
Int. J. Appl. Math. Comput. Sci., 2006, Vol. 16, No. 1, 129–140

FRACTIONAL KALMAN FILTER ALGORITHM FOR THE STATES, PARAMETERS
AND ORDER OF FRACTIONAL SYSTEM ESTIMATION

DOMINIK SIEROCIUK, ANDRZEJ DZIELIŃSKI
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This paper presents a generalization of the Kalman filter for linear and nonlinear fractional order discrete state-space systems.
Linear and nonlinear discrete fractional order state-space systems are also introduced. The simplified kalman filter for the
linear case is called the fractional Kalman filter and its nonlinear extension is named the extended fractional Kalman filter.
The background and motivations for using such techniques are given, and some algorithms are discussed. The paper also
shows a simple numerical example of linear state estimation. Finally, as an example of nonlinear estimation, the paper
discusses the possibility of using these algorithms for parameters and fractional order estimation for fractional order systems.
Numerical examples of the use of these algorithms in a general nonlinear case are presented.
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1. Introduction

The idea of fractional calculus (a generalization of the
traditional integer order integral and differential calculus)
was mentioned in 1695 by Leibniz and L’Hospital. At
the end of the 19-th century, Liouville and Riemann intro-
duced the first definition of the fractional derivative. How-
ever, this idea started to be interesting for engineers only
in the late 1960s, especially when it was observed that
the description of some systems is more accurate when
the fractional derivative is used. (For example, modeling
the behavior of some materials like polymers and rubber,
and especially macroscopic properties of materials with
a very complicated microscopic structure (Bologna and
Grigolini, 2003)). In (Sjöberg and Kari, 2002), the fre-
quency dependence of the dynamics of the rubber isola-
tor is modeled with success by a fractional calculus ele-
ment. In (Reyes-Melo et al., 2004a; 2004b), the relaxation
phenomena of organic dielectric materials such as semi-
crystalline polymers are successfully modeled by mechan-
ical and dielectric fractional models. Relaxation processes
in organic dielectric materials are associated with molec-
ular motions into new structural equilibrium of less en-
ergy. The Lagrangian and Hamiltonian mechanics can be
reformulated to include fractional order derivatives. This
leads directly to equations of motion with nonconservative
forces such as friction (Riewe, 1997).

In (Vinagre and Feliu, 2002), the electrochemical
processes and flexible robot arm are modeled by fractional
order models. Even for modeling traffic in information
networks, fractional calculus is found to be a useful tool
(Zaborovsky and Meylanov, 2001). More examples and
areas of using fractional calculus (e.g. fractal modeling,
Brownian motion, rheology, viscoelasticy, thermodynam-
ics and others) are to be found in (Bologna and Grigolini,
2003; Hilfer, 2000). In (Moshrefi-Torbati and Hammond,
1998; Podlubny, 2002), some geometrical and physical in-
terpretations of fractional calculus are presented.

Another area of interest for engineers which is de-
veloping very fast is the use of fractional order con-
trollers, like PIλDμ controllers (Podlubny et al., 1997)
or CRONE (Oustaloup, 1993). The PI λDμ controller
has both the differentiation and integration of fractional
order, which gives an extra ability to tune control systems.
In (Suarez et al., 2003), the fractional PID controller is
used to path-tracking problem of an industrial vehicle. In
(Ferreira and Machado, 2003), fractional order algorithms
are applied to position/force hybrid control of robotic ma-
nipulators.

It is also worth mentioning that fractional order poly-
nomials, used in the analysis of discrete-time control sys-
tems, may be treated as nD linear systems (Gałkowski,
2005).
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We have developed a fractional order dynamic model
as a very useful tool for modeling some electrodynamic
and electrothermal process. The model allows us to in-
troduce nonlinear effects like friction and slipping in an
easier way than any other dynamic model of integer or-
der does. This model forms a basis for model-based state
feedback control. In order to use the state-feedback con-
trol, when state variables are not directly measured from
the plant, new estimation tools appropriate for fractional
order models (FKF) are needed. When model parame-
ters are unknown, the parameter/state estimation problem
occurs. To solve this problem in these case one needs esti-
mation tools suitable for nonlinear fractional order models
(EFKF).

