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Abstract 

In the calculation model of the equivalent stabilizing force qd for bracing system consistent 

with EN 1993-1-1 it has been conservatively assumed that the member to be restrained is 

uniformly compressed within its length by an axial force. This assumption is incorrect 

owing to the actual distribution of the axial force which is non-uniform in the shape of 

parabola. Thus a different imperfection force is generated in comparison with this given 

in EN 1993-1-1. In the paper the equivalent stabilizing force qd of simply supported roof 

girders has been analyzed. The formulas for an equivalent stabilizing forces of restrained 

roof girders with parabolic variability of axial force, have been proposed. Obtained results 

have been discussed and illustrated with examples. 

Keywords: steel structures, lateral bracing system, equivalent stabilizing force, roof 

girder, member to be restrained, purlin, 

1. INTRODUCTION 

Accordingly with EN 1993-1-1 [4] the global analysis of the structure takes into 

account the geometrical imperfection like initial bow imperfection (Fig. 1b) of 

frame columns and restrained flanges of roof girders. For convenience, the effects 

of initial bow imperfections of the members to be restrained by a bracing system 
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are replaced by the equivalent stabilizing imperfection force qd1 and reactions Rd1 

(Fig. 1d), that are determined from equations:  
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where: NEd - the axial force in a member, e0 - the initial bow imperfection,  

L - the span of restrained member. 

 
Fig. 1. Calculation model of bracing system according to EN 1993-1-1 [4]: a) scheme  

of a bracing system, b) scheme of a member to be restrained, c) distribution of N1(s)  

in the member, d) loadings qd1 from imperfections 

The uniformly distributed imperfection force qd1 = const see (1) and reactions Rd1 

see (2) have been determined in situation where the axial compression force is 

N1(x) = const (Fig. 1c). This assumption is fulfilled by frame columns being under 

uniform compression.  
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In the analysis of the bracing system (Fig. 1a) which provides the lateral stability 

of the compression flange of roof girders, the effect of imperfection in EN 1993-

1-1 [4] is accounted for in the shape of their bow imperfection       (Fig. 1 b): 
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In this model of calculation [3], [6], [7] the axial force is assumed to be uniform 

N1(x) = const (Fig. 1c) within the span L, and equal to the maximum force NEd,max 

(1), (2) in the restrained member, which is conservative in case of the real non-

uniform distribution of axial forces e.g., (Fig. 1c).  

The total equivalent force qd1,m from m members to be restrained, transmitted to 

the lateral bracing (including its deformations) EN 1993-1-1 [4] is determined 

from expression: 
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where: NEd,i - the maximum compressive force in the restrained member i, δq1,w  - 

in-plane deflection of the lateral bracing system in the mid-span (Fig. 1a) caused 

by qd1 and all other external loads (e.g., wind load w) obtained from first order 

analysis (it may be assumed δq1,w = 0 if second order analysis is used),  e - total 

imperfection of m members to be restrained: 
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For instance in single-span girders free supported at the ends (Fig. 2a, b), the 

compressive force has a quasi-parabolic distribution.  

For this shape of distribution (N(x) ≠ const), the non-uniform arrangement of the 

equivalent stabilizing force within the length of restrained member is adequate - 

qd2(x) ≠ const i.e., variable and with changeable signs. In [5], for an analysis of 

the non-linear distribution of forces, the equivalent stabilizing force qd2(x) has 

been revealed in comparison with qd1(x) = const, determined according to 

EN 1993-1-1 [4]. 

A refined, generalized models of calculation of equivalent stabilizing forces for 

restrained, simply supported roof girders have been proposed. In the analyses the 

parabolic distribution of the compressive forces acting in the restrained member 

N(x) ≠ const and its parabolic bow in the roof plane e0 have been accounted. 

