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The effect of magnetic field dependent (MFD) viscosity on Soret driven ferrothermohaline convection in a 
densely packed anisotropic porous medium has been studied. The Soret effect is focused on the system. A linear 
stability analysis is carried out using a normal mode technique and a perturbation method is applied. It is found that 
a stationary mode is favorable for the Darcy model. Vertical anisotropy tends to destabilize the system and the 
magnetization effect is found to stabilize the system. It is also found that the MFD viscosity delays the onset of 
convection. Numerical computations are made and illustrated graphically.  
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1. Introduction 

 
A fluid (liquid or gas or plasma) is a substance that continuously deforms (flows) under an applied 

shear stress. Generally, fluids are classified into four categories: real and ideal fluids, Newtonian and non-
Newtonian fluids. The flow of real fluids exhibits viscous effect, that is they tend to stick to solid surfaces and 
have stresses within their body. Examples of real fluids are heavy oils (motor oil), syrup, etc. Ideal fluids are 
those which are incapable of sustaining any tangential force (shearing stresses) or action in the form of pressure 
acting between the adjoining layer, which means that an ideal fluid offers no internal resistance to change its 
shape. Ideal fluids are known as inviscid fluids (zero viscosity) or frictionless fluids or perfect fluids. Examples 
of ideal fluids are gasoline (low viscosity and faster flows), air, water, etc. 
 Ferro fluids are suspensions of magnetic particles of diameter approximately 10 nm stabilized by 
surfactants in carrier liquids. The large magnetic susceptibility of ferrofluids allows the mobilization of 
ferrofluid through permeable rock and soil by the application of strong external magnetic fields. Suspensions 
of magnetic nano-particles exhibit normal liquid behaviour coupled with super paramagnetic properties. This 
leads to the possibility of controlling the properties and the flow of these liquids with moderate magnetic fields. 
The magnetic control enables the design of various applications as well as basic experiments in 
hydrodynamics. Ferro fluids and their general properties will be introduced and as an example the control of 
their viscous properties by means of magnetic fields will be discussed to show the potential of magnetic fluid 
control. 
 The effect of uniform distribution of heat source on the onset of stationary ferroconvection was 
investigated by Rudraiah et al. [1]. The effects of a magnetic field and non-uniform temperature gradient on 
Marangoni convection was analysed by Rudraiah et al. [2]. The effect of a magnetic field dependent (MFD) 
viscosity on ferroconvection in an anisotropic porous medium was carried out by Ramanathan and Suresh [3]. 
Vaidyanathan et al. [4] discussed the effect of a magnetic field dependent viscosity on ferroconvection in a 
sparsely distributed porous medium. Paras Ram et al. [5-6] discussed the ferrofluid flow with a magnetic field 
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dependent viscosity due to a rotating disk with and without a porous medium. The effect of a magnetic field 
dependent (MFD) viscosity on ferroconvection in a rotating disc with and without a porous medium was 
studied by Vaidyanathan et al. [7-8]. The effect of a magnetic field dependent viscosity on the onset of 
convection in a ferromagnetic fluid layer heated from below and cooled from above in the presence of a vertical 
magnetic field with constant heat flux was investigated by Nanjundappa et al. [9]. 
 Hemalatha [10] analysed the effect of a magnetic field dependent viscosity on a Soret driven 
ferrothermohaline convection in a rotating porous medium. The comparison of theoretical and computational 
ferroconvection induced by a magnetic field dependent viscosity in an anisotropic porous medium was 
analyzed by Suresh et al. [11]. A nonlinear stability analysis for a thermoconvective and duble-diffusive 
magnetized ferrofluid with MFD viscosity was investigated by Sunil et al. [12-13]. Sunil et al. [14] studied 
theoretically the effect of a magnetic field dependent viscosity on the thermal convection in a ferromagnetic 
fluid layer with or without dust particles. Vaidyanathan et al. [15] investigated the effect of a horizontal thermal 
gradient on ferroconvection. Vasanthakumari et al. [16] studied differential equations in stability analysis of 
ferrofluids. Gaikwad et al. [17] analysed the effect linear stability on double diffusive convection in a fluid 
saturated anisotropic porous layer with the Soret effect. Selvaraj et al. [18] investigated convective instability 
of strongly magnetized ferrofluids. Sekar et al. [19] carried out the stability analysis of the Soret effect on 
thermohaline convection in a dusty ferrofluid saturating a Darcy porous medium. 
 Anitha et al. [20] investigated the application of differential equation in stability analysis of dependent 
viscosity of thermohaline convection in a ferromagnetic fluid in a densely packed porous medium. Ravisha et 
al. [21] studied the thermomagnetic convection in porous media with the effect of anisotropy and local thermal 
nonequilibrium (LTNE). The weakly nonlinear oscillatory convection in a viscoelastic fluid saturated porous 
medium with through flow and temperature modulation was studied by Kiran et al. [22]. The combined effects 
of Soret and Dufour on MHD flow of a power-law fluid over a flat plate in slip flow regime was investigated 
by Saritha et al. [23]. Raju [24] investigated the effect of a temperature dependent viscosity on 
ferrothermohaline convection saturating an anisotropic porous medium with the Soret effect using the Galerkin 
technique. Sekar et al. [25] carried out the stability analysis of ferrothermohaline convection in a Darcy porous 
medium with Soret and MFD viscosity effects. Sekar et al. [26] studied the linear stability effect of densely 
distributed porous medium and Coriolis force on the Soret driven ferrothermohaline convection. Arunkumar 
et al. [27] investigated the effect of MFD viscosity on Benard-Marangoni ferroconvection in a rotating 
ferrofluid layer. Prakash et al. [28] investigated the ferromagnetic convection in a sparsely distributed porous 
medium with a magnetic field dependent viscosity. More recently, Sekar et al. [29] made a linear analytical 
study of Coriolis force on the Soret driven ferrothermohaline convection in a Darcy anisotropic porous medium 
with MFD viscosity. Most recently, Prakash et al. [30] derived the effect of a magnetic field dependent 
viscosity on ferromagnetic convection in a rotating sparsely distributed porous medium. 
 
