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In the present paper, trigonometric B-spline DQM is applied to get the approximated solution of coupled 2D 
non-linear Burgers’ equation. This technique, named modified cubic trigonometric B-spline DQM, has been used 
to obtain accurate and effective numerical approximations of the above-mentioned partial differential equation. For 
checking the compatibility of results, different types of test examples are discussed. A comparison is done between 

2L  and L∞  error norms with the previous, present results and with the exact solution. The resultant set of ODEs 
has been solved by employing the SSP RK 43 method. It is observed that the obtained results are improved 
compared to the previous numerical results in the literature. 
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1. Introduction 
 
In this paper, the considered equation is 2D non-linear coupled Burgers’ equation as follows: 
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Where, D  is the computational domain which is square given as follows: 
 
  ( ){ }, : , D x y a x b c y d= ≤ ≤ ≤ ≤ .  (1.4) 
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Boundary conditions:  
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Where, D∂  is the boundary of a given computational domain, ( ), u x t  is the component of velocity in one 
dimension, ( ), , u x y t  and ( ), , v x y t  are the components of velocity in 2𝐷. , 1 2Φ Φ , ψ , ψ  are 1 2 the known 
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t

∂
∂

 is the unsteady term, u  u
x

∂
∂

 is the non-linear convection term,   
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diffusion term, υ  is the viscosity coefficient greater than 0, Re  is known as the Reynolds number. Coupled 
viscous Burgers’ equation is the most suitable arrangement of the Navier-Stokes equation, which also has exact 
solutions. In the coupled viscous Burgers' equation convection and diffusion are taken into consideration and 
the equation is equivalent to the incompressible Navier-Stokes equation. In order to develop the methods for 
computation of complex fluids, the first step is to attain the numerical solution of Burgers' equation. That is 
why developing new schemes to get the numerical approximations of the Burgers' equation is a novelty. 
 In 1983 Fletcher [1] gave analytical solutions of the 2D Burgers’ equation by using the Hopf-Cole 
transformations. In previous years much effort has been made in order to get the numerical approximation of 
the same equation by many researchers [2-12]. In the last decade, a lot of work has been done upon the Burgers' 
equation. The Burgers' equation was unraveled by implementing various new schemes, in order to get 
analytical as well as numerical solutions like in [1, 13]. The equation was solved by Hopf-Cole transformations, 
by implementing finite difference methods [14-18], by making use of B-spline collocation method [19], by 
using polynomial DQM [20-21], by implementing quartic the B-spline DQM [22], by using the modified cubic 
B-spline based collocation method [23], by the cubic B-spline based DQM [24], by implementing the scheme 
of modified cubic B-spline based DQM [25, 26] and many others. Mittal and Jiwari [28] used DQM to solve 
the 2D coupled Burgers' equation, and its convergence and stability were also discussed. Jain and Holla [2] 
implemented the cubic B-spline regime to solve 2D coupled Burgers’ equation. They also discussed stability 
and convergence. Zhu et al. [29] anticipated the discrete Adomian Decomposition Method in order to obtain 
the numerical approximation of the 2D coupled Burgers’ equation. Hossein [30] proposed a scheme of new 
hybrid Laplace and New Homotopy Perturbation Method (LTNHPM) to solve the 2D coupled Burgers’ equation. 
 The differential quadrature method is a numerical regime for obtaining the solution of a range of partial 
differential equations. Basically, DQM was established by Bellman et al. in the 1970s. DQM is similar to the 
integral quadrature method, and with the help of DQM, an approximation of derivative of a function at any 
point can be made by employing the linear sum of the complete set of functional values along a given mesh 
line. The main idea of DQM lies in obtaining the weighting coefficients. DQM and its different applications 
got developed by leaps and bounds in the late 1980s. In 1996 a review of sequential development and 
applications of DQM was given by Bert and Malik [32]. Chang Shu [33] presented a simple algebraic 
formulation to obtain the weighting coefficients for the approximation of the first-order derivative with no 
constraint on the choices of grid points and gave a recurrence relation for computing weighting coefficients of 
higher-order approximations. Bellman et al. [34] (in 1972) gave the basic idea of DQM, which was obtained 
by the concept of integral quadrature. After that, the above-mentioned method of finding weighting coefficients 
was developed by Quan and Chang in 1989 [35, 36]. A significant headway to find the weighing coefficients 
was made by Shu and Richards in 1990 [37]. 
 The cubic trigonometric B-spline basis function ( )kTB x  is given as follows for   , , , .., k 1 2 3 n 1=− … + . 
The main idea of the present paper is to develop a new regime, a modified cubic trigonometric B-spline 
differential quadrature method, to acquire the numerical results of coupled the 2𝐷 non-linear Burgers' equation 
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 In the proposed method, a modified cubic trigonometric B-spline has been implemented as the test function 
in DQM to calculate the values of weighting coefficients afterwards. The above-mentioned equation got 
transformed into the system of the first-order ordinary differential equations. The obtained system of equations will 
get solved by employing SSP-RK43 method. The accuracy and effectiveness of the proposed method will be 
confirmed by some test examples. Error analysis is given with the aid of 2L  and L∞  error norms. With the aid of 
test examples, the exactness of the method will be checked. In Section 2, the modified cubic trigonometric B-spline 
DQM is implemented. In Section 2.1, a detailed discussion is given to determine the weighting coefficients at the 
different grid points. In Section 3, a detailed discussion is presented with the help of numerical examples. With the 
help of these examples, a comparison is made of the numerical and exact solutions, shown by different tables and 
figures. In Section 4, a brief description of the effectiveness of the proposed scheme is given.  
 
