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The present fuzzy arithmetic based on Zadeh’s possibilistic extension principle and on the classic definition of a fuzzy
set has many essential drawbacks. Therefore its application to the solution of practical tasks is limited. In the paper a
new definition of the fuzzy set is presented. The definition allows for a considerable fuzziness decrease in the number of
arithmetic operations in comparison with the results produced by the present fuzzy arithmetic.
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1. Introduction

In the framework of fuzzy arithmetic (Kaufmann and
Gupta, 1991) various operations as, e.g., addition, subtrac-
tion, etc., are realized. These operations are made with the
use of Zadeh’s possibilistic extension principle (Dubois
and Prade, 1988) or its new, improved, and also possibilis-
tic version proposed by Klir (1997), which takes into ac-
count the so-calledrequisite constraints. Arithmetic oper-
ations are also performed under the assumption which was
introduced by Zadeh (1978) that the membership function
of a fuzzy set is of a possibilistic character and that each
element of the universal set, with a non-zero membership
grade, belongs to a fuzzy set (Zadeh, 1965).

According to the author, all of the above factors
are reasons for many known shortcomings of the present
fuzzy arithmetic, which are often described by researchers
in their publications. The shortcomings interfere with ap-
plications of fuzzy arithmetic in solving practical prob-
lems, cf. e.g., the contribution (Zadeh, 2002). Examples
of the shortcomings include: large fuzziness of calcula-
tion results of arithmetic operations, especially of addi-
tion, subtraction and multiplication, paradoxes connected
with some operations causing their uselessness, e.g., the
insensitivity of the subtraction result to numbers succes-
sively subtracted from the minuend (Piegat, 2005b).

To eliminate these shortcomings, some researchers,
e.g., Kosínski et al. (2003), try to develop new imple-
mentations of fuzzy arithmetic operations. In the au-
thor’s opinion the main reason for the shortcomings of the
present fuzzy arithmetic is inappropriate definition of a
fuzzy set, which does not fully correspond to fuzzy sets

used by people. Further on, several definitions of a fuzzy
set used at present will be cited. The definition from (Klir
and Folger, 1988) is as follows: “LetX denote a univer-
sal set. Then, the membership functionµA by which a
fuzzy setA is usually defined has the form

µA : X → [0, 1],

where [0, 1] denotes the interval of real numbers from 0
to 1, inclusive. . . . Such a function is called a membership
function and the set defined by it a fuzzy set.”

Zadeh’s definition (1965), also accepted by Dubois
and Prade (1988), states: “. . . a fuzzy setF is equivalent
to giving a reference setΩ and a mappingµF , of Ω into
[0, 1], the unit interval.”

The definition from (Zimmermann, 1996) has the
form: “If X is a collection of objects denoted generically
by x then a fuzzy setA in X is a set of ordered pairs:

A =
{(

x, µA(x)
)
| x ∈ X

}
,

µA(x) is called the membership function or grade of
membership (also degree of compatibility or degree of
truth) of x in A which mapsX to the membership space
M . (When M contains only two points 0 and 1,A
is non-fuzzy andµA(x) is identical to the characteristic
function of a non-fuzzy set.)”

Fuzzy sets are similarly defined in (Bezdek, 1993;
Driankovet al., 1993; Yager and Filev, 1994). The above
classic definitions of fuzzy sets are, in the author’s opin-
ion, insufficient. This can be illustrated by a simple exam-
ple.
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Example 1.Let us consider membership functions of two
fuzzy sets:A = water and B = wine, cf. Fig. 1.

A = wine B = water
1

�

99.99% water
 0%                           50%                             100%

water/wine
ratio

Fig. 1. Membership functions of the fuzzy setsA = waterand
B = winecharacterizing the mixture of water and wine.

According to the classic definitions of a fuzzy set, the
wine/water mixture with 0.01% of wine and 99.99% of
water is qualified in the fuzzy setwine. However, would
we (or other people) really classify such a mixture, after
tasting it, as wine? No!

Thus, why does the present definition of a fuzzy set
order such a qualification? �

2. Proposed Definition of a Fuzzy Set

Let X be a universe of elements denoted byx. A fuzzy
set A of the elementsx is a collection of the elements
x | x ∈ X, which possess a specific propertypA of the
set and which were qualified in the set by a qualifierQA

using a qualification algorithmQAlgA. At least one ele-
ment of a fuzzy set must possess the specific propertypA

of the set in an amount less than 1. If all elementsx qual-
ified in a set possess the specific property in a full amount,
equal to 1, then the set is acrisp set.

The decisionmA(x) | mA(x) ∈ {0, 1} of thequali-
fier QA about the qualification of the elementx in the set
A depends, in the general case, on the minimal amount
pAmin of the required, specific set property, on the type
TQA of the qualifier and on one or more conditionsC1,
. . . determined by the qualifier or an outsidedefiner. It
can be expressed as

mA(x) = QAlg(x) = f(pAmin, TQA, C1, . . . ). (1)

If the qualification decision of the qualifier is positive
(mA(x) = 1), then the elementx acquires a membership
in the setA; otherwise(mA(x) = 0) the element is not
in the set.

The qualification algorithmQAlg(x) is generally a
procedure consisting of formulas and IF–THEN condi-
tions. Its output takes a value from the set{0, 1}. This

is information whether or not a given elementx has
been qualified in the set. Thus the output ofQAlg(x)
is the value of the membershipmA(x) in a set. The no-
tation f(pAmin, TQA, C1, . . . ) implies that the output of
QAlg(x) in the general case depends onpAmin, TQA, and
various conditionsC1, . . . , which can exist in the anal-
ysed problem. The type of qualifierTQA in (1) can take
linguistic values from the set {deterministic, probabilistic,
possibilistic, . . . }. It should be noticed that in the present
definition of a fuzzy set the notions of the qualifier and
the qualification algorithm do not appear at all. However,
qualification is always realized in one and the same way.

In the next sections a new approach to the notion of
the fuzzy set will be explained.

3. Explanations Referring to the Property
Function pA(x) of a Set

In the present fuzzy set theory, the membership of an ele-
ment x in a fuzzy setA, usually denoted byµA(x), ful-
fils two tasks simultaneously. It expresses both the grade
of the membership of the elementx in the setA and in-
forms about the amount of the specific property of the set
A possessed by the elementx. This specific property dis-
tinguishes the elements of the setA from other elements
of the universal setX.