The identification of parameters in fractional order
systems, and especially the fractional orders of these sys-
tems, is not as easy as in the case of integer order systems
(because of a high nonlinearity). There are several algo-
rithms trying to solve this problem, most of them using
frequency domain methods (Vinagre and Feliu, 2002). In
(Cois et al., 2000), a time domain parametric identifica-
tion of a non-integer order system is presented. In (Cois
et al., 2001), also the time domain approach is presented
by using a fractional state variable filter.

The article is organized as follows: In Section 2, the
fractional order model is introduced. The generalization
of the Kalman filter for fractional order systems is pre-
sented in Section 3. Section 4 shows a basic example of
state estimation. In Section 4.1, examples of realizations
of fractional order state space systems and a fractional
Kalman filter are presented and studied. The nonlinear
fractional order model and the extended fractional Kalman
filter are introduced in Section 5. Examples of nonlinear
estimation regarding parameters and the fractional order
are shown in Sections 6 and 7, respectively.

2. Fractional Calculus

In this paper, as a definition of the fractional discrete
derivative, the Grünwald-Letnikov definition (Oldham
and Spanier, 1974; Podlubny, 1999) will be used.

Definition 1. The fractional order Grünwald-Letnikov
difference is given by

Δnxk =
1
hn

k∑
j=0

(−1)j

(
n

j

)
xk−j , (1)

where n ∈ R is the order of the fractional difference,
R is the set of real numbers, h is the sampling interval,
later assumed to be 1, and k is the number of samples for
which the derivative is calculated. The factor

(
n
j

)
can be

obtained from

(
n

j

)
=

⎧⎪⎨
⎪⎩

1 for j = 0,

n(n − 1) . . . (n − j + 1)
j!

for j > 0.
(2)

According to this definition, it is possible to obtain a
discrete equivalent of the derivative (when n is positive),
a discrete equivalent of integration (when n is negative)
or, when n equals 0, the original function. More prop-
erties of the definition can be found in (Jun, 2001; Ostal-
czyk, 2000; 2004a; 2004b).

Now, we wish to present a generalization of the dis-
crete state space model for fractional order derivatives,
which will be used later. Let us assume a traditional (inte-
ger order) discrete linear stochastic state-space system

xk+1 = Axk + Buk + ωk, (3)

yk = Cxk + νk, (4)

where xk is the state vector, uk is the system input, yk

is the system output, ωk is the system noise and νk is the
output noise at the time instant k.

Equation (3) can be rewritten as follows:

Δ1xk+1 = Adxk + Buk + ωk,

where Δ1xk is the first-order difference for the sample
xk , Ad = A − I (where I is the identity matrix), and

Δ1xk+1 = xk+1 − xk.

The value of the space vector for the time instance k + 1
can be obtained from

xk+1 = Δ1xk+1 + xk.

Using this formula, the traditional discrete linear sto-
chastic state-space system can be rewritten as follows:

Δ1xk+1 = Adxk + Buk + ωk, (5)

xk+1 = Δ1xk+1 + xk, (6)

yk = Cxk + νk. (7)

In (5), the value of the state difference is calculated,
and from this value the next state vector is obtained ac-
cording to (6). The output equation (7) has the same form
as (4).

The first-order difference can be generalized to the
difference of any even noninteger order, according to De-
finition 1. In this way, the following discrete stochastic
state-space system is introduced:
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Definition 2. The discrete linear fractional order stochas-
tic system in a state-space representation is given by

Δnxk+1 = Adxk + Buk + ωk, (8)

xk+1 = Δnxk+1 −
k+1∑
j=1

(−1)j

(
n

j

)
xk+1−j , (9)

yk = Cxk + νk. (10)

For the case when equation orders are not identical,
the following generalized definition is introduced by anal-
ogy:

Definition 3. The generalized discrete linear fractional-
order stochastic system in a state-space representation is
given by

ΔΥxk+1 = Adxk + Buk + ωk, (11)

xk+1 = ΔΥxk+1 −
k+1∑
j=1

(−1)jΥjxk+1−j , (12)

yk = Cxk + νk, (13)

where

Υk = diag
[ (

n1
k

)
. . .