2. Numerical scheme: modified cubic trigonometric B-spline differential quadrature method 
 
Let us consider a one-dimension computational domain [ ], a b  which is partitioned into  N grid points s.t.  

a = 1x < 2x < 3x < …….<  Nx = b  with a uniform step size, where, i 1 1x x x+ −Δ = . The thr order derivative can 
be discretized with the concept of DQM such as 
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( )r
ija  is the weighting coefficient of the thr  order derivative of u  with respect to x . Similarly, we can continue 

the 1𝐷 discretization into 2𝐷 discretization. Let us consider a computational domain which is [ ] [ ],   , a b c d× , 
where, [ ], a b  is given with N  grid points s.t.          .     1 2 3 Na x x x x b= < < < …… < =  and 

          .    1 2 3 Mc y y y y= < < < …… < = with uniform step sizes, given by i 1 1x x x+ −Δ =  and jj 1y yy + −Δ = , 
respectively, in the x  and y  directions. 
 By using the notion of  Eq.(2.1) thr  spatial partial derivatives of u  with respect to x  (keeping jy  
fixed) and y  (keeping ix  fixed), respectively, can be obtained as follows 



82  A numerical approximation of 2D coupled Burgers’ equation… 

  
( ), , r

i j
r

u x y t

x

∂

∂
= ( ) ( ) , ,  

N
r

k jik
k 1

a u x y t
=
 ,       , , ....., i 1 2 N=  and  , ,....., j 1 2 M= ,  (2.2) 

 

  
( ), , r

i j
r

u x y t

y

∂

∂
= ( ) ( ) , ,  

N
r

i kjk
k 1

b u x y t
=
 ,       , , ....., i 1 2 N=  and  , ,....., j 1 2 M= .  (2.3) 

 
Where, ( )r

ija  and ( )r
ijb  are known as the weighting coefficients of thr  order spatial partial derivatives with 

respect to x  and y , respectively.  
Similarly, thr order spatial partial derivatives of ( ), , v x y t  can be obtained with respect to  x (keeping jy  fixed) 
and y (keeping ix  fixed), respectively, as follows: 
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In a similar approach, first and second order spatial partial derivatives of u  with respect to x  can be obtained 
as follows: 
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In a similar approach, first and second-order spatial partial derivatives of u  with respect to y  respectively can 
be obtained as follows: 
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Similarly, first and second-order spatial partial derivatives of v  with respect to x  are given as follows: 
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Similarly, first and second-order spatial partial derivatives of v  with respect to 𝑦 are given as follows: 
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Where, the selected basis is given as follows ( ){ 0TB x , ( )1TB x , ( )2TB x , ……, ( )}N 1TB x+ in the 

computational domain σ = ( ){ , x y : a x b≤ ≤  and }c y d≤ ≤ . When the th4  order cubic Hyperbolic B-spline 
is implemented at different node points, then following the table will be obtained. 
 
Table 1. Values at different node points. 
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In order to improve the results, the modified cubic trigonometric B-spline can be implemented, in such a way 
so that the obtained matrix system will become diagonally dominant [38], where by using the following set of 
equations improvised values can be obtained. 
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Where, { }, , ....., ,1 2 3 NMTB MTB MTB MTB  construct a basis in the computational domain. 
 
  ( ){ }  ,  :  and  x y a x b c y dσ= ≤ ≤ ≤ ≤ . 



84  A numerical approximation of 2D coupled Burgers’ equation… 

2.1. Determination of weighting coefficients  
 
On substituting the values of modified trigonometric B-splines in Eq. (2.6), we will get a system of linear 
equations such as 
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By using the tabular values in the formulae of the modified basis, a tridiagonal system of equations will be 
obtained as follows 
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Which is known as the vector of weighting coefficients corresponding to ix , 
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and the corresponding coefficient matrix is given as follows 
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Here, it is obvious that the obtained coefficient matrix is invertible. Similarly, we can apply the same concept 
in the Eqs (2.8), (2.10) and (2.12) in order to discretize the remaining first-order spatial partial derivatives. 
Second and higher order partial derivatives can be obtained by using the recurrence relation [33] given as 
follows: 
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Similarly, the weighting coefficients ( )r

ijb  for second or higher-order derivatives can be obtained by the 
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By using the above formulae Eq.(1.1) can be discretized as follows: 
 

  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , 
,  , ,  ,

 ,  ,

N M
i j 1 1

i j k j i j i kik jk
k 1 k 1

N M
2 2

k j i kik jk
k 1 k 1

u x y t
u x y a u x y v x y b u x y

t

1 a u x y b u x y
Re

= =

= =

∂
= − − − +

∂

 
+ + 

  

 

 
 (2.22) 

 
where, ( ),i jx y   ∈Ω ,   ,   , , , ...... ,  t 0 i 1 2 3 N> = and   , , ,  , j 1 2 3 M= …… . 
Similarly, by using the above formulae equation (1.2) can be discretized as follows: 
 

  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , 
,  , ,  ,

 ,  ,

N M
i j 1 1

i j k j i j i kik jk
k 1 k 1

N M
2 2

k j i kik jk
k 1 k 1

v x y t
u x y a v x y v x y b v x y

t

1 a v x y b v x y
Re

= =

= =

∂
= − − − +

∂

 
+ + 

  