The specific property of a set is a primary notion.
The New Oxford Dictionary of English (Pearsal, 1999)
explains property as “an attribute, quality or characteristic
of something:the property of heat to expand metal at uni-
form rates.” The specific property of a set is defined by
a set definer according to what he or she is interested in.
A specific property can take linguistic values, e.g.,quite
tall, vehicle. It can also be a fuzzy number, e.g.,close
to 7. The amount of specific property can take real values
in the interval[0, 1].

In the new definition of a fuzzy set these two notions
are separated, because such a separation is made by peo-
ple creating sets in real problems. The mere possession of
a set-specific propertypA in an amount greater than zero
is not always sufficient for an elementx to be qualified
in a fuzzy setA. For example, the set ofbeautifulgirls
in a class is not a set of all girls who possess the property
beautyto any grade, e.g., 0.001 as it defines the present
fuzzy set theory, but the set of girls who have the prop-
erty beautyat least in a sufficiently high (according to the
qualifier) amount. An example of the property function
pA(x) is depicted in Fig. 2.

The property function mapsx into [0,1]. Sometimes
a setA of elementsx can be chosen by a qualifierQA

fully at random from the elements of the universal setX
(e.g., a set of samples for testing a neural network chosen
from among all samples being at disposal for modeling a
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medium
1

            160                     170                      180    x [cm]

height

 pA

pmedium(x)

=

e

(180− x)(x− 160)− 100

(180− x)(x− 160) for 160 ≤ x ≤ 180

0 else

Fig. 2. Property functionpmedium(x) that determines the
amount of the propertymediumpossessed by a
person of the heightx [cm].

system, a set of soldiers chosen by a sergeant for carry-
ing out some task). In this case the specific propertypA

required from elementsx is that they belong to the uni-
versal setX. The qualification in to the setA is a result
of a random qualification algorithmQAlgA(x).

Dubois and Prade (1996; 1997) give three interpre-
tations of the traditional notion of the membership degree
µA(x) in a fuzzy set. This degree can (according to the
definition of the problem) be understood as adegree of
similarity (the degree of proximity ofx to prototype ele-
ments ofA), adegree of preference( A represents a set of
more or less preferred objects or values of a decision vari-
able X and µA(x) represents an intensity of preference
in favour of the objectx, or the feasibility of selectingx
as a value ofX) and adegree of uncertainty(the quan-
tity µA(x) is then the degree of possibility, . . . , that “x
is A”). The degree of the specific propertypA(x) intro-
duced in the new definition seems to be more connected
with the degree of similarity and the degree of preference.
The degree of uncertainty (of possibility that “x is A”)
seems to be connected with the qualifier type and the qual-
ification algorithm (possibilistic type).

4. Explanations Referring to the Qualifier
QA

A qualifier QA can bePerson1 qualifying Person 2 in a
set of persons ofshort, mediumor tall height on the ba-
sis of the visual evaluation of height. The qualifier may
act as an academic teacher who qualifies students into sets
of good, mediumor weakstudents (based on the evalua-

tion of their knowledge). It can also be agroup of per-
sonswho make the decision about the admission of can-
didates for studies at a faculty of computer science (based
on marks from the chosen subjects and on fulfillment of
the required conditions). The qualifier can be acomputer
program qualifying elementsx from the universeX in
assumed and mathematically formulated sets, e.g.,small
X, mediumX, large X, on the basis of numerical values
of elementsx. It can also be atechnical devicequal-
ifying elements into some sets, e.g., the sorting machine
which sorts bottles according to their colors on the basis of
the spectrum analysis of the light transmitted by the bottle
glass.

Generally, a qualifier can be of various structures. It
can be a simple, one-person, one-program, or one-device
(machine) qualifier. It can also be a complex qualifier,
which is composed, e.g., of many sub-qualifiers and of
one super-qualifier as is in the case of the qualification
of candidates for the full professorship in Poland (three
reviewers make evaluations of the scientific, educational,
and organizational achievements of a candidate and, next,
a secret super-reviewer makes the final qualification deci-
sion based on the prior reviews of the open reviewers and
on his or her own evaluation of the candidate’s achieve-
ments).

The qualifier QA always exists(explicitly or im-
plicitly) in each process of set creation from elements of
the universal setX. First, the qualifier determines a spe-
cific feature pA of the setA he or she wants to create,
then formulates qualification conditions, and next carries
out the qualification of elements to create the setA. If the
qualifier is not a person, but a machine/device/computer
program, then the qualification algorithm is created out-
side by a humandefiner and introduced into it. The
qualifier can also be the nature itself (natural selection),
but who/what is then the definer of the qualification algo-
rithm?

Qualifiers are all measuring instruments. Let us an-
alyze, for simplicity, a discrete measuring device of tem-
perature, which can indicate temperature values with the
accuracy of0.1◦C (0, 0.1, 0.2, . . . , 15.0, 15.1, 15.2, etc).
Then, if the real atmospheric temperature is, e.g., equal to
15.145739 . . .◦C, the device must qualify it in only one
possible indication, i.e.,15.1◦C or 15.2◦C. The measur-
ing instrument makes a similar qualification of tempera-
ture as a man qualifying it in his or her possible indications
as, e.g.,low, medium, andhigh temperature. The differ-
ence consists only in the width of qualification distribu-
tions. The instruments have distributions of smaller width
(higher accuracy) and the man’s distributions are of larger
width (lower accuracy). The qualifier can always use the
same qualification algorithm, but it also can change the
algorithm in time.
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5. Explanations Referring to the Qualifica-
tion Conditions Ci

In simple cases people qualify elementsx of the univer-
sal setX in a set A, e.g., when the elements possess a
specific propertypA of the set at least to a certain mini-
mal gradepAmin. In this case the necessary qualification
condition is expressed by

pA(x) ≥ pAmin. (2)

The minimal amount of a feature which is required
for qualification can, e.g., be equal to 0.5. It can also be
equal to, e.g., 0.9 if the qualifier is an especially exacting
one. The minimal requirement for the set membership can
also be as low as in classic fuzzy sets, i.e.,

pA(x) > 0. (3)

This means thatclassic fuzzy sets are a special case
of generalized fuzzy setsdetermined by the new def-
inition. People frequently use the following qualifica-
tion condition: “an elementx belongs to the setAi,
i ∈ {1, . . . ,m}, whose specific propertypAi it possesses
at most.” This condition is expressed by

IF
[
pAi(x) = max

{
pA1(x), pA2(x), . . . , pAm(x)

}]
THEN (x ∈ Ai). (4)

For example, a qualifier qualifies a person in the set oftall
people if the person is (according to the qualifier) more
tall thanmedium. This means that the person has more
propertytall than the propertymediumor short, cf. Fig. 3.

medium
1

             160                  170                  180     x [cm]
height

short tall

 prop

proptall = 0.9

propmedium = 0.1

x (person 2)

proptall (x) > propmedium (x) > propshort (x)proptall(x) > propmedium(x) > propshort(x)

Fig. 3. Example of the qualification of an elementx in
a setAi whose property the element has to the
highest degree.

