), in
which the unmeasured disturbance d(k) is assumed to be
constant over the prediction horizon. Its value is estimated
from the equation

d(k) = y(k) − y(k|k − 1)

= y(k) −
(

w2(0) +
K∑

i=1

w2(i)vi(k)

)
. (32)

From the neural model (24) one has

y(k + p) = w2(0) +
K∑

i=1

w2(i)ϕ
(
zi(k + p)

)
. (33)

As regards prediction over the horizon N , the quantities
zi(k + p) and, consequently, y(k + p) will depend on
some control signal values applied to the plant at previ-
ous sampling instances, future control signals, i.e., deci-
sion variables of the control algorithm, measured values
of the plant output signal and future output predictions.
From (25) one has

zi(k + p) = w1(i, 0)

+
Iuf (p)∑
j=1

w1(i, j)u(k − τ + 1 − j + p|k)

+
Iu∑

j=Iuf (p)+1

w1(i, j)u(k − τ + 1 − j + p)

+
Iyp(p)∑
j=1

w1(i, Iu + j)y(k − j + p|k)

+
nA∑

j=Iyp(p)+1

w1(Iu + j)y(k − j + p), (34)

where Iuf (p) = max{min{p − τ + 1, Iu}, 0} is the
number of the network’s input nodes depending on fu-
ture control signals and Iyp(p) = min{p − 1, nA} is
the number of the network’s input nodes depending on
output predictions. Because typically Nu < N (hence
u(k + p|k) = u(k + Nu − 1|k) for p ≥ Nu), it can be
noticed that

Iuf (p)∑
j=1

u(k − τ + 1 − j + p|k)

= INu(p) u(k + Nu − 1|k)

+
Iuf (p)∑

j=INu (p)+1

u(k − τ + 1 − j + p|k), (35)

where INu(p) = min{max{p − τ − Nu + 1, 0}, Iu}.
Taking into account (35), Eqn. (34) can be written as

zi(k + p) = w1(i, 0)

+
INu (p)∑

j=1

w1(i, j)u(k + Nu − 1|k)

+
Iuf (p)∑

j=INu (p)+1

w1(i, j)u(k − τ + 1 − j + p|k)

+
Iu∑

j=Iuf (p)+1

w1(i, j)u(k − τ + 1 − j + p)

+
Iyp(p)∑
j=1

w1(i, Iu + j)y(k − j + p|k)

+
nA∑

j=Iyp(p)+1

w1(Iu + j)y(k − j + p). (36)

Taking into account (31) and (33), the entries of the matrix
∂Y (k)/∂U(k) given by (30), i.e., the partial derivatives
of the predicted output signal with respect to future con-
trols are calculated from

∂y(k + p|k)
∂u(k + r|k)

=
K∑

i=1

w2(i)
dϕ(zi(k + p))

dzi(k + p)
∂zi(k + p)
∂u(k + r|k)

.

(37)
Obviously,

∂zi(k + p)
∂u(k + r|k)

=
∂y(k + p|k)
∂u(k + r|k)

= 0, r ≥ p−τ+1. (38)

It can be noted that decision variables of the algorithm
affect only the first, second and fourth sums in (36). It can
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be also noted that only some of the output predictions are
influenced by future controls. Hence

∂zi(k + p)
∂u(k + r|k)

=
INu (p)∑

j=1

w1(i, j)
∂u(k + Nu − 1|k)

∂u(k + r|k)

+
Iuf (p)∑

j=INu (p)+1

w1(i, j)
∂u(k − τ + 1 − j + p|k)

∂u(k + r|k)

+
Iypf (p)∑

j=1

w1(i, Iu + j)
∂y(k − j + p|k)

∂u(k + r|k)
, (39)

where Iypf (p) = max{min{p−τ, nA}, 0} is the number
of network input nodes depending on output predictions
which are affected by future controls. Obviously,

∂u(k + p|k)
∂u(k + r|k)

=

{
0 if p 	= r,

1 if p = r,
(40)

whereas the derivatives of the predicted output signals
with respect to future controls have to be calculated re-
cursively.