 

 
 (2.23) 

 
where, ( ,i jx y )  ∈Ω ,   ,   , , , ...... ,  t 0 i 1 2 3 N> = and  , , ,  , .j 1 2 3 M= ……  
Equations (2.16) and (2.17) will be written as follows: 
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Thereafter, using the scheme of SSP-RK43 the above set of equations can be solved. Accuracy is measured in 
terms of norms, i.e., 2L  and L∞  error norms defined as follows: 
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i j i j

i 0 j 0
u u

= =
− ,                (2.26) 

 
   = L∞ , , ,

max computedexact
i j i ji j

u u− .                     (2.27) 

 
3. Test examples 
 
Test example 1 
 
Considered the Eqs (1.1) and (1.2) with analytical solutions given by Fletcher [1] in 1983 as follows: 
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For domain   0 x 1≤ ≤  and   0 y 1≤ ≤ . We can easily obtain the initial and boundary conditions from the given 
analytical solutions. In the following table, (Tab.2) 2L  and L∞ errors for u-component have been discussed 

for the values υ = 210− , Δ t=0.0001 at the time level   .  t 1 0= and a comparison is made with [11] and [26].  
 
Table 2. Comparison of 2L  and L∞  errors for u -component. 
 

Comparison of 2L  and L∞  errors for u-component where v= 210−  and Δ t=0.0001 at time level t=1.0 
Srivastava et al. (2013) [11] Shukla et al. (2014) [26] Present 

Grid Points 2L  L∞  2L  L∞  2L  L∞  

4 4×  8.57E-02 9.70E-02 1.64E-02 2.88E-03 1.55E-02 2.89E-02 

8 8×  4.94E-02 4.69E-02 1.93E-03 1.96E-04 5.27E-03 8.45E-03 

16 16×  1.92E-02 2.05E-02 3.95E-04 2.05E-05 1.09E-03 1.66E-03 

32 32×  8.68E-03 9.07E-03 8.12E-05 2.22E-06 2.98E-04 3.49E-04 

64 64×  – – 1.53E-05 2.18E-07 7.94E-05 6.99E-05 

  
On making the comparison with [11], it can be easily observed that errors got reduced, and on comparison  
with [26], it can be said that errors obtained are acceptable. In the following table, (Tab.3) 2L  and L∞ errors 

for v -component have been discussed for the values υ = 210− , Δ t=0.0001 at time level t=1.0. 
 
Table 3. Comparison of 2L  and L∞  errors for v-component. 
 

Comparison of 2L  and L∞  errors for v-component where 210−υ =  and .t 0 0001Δ =  at time level .t 1 0=  
Srivastava et al. (2013) [11] Shukla et al. (2014) [26] Present Method 

Grid points 2L  L∞  2L  L∞  2L  L∞  
4 4×  8.57E-02 9.70E-02 1.64E-02 2.88E-03 1.55E-02 2.89E-02 
8 8×  4.94E-02 4.69E-02 1.93E-03 1.96E-04 5.27E-03 8.45E-03 

16 16×  1.92E-02 2.05E-02 3.95E-04 2.05E-05 1.09E-03 1.66E-03 
32 32×  8.69E-03 9.08E-03 8.12E-05 2.22E-06 2.98E-04 3.49E-04 
64 64×  – – 1.53E-05 2.18E-07 7.94E-05 6.99E-05 

    
On comparing our results with [11], it is obvious that the obtained results are better than the previous ones, 
and comparing the present results with [26] it has been observed that the present results are acceptable. In 
Figure 1 a graphical representation of u  and v  components is given for grid point =10×10, Re =100, Δ
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t=0.0001 at the time level t =1. Numerical and exact solutions are in good agreement for both u  and v  
components reflected in the following graph. In Figure 2, the graphical representation of numerical and 
exact values for u  and v  components is given for 10×10 grid points, Re =150, Δ t=0.0001 at time level t
=1. For the given parameters, there is good compatibility between the numerical and exact solutions of both 
u  and v  components. In Figure 3, a graphical representation of numerical and exact solutions of u  and v  
components is given for grid points=20×20, Re =200, Δ t=0.0001 at time level t =1. For u  and v  
components, compatibility for the given parameters was obtained.  
 

 
 

Fig.1. Graphical representation of numerical and exact values of u and v components for grid point=10×10, 
Re =100, Δ t=0.0001 at time level t=1. 

 

 
 

Fig.2. Graphical representation of numerical and exact values of u and v components for grid point=10 ×  10, 
Re =150, Δ t=0.0001 at time level t=1. 
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Fig.3. Graphical representation of numerical and exact values of u and v components for grid point=20×20, 
Re =200, Δ t=0.0001 at time level t=1.  

 
Table 4. Comparison of numerical and exact solutions of u-component. 
 