However, the mere possession of a specific property
pA by an elementx in the grade higher than the minimal
gradepAmin or in the gradepAi(x), which is higher for
the setAi than for other setsAj , j 6= i, j ∈ {1, . . . ,m},

is not always sufficient for the qualification of the element
x in the setAi. For example, if a person possesses the
propertytall to the degreeptall(x) = 0.6 and the property
mediumto the degreepmedium(x) = 0.4, then the person
does not necessarily have to be qualified in the settall.
The person can sometimes be qualified in the setmedium.
Why? It will be explained in Section 6.2.

In this section only the simplest qualification con-
ditions were described. In real tasks, the total condition
can be complex, multidimensional and composed of many
sub-conditions, as was shown through the example of pro-
fessorship in Section 4.

6. Explanation Referring to the Qualifier
Type TQA

A qualifier QA making decisions about the qualification
of an elementx in a setA can be of various type, e.g.,
deterministic, probabilistic, possibilistic one, etc.

6.1. Deterministic Qualifier

A deterministic qualifier is a qualifier which qualifies
identical elementsx of the universal setX always in
one and the same setAi. The deterministic qualifier uses
a deterministic qualification algorithmQAlgA. An exam-
ple of the deterministic qualifier is a person who exactly
knows the qualification algorithm, is able to describe this
algorithm, and makes the qualification thoroughly con-
sciously without using sub-consciousness. To make deter-
ministic qualifications, the value of the qualified element
x must be exactly known. Figure 4 depicts a simple ex-
ample of deterministic property functions of height evalu-
ations, arbitrarily constructed by an expert.

medium
1

             160                  170                  180     x [cm]
height

short tall

 prop

176

0.55
0.45

Fig. 4. Deterministic property functions propshort(x),
propmedium(x), proptall(x) of linguistic evaluations
of height, arbitrarily defined by an expert.

If the property functions and the height of a given
person are exactly known (e.g., 176 cm), then we or a
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computer can exactly calculate how much of the prop-
erty short, medium, or tall the person’s height has
(e.g., propshort(176) = 0, propmedium(176) = 0.45,
proptall(176) = 0.55). If the qualification algorithm is:
“The elementx belongs to the set whose property it has
most of all”, then the person’s height 176 cm is determin-
istically qualified to the settall. However, in the next sec-
tion we will see that such a qualification does not always
occur if the qualifier is a probabilistic one.

Now, let us consider theinverse qualification prob-
lem (dequalification problem), i.e., the identification of
the elementx -value, which was qualified in a fuzzy set
A. The problem is solved under the assumption that the
only information we have at our disposal is the informa-
tion below.

Information

An elementx, whose value is unknown to us, was quali-
fied in the setA by a deterministic qualifierQA.

Query

What is the probable value of this element (what is the
probability density distribution ofx)?

Solution

To solve this problem, we can use the opinion by Klir and
Folger (1988): “Within all probability measures, total ig-
norance is expressed by the uniform probability distribu-
tion

p(x) =
1
|X|

for all x ∈ X,

where |X| is the cardinality ofX.” A solution of the
dequalification problem will be illustrated by Example 2.

Example 2.

Information

A person of heightx, which is unknown to us but ex-
actly known to a deterministic qualifierQAi, was qual-
ified in the setmedium. The qualifier uses only three
evaluations (linguistic indications) of height:short= A1,
medium= A2, andtall= A3. The corresponding property
functions are depicted in Fig. 5. The qualifier uses a deter-
ministic qualification algorithmQAlgAi(x): “an element
x is qualified in the setAi whose propertypropAi it has
at most”,

x ∈ Ai | Ai : i = 1, . . . ,m,

mAi =


1 if propAi(x) =

max{propA1(x), . . . , propAm(x)},
0 otherwise.

(5)

Query

What are the probable values of heightx?

Solution

In the case of a deterministic qualifier, we can easily deter-
mine the distribution function of qualification probability
in a setqprobAi(x) and the distribution function of prob-
ability densitydeqprobdAi(x) depicted in Fig. 5.

mediumshort tall
1

           160       165       170      175      180     x [cm]

height

 prop

 

A1 A3A2

1

           160       165       170      175      180     x [cm]

height

qprob

 

1

           160       165       170      175      180     x [cm]

height

deqprobd

 
0.1

deqprobdA2(x)

medium

qprobA2(x)

(a)

(b)

(c)

Fig. 5. Property functionspropA1(x), propA2(x), propA3(x)
of height evaluationsshort, medium, tall (a), the distri-
bution of the qualification probabilityqprobA2(x) of
the elementsx in the setA2 = mediumheight (b), and
the distribution of the dequalification probability den-
sity deqprobdA2(x) that the element qualified in the set
A2 = mediumhas the valuex (c).

The rectangular distribution of the qualification prob-
ability qprobA2(x) in the setA2 = mediumresults from
the deterministic qualification algorithm, cf. (5). Because
all heights x satisfying the condition165 < x ≤ 175
(Fig. 5(a)) have more propertymediumthan the proper-
tiesshortor tall, they are always, with probability 1 (cer-
tainty), qualified in the setmedium, cf. Fig. 5(b). As can
be seen, there exists (in the case of the deterministic qual-
ifier) no relation between the shape of the property func-
tion propA(x) and the shape of the qualification function
qprobA(x), which is always rectangular, independently of
the shape of the property function. If our only information
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is that heightx, whose value is unknown to us (but known
to the qualifier) was qualified in the setA2 = medium,
then the density distributiondeqprobdA(x) of the proba-
bility that the evaluated height had the valuex (Fig. 5(c))
can be determined by a transformation of the distribution
of qualification probability qprobA2(x) from Fig. 5(b)
such that the achieved distribution has the area normalized
to 1 (the total probability of all possiblex-values must
be equal to 1). To this end, the areaa of the function
qprobA(x) should be calculated in accordance with

a =
∫ Xmax

Xmin

qprobA(x) ≥ 1. (6)