Obtained results have been discussed and illustrated with examples. 
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Fig. 2. Schemes of: a) simply supported plate girder, b) simply supported truss girder,  

c), d) distribution of the axial force in the restrained upper chord of the girders 

2. EQUIVALENT SABILIZING FORCE OF THE MEMBER IN 

COMPRESSION BY THE FORCE PARABOLICALLY 

VARYING WITHIN ITS LENGTH 

The equivalent stabilizing force of the single-span roof rafter that is free 

supported, symmetrically loaded, and laterally restrained in the roof plane 

(Fig. 2a, 3a) is considered. The distribution of compressive forces N2(x) within 

the length x of its upper chord is quasi-parabolic (Fig. 2c, 3b). Variability of the 

longitudinal force throughout the length of the restrained member has been 

described by a parabolic function expressed in a parametric form: 

)1(4)(2 ssNsN Ed   (6) 

where: s = x/L - relative length of the restrained member in the range 1,0 . 

In the analyzed calculation model the initial bow imperfection has been taken as 

second order parabola in the form: 

)1(4)( 0 ssesy   (7) 

In [2] the general equations have been derived for both the equivalent 

imperfection force qi(s) and reactions Rdi of the restrained member that is 

subjected to the axial force varying within the member’s length. In the case of 

symmetrical distribution of the force N2(s) in the restrained member (see Fig. 2c, 

3b) the shear force Vd2(s) and the equivalent stabilizing force qd2(s) are calculated 

from expressions: 
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The distribution of compression forces N2(x) in the restrained chord of the roof 

girder (Fig. 3a) has been shown in Fig. 3b. The diagram of shear force V2(s) and 

distribution of the equivalent stabilizing force qd2(s), respectively, are shown in 

Fig. 3c and 3d. It is momentous that at the support zone Vd2(0) = Vd2(1) = 0 (there 

is no reaction force Rd2 = 0). 

 
Fig. 3. Roof girder: a) static scheme, b) axial force N2(s) in the restrained chord, c) shear 

force V2(s) in the restrained chord, d) the equivalent stabilizing force qd2(s) in the 

restrained chord 

3. DISCUSSION OF OBTAINED RESULTS  

The case of a constant axial force in the restrained member fits to the model of 

EN 1993-1-1 [4], where the compression axial force is assumed as N1(s) = const 

(Fig. 1c). Then the equivalent bow imperfection force consists of the uniform 

force qd1,m, calculated from equation (4) (Fig. 1d) and end reactions Rd1,m (Fig. 1d), 

to be calculated from formula:  
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Force qd1,m together with reactions Rd1,m create a self-balanced system (no effects 

on columns’ bracings). In industrial buildings the uniform force qd1,m is transferred 

to intermediate purlins, while reactions Rd1,m are transferred to the eave purlins. 

In case of the uniform qd1,m all imperfection forces Fd1,m in intermediate purlins 

have the same values and signs. For m restrained members, the imperfection 

forces Fd1,m are calculated from equation: 
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where: a - spacing of purlins. 

The biggest imperfection forces Fd1,m(0) and Fd1,m (L) occur in eave purlins that 

are loaded by reactions Rd1,m and force qd1 (Fig. 1d). 

These forces are calculated as: 
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It should be mentioned that in the analysis of effects of the bow imperfection 

forces qd1,m, the procedure is limited to the intermediate purlins and bracing. 

Meanwhile, it is necessary to check the eave purlins due to large compression 

forces (much bigger from those occurring in intermediate purlins). 

In the literature dealing with imperfection forces e.g. [6], and also in analyses of 

the behavior of the structure, the geometrical imperfections are considered to be 

significant for the evaluation of safety of the compression members. The analysis 

of internal forces of a member tensioned by a constant force N1(s) = const, the 

effects of his bow deflection are the same as for a compression. The equivalent 

bow imperfection forces of tensile members under the constant force consists of 

uniform force qd1,m and reactions Rd1,m, that have the same distribution (see Fig. 

1d) and values of opposite signs from those determined from equations (1), (2), 

(4), (10), (11), (12). The later are transferred to purlins and bracing as in the case 

of compression members. It means that the initially deflected portions of the 

tensile members transfer the imperfection forces to bracing (like in case of 

compression members). 