Comparison of numerical and exact solutions of u-component at t=0.01 and at t=1.0 respectively with Δ
t=0.0001 and Re =100 

t=0.01 t=1.0 

( ),x y  Numerical u Exact u Numerical u Exact u 
(0.1, 0.1) 0.623024874 0.623047034 0.510924252 0.510521932 

(0.5, 0.1) 0.50124801 0.501248629 0.500059737 0.500056874 

(0.9, 0.1) 0.500006486 0.500006499 0.49999987 0.500000295 

(0.3, 0.3) 0.62302981 0.623047034 0.510842789 0.510521932 

(0.7, 0.3) 0.501248298 0.501248629 0.500061795 0.500056874 

(0.1, 0.5) 0.748671106 0.74867127 0.722944029 0.723639245 

(0.5, 0.5) 0.623029807 0.623047034 0.510769687 0.510521932 

(0.9, 0.5) 0.501246472 0.501248629 0.500046121 0.500056874 

(0.3, 0.7) 0.748670869 0.74867127 0.723163725 0.723639245 

(0.7, 0.7) 0.623029971 0.623047034 0.510759389 0.510521932 

(0.1, 0.9) 0.749993096 0.749993082 0.74984181 0.749847481 

(0.5, 0.9) 0.748673686 0.74867127 0.72353009 0.723639245 

(0.9, 0.9) 0.623053747 0.623047034 0.510131039 0.510521932 
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Table 5. Comparison of numerical and exact solutions of v-component. 
 

Comparison of numerical and exact solutions of v-component at t=0.01 and at t=1.0 respectively with Δ
t=0.0001 and Re =100  

t=0.01 t=1.0 

( ),x y  numerical v exact v numerical v exact v 

(0.1, 0.1) 0.876975126 0.876952966 0.989075748 0.989478068 

(0.5, 0.1) 0.99875199 0.998751371 0.999940263 0.999943126 

(0.9, 0.1) 0.999993514 0.999993501 1.00000013 0.999999705 

(0.3, 0.3) 0.87697019 0.876952966 0.989157211 0.989478068 

(0.7, 0.3) 0.998751702 0.998751371 0.999938205 0.999943126 

(0.1, 0.5) 0.751328894 0.75132873 0.777055971 0.776360755 

(0.5, 0.5) 0.876970193 0.876952966 0.989230313 0.989478068 

(0.9, 0.5) 0.998753528 0.998751371 0.999953879 0.999943126 

(0.3, 0.7) 0.751329131 0.75132873 0.776836275 0.776360755 

(0.7, 0.7) 0.876970029 0.876952966 0.989240611 0.989478068 

(0.1, 0.9) 0.750006904 0.750006918 0.75015819 0.750152519 

(0.5, 0.9) 0.751326314 0.75132873 0.77646991 0.776360755 

(0.9, 0.9) 0.876946253 0.876952966 0.989868961 0.989478068 

 
Table 6. Comparison of numerical and exact solutions of u-component. 
 

Comparison of numerical and exact solutions of u-component at t=0.01 and at t=0.01 respectively with Δ
t=0.0001 and Re =500 

t=0.01 t=1.0 

( ),x y  numerical u exact u numerical u exact u 
(0.1, 0.1) 0.617976774 0.615254195 0.51889539 0.500000041 

(0.5, 0.1) 0.500000632 0.5 0.49969085 0.5 

(0.9, 0.1) 0.5 0.5 0.499257829 0.5 

(0.3, 0.3) 0.617936669 0.615254195 0.506086835 0.500000041 

(0.7, 0.3) 0.500000627 0.5 0.500039093 0.5 

(0.1, 0.5) 0.750000011 0.75 0.756036423 0.749994312 

(0.5, 0.5) 0.617936668 0.615254195 0.506821369 0.500000041 

(0.9, 0.5) 0.500000802 0.5 0.49753424 0.5 

(0.3, 0.7) 0.750000011 0.75 0.745617144 0.749994312 

(0.7, 0.7) 0.617936671 0.615254195 0.505376292 0.500000041 

(0.1, 0.9) 0.75 0.75 0.750000973 0.75 

(0.5, 0.9) 0.749999942 0.75 0.751327608 0.749994312 

(0.9, 0.9) 0.618502774 0.615254195 0.499792683 0.500000041 
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Table 7. Comparison of numerical and exact solutions of v-component. 
 

Comparison of numerical and exact solutions of v-component at t=0.01 and at t=0.01 respectively with Δ
t=0.0001 and Re =500  

t=0.01 t=1.0 
( ),x y  numerical v exact v numerical v exact v 

(0.1, 0.1) 0.882023226 0.884745805 0.98110461 0.999999959 
(0.5, 0.1) 0.999999368 1 1.00030915 1 
(0.9, 0.1) 1 1 1.000742171 1 
(0.3, 0.3) 0.882063331 0.884745805 0.993913165 0.999999959 
(0.7, 0.3) 0.999999373 1 0.999960907 1 
(0.1, 0.5) 0.749999989 0.75 0.743963577 0.750005688 
(0.5, 0.5) 0.882063332 0.884745805 0.993178631 0.999999959 
(0.9, 0.5) 0.999999198 1 1.00246576 1 
(0.3, 0.7) 0.749999989 0.75 0.754382856 0.750005688 
(0.7, 0.7) 0.882063329 0.884745805 0.994623708 0.999999959 
(0.1, 0.9) 0.75 0.75 0.749999027 0.75 
(0.5, 0.9) 0.750000058 0.75 0.748672392 0.750005688 
(0.9, 0.9) 0.881497226 0.884745805 1.000207317 0.999999959 

 
In Table 4 numerical and exact results are given for u -component at time level t =0.01 and at time level t
=1.0 respectively with Δ t=0.0001 with Re =100. For the given mesh points, a good match between the 
numerical and exact solutions for u -component is obtained. In Table 5, numerical and exact results are given 
for v -component at time level t =0.01 and at time level t =1.0, respectively, with Δ t=0.0001 with Re =100. 
It is obvious that a good compatibility between numerical and exact solutions is obtained for the v -component 
for given parameters. In Table 6, numerical and exact results are given for u -component at time level t =0.01 
and at time level t =1.0, respectively, with Δ t=0.0001 with Re =500. On making a comparison between 
numerical and exact solutions for u -component for given parameters, it can be said that numerical results 
obtained are acceptable. In Table 7, numerical and exact results are given for v -component at time level t =0.01 
and at time level t =1.0, respectively, with Δ t=0.0001 with Re =500. For the parameters mentioned above, a 
good match between numerical and exact solutions for v -component is obtained. 
 