Next, the transformation coefficientα = 1/a should
be determined. To make the transformationqprobA(x) →
deqprobdA(x), we use

deqprobdA(x) = α · qprobA(x), (7)

Once more the basic difference between the
qualification probability distributionqprobA2(x) and
the density distribution of dequalification probability
deqprobdA2(x) should be underlined. Both distribu-
tions give answers to contrary questions: The function
qprobA2(x) answers the question “What is the probabil-
ity that the deterministic qualifierQA2 will qualify height
x in the setA2 = medium?”. The probability of a sin-
gle elementx can be equal to 1 and the integral of the
distribution (area) is greater than 1. The dequalification
function deqprobdA2(x) gives an answer to the question
“What is the probable value of heightx, which was qual-
ified in the setA2 = medium?”. The maximal value of
density is lower than 1 (apart from a singleton case) and
the integral of dequalification probability density distribu-
tion (area) equals 1. �

Remark 1. One should differentiate the setmedium
height shown in Fig. 5(c) from the set of heights which
possess the propertymediumin an amount greater than
zero, cf. Fig. 6(b). The setmediumheight contains only
heights which have more propertymediumthan any other
property (short or tall). Therefore its support[165, 175],
cf. Fig. 5(c), is narrower than the support[160, 180], cf.
Fig. 6(b), of the set of heights which possess the feature
medium. The last set is a fuzzy set in the classical sense.
One can also notice in Figs. 5 and 6 that in the case of de-
terministic fuzzy sets the property functions and the qual-
ification probability functions are of different shapes. The
relation between the two functions is very weak. In the
next section we will see whether the same takes place for
probabilistic qualifiers.

In the short form, a set being a result of determinis-
tic qualification can be presented as a set of ordered pairs

mediumshort tall

1

           160       165       170      175      180     x [cm]

height

 prop

 

1

           160       165       170      175      180     x [cm]

height

qprob

 

qprobA2(x)

propA1(x) propA2(x) propA3(x)

(a)

(b)

Fig. 6. Deterministic property functionpropA2(x) of
the height setmedium(a) and the probability
distribution qprobA2(x) qualifying height x
in the set of the heights which have the property
mediumin an amount greater than zero (b).

referring to elementsx which were qualified in the set

A =
{(

x, propA(x)
)
, QAlgA(x) |

∀x :
(
mA(x) = 1

)
∧ (x ∈ X)

}
.

6.2. Probabilistic Qualifier

The distribution functions of the qualification probabil-
ity qprobAi(x), which are declared by people in inquires
differ, often considerably, from functions which are re-
ally used by them. The reason for that is that people
qualify elements in sets not always fully consciously, but
mostly more or less subconsciously (sometimes fully sub-
consciously), and they are not able to precisely express
and describe the qualification (Piegat, 2001). Therefore,
instead of identifying qualification functions from spoken
inquires of people, it is better to identify them experimen-
tally, more objectively (Piegat, 2004).

Experimental investigations show that different per-
sons of the same height, e.g.,x = 176 cm, can sometimes
be qualified asmedium, and sometimes astall people. If
a qualified person of the height 176 cm is slim or stands
near a person of short height, e.g., 150 cm, then we will
rather qualify the person astall. If the person (176 cm) is
corpulent or stands near a tall person, e.g., of the height
2 m, we will rather qualify he or she asmedium. This
means that qualification algorithms really used by people
are often not of a deterministic but of a probabilistic type
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and that they contain distribution functionsqprobAi(x) of
qualification probability as, e.g., the one depicted in Fig. 7
for height.

medium
qprobA2(x)
propA2(x)

1

             160                  170                  180     x [cm]
height

short
qprobA1(x)
propA1(x)

tall
qprobA3(x)
propA3(x)

 prop

176

 qprob

183

0.36

0.64

1.0

3∑
i=1

qprobAi(x) = 1

Fig. 7. Examples of the distribution functionsqprobAi(x) of
the qualification probability of the heightx in the sets
short, mediumand tall. In this case the qualification
functions are numerically equal to the property functions
propAi(x) of particular sets.

A person of the height 185 cm will, with probabil-
ity 1, (certainty) be qualified in the settall, cf. Fig. 7.

Remark 2. In the case of probabilistic qualifiers, qualifi-
cation probability functionsqprobAi(x) inform us about
the probability that an elementx of the universal setX
will be qualified in the setAi. The sum of qualification
probabilities in all setsAi equals 1. A given elementx
can be qualified only in one setAi.

Technical measuring instruments are mostly proba-
bilistic qualifiers. Each of the instruments qualifies the
measured quantityx into one of its possible indications
xind with some probability. For example, if a measuring
instrument of temperature indicates temperature with the
accuracy of0.1◦C, then its indicationxind = 19.7◦C
means that the real temperaturex of neighborhood is
about 19.7◦C. The qualification functionqprob19.7(x)
of that indication is the probability distribution of qual-
ification of the real temperaturex in the indication set
about 19.7◦C. Each possible indication of the measuring
instrument, e.g., 0.0, 0.1, 0.2, . . . , 19.0, 19.1, 19.2, . . . ,
99.8, 99.9, 100.0◦C, is characterized by its own qualifica-
tion function qprobind(x), e.g.,qprob0.0(x), qprob0.1(x),
. . . , qprob99.9(x), qprob100.0(x), etc. People also make
measurements (evaluations) of various quantities. In the
case of height we observe the heightx of a given person
and then qualify it in one of our possible linguistic indi-
cations asshort, mediumor tall. More exactly, we qualify
the observed height into one of the indication sets we use.

People make the qualification of the observed heightx
subconsciously with the use of probabilistic qualification
functionsqprobshort(x), qprobmedium(x) and qprobtall(x)
which exist in their brains.

If the qualification in a set is probabilistic, then it
may happen that an elementx which has the less spe-
cific property propAi(x) of the set Ai than the prop-
erty propA(i+1) or propA(i−1) of other neighboring
sets Ai+1 or Ai−1 (propAi(x) < propA(i+1)(x) or
propAi(x) < propA(i−1)) will be qualified in the setAi

and not in the setAi+1 or Ai−1. For example, a per-
son of the heightx = 176 cm can be qualified by a
probabilistic qualifier (another person) not in the settall
whose property his or her height has to the degree 0.64
(proptall(x) = 0.64) but in the setmediumwhose property
the height has to the degree 0.36(propmedium(x) = 0.36),
cf. Fig. 7.