In case, when along the restrained member the non-uniform compression force 

N2(s) has a parabolic distribution, described by the relationship (6), the 

distribution of imperfection force qd2(s) is variable as well (Fig. 3d, 4b). 

The determined from equation (8) total imperfection force qd2,m from m restrained 

members transferred to the bracing (with its strain taken into account) is 

determined from equation: 
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where: δq2,w - in-plane deflection of the lateral bracing system in the mid-span 

(Fig. 1a) caused by qd2 and all other external loads (e.g., wind load w) obtained 

from first order analysis (it may be assumed δq2,w = 0 if second order analysis 

is used).  

 
Fig. 4. a) parabolic distribution of the axial force in the member to be restrained in a 

single-span, free supported beam, b) imperfection force qd2 

In case of a member’s compression by a constant force, the force qd1,m is balanced 

by reactions Rd1,m (Fig. 1d). When the parabolic changes of the axial force occurs, 

the imperfection force qd2(s) is also self-balanced. But in this case reactions at the 

support do not appear (Rd,m = 0, because the shear force is V3(s) = 0; see Fig. 3c). 

Imperfection force qd2(s) differs essentially from the force qd1 in EN 1993-1-1 [4]. 

For the parabolic variability of the compression force in the restrained member 

N2(s) (Fig. 3b, 4a), the distribution of the imperfection force qd2(s) (Fig. 3d, 4b) is 

variable (non-uniform) and has changes of the sign (Fig. 4b). At the distance of 

about s = 0.211 from the support, the force qd2(s) changes the sign. Forces qd1(0.5) 

and qd2(0.5) are the same. The biggest force qd2(s) occurs at the support zone and 

have an opposite sign to the forces at the mid-span zone qd2(0.5). Imperfection 

forces at the support zone qd2(0) and qd2(1) are twice bigger from qd2(0.5) and qd1. 

The comparison of imperfection forces qd1 and qd2 shows that differences between 

them are significant and have a qualitative but first of all a quantitative character. 

This affects the state of stresses in both purlins and bracing. 
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The imperfection force qd2 is transmitted to purlins and causes longitudinal forces 

Fd2 that varies along the lateral bracing. The imperfection axial forces in 

intermediate purlins Fd2,m,i(si), and eave purlins Fd2,m(0), Fd2,m(1) from m restrained 

members are calculated from equations: 
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(15) 

Imperfection force qd1 (N1(s) = const) is uniform (Fig. 1d) and all imperfection 

forces Fd1 in intermediate purlins are the same having the same sign, where as in 

the eave purlins large forces Rd1 (Fig. 1d) occurs. 

The force qd2(s) is non-uniform and all imperfection forces Fd2,m,i transmitted to 

purlins have variable values and signs along the restrained member. In case when 

force qd1 is considered, the imperfection forces Fd1,m transmitted to intermediate 

purlins have the same values and signs. Forces in the purlins placed in the middle 

zone of the roof Fd1,m(0.5) i Fd2,m(0.5) are almost the same. In the intermediate 

purlins excluding the eave zone forces Fd2,m(si) are smaller from forces Fd1,m(si). 

The biggest forces Fd2,m,i might occur in eave purlins, but they are much smaller 

from the force Fd1,m(0) = Fd1,m(L) (11) in the eave purlin. For instance in the 

structure shown in Fig. 1a the force in purlin eave Fd2(si = 0) constitutes 16% of 

the force Rd1. 

4. EXAMPLE 1 

The scheme of the studied roof structure is shown in the figure exposed in Table 1. 

Data:  

 roof plate girder (Fig. 2a) with a span of L = 24 m;  

 maximum force in the restrained chord NEd = 163.64 kN (Fig. 4a);  

 spacing of purlins a = 2 m. 

The diagonals of the bracing are flexible and do not resist compression forces. 

The longitudinal, axial forces have been analyzed in purlins and bracing’s 

diagonals due to imperfection forces generated by 1 stabilized roof plate girder. 