Test example 2 
 
In this example, considered coupled 2D Burgers’ equations have the analytical solutions as follows [31] 
 

  ( ), , u x y t =   
 2

x y 2 xt
1 2t
+ −

−
,             (3.3) 

  

  ( ), , v x y t =   
 2

x y 2 y t
1 2t
− −

−
.                (3.4) 

 
In the computational domain 0  .  and x 0 5≤ ≤  .0 y 0 5≤ ≤ , I.C. and B.C can be easily obtained with the help of 
provided exact solutions. In Table 8, 2L  and L∞  errors have been presented at different time levels for different 
grid points. In Table 8,  2L  and L∞  errors are obtained for both u  and v  components. In Figure 4, a graphical 
representation of numerical and exact solutions is given for u  and v  components, for 5×5 grid points with 

4t 10−Δ = , Re 100=  at time level t =0.01. For the above-mentioned parameters, a good match between 
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numerical and exact solutions is obtained for both u  and v  components reflected in the graph. In Table 9, a 
comparison has been made between the numerical and exact solutions of u  and v  components at time level t
=0.1, N =20, Re 100= , 4t 10−Δ = . For the given parameters, the obtained numerical results are almost the 
same as the exact solutions for u  and v  components. In Table 10, comparisons have been made of numerical 
results and absolute errors of u  and v  components with results of [29] at time level t =0.1, N 20=  with 

4t 10−Δ = , Re 100= . In Table 11, a comparison has been made of numerical solutions and exact solutions of 
u  and v  components at time level t =0.4, N 20= , Re 100=  and 4t 10−Δ = . For components, u  and v , the 
obtained numerical and exact solutions are in a good match. In Table 12, comparisons have been made of 
numerical results and absolute errors of u  and v  components with [29] at time level .t 0 4= , N 20=  with 

4t 10−Δ = , Re .100=  
 
Table 8. 2L  and L∞  errors for u-component and v-component. 
 

2L  and L∞  errors at 4t 10−Δ = , Re 100=  at time level t=0.01 for different grid points for u-component 
at t=0.01 at t=0.03 at t=0.05 

Grid points 2L  L∞  2L  L∞  2L  L∞  

5 × 5 3.12E-05 7.36E-05 2.86E-05 7.08E-05 2.62E-05 6.78E-05 

10 × 10 5.99E-05 8.77E-05 5.42E-05 8.41E-05 4.88E-05 8.02E-05 

15 × 15 7.93E-05 9.09E-05 7.11E-05 8.48E-05 6.36E-05 7.87E-05 

20 × 20 9.48E-05 9.08E-05 8.45E-05 8.23E-05 7.54E-05 7.73E-05 

25 × 25 1.08E-04 8.92E-05 9.59E-05 8.31E-05 8.55E-05 7.78E-05 

30 × 30 1.20E-04 9.00E-05 1.06E-04 8.29E-05 9.46E-05 7.82E-05 

35 × 35 1.30E-04 9.02E-05 1.15E-04 8.36E-05 1.03E-04 7.84E-05 

2L  and L∞  errors at 4t 10−Δ = , Re 100=  at time level t=0.01 for different grid points for  
v-component 

at t=0.01 at t=0.03 at t=0.05 
Grid points 2L  L∞  2L  L∞  2L  L∞  

5 × 5 3.23E-05 7.54E-05 3.20E-05 7.64E-05 3.18E-05 7.73E-05 

10 × 10 6.22E-05 8.85E-05 6.09E-05 8.67E-05 5.98E-05 8.42E-05 

15 × 15 8.24E-05 8.88E-05 8.01E-05 8.79E-05 7.81E-05 8.53E-05 

20 × 20 9.84E-05 9.10E-05 9.51E-05 8.79E-05 9.26E-05 8.72E-05 

25 × 25 1.12E-04 9.20E-05 1.08E-04 8.90E-05 1.05E-04 8.76E-05 

30 × 30 1.24E-04 9.14E-05 1.19E-04 8.92E-05 1.16E-04 8.76E-05 

35 × 35 1.35E-04 9.23E-05 1.30E-04 8.92E-05 1.26E-04 8.76E-05 
 
On making a comparison between the absolute errors for u  and v  components with [29], it is clear that the 
proposed scheme is producing better numerical approximations. In Figure 5, a graphical representation of 
numerical and exact solutions of u  and v  components is given at time level t =0.4, Re 200= , N 20=  and 

4t 10−Δ = . With the help of the following graph, it is obvious that the proposed scheme is giving almost the 
same numerical approximations as the exact solution for u  and v  components 
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Table 9. Comparison of the numerical values of u and v components. 
 