2. Mathematical formulation 
 
 We consider an infinite, horizontal layer of incompressible Boussinesq ferromagnetic fluid of 
thickness ‘ d ’ saturating a densely packed anisotropic porous medium heated from below and salted from 
above. Further, the whole system is assumed anisotropic along the vertical direction which is taken as the z 
axis (Fig.1). The fluid viscosity is assumed to be magnetic dependent in the form ( ). ,1 1μ = μ + δ Β where 1μ  
is viscosity of the fluids when the applied magnetic field is absent. The temperature and salinity at the bottom 
and top surfaces are /z d 2= ±  are /0T T 2± Δ  and /0S S 2± Δ , respectively. Both the boundaries are taken 
to be free and perfect conductors of heat and solute. The Soret effect on the temperature gradient is considered. 
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Fig.1. Geometrical configuration. 
 
The variation in the coefficient of the magnetic field dependent viscosity δ has been taken to be isotropic, that 
is, .1 2 3δ = δ = δ = δ  Hence the component 1μ  can be written as 
 
  ( ) ( ) ( ), and .x 1 1 y 1 2 z 1 31 B 1 B 1 Bμ = μ + δ μ = μ + δ μ = μ + δ  
 
The continuity equation is 
 
  . .0∇ =q  (2.1) 
 
The modified Navier-Stokes equation is 
 

  ( ) ( ).
. .1

o
1D p

Dt k
μ +

ρ = −∇ + ρ + ∇ −
δ Βq g HB q  (2.2) 

 
The modified thermal diffusivity equation is 
 

  ,
, ,

. . .2
o V H o o 1

V H V H

dT dC T K T
T dt T dt

 ∂ ∂   ρ − μ + μ = ∇ + φ    ∂ ∂     

M M HH  (2.3) 

 
Fick’s diffusion equation is 
 

  ( ). .2 2
s T

S S K S S T
t

∂ + ∇ = ∇ + ∇
∂

q
 

(2.4) 

 
Maxwell’s equations are 
 
  . , .0 0∇ = ∇× =B H  (2.5a,b) 
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Further, B , M  and H  are related by 
 
  ( )0= μ +B M H . (2.6) 
 
Combining Eqs (5a) and (6), we get  
 
  ( ). 0∇ + =M H . (2.7) 
 
The magnetization is aligned with the magnetic field and depends on the magnitude of the magnetic field, 
temperature and salinity, so 
 

  ( ), ,M H T S
H

= HM . (2.8) 

 
The magnetic equation of state is 
 
  ( ) ( ) ( )0 0 0 2 0M M H H K T T K S S= + χ − − − + −  (2.9) 
 
where ,( / ) ,

0 0H TM Hχ = ∂ ∂  ,( / )
0 0H TK M T= − ∂ ∂  and ,( / ) .

0 02 H SK M S= ∂ ∂  
The density equation of state for an incompressible two-component fluid is 
 
  ( ) ( )0 t 0 s 01 T T S S ρ = ρ − α − + α −   (2.10) 
 
where ( )( )/ /t 1 Tα =− ρ ∂ρ ∂  and ( )( )/ / .s 1 Sα = ρ ∂ρ ∂  
The basic state is assumed to be the quiescent state 
 

  

, (z p ),

,

p , b b t b 0 t

S b 0 s

T0 T T z
z

S S S z
z

∂= = −β  = − β
∂

∂ = β  = +

=

β
∂

=q q

 

   (2.11)
 

  

( ) ( ) ( )

( ) ( ) ( )

K
,

.