Values of these forces for different models of imperfection are listed in Table 1.  
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Table 1. Axial forces in diagonals of bracing and purlins versus different models of 

imperfection forces 

 

Strut no  

Axial forces in bracing diagonals and purlins in some 

schemes of imperfection force 

1

2

d

d

q

q
 

qd1 qd2 

1 2 3 4 

Axial forces in diagonals Sd,i [kN] 

b
ra

ci
n

g
 

1 1.265 0.202 0.160 

2 1.035 0.453 0.438 

3 0.805 0.531 0.660 

4 0.575 0.475 0.826 

5 0.345 0.323 0.936 

6 0.115 0.114 0.991 

Axial forces in purlins Fd,i [kN] 

p
u

rl
in

 

7 1.200 0.192 0.160 

8 -0.218 0.238 -1.092 

9 -0.218 0.074 -0.339 

10 -0.218 -0.053 0.243 

11 -0.218 -0.144 0.661 

12 -0.218 -0.199 0.913 

13 -0.218 -0.218 1.000 

Notation of axial forces: „-” - compression,, „+” - tensile 
 

 

The axial forces in purlins and the bracing have been calculated according to the 

model with the following assumptions: 

 constant compression force along the restrained chord of single-span, free-

supported; under the force qd1 and Rd1 (Table 1, column 2), 
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  parabolic shape of distribution of the compression force in the restrained 

member of a single-span, free-supported; under the force qd2 (Table 1, 

column 3). 

The executed calculations allow to formulate the following conclusions: 

1. Assumed in the calculation model of the parabolic, real distribution of the 

longitudinal force in the restrained member shows, in comparison to the 

model recommended by EN 1993-1-1 [4], the considerable qualitative and 

quantitative changes of imperfection longitudinal forces in purlins and the 

bracing. 

2. Taken into account (see Table 1 column 3) the parabolic distribution of the 

longitudinal force in the restrained chord of a single-span, simply supported 

roof girder (imperfection force qd2) causes in comparison to EN 1993-1-1 [4] 

(Table 1, column 2; imperfection force qd1) the following effects: 

 the decrease of 84% of the axial force in the eave purlins no 7, 

 increase of 9.2% of axial force in the purlin no 8 next to the eave, 

 in the model loaded by force qd1 the maximum force appears in the eave 

purlin no 7 (S7 = 1.200 kN), 

 in the model loaded by force qd2 the maximum force appears in the purlin 

no 8 next to the eave (S8 = 0.238 kN), 

 the axial force in the central purlin no 13 is the same for both calculation 

models, 

 the decrease of 8.7% to 66.1% of axial forces in purlins no 9-12, 

 the decrease of 0.9% to 84% of axial forces in all diagonals of bracing, 

 in the model loaded by force qd1 the maximum axial force (used for 

members’ dimensioning) appears in the eave diagonals no 1  

(S1 = 1.265 kN), 

 in the model loaded by force qd2 the maximum axial force (used for 

members’ dimensioning) appears in the diagonal no 2 next to the eave 

(S2 = 0.453 kN). 

5. CALCULATION OF THE EQUIVALENT STABILIZING 

AXIAL FORCES IN PURLINS BY THE METHOD OF THE 

EQUILIBRIUM OF FORCES IN NODES 

Alternative to the analytical determination of imperfection actions proposed in 

part 2, is the method based on the analysis of the equilibrium of forces in nodes 

placed on initially bent member to be restrained [5]. 

Knowing the values of axial forces in the member with initial bow imperfection 

(e.g., directly from the static calculation of internal forces in the roof girder) it is 

possible to determine individual actions Fd,i transmitted to purlins and bracing. 
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This method employs the condition of equilibrium of forces acting in nodes 

defined as supports of single beams inscribed in a bow deflected member to be 

restrained. The span of such created beams is equal to the distance between 

purlins. Beams a subjected to the axial force N(x) varying along their length with 

distribution like in the restrained member. Imperfection forces Fd,i of the 

restrained member transmitted to purlins and the bracing are the support reactions 

of the analyzed beam system (Fig. 5) can be found by equation: 

