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DYNAMICS OF SOCIAL NETWORKS: A DETERMINISTIC APPROACH
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Our aim is to model the dynamics of social networks, which comprises the problem of how people get to know each other,
like each other, detest each other, etc. Most existing models are stochastic in nature and, obviously, based on random
events. Our approach is deterministic and based on ordinary differential equations. This should not be seen as a challenge
to stochastic models, but rather as a complement.
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1. Introduction

Social networks can be many things. For example, they
can be simply a set of people who get to know each other,
like children in a new class at school. They can be groups
of people who already know each other and we want to
look at how their relationships develop in time, whether
they like each other or hate each other. We can also look
at a group of people in one room who need to make a de-
cision, how people negotiate with others, try to convince
others that their choice is the right one. In general, a social
network is a set of variables concerning a set of people in
a social environment. The variables can be psychologi-
cal, social or other, and our main interest is modelling the
dynamic behaviour of these variables and the numerical
simulation of the network.

Sociodynamics is a relatively new and exciting area
of research, combining theoretical notions from mathe-
matics, statistics, informatics and physics applied to the
modelling of dynamic social phenomena (Gilbert and Do-
ran, 1994; Helbing, 1995; Weidlich, 2000). Researchers
in the field have been successful in modelling phenom-
ena such as traffic (or rather driver) behaviour, pedes-
trian behaviour, human population migration, etc. What
is equally interesting is that these methods are not only
used to model modern “observed” societies. They are also
used to give us more insight into human social behaviour
in ancient societies (Gilbert and Doran, 1994).

Most models of social networks are stochastic in na-
ture. In fact, the inspiration for the current work was
drawn from (Snijders and van Duijn, 1997), who proposed

a stochastic model. The reader can also consult the ref-
erences cited in this paper for other ideas and stochastic
models. What we would like to do is, in a way, to simulate
the behaviour of the model presented in (Snijders and van
Duijn, 1997) with a deterministic model based on differ-
ential equations. Of course, the differences between deter-
ministic differential equations and discrete-time stochas-
tic models refrain us from obtaining equivalent behaviour.
However, we are not striving to simulate the stochastic
model exactly. That would be rather silly because we
might as well just use the stochastic model. Our approach
is rather to look at some of the principal points and the
temporal behaviour of the stochastic model and to see if
we can recreate them with our model. Having thus formed
a basic model, we hope to enrich it and to introduce other
possibilities.

It is important to note that we are not challenging the
stochastic approach, we are simply looking for a differ-
ent approach which could, we hope at least, complement
the stochastic one. It must be said that we do not believe
that human behaviour, individual or collective, is random.
Stochastic models are used when we cannot model or even
observe all the phenomena, and they are very successful.
Our interest is directed towards a deterministic approach
because we would like to get as close as possible to real
psychological and social phenomena which, as has been
stated previously, we do not perceive as random in nature.

As far as we are aware, very few researchers have
sought a deterministic approach to the problem of social
system modelling. Most of the work done in this area
is based on more traditional methods taught to psycholo-



D.W. Pearson and M. McCartney546

gists and social scientists, i.e. hypothesis testing,χ2, etc.,
where the dynamics of networks are not really taken into
account. The innovative work of the last two decades into
sociodynamics has been carried out mainly by physicists
mostly interested in applying stochastic models originat-
ing from physics.

Our own work was originally inspired by Kurt
Lewin, a social psychologist who emigrated from Ger-
many to the United Sates before World War II. Per-
haps his most famous work published in English was
(Lewin, 1936). A more recent example of work by so-
cial scientists in the area of dynamic behaviour is (Bar-
ber, 1992). The main objective of our research is to use
social/psychological models such as those presented in
(Barber, 1992) and to develop mathematical models from
them. Having read the works of and worked with social
scientists and psychologists, we hope that our mathemati-
cal models will be as close to reality as possible.

We have already sought an approach based on fuzzy
logic (Pearson and Dray, 2001) and we are still continu-
ing our work along these lines. We hope that the concepts
presented in this paper, based on straightforward differen-
tial equations, will be linked together with a fuzzy logic
model in order to give a greater depth, richness and reality
to our method.

The paper is split into four sections. In Section 2 we
present the mathematical model and the reasoning behind
it. The model is analysed in Section 3. Some simulation
examples are presented in Section 4 before summing up
in Section 5.

2. Mathematical Model

A social network can be represented graphically as in
Fig. 1. The individuals in the network are represented by
the nodes, and the arcs represent the relations between the
individuals.

Fig. 1. Representation of a social network.