b 0 2 b 0
b 0

b 0 2 b 0
b 0

T T K S S
Z H

1 1

T T K S S
Z M

1 1

∧

∧

 − −
= + − + χ + χ 

 Κ − −
= − + + χ + χ 

H k

M k

 

 
3. Linear stability theory  
 

The basic state is disturbed by a small thermal perturbation. Consider a perturbed state such that
( ) ( ) ( ) ( ) ( )     ,  , , , ,b b b b bp p p Tz z z T zT z a′ ′= = μ =μ = =′ ′ ′ ′+ =+ μ + + +q q H H M MH M  where , ,p′ ′q  

, ,T′ ′ ′μ H  and ′M  are perturbed variables and are assumed to be small 
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  ( )' ' ' , , ,0
i i i

0

MH M 1 H i 1 2
H

 
+ = + = 

 
 (3.1) 

 
  ( )' ' ' ' ' '.3 3 3 2 TH M 1 H KT K S S KT+ = + χ − + +  (3.2) 
 
Let ( ), ,1 2 3B B B=B  be the magnetic induction, using Eq.(2.6), one gets the result ( )' '

i 0 i iM HB = μ + and Eqs 

(3.1) and (3.2) become 
 

  ( ), , ,0
i 0 i

0

M1 i 1
H

B H 2
 

′= μ + = 
 

 (3.3) 

 
  ( )3 0 3 2 0 0B 1 H KT K S S KT M HΤ ′ ′ ′ ′= μ + χ − + + + +  ,

 
(3.4) 

 
when Eq.(2.5) is used in Eq.(2.1) and resulting equation are linearized with ( ),  ,  iB i 1 2 3=  given by Eqs (3.3) 
and (3.4), we obtain in the following components 
 

  ( ) 1 1
0 0 0 0

1

Hu p M H u
t x z k

′∂ μ∂ ∂ρ = − + μ + −
∂ ∂ ∂

,
 

(3.5) 

 

  ( ) 2 1
0 0 0 0

1

Hv p M H v
t y z k

′∂ μ∂ ∂ρ = − + μ + −
∂ ∂ ∂

,
 

(3.6) 

 

  

( ) ( )

( )

( ) .

2
3 0 t

0 0 0 0 0 3 2 s 0 3 t

2
0 2 s 0 2 t 0 2 s 1

0 t 0 s
2

1
0 0 0

2

H K Tw p M H H K H K 1 S
t z z 1

KK T KK S K S1 S g T g S w
1 1 1 k

M H w
k

Τ

Τ

′ ′∂ μ β∂ ∂ ′ ′ρ = − + μ + + μ β − μ β + − +
∂ ∂ ∂ + χ

′ ′ ′μ β μ β μ β μ′ ′− − − + + ρ α − ρ α − +
+ χ + χ + χ

μ− δμ +

 (3.7) 

 
Differentiating Eqs (3.5)-(3.7) with respect to x, y and z, respectively, and adding, the following equation is 
obtained upon using Eq.(2.1): 
 

  

( ) ( ) ( )

( )

( )

'

.
2

2 3 0 t
0 0 0 0 2 s T

2
0 2 s 0 2 s 31

T 0 t
1

0 2 t 1 1
0 t 0 s 0 0 0

2 2

H K Tp M H K 1 S
z z 1 z

KK K HT w S1 S K
1 z k z 1 z z
KK S w T S wg g M H
1 z k z z z k z

′ ′∂ μ β∂ ∂∇ = μ + ∇ + μ β + − +
∂ ∂ + χ ∂

′ ′μ β μ β ∂μ∂ ∂ ∂ − − + + − μ β + + χ ∂ ∂ + χ ∂ ∂ 
′ ′ ′μ β μ μ∂ ∂ ∂ ∂ ∂ − − + ρ α −ρ α − δμ + + χ ∂ ∂ ∂ ∂ ∂

′



H

 (3.8) 

 
where ′H has the components ( ), , .1 2 3H H H′ ′ ′  
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From Eq.(2.5b), ′ = ∇φH  where φ is a scalar potential. Upon elimination of p  from Eqs (3.5)-(3.7) and using 
Eq.(3.8), we get 
 

  

( ) ( ) ( )
( ) ( )

( )

2 2 2 2 2
0 0 2 s 1 0 s 1 0 t 1 0 t 1

2
2 2 20 t 0 2 s1

T 1 1 T 1
2

2 2
2 2 20 2 s 0 2 t1 1

0 0 0 1 1 1 2
2 1

w K g S g T K
t z z
K KK1 S T w 1 S T

1 k 1

K KK wM H w S S
k 1 1 k z

∂ ∂ ∂′ ′ρ ∇ = μ β ∇ φ −ρ α ∇ + ρ α ∇ − μ β ∇ φ +
∂ ∂ ∂

μ β μ βμ′ ′+ − ∇ − ∇ − − ∇ +
+ χ + χ

 μ β μ βμ μ ∂′ ′− δμ + ∇ + ∇ − ∇ −   + χ + χ ∂ 

 (3.9) 

 

where 
2 2

2
1 2 2x y

∂ ∂∇ = +
∂ ∂

 and 
2

2 2
1 2z

∂∇ = ∇ +
∂

.
 