The discussed method of calculating the gradients of
the predicted output trajectory with respect to future con-
trols is used not only for obtaining the gradients of the
cost function J(k), but also for finding the gradients of
output constraints if they have to be taken into account.
In some nonlinear optimization algorithms, for example,
SQP (Bazaraa et al., 1993), the analytical Hessian matrix
can be used. Unfortunately, it requires much more com-
putational effort than the calculation of gradients. That is
why in the presented solution the optimization routine is
provided with analytical gradients while the Hessian is ap-
proximated, as is done in most SQP practical implemen-
tations.

The extension of the presented MPC-NO algorithm
with neural networks to systems with many inputs and
many outputs (MIMO) is discussed in (Ławryńczuk,
2003) and (Ławryńczuk and Tatjewski, 2001a). As the
model of the process ny (= dim y) MISO nonlinear mod-
els (neural networks) are used.

5.3. Linearization-Based MPC Algorithm with
a Neural Network Model

As was mentioned in Section 4.2, one of the most precise
and numerically effective combinations is a nonlinear free
response prediction together with the use of a linearized
model for forced response calculations, i.e., for on-line
optimization in the form of a QP problem.

Defining a linearization point as a vector composed
of past input and output values:

x(k) =
[
u(k−τ) . . . u(k−nB) y(k−1) . . . y(k−nA)

]T
(41)

and using the Taylor series expansion at this point, the
linearized model has the form

y(k) = g
(
x(k)

)

+
nB∑
i=1

bl

(
x(k)

)(
u(k − l) − u(k − l)

)

−
nA∑
i=1

al

(
x(k)

)(
y(k − l) − y(k − l)

)
. (42)

Taking into account the structure of the neural model and
the corresponding equations (24) and (25), the coefficients
of the linearized model are calculated from

al

(
x(k)

)
= − ∂g

(
x(k)

)
∂y(k − l)

= −
K∑

i=1

w2(i)
dϕ(zi(x(k)))

dzi(x(k))
(i, Iu + l),

l = 1, . . . , nA (43)

and

bl

(
x(k)

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if l = 1, . . . , τ − 1,

∂g(x(k))
∂u(k − l)

=
K∑

i=1

w2(i)
dϕ(zi(x(k)))

dzi(x(k))
(i, l − τ + 1)

if l = τ, . . . , nB.

(44)

Let

al(k) = al

(
x(k)

)
, bl(k) = bl

(
x(k)

)
(45)

and redefine the variables

y(k) := y(k) − g
(
x(k)

)
,

y(k − i) := y(k − i) − y(k − i), l = 1, . . . , nA,

u(k − i) := u(k − i) − u(k − i), l = 1, . . . , nB.
(46)

The linear approximation of the model (23), obtained at
the sampling instant k, can be expressed as

A(k, z−1)y(k) = B(k, z−1)u(k), (47)
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where

A(k, z−1) = (1 + a1(k)z−1 + · · · + anA(k)z−nA),

B(k, z−1) = (b1(k)z−1 + · · · + bnB (k)z−nB ). (48)

It can be noted that the linearization point given by (41)
and hence the coefficients al(k), bl(k) are not influenced
by the most recent output value y(k), which is available
to measurements. It may be crucial in the case of fast
processes. Therefore, it is then recommended to use

x(k) =
[
u(k − τ + 1) . . . u(k − nB + 1) y(k)

. . . y(k − nA + 1)
]T

. (49)

If τ = 1, for linearization purposes one may set u(k) =
u(k − 1) or u(k) = u(k|k − 1). The MPC-NPL al-
gorithm using the linearization point (41) will be named
NPL1 whereas the one which uses (49) – NPL2.

The nonlinear free response y0(k + p|k), p =
1, . . . , N , is calculated recursively from the general pre-
diction equation (31), taking into account the output of
the neural model given by (33) and the DMC disturbance
model (32):

y0(k + p|k) = w2(0) +
K∑

i=1

w2(i)ϕ
(
z0

i (k + p)
)

+ d(k).