Comparison of the numerical values of u and v components with exact values at time level t=0.1,  
N=20 with 4t 10−Δ = , Re 100=  

( ),x y  numerical u exact u numerical v exact v 
(0.1, 0.1) 0.193327107 0.193340494 -0.021503856 -0.021482277 
(0.3, 0.1) 0.365151389 0.365198711 0.193326597 0.193340494 
(0.2, 0.2) 0.386653813 0.386680988 -0.043009273 -0.042964554 
(0.4, 0.2) 0.558476222 0.558539205 0.17182231 0.171858217 
(0.1, 0.3) 0.408157791 0.408163265 -0.279339334 -0.279269603 
(0.3, 0.3) 0.579980719 0.580021482 -0.064513904 -0.064446831 
(0.2, 0.4) 0.601487894 0.601503759 -0.300832497 -0.30075188 
(0.3, 0.4) 0.687400447 0.687432868 -0.193421542 -0.193340494 
(0.5, 0.5) 0.918367347 0.918367347 -0.102040816 -0.102040816 

 
Table 10. Comparison of the numerical values and absolute errors. 
 

Comparison of the numerical values and absolute errors of u and v components at time level t=0.1,  
N=20 with 4t 10−Δ = , Re 100=  

Mesh 
point 

Num. u 
[29] 

Err. 1 of 
u [29] 

Num. v 
[29] 

Err. 2 of v 
[29]

Num. u 
[Present]

Err. 1 of u 
[Present]

Num. v 
[Present] 

Err. 2 of v 
[Present]

(0.1, 0.1) 0.18368 3.31E-06 -0.02041 1.05E-06 0.193327107 1.33869E-05 -0.021503856 2.15793E-05 
(0.3, 0.1) 0.34694 5.56E-06 0.18368 3.31E-06 0.365151389 4.73221E-05 0.193326597 1.38971E-05 
(0.2, 0.2) 0.36735 6.62E-06 -0.04082 2.11E-06 0.386653813 2.71749E-05 -0.043009273 4.4719E-05 
(0.4, 0.2) 0.53062 8.87E-06 0.16327 2.25E-06 0.558476222 6.29834E-05 0.17182231 3.59068E-05 
(0.1, 0.3) 0.38776 7.67E-06 -0.26531 7.52E-06 0.408157791 5.47412E-06 -0.279339334 6.97309E-05 
(0.3, 0.3) 0.55103 9.92E-06 -0.06123 3.16E-06 0.579980719 4.07632E-05 -0.064513904 6.70723E-05 
(0.2, 0.4) 0.57144 1.10E-05 -0.28572 8.58E-06 0.601487894 1.58654E-05 -0.300832497 8.06177E-05 
(0.3, 0.4) 0.65307 1.21E-05 -0.18368 6.40E-06 0.687400447 3.24207E-05 -0.193421542 8.10483E-05 
(0.5, 0.5) 0.91838 1.65E-05 -0.10205 5.27E-06 0.918367347 0 -0.102040816 0 

Where Error1=abs(Numerical u  – Exact u ) and Errror2=abs(Numerical v  – Exact v ) 
 
Table 11. Comparison of the numerical values of u and v components. 
 

Comparison of the numerical values of u and v  components and exact values at time level t=0.4, 
N=20 with 4t 10−Δ = , Re 100=  

Grid points numerical u exact u numerical v exact v 
(0.1, 0.1) 0.185763613 0.185758514 -0.123872186 -0.123839009 
(0.3, 0.1) 0.247660739 0.247678019 0.185752661 0.185758514 
(0.2, 0.2) 0.371531476 0.371517028 -0.247761363 -0.247678019 
(0.4, 0.2) 0.433418941 0.433436533 0.061870515 0.061919505 
(0.1, 0.3) 0.49538537 0.495356037 -0.681202511 -0.681114551 
(0.3, 0.3) 0.557294786 0.557275542 -0.37162178 -0.371517028 
(0.2, 0.4) 0.681147527 0.681114551 -0.805058882 -0.80495356 
(0.3, 0.4) 0.712099911 0.712074303 -0.650251194 -0.650154799 
(0.5, 0.5) 0.882352941 0.882352941 -0.588235294 -0.588235294 
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Table 12. Comparison of the numerical values and absolute errors. 
 

Comparison of the numerical values and absolute errors with results of [29] at time level t=0.4, 
N=20, Re 100=  and 4t 10−Δ =  

( ),x y  Num. 
u [29] 

Err. 1 u 
[29]

Num. v 
[29] 

Err. 2 v 
[29]

Num. u 
[Present]

Err. u 
[Present]

Num. v 
[Present] 

Err. v 
[Present]

(0.1, 0.1) 0.17657 1.02E-04 -0.11729 3.55E-04 0.185763613 5.09935E-06 -0.123872186 3.31771E-05 

(0.3, 0.1) 0.23585 5.59E-04 0.17657 1.02E-04 0.247660739 1.72795E-05 0.185752661 5.85267E-06 

(0.2, 0.2) 0.35314 2.04E-04 -0.23458 7.10E-04 0.371531476 1.44477E-05 -0.247761363 8.33449E-05 

(0.4, 0.2) 0.41242 6.61E-04 0.05928 4.57E-04 0.433418941 1.75917E-05 0.061870515 4.899E-05 

(0.1, 0.3) 0.47044 1.51E-04 -0.64574 1.32E-03 0.49538537 2.93325E-05 -0.681202511 8.79602E-05 

(0.3, 0.3) 0.52972 3.06E-04 -0.35188 1.06E-03 0.557294786 1.92445E-05 -0.37162178 0.000104752 

(0.2, 0.4) 0.64701 4.90E-05 -0.76303 1.67E-03 0.681147527 3.29757E-05 -0.805058882 0.000105321 

(0.3, 0.4) 0.67665 1.79E-04 -0.61611 1.55E-03 0.712099911 2.56073E-05 -0.650251194 9.63953E-05 

(0.5,0.5) 0.88286 5.10E-04 -0.58646 1.77E-03 0.882352941 0 -0.588235294 0 

Where Error-1=abs (Numerical u  – Exact u ) and Error-2=abs (Numerical v  – Exact v ) 
  