11, sinsin  iiiiiid NNRF  . (16) 

 
Fig. 5. Scheme of determination of imperfection forces from the condition of 

equilibrium of forces grouped in specified nodes 

6. EXEMPLE 2 

In order to control the correctness of the analytical model proposed in the point 2 

and for presentation of the method of balancing the forces grouped in specified 

nodes, the analysis of imperfection force of the restrained member has been made 

for distribution of axial force assumed in example 1 (in plated girders - Fig. 2a, c, 

3a, b). The axial forces have been analyzed in purlins of the structure shown in 

the figure exposed in Table 1. As a calculation model 12 single-span beams have 

been taken (Fig. 6c). Their supports a situated on the line with initial bow 

imperfection e0 = L/500 = 24 000/500 = 48 mm. 

The imperfection force transmitted to purlins has been determined as support 

reactions Ri,p of analyzed 12 single-span beams (see row 3, Table 2). In row 2 in 

Table 2, the forces Fd,i (see column 3 in Table 1) found by equations (14) and (15) 

i.e., are presented according to the analytical calculation model.  

Comparison of forces Ri,p and Fd,i shows the very small differences between them 

(not exceeding 0.5%). Numerically obtained forces acting in purlins are of 

acceptable accuracy for design practice. Thus the analysis confirm also the 

correctness of proposed analytical model of calculation of imperfection forces. 
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Fig. 6. Scheme of the analyzed roof bracing in example 3 

Table 2. Axial forces acting in purlins due to imperfection actions found from (14) and 

(15) versus corresponding forces determined numerically 

 Member no 7 8 9 10 11 12 13 

E
x

am
p

le
 

n
o
 

1 Fd,i [kN] 0.192 0.238 0.074 -0.053 -0.144 -0.199 -0.218 

2 Ri,p [kN] 0.189 0.238 0.075 -0.052 -0144 -0.198 -0.216 

3 Ri,t [kN] 0.367 0.179 0.027 -0.088 -0.166 -0.210 -0.218 
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7. EXEMPLE 3 

Given in part 2 expressions for calculation imperfection forces qd2(s) concern the 

continuous, parabolic function describing the distribution of the axial force in a 

restrained member (Fig. 2c, 3b). This distribution is characteristic for plate girders 

(Fig. 2a, 3a). In case of trusses (Fig. 2b), the distribution has a stepwise parabolic 

shape (Fig. 2d), and then an adequate approximation by continuous parabolic 

distribution should be done. The equivalent stabilizing force for restrained top 

chord of truss girder is easier to calculate using the method based on the analysis 

of the equilibrium of forces in nodes. That type of calculations were presented in 

this example. 

The scheme of the studied roof structure shown in Fig 6.  

Data:  

 truss girder with a span of L = 24 m;  

 spacing of purlins a = 2 m;  

 maximum force in the restrained chord NEd = 163.64 kN.  

The axial forces have been analyzed in purlins of the structure shown in Fig. 6b. 

As a calculation model 12 single-span beams have been taken shown in Fig. 6c. 

Their supports a situated on the line with initial bow imperfection of a restrained 

member e0 = L/500 = 24 000/500 = 48 mm. Beams are subjected to the axial force 

N2(x) shown in Fig. 6d. 

The imperfection force transmitted to purlins has been determined as support 

reactions Ri,t of analyzed 12 single-span beams given in row 4, Table 2.  

8. CONCLUSIONS AND FINAL REMARKS  

The model of evaluation of bow imperfection forces qd1 and the calculation of 

purlins and bracings according to EN 1993-1-1 [4] are not correct. Its use gives a 

faulty estimation of the internal forces acting in purlins and bracings (column 4, 

Table 1). It results from not been taken into account, usually parabolic distribution 

of the longitudinal force in the members to be restrained. Moreover, in the case 

of roof girders rigidly connected to the columns, the restrained part of the member 

is loaded by an axial force with changeable signs, parabolically variable. 

If distributions of the longitudinal forces in the restrained chord have a parabolic 

shape then the imperfection forces qd2 are non-uniform with signs’ changing. 