(50)

The quantities z0
i (k + p) are determined from (34) as-

suming no changes in control signals from the sampling
instant k and replacing the predicted output signal from
k + 1 by the corresponding values of the free response:

u(k + p|k) := u(k − 1), p ≥ 0,

y(k + p|k) := y0(k + p|k), p ≥ 1.
(51)

Hence

z0
i (k + p) = w1(i, 0)

+
Iuf (p)∑
j=1

w1(i, j)u(k − 1)

+
Iu∑

j=Iuf (p)+1

w1(i, j)u(k − τ + 1 − j + p)

+
Iyp(p)∑
j=1

w1(i, Iu + j)y0(k − j + p|k)

+
nA∑

j=Iyp(p)+1

w1(Iu + j)y(k − j + p). (52)

The extension of the presented MPC-NPL algorithm with
neural networks to systems with many inputs and many
outputs (MIMO) is discussed in (Ławryńczuk, 2003).

The stability of the presented MPC-NPL and NO
algorithms with neural models is achieved by properly
tuning the weighting coefficient λ in the cost function
J(k). Both of these MPC-NPL and MPC-NO algorithms
can be combined with the stabilizing dual-mode approach
(Ławryńczuk and Tatjewski, 2004), (Ławryńczuk, 2003)
developed by Michalska and Mayne (1993). The control
law is calculated as the solution to the standard MPC op-
timization problem if the current state of the system lies
outside a neighborhood of the origin while a local, usually
linear, controller is used otherwise. An additional inequal-
ity constraint is imposed on the predicted terminal state.
In this approach merely feasibility, rather than optimality,
is sufficient to guarantee stability.

5.4. Reducing Computational Complexity in MPC
with Neural Networks

The MPC-NO algorithm is computationally demanding
and the computation time is much longer than that of
linearization-based algorithms. Moreover, the main dif-
ficulty comes from the fact that the optimization problem
that has to be solved on-line is usually nonconvex and it
may terminate in local minima. That is why linearization-
based MPC approaches attract so much attention and are
widely used in industry (Henson, 1998; Morari and Lee,
1999). On the other hand, to reduce the computational
complexity, a few neural-network based alternatives have
been suggested. In general, these approaches can be di-
vided into two groups: in the first one, special structures
of neural models are used to make the optimization prob-
lem simpler (convex), while in the second, explicit ap-
proximate MPC algorithms (without on-line optimization)
combined with neural networks are used.

5.4.1. Neural Network Based MPC with On-Line
Optimization

Even though linearization-based MPC algorithms result in
the quadratic optimization problem which poses no nu-
merical difficulty, in some specific applications, namely,
in the case of large-scale or fast-sampling systems, it is
necessary to reduce the computational burden. An inter-
esting neural approach is presented in (Wang and Wan,
2001). A structured neural network that implements the
gradient projection algorithm is developed to solve the
constrained QP problem in a massively parallel fashion.
Specifically, the structured network consists of a projec-
tion network and a network which implements the gradi-
ent projection algorithm. The projection network consists
of specially structured linear neurons. A training algo-
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rithm is formulated for which the convergence is guaran-
teed. The networks are trained off-line, whereas the con-
trols are calculated on-line from the networks without any
optimization.

In addition to linearization-based MPC schemes
which use the QP approach, it is also possible to develop a
specially structured neural model to avoid the necessity of
nonlinear optimization. In (Liu et al., 1998), affine non-
linear models of the following form are considered:

y(k) = F
(
y(k)

)
+ G

(
y(k)

)
u(k − τ), (53)

where F (·) and G(·) are nonlinear functions and

y(k) =
[
y(k − 1) . . . y(k − nA)

]T
. (54)

A set of nonlinear affine predictors of the following struc-
ture is used in the MPC algorithm:

y(k + τ + p|k)

= Fp

(
x(k)

)
+

p∑
j=0

Gpj

(
x(k)