An interesting issue isthe difference between the
meanings of the qualification function qprobAi(x), the
property function propAi(x), and the dequalification
function deqprobdAi(x) in the case of a probabilistic
qualifier. The qualification functionqprobAi(x) informs
us about the level of the probability of qualifying an el-
ement x in the setAi, e.g., the probability of qualify-
ing the height 170.23 cm for the indication 170.1 cm of a
technical instrument of height measurement. If “the mea-
suring instrument” is a man, than the qualification func-
tion qprobmedium(x) informs us about the probability of
the height, e.g., 170.23 cm, to be qualified in the indication
setmedium. In Fig. 8 three exemplary qualification func-
tions qprobAi(x) of a discrete measuring instrument of
height, which gives indications with the accuracy 0.1 cm,
are presented.

It should be noticed that, since the qualification func-
tions qprobAi(x) inform us about the qualification prob-
ability of an elementx in particular indication sets, the
sum of qualification probabilities of the element into all
indication sets must be equal to 1,

n∑
i=1

qprobAi(x) = 1. (8)

The maximal values of the qualification functions
cannot be higher than 1(max qprobAi(x) ≤ 1). In the
example shown in Fig. 8 the maximal values of the quali-
fication functions are smaller than 1.

Property functions propAi(x) inform us to what
degree the elementx possesses the specific property of
the set Ai. It is obvious that a typical elementx of
the set Ai must have a full amount of the set prop-
erty, e.g., prop170.1(170.1) = 1, in Fig. 9 (the height
170.1 cm has the property of being about 170.1 cm to the
degree 1). In the case of probabilistic qualifiers, prop-
erty functions propAi(x) are achieved by normalizing
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1

      169.9      170.0  170.1      170.2     170.3     170.4     170.5   x [cm]
height170.123

 qprob(x)

0.6

0.02

0.41

0.57

A2 = ab. 170.2
qprobA2(x)

A1 = ab. 170.1
qprobA1(x)

A3 = ab. 170.3
qprobA3(x)

qprobA1(170.123) + qprobA2(170.123)

+ qprobA3(170.123) = 1

∀i, i = 1, . . . , n :
∫ ∞

−∞
qprobAi(x) dx ≥ 1

Fig. 8. Exemplary functionsqprobAi(x) qualifying the
measured heightx [cm] into three of many pos-
sible indication setsA1 = about170.1 cm, A2 =
about170.2 cm, A3 = about170.3 cm of a tech-
nical measuring instrument.

1

      169.9      170.0  170.1      170.2     170.3     170.4     170.5   x [cm]
height170.123

 prop(x)

0.03

0.68

0.95

A2 = ab. 170.2
propA2(x)

A1 = ab. 170.1
propA1(x)

A3 = ab. 170.3
propA3(x)

propA1(170.123) + propA2(170.123)

+ propA3(170.123) ≥ 1

∀i, i = 1, . . . , n :
∫ ∞

−∞
propAi(x) dx ≥ 1

Fig. 9. Property functionspropAi(x) of three indica-
tion sets Ai of a technical measuring instru-
ment of height, achieved by normalizing the
qualification functionsqprobAi(x) of the in-
strument from Fig. 8.

qualification functionsqprobAi(x) to the interval [0,1].
In Fig. 9 exemplary property functions of three indica-
tion sets of a technical measuring instrument of height
achieved by normalizing qualification functions of the in-
strument from Fig. 8 are depicted.

Noticeably, the summarized amount of properties
propAi(x) a given elementx has must not be equal to 1.
It can be greater than 1, as takes place in the case shown
in Fig. 9. The property functionpropAi(x) itself is not
of a probabilistic but of a deterministic type, though it
refers to a probabilistic qualifier. So in the example in
Fig. 9 the property functions inform us that the element
x = 170.123 cm has the propertyA1 (about170.1 cm)
to the degree 0.95, the property of the setA2 (about
170.2 cm) to the degree 0.68 and the property of the set
A3 (about 170.3 cm) to the degree 0.03. However, the
mere possessing of the full amount of the specific prop-
erty of set Ai (to the degree 1) by an elementx does
not necessarily forejudge that the element will be quali-
fied by a probabilistic qualifier in the setAi. It depends
on the qualification algorithm, which is probabilistic in
this case. Figure 10 depicts exemplary, experimentally
identified qualification functions used by a person in vi-
sual height evaluation of adults, under the assumption that
the person uses only three linguistic indications of height:
A1 = short, A2 = medium, A3 = tall, and that the per-
son qualifies the perceived height in only one set. The
assumed height universeX is confined to the interval
[150 cm, 190 cm].

1

   150         160         165  167   170    173  175          180        190   x [cm]

height

 qprob(x)

A2 = medium
qpropA2(x)

A1 = short
qpropA1(x)

A3 = tall
qpropA3(x)

0.8

0.5

0.1
0

X

∀x : qprobA1(x) + qprobA2(x) + qprobA3(x) = 1

Fig. 10. Exemplary qualification functionsqprobAi(x)
of a person qualifying the observed heights to
the linguistic indicationsshort, mediumand tall
height.

The qualification functionqprobA2(x) qualifying in
themediumheight has the maximal value equal to 0.8 and
not to 1, because 10% of persons of the height 170 cm are
qualified by the qualifier-person in theshortheight (under
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the influence of the corpulence, clothes, and height of the
previously seen person), and 10% of evaluated persons of
the height 170 cm the qualifier qualifies astall persons
for the same reasons. The property functionspropA1(x),
propA2(x), propA3(x), being numerically equal to the
qualification functionsqprobAi(x) (Fig. 10) normalized
to the interval[0, 1], are depicted in Fig. 11.

1

   150         160         165  167   170    173  175          180        190   x [cm]

height

 prop(x)
A2 = medium

propA2(x)
A1 = short
propA1(x)

A3 = tall
propA3(x)

0.625

0.125
0

X

Fig. 11. Property functions propAi(x) defining the
amount of specific properties of the setsA1,
A2, A3 (short, medium, tall height) possessed
by an elementx achieved by normalizing the
qualification functionsqprobAi(x) from Fig. 10.