 
 

Fig.4. Comparison of numerical and exact u and v. 
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Fig.5. Comparison of numerical and exact results. 
 

 

 
 

Fig.6. Comparison of numerical and exact results. 
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Test example 3. 
 
In the following example [27] the Burgers’ equations are given with following I.C.s and B.C.s 
 
I.C.  
 
  ( ) ( ) ( ), ,      ,u x y 0 sin x cos y= π + π          (3.5) 
 
  ( ), ,      v x y 0 x y= + .                    (3.6) 
B.C.  
 
  ( ) ( ), ,   ,u 0 y t cos y= π               ( ), ,   ,v 0 y t y=  
 
  ( ) ( ). , ,     ,u 0 5 y t 1 cos y= + π       ( ). , ,   .   ,v 0 5 y t 0 5 y= +  

 (3.7) 
  ( ) ( ), ,     ,u x 0 t 1 sin x= + π           ( ), ,   ,u x 0 t x=  
 
  ( ) ( ), . ,   , u x 0 5 t sin x= π             ( ), . ,    . .u x 0 5 t x 0 5= +  
 
In Table 13, a comparison has been made of numerical approximations for Re 50= , N 20= , .t 0 0001Δ =  at 
the time level t =0.625. A comparison of numerical results for u  and v  components is presented and compared 
with, results of [11, 26, 27]. In Figure 7, a graphical representation of numerical solutions of u  and v  components 
is given for Re 50= , .t 0 0001Δ = , N 20=  at time level t =0.625. In Figure 8, a graphical representation of 
numerical solutions of u  and v  components is given for Re 100= , .t 0 0001Δ = , N 20=  at time level t =0.1. 
In Figure 9, a graphical representation is given for u  and v  components at time level t =1 with .t 0 0001Δ =  and 
N 20=  for Re 100=  and 200, respectively. In Figure 10, a graphical representation is given for the computed 
values of u  and v  components at time level t =1 with .t 0 0001Δ = , N 30=  for Re 150=  and 500, respectively. 
In Table 14, a comparison has been made of numerical values of u -component for Re 50=  at time level t
=0.625. On making this comparison, it is quite obvious that the present scheme is producing acceptable numerical 
results for u -component. In Table 15, a comparison has been made of numerical values of v - component for 
Re 50=  at time level t =0.625. From the comparison of numerical solutions, it is clear that the results obtained 
from the presented scheme are acceptable. 
 
Table 13. Comparison of numerical results. 
 

Comparison of numerical results for Re 50= , grid points N 20= , .t 0 0001Δ = at time level t=0.625 
u-component v-component 

( ),x y  [11] [26] [27] Present [11] [26] [27] Present 

(0.1, 0.1) 0.97146 0.97056 0.970558 0.965404126 0.09869 0.09842 0.098419 0.102491037 
(0.3, 0.1) 1.15280 1.15152 1.15152 1.151264862 0.14158 0.14107 0.141070 0.14500073 
(0.2, 0.2) 0.86308 0.86244 0.862434 0.851284122 0.16754 0.16732 0.167317 0.173745602 
(0.4, 0.2) 0.97985 0.98078 0.980779 0.983404506 0.17111 0.17223 0.172228 0.182014656 
(0.1, 0.3) 0.66316 0.66336 0.663354 0.637726918 0.26378 0.26380 0.263801 0.275178657 
(0.3, 0.3) 0.77233 0.77226 0.772256 0.763142899 0.22655 0.22653 0.226526 0.236907401 
(0.2, 0.4) 0.58181 0.58273 0.582728 0.571512701 0.32851 0.32935 0.329347 0.358814238 
(0.4, 0.4) 0.75862 0.76179 0.761787 0.783880976 0.32502 0.32884 0.328842 0.378948318 

 



M.Kapoor and V.Joshi  97 

 
Fig.7. Numerical results of u-component and v-component. 

 

  
 

 
Fig.8. Numerical results of u-component and v-component. 

 

 
 

Fig.9. Comparison of numerical results. 
 
In Table 16, a comparison has been made of numerical values of u -component for Re 500=  at time level 
t =0.625. A good compatibility of numerical results has been obtained for u -component. In Table 17, a 
comparison has been made of numerical values of v -component for Re 500=  at time level t =0.625. The 
obtained numerical results are acceptable for v -component. 
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Table 14. Comparison of numerical approximation of u-component. 
 