(
nN

k

) ]
,

ΔΥxk+1 =

⎡
⎢⎢⎣

Δn1x1,k+1

...

ΔnN xN,k+1

⎤
⎥⎥⎦ ,

n1, . . . , nN are the orders of system equations and N is
the number of these equations.

3. Fractional Kalman Filter (FKF)

The Kalman filter is an optimal state vector estimator us-
ing the knowledge about the system model, input and out-
put signals (Kalman, 1960). Estimation results are ob-
tained by minimizing in each step the following cost func-
tion (Schutter et al., 1999):

x̂k = argmin
x

[
(x̃k − x)P̃−1

k (x̃k − x)T

+ (yk − Cx)R−1
k (yk − Cx)T

]
, (14)

where
x̃k = E

[
xk | z∗k−1

]
(15)

is the state vector prediction at the time instant k, defined
as the random variable xk conditioned on the measure-
ment stream z∗

k−1 (Brown and Hwang, 1997).

In addition,

x̂k = E
[
xk | z∗k

]
(16)

is the state vector estimate at the time instant k, defined
as the random variable xk conditioned on the measure-
ment stream z∗

k . The measurement stream z∗
k contains

the values of the measurement output y0, y1, . . . , yk and
the input signal u0, u1, . . . , uk.

Furthermore,

P̃k = E
[
(x̃k − xk)(x̃k − xk)T

]
(17)

is the prediction of the estimation error covariance matrix.
The covariance matrix of the output noise νk in (13) is
defined as

Rk = E
[
νkνT

k

]
, (18)

whereas the covariance matrix of the system noise ωk

in (11) (see Theorem 1 below) is defined as

Qk = E
[
ωkωT

k

]
. (19)

Additionally,

Pk = E
[
(x̂k − xk)(x̂k − xk)T

]
(20)

is the estimation error covariance matrix.

All of those matrices are assumed to be symmetric.

Lemma 1. The state vector prediction x̃k+1 is given by

ΔΥx̃k+1 = Adx̂k + Buk,

x̃k+1 � ΔΥx̃k+1 −
k+1∑
j=1

(−1)jΥjx̂k+1−j .

Proof. The state vector prediction presented here is ob-
tained in much the same way as the state prediction
in an integer order Kalman filter (Brown and Hwang,
1997; Haykin, 2001), where the state prediction is deter-
mined from the previous state estimate. We have

x̃k+1 = E
[
xk+1 | z∗k

]
= E

[(
Adxk + Buk + ωk

−
k+1∑
j=1

(−1)jΥjxk+1−j

)
| z∗k
]

= AdE
[
xk | z∗k

]
+ Buk

−
k+1∑
j=1

(−1)jΥjE
[
xk+1−j | z∗k

]
.
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As regards the last term of the above equation, we
may use the following simplifying assumption:

E[xk+1−j , z
∗
k] � E[xk+1−j , z

∗
k+1−j ]

for i = 1, . . . , k+1. This assumption implies that the past
state vector will not be updated using the newer data zk.
Using this assumption, the following relation is obtained:

x̃k+1 � Adx̂k + Buk −
k+1∑
j=1

(−1)jΥj x̂k+1−j .

But this is exactly the relation to be proved.

Theorem 1. For the discrete fractional order stochas-
tic system in the state-space representation introduced by
Definition 3, the simplified Kalman filter (called the frac-
tional Kalman filter) is given by the following set of equa-
tions:

ΔΥx̃k+1 = Adx̂k + Buk, (21)

x̃k+1 = ΔΥx̃k+1 −
k+1∑
j=1

(−1)jΥj x̂k+1−j , (22)

P̃k = (Ad + Υ1)Pk−1 (Ad + Υ1)
T

+ Qk−1 +
k∑

j=2

ΥjPk−jΥT
j , (23)

x̂k = x̃k + Kk(yk − Cx̃k), (24)

Pk = (I − KkC)P̃k, (25)

where
Kk = P̃kCT (CP̃kCT + Rk)−1

with the initial conditions

x0 ∈ R
N , P0 = E

[
(x̃0 − x0)(x̃0 − x0)T

]
.