Obviously, the height 170 cm has a full amount (to
the degree 1) of the propertymedium= about170 = A2

but also, according to the qualifier, it partly (to the de-
gree 0.125) possesses the propertiesshort = A1 and
tall = A3. The author claims that the membership func-
tions µAi(x) used in fuzzy set theory correspond to the
property functionspropAi(x) of fuzzy sets.

In a short form, the setA being a result of proba-
bilistic qualification can be presented as a set of ordered
pairs referring to elementsx qualified in the set:

A =
{(

x, qprobA(x)
)
, QAlgA(x) |

∀x :
(
mA(x) = 1

)
∧ (x ∈ X)

}
.

6.3. Possibilistic Qualifier

A qualifier QA is possibilistic if it uses in its qualification
algorithm QAlgA(x) a possibility distributionπA(x) of
the qualification of an elementx in a setA. The possi-
bility distribution must be used to model the qualification
process of a real qualifier, when it is not possible to de-
termine the precise distributionqprobA(x) of the qualifi-
cation probability of the qualifier, because we do not have
precise information about the way of qualification but only
inaccurate, nested information. This problem will be ex-
plained further on. The notion of a possibility measure
Π(A) and a necessity measureN(A) of the event oc-
currence(x ∈ A) is described in the literature (Dubois

and Prade, 1988; Klir and Folger, 1988; Zimmermann,
1996). The notions of the possibility and the necessity
measure are dual. They are characterized by the formu-
las (9), (Dubois and Prade, 1988). We have

Π(A) = 1−N(Ā) = sup{π(x) | x ∈ A},

N(A) = 1−Π(Ā) = inf{1− π(x) | x /∈ A},

π(x) = Π({x}).

Additionally, possibility and necessity measures are
connected by relations (9). We have

Π(A) ≥ N(A),

N(A) > 0 ⇒ Π(A) = 1,

Π(A) < 1 ⇒ N(A) = 0.

As Dubois and Prade state in their monograph
(Dubois and Prade, 1988), the occurrence possibility of
an eventA means the maximal probabilityP ∗(A) of
this event, whereas the occurrence necessityN(A) of the
event A means the minimal, but sure probabilityP∗(A)
of the event occurrence, see also (Piegat, 2005a).

These two notions are used when we have only un-
certain, nested evidence information about a given prob-
lem. It will be illustrated by Example 3.

Example 3.Let us assume thatwe do not haveprecise in-
formation about the way of qualification of heightx [cm]
in the setA2 = mediumsuch as the exemplary informa-
tion given below:

• 80% of persons of the height 167 cm are qualified by
the qualifier in the setA2 = medium,

• 86% of persons of the height 168 cm are qualified in
the setA2 = medium,

• etceteras.

Instead,we havethe inaccurate evidence information
Ei as below.

The qualifier made qualifications of persons from
three groups in the setA2 of themediumheight.

• Evidence informationE1: five persons of the height
confined to the interval [167 cm, 173 cm] from the
first group were qualified to be of themediumheight.

• Evidence informationE2: ten persons of the height
confined to the interval [164 cm, 176 cm] from the
second group were qualified to be of themedium
height.

• Evidence informationE3: fifteen persons of the
height confined to the interval [160 cm, 180 cm] from
the third group were qualified to be of themedium
height.
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The evidence information about the way of qualification
can be presented visually as in Fig. 12.

Fig. 12. Visual presentation of the inaccurate, nested in-
formation Ei about the way of qualification of
height x [cm] in the setA2 = medium height
realized by the qualifierQA2.

Because the information about the way of quali-
fication is not precise, it is not possible to determine
the precise distribution of the qualification probability
qprobA2(x) in the setA2 = mediumheight. However,
using the formula (9) from (Dubois and Prade, 1988), the
possibility distributionπA2(x) of height qualification in
the setmediumcan be determined,

∀x, πA2(x) = P ∗
A2

(
{x}

)
=


p∑

j=i

m(Ej) if x ∈ Ei, x /∈ Ei−1,

0 if x ∈ X − Ep,

(9)

wherem(Ei) denotes theprobability masscorresponding
to the evidence informationEi (Dubois and Prade, 1988),
m(E1) = 1/6, m(E2) = 2/6, m(E3) = 3/6.

The possibility distribution πA2(x) determined
with (9) and the dual necessity distributionηA2(x) of the
qualifying heightx in the setA2 = mediumis shown in
Fig. 13.

Information uncertainty results in the impossibil-
ity of determining the precise probability distribution
qprobA2(x) of qualification. We can only determine the
upper probability constraintπA2(x) (a possibility distri-
bution of qualification), and the lower probability con-
straint ηA2(x) (a necessity distribution of qualification).
The possibility distribution and the necessity distribution
are only two of many possible probability distributions of
qualification, which may result from the evidence infor-
mation Ei (which could be used by the qualifier). In the
case when the variablex is a continuous one, the num-
ber of possible distributions of qualification probability is
infinite! Therefore, the probability that the qualifierQA2

used in the qualification process has a qualification proba-
bility distribution qprobA2(x) just identical to the possi-
bility distribution πA2(x) or to the necessity distribution
ηA2(x) is very small (in the case of discrete variables) or
infinitesimal (in the case of continuous variables). In this

1

        160          164       167      170      173       174          180    x [cm]

height

 � (x)
 � (x)

5/6

3/6

� A2(x) = 0

�
A2(x)

medium

Fig. 13. Possibility distributionπA2(x) and necessity
distribution ηA2(x) of qualifying the heightx
in the setA2 = mediumdetermined on the ba-
sis of the inaccurate evidence informationE1,
E2 and E3 (Fig. 12) about the way of qualifi-
cation used by the qualifierQA2.

situation, instead of using a very little probable possibility
or necessity distribution, it is reasonable to determine the
“probable, average” probability distribution of qualifica-
tion qprobA2aver(x) in the setA2 = medium. If we have
at our disposal the previously determined possibility dis-
tribution πA(x) of qualifying the elementx in a setA,
then the “average” probability distributionqprobAaver(x)
of qualification can be determined using the formula (10)
from (Dubois and Prade, 1988),

qprobAaver(x) =
n∑

i=j

1
j
{πA(xj)− πA(xj+1)}, (10)

wherexi is the i-th discrete value of the variablex. The
numeration of the discrete valuesxi satisfies

πA(xi) = 1 ≥ πA(x2) ≥ · · · ≥ πA(xn+1). (11)

Here xn+1 is a dummy value of the variablex, whose
universe was divided inton elements. Using (10), the av-
erage probability distributionqprobA2(x) of qualification
in set A2 = mediumwas determined, cf. Fig. 14.