)
u(k + j|k), (55)

where p = 0, . . . , N . The quantities Fp(x(k)) and
Gpj(x(k)), which depend on the current state of the plant

x(k) =
[
y(k) . . . y(k − nA) u(k − 1) . . . u(k − τ)

]T
,

(56)

are calculated by neural networks. The key idea is that the
present and future controls, i.e., the decision variables of
the optimization problem occur linearly in the predictor’s
equation (55). The predictor depends in a nonlinear way
only on the past values of input and output signals. Hence,
the resulting MPC optimization problem is convex. In
some cases, however, such an approach to modeling may
turn out to be insufficient to capture the nonlinearity pre-
cisely enough. In (Liu et al., 1998), the corresponding
on-line training algorithm and the MPC scheme based on
such predictors are discussed.

Neural networks are also used in commercially avail-
able software packages, e.g., Process Perfecter from Pavil-
ion Technologies Inc. (Piche et al., 2000). In this inter-
esting approach, to simplify the identification task and
solve the MPC optimization problem on-line, a neural net-
work is used to capture the steady-state properties of the
process. A second-order quadratic-in-the-input dynamic
model is used,

δy(k)

=
2∑

i=1

(
viδu(k−i)+wi (δu(k−i))2−aiδy(k−i)

)
.

(57)

The coefficients of the dynamic model, v i and wi, which
depend on the current state of the plant are calculated from
the neural static model. The resulting MPC optimization
task is not convex. Nevertheless, the model is relatively
simple and the approach is reported to be successful in
many industrial applications.

5.4.2. Neural Network Based MPC without On-Line
Optimization

In recent years approximate MPC algorithms have at-
tracted much attention (Bemporad et al., 2002; Johansen,
2004). The key idea is to calculate control signals on-line
without any optimization. The main advantage of this ap-
proach is its speed. On the other hand, the control law
must be precomputed off-line and stored somehow in the
controller’s memory. Because, in general, a very large
amount of computer memory may be necessary to store
the control law, it is justified to find its approximation to
efficiently compute control on-line.

Bemporad et al. (2002) show that for linear systems
with linear constraints and a quadratic cost function the
optimal control action is a continuous and piecewise affine
function of the state. The state space is partitioned into
polyhedral sets and a control law is calculated for every
set. This results in a search tree which determines the set
to which a given state belongs. The tree is computed off-
line, but the classification and calculation of the control
signals is performed on-line. The main advantage is the
fact that the necessity of on-line optimization is avoided.
Unfortunately, the number of polyhedral sets can be huge,
which affects the overall computational efficiency. Neural
networks can be effectively used to improve the situation
(Haimovich et al., 2003). The solution to the constrained
linear MPC optimization problem is pre-computed off-
line in an explicit form as a piecewise affine state feedback
law defined on polyhedral regions of the state space (Be-
mporad et al., 2002). The problem of determining on-line
in which polyhedral region the state lies is solved by using
a neural network, i.e., for a given state of the system the
network determines the corresponding region. An appar-
ent advantage of this approach is that regions that have the
same control law are joined. The structure of the closed-
loop system is depicted in Fig. 10. Unlike the approxi-

Fig. 10. Approximate neural MPC scheme with
neural selection of the control law.
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mate neural controller which replaces the whole MPC al-
gorithm as in (Parisini et al., 1998; Parisini and Zoppoli,
1995), the neural network is not used for finding the actual
control directly. Comparing to other solutions, the advan-
tage of the neural approach is the fact that the complexity
of the neural network grows linearly with the number of
control laws. The multilayer feedforward neural network
with two hidden layers is used.

Another version of the neural approach for the “ex-
plicit” constrained MPC scheme for linear systems is de-
scribed in (Hoekstra et al., 2001). It is known that the
solution to the standard MPC optimization problem is a
continuous function of the state, the reference signal, the
noise and the disturbances. Hence, it can be approximated
arbitrarily well by a feedforward neural network. In order
to develop a analytic predictive controller, at first the stan-
dard one, an optimization-based one, has to be developed.
Closed-loop simulations have to be performed to gather
examples to cover the operation domain. Because the ob-
tained controller is only an approximation of the real one,
precise satisfaction of constraints cannot be guaranteed.
A trivial solution is to saturate the output of the neural
network. The constraints cannot be modified for a given
neural network.