Here νk and ωk are assumed to be independent and with
zero mean.

Proof. (a) Equations (21) and (22) follow directly from
Lemma 1. The simplification used in the proof of
Lemma 1 implies that the Kalman filter presented in The-
orem 1 is only a suboptimal solution.

(b) To prove (24), the minimum of the cost function (14)
has to be found. It is obtained by solving the following
equation, in which the left-hand side is the first derivative
of this function:

−2P̃−1
k (x̃k − x̂k) − 2CT R−1

k (yk − Cx̂k) = 0.

This yields

x̂k = (P̃−1
k + CT R−1

k C)−1(P̃−1
k x̃k + CT R−1

k yk).

Using the Matrix Inversion Lemma, we get

x̂k =
(
P̃k − P̃kCT (CP̃kCT + R)−1CP̃k

)
×(P̃−1

k x̃k + CT R−1yk).

Writing

Kk = P̃kCT (CP̃kCT + Rk)−1, (26)

which is called the Kalman filter gain vector, the following
relation is obtained:

x̂k = x̃k + P̃kCT R−1yk − KkC − KkCP̃kCT R−1yk.

This can be reduced using again (26) to finally produce
the state estimation equation (24). We have

x̂k = x̃k + Kk(yk − Cx̃k).

As can be noticed, this equation is exactly the same as in
the Kalman filter for integer order systems.

(c) The proof of (23) proceeds from (17). The term x̃ k −
xk is calculated as

x̃k − xk

= Adx̂k−1 + Buk−1 −
k∑

j=1

[
(−1)jΥj x̂k−j

]

−Adxk−1 − Buk−1 − ωk−1

+
k∑

j=1

[
(−1)jΥjxk−j

]

= (Ad − Υ1)(x̂k−1 − xk−1) − ωk−1

−
k∑

j=2

[
(−1)jΥj(x̂k−j − xk−j)

]
.

We assume the independence of each of noise se-
quences ωk, νk in Theorem 1. Correlations of the terms
E[xkxj ] for k �= j are very hard to determine and we
assume that they do not have significant influence on the
final results. That is why this correlation will be omitted
in later expressions. This simplifying assumption, which
will not be necessary when E[ωkωT

k ] = 0, implies that
the expected values of the terms (x̂l − xl)(x̂m − xm)T

are zero when l �= m, which finally gives the following
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equation:

P̃k = E
[
(x̃k − xk)(x̃k − xk)T

]

= (Ad − Υ1)E
[
(x̂k−1 − xk−1)(x̂k−1 − xk−1)T

]
× (Ad − Υ1)T + E[ωk−1ω

T
k−1]

+
k∑

j=2

ΥjE
[
(x̂k−j − xk−j)(x̂k−j − xk−j)T

]
ΥT

j

= (Ad + Υ1)Pk−1 (Ad + Υ1)
T + Qk−1

+
k∑

j=2

ΥjPk−jΥT
j .

As was shown, the prediction of the covariance error
matrix depends on the values of the covariance matrices
in previous time samples. This is the main difference in
comparison with an integer order KF.

(d) To prove (25), the definition of the covariance error
matrix in (20) is used. We get

Pk = E
[
(x̂k − xk)(x̂k − xk)T

]

= E
[(

x̃k + Kk(Cxk + νk − Cx̃) − xk

)
× (x̃k + Kk(Cxk + νk − Cx̃) − xk

)T ]

= (I − KkC)E
[
(x̃k − xk)(x̃k − xk)T

]
× (I − KkC)T + KkE[νkνT

k ]KT
k

= (I − KkC)P̃k(I − KkC)T + KkRkKk

= (I − KkHk)P̃k

+
(− P̃kHT

k + KkHkP̃kHT
k + KkRk

)
KT

k ,

which can be reduced using (26) and finally gives the re-
lation (25):

Pk = (I − KkC)P̃k.

Again, there is no difference in comparison with the
conventional KF.

The equations defined in Theorem 1 organize the re-
cursive algorithm of the FKF. The algorithm starts from
the initial values x0 and P0, which represent our a-priori
knowledge about the initial conditions of the estimated
system. The matrix P0 is usually a diagonal matrix with
large entries, e.g., 100I .