The possibilistic qualifier can be a computer, which
qualifies the elementsx of the universeX in a set A
with the use of a possibilistic distributionπA(x) instead
of the unknown distribution of the qualification proba-
bility qprobA(x). In this case possibility distribution
(only very approximately) models the way of qualifica-
tion of a real probabilistic qualifier, e.g., of a man. For a
given x-value, the possibilistic qualifier determines, simi-
larly to the probabilistic one, the possibility gradeπA(x),
which means the maximal possible probability of qual-
ifying the elementx in the setA (Piegat, 2005). Next,
with a probabilitypA(x) determined at random, such that
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1

        160          164       167      170      173       174          180    x [cm]

height

 qprob(x)
 � (x)
 � (x)

5/6

3/6

2/6

1/6 � A2(x) = 0

�
A2(x)

qprobA2aver(x)

Fig. 14. Average probability distributionqprobA2aver(x) of
height qualification in the setA2 = medium de-
termined on the basis of the possibility distribution
πA2(x) of the way of qualification, which was ob-
tained from the inaccurate evidence informationEi

about qualification realized by the qualifierQA2.

ηA(x) ≤ pA(x) ≤ πA(x), it generates 1 or 0. Gener-
ating 1 means the qualification of the elementx in the
set A. Otherwise, the element is not qualified in the set.
The possibilistic qualifier is a very inaccurate model of
the probabilistic one, whose way of qualification was not
precisely identified because of the lack of precise informa-
tion about qualification results (only the inaccurate, nested
information Ei about the qualified elementsx is at our
disposal). Therefore the author does not recommend us-
ing possibilistic qualifiers. When we have only inaccu-
rate, nested information, first the possibility distribution
πA(x) and next the average distributionqprobAaver(x)
of qualification probability should be determined accord-
ing to the formula (10). Thus the possibilistic model of
the qualifier is transformed into a probabilistic one, which
can further be used according to the remarks contained in
Section 6.2.

In the short form, a setA being a result of possibilis-
tic qualification (that was not transformed into the proba-
bilistic one) can be presented as a set of ordered triplets
referring to the elementsx, which were qualified in the
set:

A =
{(

x, πA(x), ηA(x)
)
, QAlgA(x) |

∀x :
(
mA(x) = 1

)
∧ (x ∈ X)

}
.

�

7. Impact of the New Definition of the Fuzzy
Set on Fuzzy Arithmetic

7.1. Deterministic Qualifier Case

A deterministic qualifier uses a deterministic qualification
algorithm with deterministic property functions. Further
on, from among many operations of fuzzy arithmetic, ad-
dition of two fuzzy numbers will be considered as an ex-
emplary operation. Example 4 will show how this oper-
ation is realized with the methods of the present fuzzy
arithmetic based on the classical definition of a fuzzy set.
Example 5 will show the influence of our new definition
of the fuzzy set on the results of the addition.

Example 4. (Classical approach to the addition of fuzzy
numbers) Assume that we have information about the in-
comes of two firmsA and B as below:

I1: Income of the firmA is medium(about 4 million
euro).

I2: Income of the firmB is medium(about 4 million
euro).

The membership functions of thelow, mediumand
high income are depicted in Fig. 15.

Fig. 15. Membership functions oflow, medium
andhigh income of the firmsA and B.

Query

What is the sum of both the incomes (medium+ medium)?

Solution

In the present fuzzy arithmetic, addition can be imple-
mented with the use of Zadeh’s extension principle ex-
pressed by

∀(xA, xB) | xA + xB = y

µA+B(y) = max
{

min
[
µA(xA), µB(xB)

]}
. (12)

The result of the addition is presented in Fig. 16.
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     1      2      3      4     5      6      7      8      xA

A = medium = about 4

1

0

�
A

     1      2      3      4     5      6      7      8      xB

B = medium = about 4

1

0

�
B

     1      2      3      4     5      6     7      8      9    10     11   12    13   14    15    16   y = xA + xB

A + B = medium + medium = about 8

1

0

�
A+B

(a) (b)

(c)

Fig. 16. Result (c) of the addition of two fuzzy numbers (a) and (b), (about4 + about4).

As can be seen in Fig. 16, the addition result of two
fuzzy numbersA and B has a support (16) which is
equal to the sum of the supports (8+8) of both fuzzy num-
bers. Thus the fuzziness of the sum is very large and there-
fore its practical usefulness is small. For this reason fuzzy
arithmetic is rather seldom used in practice. In Example 5,
the addition of two fuzzy numbers will be shown with the
use of the new definition of a fuzzy set. �

Example 5. (New approach to the addition of fuzzy num-
bers) A deterministic qualifier evaluated the incomes of
the firmsA and B as below:

I1: Income of the firmA is medium(about 4 million
euro).

I2: Income of the firmB is medium(about 4 million
euro).

Let us notice that each of the incomes can take only
one crisp value from all values being in the setmedium=
about4. The qualifier used an algorithm which qualifies
the incomex in the set whose property the givenx-value
has at most. In Fig. 17, the property functions of the sets
low, mediumandhigh income are shown.

Query

What is the sum of the incomes of the firmsA and B?

     1      2       3      4       5      6      7     8    xA, xB [mil. euro]

XA , XB

low A = B = medium high

1

0

prop

Fig. 17. Property functions proplow(x), propmedium(x)
and prophigh(x) of the fuzzy setslow, medium
andhigh income of the firmsA and B.

Solution

Although the qualification algorithm is deterministic, the
same problem of fuzzy number addition is not determinis-
tic but probabilistic. It follows from the qualification algo-
rithm and from the property functions in Fig. 17 that only
the values {2,3,4,5,6} could be qualified as amediumin-
come. Both the income of the firmA and that of the firm
B can be equal to one of these values with the same prob-
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ability. The probability distributionsdeqprobA(xA) and
deqprobB(xB) of both firms are shown in Fig. 18.

     1     2      3      4      5      6     7      8      xA

A = about 4

1

0.2

deqprobA(x)

     1     2      3      4      5     6     7       8      xB

B = about 4

1

0.2

deqprobB(x)

Fig. 18. Distributions of the dequalification probability
deqprobA(xA) and deqprobB(xB) of the in-
come of the firmsA and B.