 
4. Normal mode analysis 
 
 The normal mode solution of all dynamical variables can be written as 
 

  
( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

, , ,  , , , ,

, , ( , ) , , .

i k x k y i k x k yx y x y

i k x k y i k x k y i k x k yx y x y x y

f x y z t f z t e z t e

w w z t e T z t e S S z t e

+ +

+ + +

= φ = φ

′ ′= = θ =

 (4.1) 

 
The wave number 0k  is given by 
 
  .2 2 2

0 x yk k k= +  (4.2) 
 
Using Eqs (4.1) and (4.2) in Eq.(3.9), one gets the vertical component of the momentum equation which can 
be written as 
 

  

( ) ( )

( ) ( )

( ) .

2
2 20 2 s 0 t

0 0 2 02

2 2 2 20 2
T 0 0 t 0 0 s 0 s T t 0

2
2 21 1 1
0 0 0 0 02

2 1 2

K K
k w 1 K S k 1

t 1 z 1 zz
KK

K 1 S k g k g k S 1 S S k
1

wk w w k M H w
k k kz

  μ β μ β∂ ∂ ∂φ ∂φ  ρ − = + χ + + + χ +     ∂ + χ ∂ + χ ∂  ∂ 
μ

− θ −  − ρ α θ + ρ α − β − θ − β  +  + χ
 μ μ μ∂+ − + δμ +  ∂ 

 (4.3) 

 
The linearized perturbed temperature equation is 
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,

,

2
2

0 V H 0 0 1 02

2 2
0 0 t 0 2 0 s

0 V H t

C KT K k
t t z z

K T KK T
C w

1 1

 ∂θ ∂ ∂φ ∂ ρ − μ = − θ +    ∂ ∂ ∂  ∂ 
 μ β μ β

+ ρ β − + 
+ χ + χ  

 (4.4) 

 
where , .0 0 V H 0 0C C KHρ = ρ + μ  
The salinity equation is 
 

  
2 2

2 2
s s 0 T 02 2

S w K k S S k
t z z

   ∂ ∂ ∂+ β = − + − θ      ∂ ∂ ∂   
.
 

(4.5) 

 
The magnetic potential equation is 
 

  ( )
2

20
0 2 T2

0

M S1 1 k K K S K 0
H z z zz

 ∂ φ ∂θ ∂ ∂θ+ χ − + φ − + + =  ∂ ∂ ∂∂  
.
 

(4.6) 

 
The above equations can be written in dimensionless form using 
 

  
( )

( )

/

,

/

,

/
*

,

, , , , ,

, , * , * ,

, , .

1 2
1

02
0 V H t

1 2
1 1 2

1 22 2 2
00 V H t

1 2
s s

0 0
0 V H s

K aRt wd zt w T a k d z
C d dd

1 K aR k kk k
K C d d d

K aRD S S H 1
C dz

∗ ∗ ∗ ∗

∗

∗
∗

 ν= = = θ = =  ν ρ β ν 

 + χ μ φ = φ γ = = =
  ρρ β ν 

 ∂= = δ = μ δ + χ  ρ β ν∂  

 

 
Following the normal mode analysis, the linearized perturbation dimensionless equations for the thermosolutal 
convection due to the Soret effect in a ferrofluid are 
 

  
( )

( ) ( )( )

/ /

/ /

* * * * *
* *

* * * *,
* *

2
2 2 1 2 1 2 4

1 5 3 S 4
2 5

2 2
1 2 1 2

1 5 T 1 1 T
1 2

MaD a w a R M M D M w a R 1 M S
t k M

D aa R M M 1 S T a R M D 1 M 1 S T w
k k

 ∂ − = φ + δ + + + + ∂  
 

 − − + φ − + − − −    
 

 (4.7) 

 

  ( ) ( ) ( )/* * * *,
* *

2 2 1 2
r 2 2 2 5

TP M D D a T aR 1 M M M w
t t

∂ ∂ − φ = − + − − ∂ ∂ 
 (4.8) 
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/

/* ( ) * * ( ) *,
*

1 2
2 2 1 2 2 25 S

r S 6 T
6

M RSP D a S aR M w S D a T
t M R

 ∂  = τ − − + −  ∂   
 (4.9) 

 

  ( )
/

* * * *
1 2

2 2 5
3 T

6 S

M RD M a 1 S DT DS 0
M R

 
φ − φ − − + = 

 
 (4.10) 

 
where the non-dimensional parameters used are 
 

  