We remark that individuals can be assumed to mean
individual people or indeed individualgroupsof people,
although this does not concern us in our present work. The
arcs are directed because, as is the case in Fig. 1, the rela-
tions are not necessarily reciprocal.

For a given set of individuals we want to model the
dynamic behaviour of the relations and thus the config-
uration of the arcs in Fig. 1. Assume that there aren
individuals in the network, the configuration matrix asso-
ciated with the network being simply ann × n matrix
X = [xij ] of zeros and ones. The value of 1 in rowi and
column j indicates that there is an arc fromi to j, and
that of 0 means that there is no arc. In this paper we do
not consider self relations, such as self-confidence or self-
esteem, therefore we setxii = 0 for i = 1, . . . , n. In
fact, we study self relations in another related work (Pear-
son and Boudarel, 2001).

In (Snijders and van Duijn, 1997) the dynamic be-
haviour of a configuration matrixX is modelled as a dis-
crete sequenceXt, t = 0, 1, . . . , where all the matrices
are zero/one matrices with zero diagonal elements. The
authors of this paper consider the sequence to be embed-
ded in a continuous Markov process. Our idea is similar in
that we develop a system of differential equations which
defines a continuous process. A sequence of matrices is
then provided by taking the initial matrix, which does not
necessarily have to be a zero/one matrix, integrating the
equations for a sufficiently long time so that the system
reaches an equilibrium, and then taking the equilibrium
point to be the next matrix in the sequence. The problem
is therefore that of convergence and making sure that all
the equilibrium points of the system correspond to valid
zero/one matrices.

Rather than directly dealing with the entire matrix
X, we simplify the matter by making use of the fact that
the diagonal elements are all zeroes. For new coordinates
we simply apply the off-diagonal elements in some order.
The order is not important mathematically, but it may be
important computationally when dealing with indexing.
For example, we could choose the lexicographical order,
working column by column for each row in turn. Thus,
e.g., if n = 3, we would have

x1 = x12, x2 = x13, x3 = x21,

x4 = x23, x5 = x31, x6 = x32,

where thexk ’s are the new coordinates and thexij ’s the
old ones.

For n individuals in the network there will bem =
n(n − 1) variablesxk. Let I denote the unit interval
[0, 1]. Our aim is that each of the variables should con-
verge to a vertex ofI, thus indicating whether an arc ex-
ists or not. We denote byIm the m-dimensional unit
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hypercube and by2m the set of points corresponding to
its vertices, simply because there are numerically2m of
these points.

We begin the development of our model with a sim-
ple differential equation in one variable,ż = f(z), where
ż = dz/dt. First of all, we look for a functionf such that
f(0) = 0, f(1) = 0 and such thatf ′(0) and f ′(1) are
both negative, wheref ′ = df/dz. This merely guaran-
tees that0 and 1 are sinks for the differential equation.
There are clearly numerous choices for such a function.
We have chosen a polynomial because of ease of manip-
ulation and numerical properties. Here and in the rest of
this paper we fix the following form forf :

f(z) = −αz + (2α + β)z2 − (α + β)z3. (1)

The reader can easily verify that the above conditions are
satisfied withf ′(0) = −α and f ′(1) = −β. Due to the
fact that f in (1) is a cubic polynomial with three real
roots with negative derivatives at the two roots0 and 1,
the third root will be found in the interval(0, 1), where the
derivative will be positive. Thus there will be an unstable
fixed point somewhere between0 and 1, dependent on
the values chosen for the parametersα and β. In the re-
mainder of the paper we assume that the third root is at the
point r ∈ (0, 1) and thatf ′(r) = γ, whereγ > 0. Since
this third fixed point is unstable, it does not provent us
from proceeding with our modelling. In fact, it somewhat
enriches the model. Two examples of the function (1) are
shown in Fig. 2, in the top image the parameters are set to
α = 1, β = 2 and in the bottom image they areα = 3,
β = 2.

Fig. 2. Examples of the functionf .

Now let the variablex be the vector containing the
social network variablesxi. We extend the functionf to

a mappingφ via

φ(x) =


f(x1)
f(x2)

...

f(xm)

 . (2)

Now, to model interactions between the individuals,
we introduce a matrixA with elements being constants
or functions ofx. The state vectorx varies dynamically
as a function of all the interactions and so, in the vector
form, our model is

ẋ = A(x)φ(x). (3)

We now take a somewhat closer look at the matrixA
in (3). First of all, the simplest model would be the one
with a constant matrixA. Consider thei-th row of (3) in
this case, i.e.

ẋi = aijf
j ,

where we have simplified the notation by lettingf j =
f(xj) and by using the summation convention on re-
peated indices, i.e.

aijf
j =

m∑
j=1

aijf
j .