4. Example of State Estimation

In order to test the concept of the algorithm outlined in
Section 3, let us try to estimate state variables of a system
defined by the following matrices:

Ad =

[
0 1

−a0 −a1

]
, B =

[
0
1

]
,

C =
[

b0 b1

]
, N =

[
n1 n2

]T
,

where

a0 = 0.1, a1 = 0.2,

b0 = 0.1, b1 = 0.3,

n1 = 0.7, n2 = 1.2,

E[νkνT
k ] = 0.3, E[ωkωT

k ] =

[
0.3 0
0 0.3

]
.

The parameters of the fractional Kalman filter used
in the example are

P0 =

[
100 0
0 100

]
, Q =

[
0.3 0
0 0.3

]
,

R =
[

0.3
]
.

The results of the state estimation are shown in Fig. 2.
As can be seen, the state variables were estimated with
high accuracy. For comparison, in Fig. 1 the measured
output is presented, based on which the estimates of the
original states were obtained.

4.1. Practical Implementation

In practical realizations of discrete linear state-space sys-
tems, the number of elements in the sum in (12) has to be
limited to a predefined value L. Equation (12) in this case
has the following form:

xk+1 = ΔΥxk+1 −
L∑

j=1

(−1)jΥjxk−j+1. (27)

This simplification speeds up calculations and, in a
real application, makes the calculus possible. However, it
has an effect on the accuracy of the model realization (Sie-
rociuk, 2005a). The example of using different L values
is presented in Fig. 3. The system defined in Section 4
(without noise) is simulated for L = 3, 6, 50, 200. The
square error of those realizations, as compared to a real-
ization for L = 200 (which is the realization with the best
accuracy in this case), is presented in Table 1. As can be
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Fig. 1. Input and output signals from the plant.
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Fig. 2. Estimated and original state variables.

Table 1. Square error of realizations for different L.

L error

3 10.173

6 0.81892

50 0.0025562

seen, the realization for L = 50 shows enough accuracy
in that particular case. For different systems, the value L,
which gives enough accuracy, may be different and de-
pends on sampling times and system time constants.

In practical realizations of the fractional Kalman fil-
ter, the number of terms in the sums in (22) and (23) also
has to be limited in the same way as in (27). The estima-
tion results for different numbers of L are presented in

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

L=3
L=6
L=50
L=200

Fig. 3. Realizations of the fractional state
space system for L = 3, 6, 50, 200.
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1
 for L=200

x
2
 for L=200

Fig. 4. Estimated and original state variables
for different values of L.

Fig. 4. The square errors for L = 6 and L = 50 are
equal to 247.0994 and 1.3819, respectively. Similarly to
the system realization presented above, the realization of
the FKF shows in this case enough accuracy for L = 50.

5. Nonlinear Estimation – Extended
Fractional Kalman Filter

In previous sections, state estimation for a linear fractional
order model was examined. In this section the same prob-
lem will be solved for a nonlinear fractional order model.
The fractional-order nonlinear state-space system model
is obtained analogously to the integer order one and de-
fined as follows:
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Definition 4. The nonlinear discrete stochastic fractional
order system in a state-space representation is given by

ΔΥxk+1 = f(xk, uk) + ωk,

xk+1 = ΔΥxk+1 −
k+1∑
j=1

(−1)jΥjxk+1−j ,

yk = h(xk) + νk.

The nonlinear functions f(·) and h(·), which are as-
sumed to be of the class C∞, can be linearized according
to the Taylor series expansion

f(x) = f(x̃) +
∂f(x̃)

∂x̃
(x̃ − x) + W, (28)

where W stands for the higher order terms omitted in the
linearization process.

In the previous section, the fractional Kalman filter
for the linear model was presented. For the nonlinear
model defined above, the fractional Kalman filter must be
redefined in the same way as the extended Kalman filter
for integer order models.

Lemma 2. The state vector prediction x̃k+1 for the sys-
tem introduced by Definition 4 is given as

ΔΥx̃k+1 = f(x̂k, uk),

x̃k+1 � ΔΥx̃k+1 −
k+1∑
j=1

(−1)jΥj x̂k+1−j .