( ) ( )

( )

,

,
,

, ,

/, , , ,

, , , ,

,

2 2
0 t 0 0 2 s 0 0

1 2 5 3
0 t 0 v H t

2
v H0 s S S

4 6 0 v H r
0 s 1 1 1

4 4
0 v H s s 0 v H t t

S
S 1

K K T K 1 M HM M M M
1 g 1 C K 1

CK K KM M C P
1 g K K K

C gd C gd
R R

K K

μ β μ β +
= = = =

+ χ ρ α + χ ρ β + χ

μ μ β
= = τ = ρ = + χ ρ α  

ρ β α ρ β α
= =

ν ν

 

 
where SR is the salinity Rayleigh number, R  is the thermal Rayleigh number, rP  is the Prandtl number and 
other parameters describe non-dimensional parameters. 
 
5. Mathematical Analysis 
 
 The boundary conditions on velocity, temperature and salinity are 
 

  * * * * .t *a* /2w D w T D S 0 z 1 2= = = φ = = =±  (5.1) 
 
The exact solutions satisfying above Eq.(5.1) are 
 

  

* * *

* *

* cos *, * cos *, * cos *,

* cos *, * sin *

t t t

t t

w Ae z T Be z S Ce z

ED Ee z e z

σ σ σ

σ σ

= π = π = π

φ = π φ = π
π

 
(5.2) 

 
where A, B , C , E  are constants and * *.2 1k k=ε  
In this part, all the partial derivatives and asterisks are removed with the use of exact solutions to find the solution 
of the system of homogeneous equations in (5.3) to (5.6). Using Eqs (5.2) in Eqs (4.7) to (4.10), we get 
 

  
( ) ( )

( ) ( ) ( )

/

/ / ,

2 2
2 2 2 1 2

3 1 T
1 1

1 2 1 1 2
1 5 T S 4 4 5 1 5

a 1a a M A aR 1 M 1 S
k k

M M 1 S B aR 1 M M M C aR M 1 M E 0−

  π ε +σ π + + + δ −  + − +    ε ε   

+ −  + + + + + =

 (5.3) 

 
  ( ) ( )/ ,1 2 2 2

2 2 5 r r 2aR 1 M M M A a P B P M E 0− − − π + + σ + σ =  (5.4) 
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  ( ) ( )
/

/ ,
1 2

1 2 2 2 2 25 S
S 6 T r

6

M RaR M A S a B a P C 0
M R

    + π + + τ π + + σ =      
 (5.5) 

 
  ( ) ( )/ / / .1 2 2 1 2 2 1 1 2 2 2

S T 5 6 S 3R 1 S B R M M C R a M E 0−− π − + π + π + =  (5.6) 

 
The determinant of coefficients A, B , C  and E  vanish for the existence of non-trivial Eigen functions. 
Equations (5.3)-(5.6) lead to 
 
  ,3 2U V W X 0σ + σ + σ + =   
 
  ( )( ) ,2 2 2 2 2

3 rU a a M P= π + π +  

 

  ( ) ( ) ( ) ,
2 222 2 2 2 2

3 r 3 r
1 1

a 1V a M a 1 P a M P
k k

  επ += π + π + + τ + + δ   ε ε   
 

 

  

( )( ) ( ) ( )

( ) ( )( )

( ) ( ) ( ) ,

2 222 2 2 2 2 2 2
3 r 3

1 1

2 2 2
r 3 1 5

2 2 2 2 2 4
r 1 5 5 s r 3 4 6

5

a 1W a M a a P 1 a M
k k

a RP a M 1 M 1 M 1 S

Ma RP M 1 M 1 S M a R P a M 1 M M
M

Τ

Τ

  επ += π + π + τ π + + + τ + δ +   ε ε   

 + π + + + − + 

 
− π +  − +  + π + + +  

 

 (5.7) 

 

  

( )( )
( )( ) ( ) ( )

( ) ( ) ( )

( )( ) .

2 222 2 2 2 2
3 3

1 1

2 2 2 2 2
3 1 5

2
2 2 2 2 5

1 5 5
6

2 2 2 2 2 4 5
s 3 4 6

5 6

a 1a a a M
k k

a R a a 1 1 S 1

a R a 1 S 1 S

a R a a 1 S

Τ

Τ Τ

Τ
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6. Stationary Convection 
 
 For the steady state (i.e., the validity of the principle of exchange of stability), we have 0σ =  at the 
margin of stability. Then Eq.(5.7) helps one to obtain Eigen value SCR  for which a solution exists; 
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For 1M  very large, the critical magnetic thermal Rayleigh number SC SC 1N R M=  for stationary mode could 
be simplified as 
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7. Overstability 
 
 Taking iσ = σ and ,2 0σ >  in Eq.(5.7), one gets the real value of the Rayleigh number because the 
Rayleigh number is not a complex number (i.e., Im ocR 0= ), implies that ocR  is a real number. Therefore, the 
critical Rayleigh number for oscillatory mode has been calculated using 
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If oscillatory instability exists, the time factor .iσ = σ  Since U , V , W  and X  are real, Eq.(5.7) could be 
satisfied for iσ = σ  if and only if .0σ =  OCR  and SCR  are critical Rayleigh numbers for the oscillatory and 
stationary convection system. 
 