We could interpret the constantsaij as being a sort
of a desire for the link to be created in the network, with
the function valuesf j indicating an attractive force either
towards or against the creation of the link. In the simplest
example of two individuals, we havex1 = x12 and x2 =
x21, and so the system reads as

ẋ1 = a11f
1 + a12f

2,

ẋ2 = a21f
1 + a22f

2.

In the first row, the diagonal terma11f
1 could rep-

resent some innate desire of the first individual to create a
link with the second one, assuming thata11 > 0. How-
ever, there is a threshold value ofr below which a11f

1

becomes negative, indicating, e.g., a loss of interest in the
creation of the link. The second term,a12f

2, is reactive
in nature. Assuming thata12 > 0, this term will become
positive whenx2 > r, indicating that the second indi-
vidual wishes to create a link with the first. In this case
the first individual may react positively and vice versa. If
a12 < 0, then this may indicate a sort of a reverse effect
where the first individual will only be interested in creat-
ing the link if the second individual isnot interested. The
second row can be interpreted in the same way. In Sec-
tion 3 we will see how important the diagonal terms are.

To develop the possibilities of our model a little fur-
ther, we also consider the case where the elements ofA
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are functions ofx. In this paper we present one idea. Con-
sider the following for thei-th row of (3) (note that the
summation convention is suppressed):

ẋi = aiif
i +

m∑
j=1
j 6=i

aije
−µij |xi−xj | f j . (4)

In (4), aij and µij ≥ 0 are fixed parameters. The
first term represents, as before, the innate desire to create
a link. The change here is that the other terms are multi-
plied by e−µij |xi−xj |, and they can be seen as attenuating
factors coming into play whenxi and xj are in opposi-
tion.

3. Model Analysis

Let (Aφ)? denote the differential of the mappingAφ
(the Jacobian matrix in a given coordinate system) and
∂k = ∂/∂xk. Then theij-th element of the differential is
given by

(Aφ)?ij = aij∂jf
j + fk∂jaik, (5)

which results from the particular structure of (2) (note the
use of the summation convention).

Now, at each equilibrium point, the stability of this
equilibrium point depends upon the eigenvalues of the ma-
trix made up of the elements (5) evaluated at the equi-
librium point. To satisfy the property that all the points
of 2m should be stable equilibrium points and that the
other equilibrium points should be unstable, we require
that all the eigenvalues at the points of2m have negative
real parts and that the eigenvalues at the other equilibrium
points have at least one with positive real part. Due to the
design of the functionf , we can easily evaluate (5) at the
equilibrium points. Note that at all equilibrium points the
second term vanishes because it is multiplied byf , which
itself vanishes at an equilibrium point. We thus have

(Aφ)?ij(2
m) = −αaij or − βaij or γaij , (6)

whereγ is a positive constant satisfyingf ′(r) = γ.

From (6) we can deduce the following property:

Proposition 1. If the matrixAT in (3) is diagonally dom-
inant with positive diagonal elements at all equilibrium
points, then2m equilibrium points are all stable and all
other equilibrium points are unstable.

The proof of this property is very straightforward. If
an equilibrium point belongs to2m, then all the columns
of matrix A are multiplied by either−α or −β. We can
then apply Gerschgorin’s theorem (Golub and Van Loan,
1986), working column by column, which states that all

of the eigenvalues (λ) lie in the discs in the complex plain
defined by

∣∣λ− δajj

∣∣ ≤ m∑
i=1
i 6=j

∣∣δaij

∣∣ for j = 1, . . . ,m,

where δ = α or β. If the matrix A satisfies the prop-
erties in the proposition, then the above shows that all the
eigenvalues are in the left half complex plane. If, how-
ever, the equilibrium point does not belong to2m, then
there is at least one column of the matrix multiplied byγ
and satisfying

∣∣λ + γajj

∣∣ ≤ m∑
i=1
i 6=j

∣∣γaij

∣∣.
From this it is easy to see that the eigenvalue lies in the
right half complex plane.

4. Examples

In this section we present some simulation examples.
There are clearly a lot of combinations of network dimen-
sions, situations, parameter values, etc. For this reason we
confine our study to a network of two individuals here. In
this way we can look in depth at our model and visualise
the associated vector fields. Thus we do not need to rely
on simulation alone and we can see the attractors, sinks
and nodes of the vector fields.

We would like to see the effects of the matrixA on
the network, and so we fix certain parameters for all the
simulations. We setα = 5 and β = 7, and from that we
can easily determiner = 0.4167 and γ = 2.9167.