Proof. The state vector prediction presented in Lemma 2
is obtained in much the same way as the state prediction
in the linear fractional Kalman filter in Lemma 1. We get

x̃k+1 = E
[
xk+1 | z∗k

]

= E
[
f(xk, uk) + ωk −

k+1∑
j=1

(−1)jΥjxk+1−j | z∗k
]
.

Linearizing f(xk, uk) around the point x̂k accord-
ing to (28), we obtain

x̃k+1 = f(x̂k, uk) − ∂f(x̂k, uk)
∂x̂k

(
x̂k − E

[
xk | z∗k

])

−
k+1∑
j=1

(−1)jΥjE
[
xk+1−j | z∗k

]
.

In the last term of the above equation, we may use the
following simplifying assumption:

E[xk+1−j , z
∗
k] � E[xk+1−j , z

∗
k+1−j ]

for i = 1, . . . , k + 1.

This assumption implies that the past state vector will
not be updated using newer data zk and will not be nec-
essary when E[ωkωT

k ] = 0. Using this assumption, the
following relation is obtained:

x̃k+1 � f(x̂k, uk) −
k+1∑
j=1

(−1)jΥj x̂k+1−j .

This is exactly the relation to be proved.

Theorem 2. For the nonlinear discrete fractional order
stochastic system in the state-space representation intro-
duced by Definition 4, the extended fractional Kalman fil-
ter is given as follows:

ΔΥx̃k+1 = f(x̂k, uk), (29)

x̃k+1 = ΔΥx̃k+1 −
k+1∑
j=1

(−1)jΥj x̂k+1−j , (30)

P̃k = (Fk−1 + Υ1)Pk−1 (Fk−1 + Υ1)
T

+ Qk−1 +
k∑

j=2

ΥjPk−jΥT
j , (31)

x̂k = x̃k + Kk

[
yk − h(x̃k)

]
, (32)

Pk = (I − KkHk)P̃k, (33)

with the initial conditions

x0 ∈ R
N , P0 = E

[
(x̂0 − x0)(x̂0 − x0)T

]
,

where

Kk = P̃kHT
k (HkP̃kHT

k + Rk)−1,

Fk−1 =
[
∂f(x, uk−1)

∂x

]
x=x̂k−1

,

Hk =
[
∂h(x)

∂x

]
x=x̃k

,

and the noise sequences νk and ωk are assumed to be
independent and zero mean.

Proof. (a) Equations (29) and (30) are defined in
Lemma 2. The simplification used in the proof of
Lemma 2 implies that the Kalman filter defined in The-
orem 2 is only a suboptimal solution.

(b) To prove (32), the cost function (14) rewritten for the
system given by Definition 4 has to be minimized. The
cost function in that case has the form

x̂k = argmin
x

[
(x̃k − x)P̃−1

k (x̃k − x)T

+
(
yk − h(x)

)
R−1

k

(
yk − h(x)

)T ]
. (34)
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By expanding the nonlinear function h(·) to the Taylor
series and omitting the higher order terms, the following
expression is obtained:

x̂k = arg min
x

[
(x̃k − x)P̃−1

k (x̃k − x)T

+
(

yk − h(x̃k) +
∂h(x̃k)

∂x̃k
(xk − x̃k)

)
R−1

k

×
(

yk − h(x̃k) +
∂h(x̃k)

∂x̃k
(xk − x̃k)

)T ]
.

Writing

Hk =
[
∂h(x)

∂x

]
x=x̃k

(35)

and equating the derivative of the cost function to zero, we
get

− 2P̃−1
k (x̃k − x̂k)

− 2HT
k R−1

k

[
yk − h(x̃k) − Hk(xk − x̃k)

]
= 0.

According to the method presented in Section 3, us-
ing the Matrix Inversion Lemma and

Kk = P̃kHT
(
HP̃kHT + Rk

)−1
,

Eqn. (32) is concluded, i.e.,

x̂k = x̃k + K
(
yk − h(x̃k)

)
.

(c) The proof of (31) is similar to that of Theorem 1 (the
linear case). It is obtained from (17).