8. Method of Solution 
 

The Soret-driven thermoconvective instability of a ferromagnetic fluid layer heated from below and 
salted from above saturating a densely packed anisotropic porous medium with a magnetic field dependent 
(MFD) viscosity has been analyzed using the Darcy model. The perturbation method is applied and normal 
mode analysis is adopted. In the perturbation method, due to the application of a magnetic field, the system is 
perturbed from the basic state (quiescent state). The governing and other equations are modified. Linear 
stability analysis is considered. Then normal mode analysis is taken, non-dimensional analysis is carried out 
and the exact solutions satisfying the appropriate boundary conditions are taken yielding algebraic equations. 
For getting a non-trivial solution for the system of linear homogeneous equations, the coefficients of the 
dynamic variables are equated to zero and on simplification, the expression for SCR is obtained. Varying the 
values of the parameters in the allowable range and getting the corresponding SCR values, we get the stability 
pattern. 
 
9. Results and Discussion 
 

Before discussing the significant results of the convective system, we turn our attention to the possible 
range of values of various parameters arising in the study. The anisotropic parameter ,ε  takes the values from 
10 to 70. The value of the Prandtl number is rP  is 0.01. The values TS  starts from -0.002 to 0.002, sR  is 
varied from - 500 to 500. The values of τ are assumed to be 0.03, 0.05, 0.07, 0.09 and 0.11. The coefficient of 
MFD viscosity δ  is assumed from 0.01 to 0.09. The magnetization parameter 1M  is 1000; for a very large 
value of 1M , the effect of magnetic mechanism is very large, when compared to the buoyancy effect. For such 
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fluids, 2M  is assumed to have a negligible value and hence taken to be zero. 3M  is varied from 1 to 25 
because 3M  cannot take a value less than one. 6M  is taken to be 0.1. 4M  is the effect of magnetization due 
to salinity. This is allowed to vary from 0.1 to 0.5 taking values less than the magnetization parameter 3M . 

5M  represents the ratio of the salinity effect on the magnetic field and pyromagnetic coefficient. This is varied 
between 0.1 and 0.5. The permeability of porous medium k  is assumed to take the values 
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Fig.2. Critical thermal Rayleigh number SCR  versus anisotropic parameter ε for various ,δ
. , . , . ,T S0 03 S 0 002 k 0 001 R 500τ= = − = = −  and .3M 5=  
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Fig.3. Critical thermal Rayleigh number SCR  versus coefficient of MFD viscosity δ  for various ,3M
, . , . ,S TR 500 0 03 S 0 002 10= − τ= = − ε =  and . .k 0 001=  
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Figure 2 shows that the vertical anisotropy of permeability of the porous medium destabilizes the 
system. This is because of the decrease in SCR  when ε  is increased. As far as the MFD viscosity δ  is 
concerned, the increase in ( ). , . , ., , . , .0 001 0 003 0 005 0 007 0 009δ , increases SCR  for a fixed .ε  The same effect 
is found when ε  is increased from 10 to 70. This indicates the stabilizing nature of the system. 
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Fig.4. Critical thermal Rayleigh number SCR  versus coefficient of MFD viscosity δ  for various ,ε
, . , . , .S TR 500 S 0 002 k 0 001 0 03= − = − = τ=  and .3M 5=  
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Fig.5. Critical thermal Rayleigh number SCR  versus permeability of porous medium k  for various ,ε  
, . , . , .S TR 500 S 0 002 0 01 0 03= − = − δ = τ=  and 3M 5= . 

 
Figures 3 and 4 illustrate the variation of SCR  versus δ  for different values of 3M  and ε . From Figs 