In (Parisini et al., 1998; Parisini and Zoppoli, 1995),
an interesting nonlinear stabilizing approximate neural
predictive controller is suggested. The structure of the
closed-loop system is depicted in Fig. 11. The overall pro-
cedure consists of two steps. At first, a stabilizing MPC
algorithm is developed. The formulation used allows us
to take into account constraints imposed on system in-
puts and states. Stability is enforced by a proper termi-
nal penalty term in the cost function, and no stabilizing
terminal equality constraints are necessary:

J(k) =
N−1∑
p=0

h
(
x(k + p|k), u(k + p|k)

)

+ a ‖x(k + N |k)‖2
P , (58)

where h(x(k + p|k), u(k + p|k)) is the cost function (in
general, a nonquadratic one), a is a positive scalar and P
is a positive definite symmetric matrix. The algorithm is

Fig. 11. Approximate neural MPC scheme.

then approximated by nu = dimu single-output feedfor-
ward neural networks with one hidden layer with nonlin-
ear transfer functions and linear output units. Networks
are trained off-line. Bounds on the approximation are es-
tablished. The main parameters of the algorithm are de-
termined partly analytically (the scalar a and the penalty
matrix P ) and partly by solving specific global optimiza-
tion problems (the number of hidden units in the neural
network). Because neural networks work as approxima-
tors, nonoptimal control values may be obtained. It can be
proved, however, that, being suboptimal, the algorithm re-
mains stable. Training neural networks is a serious issue,
because a sufficiently large set of patterns is necessary to
cover the whole operation domain.

An interesting hybrid approximate neural predictive
controller is presented in (Parisini and Sacone, 2001). A
hybrid scheme consists of two control layers: a continuous
one, in which a set of neural approximate MPC regulators
are used, and a supervisory discrete-event one, aimed at
choosing the best control action (from those proposed by
the regulators) which should be applied to the plant. The
choice depends on the current condition of the system and
on external events. Such an approach may be efficient
for complex systems with many decision variables. The
stability of the overall hybrid system is guaranteed.

A predictive neural-network controller of uncertain
systems is investigated in (Vila and Wagner, 2003). In this
solution neural networks are used both for modeling and
minimization. More specifically, to increase the accuracy
of the prediction, the model consists of N separate net-
works. Both the system and controller neural networks are
first selected off-line by a statistical Bayesian procedure in
order to make the predictive controller work effectively.
An off-line selection procedure of the neural predictor’s
and neurocontroller’s architecture are discussed, and the
issue of the stochastic stability of the closed loop is con-
sidered as well.

5.5. Applications and Exemplary Simulation Results

MPC algorithms with neural network models of different
structures have been applied to a wide class of processes,
for example, a combustion system (Liu and Daley, 1999),
a pneumatic servo system (Nørgaard et al., 2000), a mo-
bile robot (Ortega and Camacho, 1996), an industrial
packed bed reactor (Temeng et al., 1995), an insulin deliv-
ery problem (Trajanoski and Wach, 1998), a multivariable
chemical reactor (Yu and Gomm, 2003), traffic control
on freeways (Parisini and Sacone, 2001), and a biologi-
cal depolluting treatment of wastewater (Vila and Wag-
ner, 2003). In the following part of the article, simulation
examples of a control system with MPC using neural net-
works will be given.
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Fig. 12. High-purity high-pressure ethylene-ethane distillation column control system.