The expression x̃k − xk in (17) is calculated as fol-
lows:

x̃k − xk = f(xk−1, uk−1) + ωk−1

−
k∑

j=1

(−1)jΥjxk−j − f(x̂k−1, uk−1)

+
k∑

j=1

(−1)jΥj x̂k−j

= f(x̂k−1, uk−1) + ωk−1

+
∂f(x̂k−1, uk−1)

∂x̂k−1
(xk−1 − x̂k−1)

−
k∑

j=1

(−1)jΥjxk−j − f(x̂k−1, uk−1)

+
k∑

j=1

(−1)jΥj x̂k−j .

Denoting

Fk−1 =
[
∂f(x, uk−1)

∂x

]
x=x̂k−1

, (36)

the following expression is obtained:

x̃k − xk = ωk−1 − Fk−1(x̂k−1 − xk−1)

−
k∑

j=1

(−1)jΥj(x̂k−j − xk−j).

The independence of each noise ωk, νk is assumed.
The correlations of the terms E[xkxj ] for k �= j are very
hard to determine and do not have significant influence
on the final results. That is why this correlation will be
omitted afterwards. This simplifying assumption, which
will not be necessary when E[ωkωT

k ] = 0, implies that
the expected values of the terms (x̂l − xl)(x̂m − xm)T

are equal to zero when l �= m, which finally gives the
following equation:

P̃k = E
[
(x̃k − xk)(x̃k − xk)T

]

= Fk−1E
[
(x̂k−1−xk−1)(x̂k−1−xk−1)T

]
FT

k−1

+ E[ωk−1ω
T
k−1] +

k∑
j=1

ΥjE
[
(x̂k−j − xk−j)

× (x̂k−j − xk−j)T
]
ΥT

j .

This directly leads to (31),

P̃k = (Fk−1 + Υ1)Pk−1 (Fk−1 + Υ1)
T

+ Qk−1 +
k∑

j=2

ΥjPk−jΥT
j .

(d) To prove (33), the definition of the covariance error
matrix in (20) is used. The expression x̂k − xk in this
definition is evaluated as follows:

x̂k − xk = x̃k + Kk

(
yk − h(x̃k)

)− xk

= x̃k + Kk

[
h(x̃k) +

∂h(x̃k)
∂x̃k

(xk − x̃k)

+ ωk − h(x̃k)
]
− xk

= (I − KkHk)(x̃k − xk) + Kkωk.
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Using the notation given by (35) and substituting the
result in (20), the following relation is obtained:

Pk = E
[
(x̂k − xk)(x̂k − xk)T

]

= (I − KkHk)E
[
(x̃k − xk)(x̃k − xk)T

]
× (I − KkHk)T + KkE[ωkωT

k ]Kk

= (I − KkHk)P̃k(I − KkHk)T + KkRkKT
k

= (I − KkHk)P̃k

+
(
− P̃kHT

k + KkHkP̃kHT
k + KkRk

)
KT

k ,

which finally gives (33).

6. Example of a Nonlinear Estimation –
Parameter Estimation

When some parameters of the model are unknown or vary,
it is possible to estimate them together with state variables.
This is obtained by joining together state variables and es-
timated parameters in one state vector xw = [xT wT ]T ,
where xw is the new state vector and w is the vector con-
taining the estimated parameters. This method is called
joint estimation and leads to a nonlinear system.

For the system defined in Section 4 and the estimated
parameter a1, nonlinear system equations are given as fol-
lows:

xw
k = [xT

k a1]T ,

ΔΥxw
k+1 = f(xw

k , uk) + ωk,

xw
k+1 = ΔΥxw

k+1 −
k+1∑
j=1

(−1)jΥjx
w
k+1−j ,

yk = h(xw
k ) + νk,

where

f(xw
k , uk) =

⎡
⎢⎣ xw

2,k

−a0x
w
1,k − a1x

w
2,k + uk

0

⎤
⎥⎦ ,

h(xk) =
[
b0x

w
1,k + b1x

w
2,k

]
,

N =
[

n1 n2 1
]
.