Comparison of numerical approximation of u-component at time level t=0.625 with Re =50 

( ),x y  A.R. Bahadir [6] Jain and Holla [2] Srivastava and Tamsir [9] Present Scheme 

(0.1, 0.1) 0.96688 0.97258 0.97146 0.97058517 

(0.3, 0.1) 1.14827 1.16214 1.1528 1.151573241 

(0.2, 0.2) 0.85911 0.86281 0.86307 0.862445817 

(0.4, 0.2) 0.97637 0.96483 0.97981 0.980816783 

(0.1, 0.3) 0.66019 0.66318 0.66316 0.663352466 

(0.3, 0.3) 0.76932 0.7703 0.7723 0.772265279 

(0.2, 0.4) 0.57966 0.5807 0.5818 0.58273369 

(0.4, 0.4) 0.75678 0.74435 0.75855 0.761820536 
  
Table 15. Comparison of numerical approximation of v-component. 
 

Comparison of numerical approximation of v-component at time level t=0.625 
with Re =50 

( ),x y  A.R. Bahadir [6] Jain and Holla [2] Srivastava and Tamsir [9] Present Scheme 

(0.1, 0.1) 0.09824 0.09773 0.09869 0.09842751 

(0.3, 0.1) 0.14112 0.14039 0.14158 0.141089617 

(0.2, 0.2) 0.16681 0.1666 0.16754 0.167320701 

(0.4, 0.2) 0.17065 0.17397 0.17109 0.172244552 

(0.1, 0.3) 0.26261 0.26294 0.26378 0.263803251 

(0.3, 0.3) 0.22576 0.22463 0.22654 0.22653246 

(0.2, 0.4) 0.32745 0.32402 0.32851 0.329365302 

(0.4, 0.4) 0.32441 0.31822 0.32499 0.328886418 
  
Table 16. Comparison of numerical approximation of u-component. 
 

Comparison of numerical approximation of u-component at time level t=0.625 with Re =500 
( ),x y  A.R. Bahadir [6] Jain and Holla [2] Srivastava and Tamsir [9] Present Scheme 

(0.15, 0.1) 0.9665 0.95691 0.96151 0.964459786 
(0.3, 0.1) 1.0297 0.95616 1.032 1.029899051 
(0.1, 0.2) 0.84449 0.84257 0.87814 0.840300536 
(0.2, 0.2) 0.87631 0.86399 1.0637 0.880540396 
(0.1, 0.3) 0.67809 0.67667 0.6737 0.675579736 
(0.3, 0.3) 0.79792 0.76876 0.79947 0.810980759 
(0.15, 0.4) 0.54601 0.54408 0.58959 0.547861661 
(0.2, 0.4) 0.58874 0.58778 0.78233 0.594758021 
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Fig.10. Comparison of numerical results. 
 
Table 17. Comparison of numerical approximation of v-component. 
 

Comparison of numerical approximation of v-component at time level t=0.625 with Re =500 

( ),x y  A.R. Bahadir [6] Jain and Holla [2] Srivastava and Tamsir [9] Present 

(0.15, 0.1) 0.0902 0.10177 0.0923 0.088679672 

(0.3, 0.1) 0.1069 0.13287 0.10728 0.107880524 

(0.1, 0.2) 0.17972 0.18503 0.16816 0.177107115 

(0.2, 0.2) 0.16777 0.18169 0.2369 0.169528037 

(0.1, 0.3) 0.26222 0.2656 0.26268 0.2607306 

(0.3, 0.3) 0.23497 0.25142 0.2355 0.244147695 

(0.15, 0.4) 0.31753 0.32084 0.30419 0.323535367 

(0.2, 0.4) 0.30371 0.30927 0.35294 0.313238238 
 

4. Conclusion 
 

In this paper, a modified cubic trigonometric B-spline differential quadrature method has been 
proposed for the numerical computation of results of the non-linear coupled 2D Burgers' equation. From the 
definition of DQM, the modified cubic trigonometric B-spline has been implemented as a test function in order 
to calculate the weighting coefficients of first-order derivative approximation. The recurrence relation given 
by Shu [33] is used to evaluate the weighting coefficients to approximate the second-order derivative. In 
Section 3, the effectiveness and compatibility of the proposed scheme are explained by introducing three test 
examples. The obtained results confirm that the presented scheme is producing better results. For confirming 
that the proposed scheme is producing better numerical approximations, the concept of 2L  and L∞  error norms 
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are introduced as well as comparisons are given with the aid of tables and graphs. A good compatibility 
between the present and existing numerical approximations and present and exact solutions is obtained. The 
proposed results are acceptable.  
 
Acknowledgements 
 
The authors thank the management of Department of Mathematics, Lovely Professional University for their 
continuous support to carry out this research work. 
 
Nomenclature 
 
 Re  – Reynolds number 

 ( )kTB x  – thk  order trigonometric B-spline 

 u
t

∂
∂

 – first-order partial derivative of u  with respect to t  

 u
x

∂
∂

 – first-order partial derivative of u  with respect to x  

 u
y

∂
∂

 – first-order partial derivative of u  with respect to y  

 
2

2
u

x
∂
∂

 – second-order partial derivative of u  with respect to x  

 
2

2
u

y
∂
∂

 – second-order partial derivative of u  with respect to y  

 v
t

∂
∂

 – first-order partial derivative of v  with respect to t  

 v
x

∂
∂

 – first-order partial derivative of v  with respect to x  

 v
y

∂
∂

 – first-order partial derivative of v   with respect to  y  

 
2

2
v

x
∂
∂

 – second-order partial derivative of v  with respect to x  

 
2

2
v

y
∂
∂

 – second-order partial derivative of v  with respect to y  

 ν  – coefficient of viscosity 
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