In each of the following simulations we visualised
the vector field defined by (3) and then calculated 100
trajectories of the vector field starting at random initial
points. The trajectories were then superimposed on the
vector field for graphical presentation with a star indicat-
ing the initial point. After each simulation the random
seed was reinitialised to its original value, so the same ini-
tial points were used in each simulation.

The first matrix that we used was[
1 0.7

0.5 1

]
.

We can determine the spectra of the differentials at the
equilibrium points via (6). For example, denoting by
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λ([ 1
0 ]) the spectrum at the point[ 1

0 ], we have

λ

([
0
0

])
= {−2.0420,−7.9580},

λ

([
1
0

])
= {−9.6401,−2.3599},

λ

([
0
1

])
= {−2.3599,−9.6401},

λ

([
1
1

])
= {−2.8587,−11.1413},

whilst, e.g.,

λ

([
0
r

])
= {−4.8619, 0.2785}.

This shows that the system has the right qualitative prop-
erties. The vector field and trajectories for this example
are shown in Fig. 3. We note that this example has all real
eigenvalues at the four sinks. At the four corners of Fig. 3
we see typical behaviour of trajectories, where they line
themselves with the corresponding eigenvector directions
as they approach the sinks. The majority of the trajecto-
ries converge to the point[ 1

1 ], indicating that this is, in a
way, a friendly network.

For the second example, we modified the matrix to
the following: [

1 −0.7
0.5 1

]
.

Fig. 3. First example.

As could be expected, the negative value introduces a tor-
sion effect into the force field and, for example, we have

λ

([
0
0

])
= {−5.0000± 2.9580i},

λ

([
1
1

])
= {−7.0000± 4.1413i}.

The vector field and trajectories for this example are
shown in Fig. 4. This is an example of a system with
complex eigenvalues and we can clearly see the spiralling
effect that these have on the vector field close to the sinks
at the four corners of Fig. 4. A trajectory will tend to a
spiral round a sink before converging to it, showing per-
haps a slightly indecisive nature of an individual. In this
example the two points[ 0

1 ] and [ 1
1 ] attract most of the

trajectories.

For the third example, we introduce the attenuating
functions as in (4). First of all we set all the parameters
µij = 2 and use the same constant matrix as in the first
example above. As has been expected, the spectra at the
two points [ 0

0 ] and [ 1
1 ] are identical to those in the first

example. However, due to the attenuating functions, we
have

λ

([
1
0

])
= {−7.1065,−4.8935},

λ

([
0
1

])
= {−4.8935,−7.1065},

which are clearly different from those in the first example
in that they are less extreme. In Fig. 5 we can see the vec-
tor field and trajectories for this example. In spite of the

Fig. 4. Second example.
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Fig. 5. Third example.

change in numerical values of the eigenvalues, the quali-
tative behaviour of this system is very much the same as
in the first example.

In the fourth example, we use the same attenuat-
ing functions with the same parameters, but we apply the
same constant matrix as in the second example. The spec-
tra at the points[ 0

0 ] and [ 1
1 ] are identical to those in the

second example. However, the changes at the other two
stable equilibrium points are somewhat more dramatic
than the corresponding changes between the first and the
third example. For example, without the attenuating func-
tions we have

λ

([
1
0

])
= {−6.0000± 3.3541i},

λ

([
0
1

])
= {−6.0000± 3.3541i},

whilst with the attenuating functions we have

λ

([
1
0

])
= {−6.8807,−5.1193},

λ

([
0
1

])
= {−6.8807,−5.1193},

i.e., the eigenvalues have changed from complex to real.
The simulation results for this example can be seen in
Fig. 6, where we notice that the vector field has lost its
spiralling effect at the two corners[ 1

0 ] and [ 0
1 ] as pre-

dicted by the eigenvalues, and convergence to these points
is qualitatively different from the trajectories in Fig. 4.

Fig. 6. Fourth example.

5. Conclusions

Although we have achieved some of our aims, this work is
very much ongoing in nature. We have developed a model
that does exhibit the characteristics that we require of it,
but more still needs to be done.

One of our main lines of research concerns parame-
ter identification. In (Snijders and van Duijn, 1997) and
the references therein, a lot of work was done on the pa-
rameter estimation problem, or fitting the model to a set
of data. We call it parameter identification in our model to
differentiate between stochastic and deterministic cases.
We are currently working on this and we hope to fit our
model to data sets and, wherever possible, compare our
results with those concerning stochastic models.

We are also looking for ways to give us better control
over the eigenvalues. In other words, we are not only look-
ing at the stability problem, but also at the levels of stabil-
ity. This is important because we could have variables
changing at widely different speeds, and this can some-
times reflect a real situation. For example, daily mood
changes in individuals may have a local effect on a net-
work, but no global effect in the long run.
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