3-4, one can find that as the coefficient of a magnetic field dependent viscosity is increased from 0.01 to 0.09, 
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the critical thermal Rayleigh number increases. This means that the system is stabilized through viscosity 
variation with respect to the magnetic field. This leads to the conclusion that the magnetic field dependent 
viscosity delays the onset of convection for a ferrofluid in a densely distributed porous medium. Figure 3 
illustrates that as 3M  increases, the values of SCR  decrease for small values of ,δ whereas for higher values 
of δ , SCR  decreases for lower values of 3M , and then increases for higher values of 3M . 
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Fig.6. Critical thermal Rayleigh number SCR  versus permeability of porous medium k  for various ,δ
, . , . ,S TR 500 0 03 S 0 002 10= − τ= = − ε =  and .3M 5=  
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Fig.7. Critical thermal Rayleigh number SCR  versus salinity Rayleigh number SR  for various ,3M
. , . , . ,T0 01 0 03 S 0 002 10δ = τ= = − ε =  and . .k 0 001=  
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Figures 5 and 6 indicate the variation of the critical Rayleigh number SCR  with respect to permeability 
of the porous medium k  for different ε and δ . It is clear that the system destabilizes as permeability of the 
porous medium k  increases. This is indicated by a decrease in SCR  values. The reason is that as the pore size 
increases, it becomes easier for the flow to destabilize the system. It is observed from the figures that the 
anisotropic parameter ε  is to destabilize the system and the dependent viscosity δ  is found to stabilize the 
system. 
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Fig.8. Critical thermal Rayleigh number SCR  versus salinity Rayleigh number SR  for various ,ε
. , . , . , .T0 01 S 0 002 k 0 001 0 03δ = = − = τ=  and .3M 5=  
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Fig.9. Critical thermal Rayleigh number SCR  versus salinity Rayleigh number sR  for various ,δ
. , . , . ,T0 03 S 0 002 k 0 001 10τ= = − = ε =  and .3M 5=  
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Fig.10. Critical thermal Rayleigh number SCR  versus Soret parameter TS  for various ,ε
. , , . , .S0 01 R 500 k 0 001 0 03δ = = − = τ=  and .3M 5=  
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Fig.11. Critical thermal Rayleigh number SCR  versus Soret parameter TS  for various ,δ
, . , . ,SR 500 0 03 k 0 001 10= − τ= = ε =  and .3M 5=  

 
Figures 7, 8 and 9 represent the variation of SCR  versus SR  for different values of 3M , ε and .δ  When the 
salinity Rayleigh number SR  increases from -500 to 500, the critical thermal Rayleigh number SCR  decreases. 
Therefore the system shows a destabilizing behaviour. It is observed from Figs 7 and 8 that the magnetization 
parameter 3M  and anisotropic parameter ε are found to destabilize the system. Also, the stabilizing trend of 
MFD viscosity δ  is seen in Fig.9.  



172  The onset of Soret driven ferrothermoconvective instability in… 

 Figures 10 and 11 indicate the variation of the critical Rayleigh number SCR  with respect to the Soret 
parameter TS  for various ε  and δ . It is found that the increase in the Soret effect stabilizes the system, thereby 
delaying the onset of convection. Both figures exhibit a stabilizing trend. This is due to the fact that the 
modulation of the salinity gradient by temperature gradient promotes stabilization. Positive values of TS  
stabilize the system more. The destabilizing trend of ε  is seen from Fig.10 and stabilizing behaviour of δ  is 
seen from Fig.11, as would mean adding salt from top. 
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Fig.12. Critical thermal Rayleigh number SCR  versus ratio of the mass transport to heat transport τ  for 
various , . , , . , .S T0 01 R 500 k 0 001 S 0 002ε δ = = − = = −  and .3M 5=  
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Fig.13. Critical thermal Rayleigh number SCR  versus ratio of mass transport to heat transport τ  for various 

, , . , . ,S TR 500 S 0 002 k 0 001 10δ = − = − = ε =  and .3M 5=  
 
 



D.Murugan and R.Sekar  173 

5 10 15 20 25
14

16

18

20

22

24

  ε = 50
  ε = 60
  ε = 70

  ε = 10
  ε = 20
  ε = 30
  ε = 40

R
SC

M3

 

 
 

Fig.14. Critical thermal Rayleigh number SCR  versus magnetization 3M  for various 
, . , , . , .S T0 01 R 500 k 0 001 S 0 002ε δ = = − = = −  and . .0 03τ=  
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Fig.15. Critical thermal Rayleigh number SCR  versus magnetization 3M  for various ,δ
, . , . , .S TR 500 S 0 002 k 0 001 0 03= − = − = τ=  and .10ε =  

 
 Figures 12 and 13 show the variation of the critical Rayleigh number SCR  versus the ratio of mass 
transport to heat transport τ  for different ε  and δ . It is seen from the figures that the system destabilizes as 
the ratio of mass transport to heat transport τ  increases. This is shown by a fall in SCR  values. It is observed 
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from the figures that the anisotropic parameter ε  is found to destabilize the system and the magnetic field 
dependent viscosity δ  is found to stabilize the system. 
 Figures 14 and 15 give the variation of the critical Rayleigh number SCR  versus the non-buoyancy 
magnetization parameter 3M  for different anisotropic parameter ε  and magnetic field dependent viscosity 
parameter .δ  It is seen from Fig.15 that as the value of M3 increases from 5 to 25, the value of SCR  degreases 
for a small value .0 01δ = , thus destabilizes the system for . .0 01δ =  whereas for higher values of δ (0.05, 0.07 
and 0.09). SCR  gets increasing values. In this situation, the system shows a stabilizing behavior which is 
increasing slowly. The destabilizing trend of the anisotropic parameter ε  is also seen from Fig.14, when 3M  
increases SCR  decreases indicating the onset of instability. This is because high magnetization tends to release 
large energy to the system causing instability to set in earlier. 
 