5.5.1. High-Purity High-Pressure Ethylene-Ethane
Distillation Column

The plant under consideration is a high purity, high
pressure (1,93 MPa) ethylene-ethane distillation column
shown in Fig. 12 (Ławryńczuk, 2003). The feedstream
consists of ethylene (approx. 80%), ethane (approx. 20%),
and traces of hydrogen, methane and propylene. The
product of the distillation is ethylene which can con-
tain up to 1000 ppm (parts per million) of ethane. The
main problem is to develop a supervisory controller which
would be able to increase relatively fast the impurity level
when composition changes in the feedstream are relatively
small. Reducing the purity of the product, of course taking
into account technological limits, results in a decreased
energy consumption. The production scale is very large,
the nominal value of the product stream being equal to
43 tons/h. The column has 121 trays and the feedstream
is delivered to the tray number 37.

Two fast single-loop PID controllers (denoted by LC)
are used to maintain the levels in the reflux tank and the
bottom product tank. Yet another PID controller (denoted
by TC) is also used to control the temperature on the tray
number 13. The PID controllers comprise the basic con-
trol layer. As far as the supervisory MPC algorithm is con-
cerned, the control loop has one input variable r, which is
the reflux ratio r = R/P , where R is the reflux stream
delivered to the column by the top tray and P is the prod-
uct stream taken from the tray number 110, and one out-
put variable z, which represents the impurity level in the
product (ethylene). The sampling time of the MPC al-
gorithm is relatively long (a slow composition analyzer),
equal to Tp = 40 min.

Four models of the plant were used. The first one
was used as the real process during the simulations. It
was based on technological considerations (Ławryńczuk,
2003). An identification procedure was carried out, and
as a result two linear models for different operating points
and a neural one were obtained. For the empirical models
we have nA = 1, τ = nB = 3. The horizons were set to
N = 10, Nu = 3, the weighting coefficient λ = 2. In all
the simulations it is assumed that at the sampling instant
k = 1 the set-point value is changed from 100 ppm to
350 ppm, 600 ppm and 850 ppm. Because of some tech-
nological reasons, the following constraints were imposed
on the reflux ratio: rmin = 4.051, rmax = 4.4571.

At first, MPC algorithms based on two linear mod-
els were developed. The first linear model is valid for a
“low” impurity level and the resulting control algorithm
works well in this region, but exhibits unacceptable os-
cillatory behavior for medium and big setpoint changes,
as is shown in Fig. 13. On the contrary, the second lin-
ear model captures the process properties for a “high” im-
purity level and the closed-loop response is fast enough
for the biggest setpoint change, but very slow for smaller
ones, as is shown in Fig. 14.

Simulation results of MPC-NPL algorithms with a
neural network are depicted in Fig. 15. Both algorithms
work well for all three setpoint changes. The NPL1 algo-
rithm is slightly slower than NPL2. Simulation results of
the MPC-NO algorithm with a neural network are shown
in Fig. 16. Compared with suboptimal linearization-based
algorithms, nonlinear optimization leads to faster closed-
loop responses.
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Fig. 13. Simulation results of the ethylene-ethane distillation column with the
MPC algorithm based on a linear model for a “low” impurity level.
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Fig. 14. Simulation results of the ethylene-ethane distillation column with the
MPC algorithm based on a linear model for a “high” impurity level.
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Fig. 15. Simulation results of the ethylene-ethane distillation column with MPC-NPL1 (dashed
line) and MPC-NPL2 (solid line) algorithms with neural networks.
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Fig. 16. Simulation results of the ethylene-ethane distillation column with the MPC-NO algorithm with a neural network.
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Fig. 17. Simulation results of the ethylene-ethane distillation column with the MPC-NPL2 (dashed line)
and MPC-NO (solid line) algorithms with neural networks and the constraint Δrmax = 0.03.
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Fig. 18. Simulation results of the ethylene-ethane distillation column with the MPC-NPL2
algorithm with a neural network and unmeasured disturbances.
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In practice, big changes in the manipulated variable
r are not allowed because of technological and safety rea-
sons (high pressure, big production scale). That is why
an additional constraint Δrmax = 0.03 was used. Fig-
ure 17 compares simulation results of the MPC-NPL2 and
MPC-NO algorithms with a neural network. Although the
constraint significantly slows closed-loop responses, it can
still be noticed that the MPC-NO algorithm is somewhat
faster.