Linearized matrices for the EFKF are defined as

Fk =
[
∂F (x, uk)

∂x

]
x=x̂w

k

=

⎡
⎢⎣ 0 1 0

−a0 −a1 −x̃w
2,k

0 0 0

⎤
⎥⎦ ,

Hk =
[
∂H(x)

∂x

]
x=x̃w

k

=
[

b0 b1 0
]
.

The parameters of the extended fractional Kalman filter
used in the example are

P0 =

⎡
⎢⎣ 100 0 0

0 100 0
0 0 100

⎤
⎥⎦ ,

Q =

⎡
⎢⎣ 0.3 0 0

0 0.3 0
0 0 0.0001

⎤
⎥⎦ ,

R =
[

0.3
]
.

The results of the joint estimation are shown in
Figs. 5 and 6. The final estimate of the parameter a1

is equal to a1 = 0.2003. The accuracy of the obtained
results is very high. In addition to the parameters, esti-
mated state variables are obtained which can be used, for
example, to construct adaptive control algorithms.

7. System Order Estimation

The fractional order estimation problem is more compli-
cated than parameter estimation. This is why the concept
will be presented using a simpler model. Let us assume
the discrete fractional linear system of the form

Δnyk+1 = buk + ωk,

where b is a system parameter and ω is system noise.

In order to estimate the fractional order of the system
defined above, the state vector and system equations are
chosen as

x = [y, n]T , (37)

Ad =

[
0 0
0 0

]
, B =

[
0.3
0

]
, (38)

Υj = diag

[(
n̂k−1

j

)
,

(
1
j

)]
. (39)

We assume that the parameter b is known and in this ex-
ample it is equal to b = 0.3.

There is a problem with such system matrices, be-
cause the FKF algorithm does not incorporate the knowl-
edge of the fact that the order of the first state equation is
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Fig. 5. Estimated and original state variables of the plant.
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Fig. 6. Estimation of the parameter a1.

an element n of the state vector. The knowledge is under-
stood as the innovation of the prediction of the covariance
matrix. Unfortunately, this dependence is very hard to re-
solve analytically. One of the solutions to this problem
is to treat the dependence between the order of the first
equation and the state variable n as noise and introduce
in the matrix Q some value in the position representing
this dependence.

In the following example, the matrix Q was defined
as

Q =

[
0.55 0.09
0.09 0.1

]
, (40)

where a value of 0.09 corresponds to the additional noise
described above.
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Fig. 7. Signal y – the real plant output and
its estimate for order estimation.
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Fig. 8. Estimation of the order n.

The results of estimating the system order are shown
in Figs. 7 and 8. Despite the simplification of the co-
variance matrix calculation, the final result n̂ = 0.5994,
where the real value is n = 0.6, shows that this algorithm
is useful.

In order to improve the results, the matrix Q can
be changed according to the rule used in training neural
networks by the KF algorithm. For example, the Robbins-
Monro scheme (Haykin, 2001; Sum et al., 1996),

Qk = (1 − α)Qk−1

+ αKk(yk − Hxk)(yk − Hxk)T KT
k , (41)

can be applied, where α is a small positive value. In this
example, α is equal to 0.03.
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Fig. 9. Signal y – the real plant output and its estimate for order
estimation using the Robbins-Monro scheme.
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Fig. 10. Estimation of the order n with
the Robbins-Monro scheme.

The noise of the output signal was increased in order
to show better noise resistance for this algorithm. The
other parameters are the same.

The results are shown in Figs. 9 and 10. It is easy to
see that the learning rule which is used (41) improves the
convergence, accuracy and robustness of the algorithm.
The estimated order was equal to 0.6010.

8. Conclusions

The article presents the use of the Kalman filter algo-
rithm for the estimation of parameters or the order of a
fractional system. An example of parameter estimation

shows high accuracy of this estimation and its robustness
to noise. This algorithm can also be used for the estima-
tion of time-varying parameters, especially for adaptive
control processes. The system order estimation problem
was found to be more complicated. Despite the neces-
sary simplifications of the algorithm, the obtained results
are noise resistant. However, more studies and tests are
needed. In particular, the sigma-point approach Kalman
filters can be a more appropriate solution to this problem
(Sierociuk, 2005b).
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