With the use of dequalification probability distribu-
tions of single incomes, the distributiondeqprobA+B(y)
of the income sum can be calculated as follows:

deqprobA+B(y) = card
[
R(xA + xB = y)

]
=

∑
(xA,xB) | xA+xB=y

deqprobA(xA) · deqprobB(xB). (13)

Figure 19 illustrates the calculation process.

As can be seen in Fig. 19, only one eventxA +xB =
4 is possible. It occurs when the income of the firmA,
xA = 2, and the income of the firmB, xB = 2. The
probability of such an event is equal to1/25. However, 5
eventsxA + xB = 8 are possible, e.g., when (xA = 2
and xB = 6), (xA = 3 and xB = 5), etc. Thus, the prob-
ability that the income sum will be equal to 8 equals5/25.
The dequalification probability distribution of the sum in-
come of both the firmsA and B is shown in Fig. 20.

After the normalization of the resulting dequalifica-
tion probability distributiondeqprobA+B(x) to the inter-
val [0, 1], the property functionpropA+B(y) of the in-
come sum was obtained, cf. Fig. 21(b).

As can be seen in Fig. 21, the addition result of two
fuzzy numbersA andB achieved with the use of the new

definition of a fuzzy set is considerably less fuzzy than the
result achieved with use of the classic definition of a fuzzy
set. Therefore the new definition has greater practical use-
fulness than the classic one. Less fuzzified results are also
achieved in other operations of fuzzy arithmetic.

It should also be mentioned that the property function
as a representation of a fuzzy number has small informa-
tive meaning. For example, in the case of the fuzzy num-
berabout8 in Fig. 21, its property functionpropA+B(y)
informs us only how much of the property of the set
about8 a given y-value has. However, we do not know
what practical meaning the information that, e.g.,y = 5
possesses the specific property of the setabout 8 to the
degree 0.4 has. Considerably greater practical meaning
is assigned to the dequalification probability distribution
deqprobA+B(y) form in Fig. 20c. The information that
“the sumy = xA + xB of the firm incomes can be equal
to 5 million euro with probability 2/5” is understandable
to everyone and is of the great meaning for the user.

It seems that the application of property functions is
useful only in the phase of the qualification of the ele-
ments x in a fuzzy set. In the phase of the interpreta-
tion of calculation results are of practical meaning only
dequalification probability distributions. �

7.2. Probabilistic Qualifier Case

In the case of a probabilistic qualifier, the most important
function characterizing a fuzzy setA is the qualification
probability distributionqprobA(x). By the normalization
of the function abscissas to the interval[0, 1], the prop-
erty function propA(x) of a fuzzy set is achieved. By
the normalization of the area of the qualification probabil-
ity distribution qprobA(x) to the value 1, the distribution
of the dequalification probability densitydeqprobA(x) is
achieved (for continuous variables). Thus, there exists a
strict relation between the qualification probability dis-
tribution qprobA(x) and both functionspropA(x) and
deqprobA(x), which fully depend on it.

It seems that the most advantageous implementa-
tion of fuzzy arithmetic operations is calculation with de-
qualification probability distributions (for discrete vari-
ables) or with distributions of the dequalification prob-
ability density deqprobdA(x) in the case of continuous
variables. An example of such calculations was shown in
Section 7.1.

7.3. Possibilistic Qualifier Case

In the case of arithmetic operations with fuzzy sets char-
acterized by the possibility distributionsπAi(x) used by
a possibilistic qualifier, the operations can be realized
with Zadeh’s extension principle. However, the results
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   0          1          2         3          4          5         6          7          8           xA

1/5

deqprobB(xB)

deqprobA(xA)

1/5
0

1

2

3

4

5

6

7

8

xB

4/0.04 5/0.04 6/0.04 7/0.04 8/0.04

5/0.04 6/0.04 7/0.04 8/0.04 9/0.04

6/0.04 7/0.04 8/0.04 9/0.04 10/0.04

7/0.04 8/0.04 9/0.04 10/0.04 11/0.04

8/0.04 9/0.04 10/0.04 11/0.04 12/0.04

deqprobA(xA) · deqprobB(xB)xA +· xB = y

 relation R(xA +· xB = 9)

 card[R(xA +· xB = 9)] = 4/25 = 0.16

Fig. 19. Illustration of the calculation of the dequalification probability distributiondeqprobA+B(y) of the sum [deqprobA(xA) +
deqprobB(xB)] in the addition of the incomes of the firmsA and B.

0     1    2     3    4     5     6    7     8      xA

A = about 4
1/5

0     1     2    3     4    5     6    7     8     9   10   11  12   13   14  15   16    y = xA + xB

A + B = about 8
5/25

1/25

1/5

0     1    2     3    4     5     6    7     8      xB

B = about 4

 deqprobA(xA)  deqprobB(xB)

 deqprobA+B(y)
(a) (b)

(c)

Fig. 20. Result (c) of the addition of the dequalification probability distributions (a) and (b) of the incomes of two firmsA andB.
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0     1     2    3    4     5     6    7     8     9   10   11  12   13   14  15   16    y = xA + xB

A + B = about 8
1

0.5

 �
A+B(y)

0.1

0     1     2    3    4     5     6    7     8     9   10   11  12   13   14  15   16    y = xA + xB

A + B = about 8
1

0.6

 propA+B(y)

0.2

0.4

0.8

present definition
of a fuzzy set

new definition
of a fuzzy set

(a)

(b)

Fig. 21. Membership functionµA+B(y) representing the addition result of two fuzzy numbersA and B
with the use of the classical definition of the fuzzy set (a), and the property functionpropA+B(y)
representing the addition result achieved with the use of our new definition of a fuzzy set (b).

of such operations will also be possibility distributions,
which are of small practical meaning (see explanations in
Section 6.3). Therefore, the author recommends the trans-
formation of the possibility distributionsπAi(x) into the
corresponding average probability distributions of qualifi-
cation qprobAiaver(x) and then the a realization of arith-
metic operations, similarly to the case of the probabilistic
qualifier.

8. Conclusions

In the paper a new definition of a fuzzy (and crisp) set was
presented. Compared with the present definition, the def-
inition introduces new notions such as the qualifier, qual-
ification algorithm, and property function of a set. The
new definition is more useful than the present definition
in solving practical problems and allows achieving less
fuzzified results of arithmetic operations than the present
definition of a fuzzy set.
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Kosiński W., Prokopowicz P. and́Slęzak D. (2003):Ordered
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