Simulation results of the MPC-NPL2 algorithm
and unmeasured stochastic disturbances are presented in
Fig. 18. Such disturbances are unavoidable in industry.

6. Conclusions

The subject of the paper was applications of soft com-
puting methods to model-based predictive control tech-
niques. The resulting algorithms make it possible to
effectively control highly nonlinear, multidimensional
processes, usually subject to constraints which result from
technological and safety reasons. The algorithms consid-
ered can be easily implemented and used on-line.

As far as MPC algorithms using fuzzy techniques
are concerned, explicit (unconstrained) multimodel algo-
rithms exploiting the fuzzy Takagi-Sugeno (TS) structure
and algorithms with on-line linearization of a fuzzy TS
model were described. In the first case the values of con-
trol variables can be computed by a set of explicit formu-
las, which makes the application very easy. In the sec-
ond case (MPC-NPL algorithms), decision variables are
obtained by solving a QP optimization problem, which al-
lows taking constraints explicitly into account.

A family of MPC algorithms using artificial neural
networks (i.e., the most popular multilayer perceptron)
were also described. In comparison with fuzzy models,
neural structures do not suffer from the “curse of dimen-
sionality”, which is troublesome in multivariable cases.
Three classes of solutions were considered. Algorithms
with nonlinear optimization are potentially very precise,
but they hinge on the effectiveness of the optimization
routine used. Because, in practice, convergence to a global
optimum cannot be guaranteed, MPC-NPL algorithms
with on-line linearization of a neural network model were
also presented. A number of approaches aimed at re-
ducing the computational complexity of the optimization
problem or to approximate the whole control algorithm
were also reviewed.

In the paper, emphasis was put on computational ef-
ficiency. It was shown that the application of fuzzy rea-
soning and neural networks leads to efficient realizations
of nonlinear predictive control algorithms, suitable for ef-
fective on-line applications. It should be also mentioned

that the research area concerned with using soft comput-
ing techniques in predictive control is still open and many
new results appear every year.
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Brdyś M.A. and Tatjewski P. (2005): Iterative Algorithms for
Multilayer Optimizing Control. — London: Imperial Col-
lege Press/World Scientific.

Camacho E.F. and Bordons C. (1999): Model Predictive Con-
trol. — London: Springer.

Clarke D.W., Mohtadi C. and Tuffs P.S. (1987): Generalized
predictive control—I. The basic algorithm. — Automatica,
Vol. 23, No. 2, pp. 137–148.

Cutler R. and Ramaker B.L. (1979): Dynamic matrix control –
A computer control algorithm. — Proc. AIChE National
Meeting, Houston.

Eder H.H. (1999): MBPC benefits and key success factors. —
Proc. 5-th European Control Conf., ECC’99, Karlsruhe,
Germany, (on CD-ROM).

Findeisen W., Bailey F.N., Brdys M., Malinowski K., Tatjew-
ski P. and Wozniak A. (1980): Control and Coordination
in Hierarchical Systems. — Chichester: Wiley.

Findeisen W. (1997): Control Structures for Complex Processes.
— Warsaw: Warsaw University of Technology Press, (in
Polish).

Garcia C.E. (1984): Quadratic/dynamic matrix control of non-
linear processes: An application to a batch reaction
process. — Proc. AIChE Annual Meeting, San Francisco.

Haimovich H., Seron. M.M., Goodwin G.C. and Agüero J.C.
(2003): A neural approximation to the explicit solution of
constrained linear MPC. — Proc. European Control Conf.,
Cambridge, UK, (on CD-ROM).

Haykin S. (1999): Neural Networks – A Comprehensive Foun-
dation. — Englewood Cliffs, NY: Prentice Hall.

Henson M.A. (1998): Nonlinear model predictive control: Cur-
rent status and future directions. — Comput. Chem. Eng.,
Vol. 23, No. 2, pp. 187–202.



P. Tatjewski and M. Ławryńczuk26
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