10. Conclusions 
 
 The critical thermal Rayleigh number is calculated for both stationary and oscillatory modes. When 
Ta 0= the thermal Rayleigh number is identical to the results obtained by Sekar et al. [29]. When 

, ,0 0 Ta 0δ= ε= =  and 1k → ∞  this tends to critical Rayleigh number obtained by Vaidyanathan et al. [31]. 
When ,0 1δ= ε=  and Ta 0=  the thermal Rayleigh number is identical to the results obtained by Sekar et al. 
[32]. When ,0δ= one gets the critical Rayleigh number calculated in Sekar et al. [33]. 
 For the stationary convection, the coefficient of MFD viscosity δ  has a destabilizing behavior for 
various values of, , , ,S 3R Mτ ε  and k  which are studied in Figs 2-10, 12-15. But, the convective system has 
a stabilizing effect which is analyzed in Fig.11 for the Soret parameter TS . It is evident from Fig.3 that lower 
values of SCR  are needed for the onset of convection with an increase in 3M  for smaller values of ,δ  whereas 
higher values of SCR  are needed for the onset of convection with an increase in 3M  for smaller values of ,δ  
hence justifying the competition between the destabilizing effect of the magnetization 3M  and the stabilizing 
effect of the MFD viscosity .δ  It is very clear from Fig.10 that the Soret coefficient TS  for different values of 
the anisotropy parameter ε  has a destabilizing effect on the system. But, due to the effect of the Soret 
coefficient TS  and salinity Rayleigh number SR , the system shows a stabilizing behavior which is plotted in 
Figs 9 and 11. Thus, the system is dominated by the Soret coefficient. 
 The MFD viscosity always has a stabilizing effect, whereas the permeability of the porous medium 
always has a destabilizing effect on the onset of convection. In the absence of MFD viscosity ( )0δ =  (which 
means the viscosity is constant), magnetization always has a destabilizing effect. In the presence of MFD 
viscosity, nothing specific can be said, since there is a competition between the destabilizing role of the 
magnetization M3 and the stabilizing role of the MFD viscosity .δ  Thus magnetization destabilizes the system 
and the coefficient of field dependent viscosity stabilizes the system for both modes. This leads to the 
conclusion that the MFD viscosity delays the onset of convection for a ferrofluid saturating a densely 
distributed anisotropic porous medium. 
 
Nomenclature 
 
 B − magnetic induction 
 Cv,H − effective heat capacity at constant volume and magnetic field (kJ/m3K)  
 D/Dt  − convective derivative s-1 [ ]/ / .D Dt t= ∂ ∂ + ∇q  
 d − thickness of the fluid layer m  
 g − gravitational acceleration (0, 0, -g) ms-2  
 H − magnetic field amp/m  
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 K − mass diffusivity 
 K 

− pyromagnetic coefficient ,( M / )
0 0H TT ≡ − ∂ ∂   

 K1 − thermal diffusivity W/mK 
 K2 

− salinity magnetic coefficient ,( M / )
0 0H TS ≡ ∂ ∂   

 Ks − concentration diffusivity W/mkg 
 k  − permeability of the porous medium  
 0k  − resultant wave number ( )2 2

0 x yk k k= + m-1 

 kx, ky  − wave number in the x and y direction m-1  
 M − magnetization Ampm-1  
 M0 − mean value of the magnetization at H = H0 and T = T0  
 p − hydrodynamic pressure (N/m2) 
 q − velocity of the ferrofluid (u, v, w) ms-1 
 S − solute concentration kg 
 ST − Soret coefficient  
 T − temperature K  
 t − time s 
 tα   − coefficient of thermal expansion K-1 
 sα   − analogous solvent coefficient of expansion K-1 
 tβ  − uniform temperature gradient Km-1 
 sβ  − uniform concentration gradient kgm-1 
 θ  − perturbation in temperature (K) 
 μ  − dynamic viscosity kgm-1s-2 
 0μ  − magnetic permeability of vacuum 
 ρ  − density of the fluid kgm-3 
 0ρ  − mean density of the clean fluid kgm-3 
 σ  − growth rate s-1 
 ϕ  − viscous dissipation factor containing second order terms in velocity 
 φ  − magnetic scalar potential Amp 
 χ  − magnetic susceptibility ,( M / )

0 0H TH ≡ ∂ ∂   

 δ  − MFD viscosity 
 ∇  − Hamilton operator [ ]( / ) ( / ) ( / )x y z≡ ∂ ∂ + ∂ ∂ + ∂ ∂i j k  
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