Thus, the obtained values may be bigger from the imperfection force qd1 

determined by EN 1993-1-1 [4]. Demonstrated differences have a quality and 

quantity character. This state causes a different distribution of internal forces in 

purlins and the bracing in comparison with results obtained by EN 1993-1-1 [4] 

(extreme forces might be higher and appear in other as expected members). 
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Given in part 2 expressions for calculation imperfection forces qd2(s) concern the 

continuous, parabolic function describing the distribution of the axial force in a 

member. This distribution is characteristic for plate girders (Fig. 2a). In case of 

trusses (Fig. 2b), the distribution has a stepwise parabolic shape (Fig. 2d), and 

then an adequate approximation by continuous parabolic distribution should be 

done.  

The equivalent stabilizing force for restrained top chord of truss girder is easier 

to calculate using the method based on the analysis of the equilibrium of forces 

in nodes. 

The proposed evaluation of imperfection forces qd2 (s) allows to analyze a refined 

and generalized model of the behavior of purlins and bracings. The presented 

qualitative and quantitative differences of suggested models are bigger from those 

obtained by EN 1993-1-1 [4]. Therefore, appropriate corrections should be 

considered in the amended version of EN 1993-1-1 [4]. 
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OBCIĄŻENIE IMPERFEKCYJNE PRZEGUBOWO PODPARTYCH DŹWIGARÓW 

DACHOWYCH Z UWZGLĘDNIENIEM WZDŁUŻNEJ ZMIENNOŚCI SIŁY 

ŚCISKAJĄCEJ W ICH STĘŻANYM PASIE  

S t r e s z c z e n i e  

W modelu obliczeniowym oddziaływań imperfekcyjnych qd oraz wytężenia płatwi 

i stężeń przyjęto w EN 1993-1-1 jako bezpieczne założenie, że stężany pas górny 

dźwigara dachowego jest ściskany siłą stałą na jego długości. Założenie to nie jest 

poprawne, gdyż rozkład siły osiowej w stężanym pasie dźwigara dachowego zmienia się 

wzdłużnie. Jest on zazwyczaj paraboliczny, a także może być też znakozmienny (np. 

w przypadku rygla dachowego sztywno połączonego ze słupami, w jego stężanym pasie 

górnym występuje ściskanie i rozciąganie). Powoduje to generowanie odmiennego 

oddziaływania imperfekcyjnego przekazywanego na płatwie i stężenie, niż obliczone wg 

modelu rekomendowanego w EN 1993-1-1.  

Przedmiotem pracy są analizy obciążeń imperfekcyjnych stężanych pasów górnych 

dźwigarów dachowych, które są podparte przegubowo. Siła osiowa w stężanych pasach 

górnych zmienia się parabolicznie na ich długości i jest największa w środku rozpiętości 

dźwigara dachowego. Podano zależności analityczne służące do wyznaczania 

oddziaływań imperfekcyjnych stężanych pasów górnych badanych dźwigarów 

dachowych, w których występuje wzdłużna, paraboliczna zmienność siły osiowej. 

Wykonano analizę porównawczą zaproponowanego, uściślonego modelu wyznaczania 

obciążeń imperfekcyjnych z modelem obliczeniowym wg PN-EN 1993-1-1. 

Przedstawiono również alternatywny sposób wyznaczania oddziaływań imperfekcyjnych 

w stężanym pasie dźwigarów dachowych. Polega on na analizie równowagi sił w węzłach 

łukowego (wstępnie wygiętego) stężanego pasa górnego dźwigara dachowego. Ten 

sposób jest szczególnie przydatny w obliczeniach oddziaływań imperfekcyjnych 

kratownicowych dźwigarów dachowych. Przeprowadzono dyskusję otrzymanych 

wyników badań i zilustrowano analizowane zagadnienia przykładami obliczeniowymi. 

Słowa kluczowe: konstrukcje stalowe, stężenia dachowe, obciążenia imperfekcyjne, 

dźwigar dachowy, stężany pręt, płatew 
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