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This contemporary work explores the theoretical analysis of energy transfer performance of distinct 
nanoparticles (silver, copper, aluminium oxide and titanium oxide) adjacent to a moving surface under the 
influence of a porous medium which is driven by the buoyancy force. A mathematical model is presented which 
is converted to similarity equations by employing similarity transformation. The condensed nonlinear equations 
were approximated by the iterative method called RKF 45th-order. The flow and energy transference 
characteristics are explained through graphs and tabulated values. The notable findings are: silver- water is an 
appropriate nanofluid for enhancing the thermal conductivity of the base fluid. Titanium oxide – water shows a 
lower fluid flow movement due to porosity. 
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1. Introduction 
 

The development of nanotechnology depends on a proper choice of nanoparticles asit possessessufficient 
or more chemical and physical properties to face the challenges in industries;it offers cushion to solve the 
problems they encounter on a day to day basis. Nanofluids are being used in the fields of nuclear waste 
management, food industries, paper industries, cooling systems, etc., asnanoparticles have a unique property of 
high thermal conductivity.Choi et al. [1], a pioneer in nanofluids, mentioned in their theoretical work that the 
thermal conductivity increased by two-fold when the nanoparticles were suspended into a normal fluid. Masuda et 
al. [2] and Minsta et al. [3] confirmed that the addition of a minor amount of nanoparticles to a regular fluid 
yielded a substantial improvement (10 to 50 %) in the thermal conductivity of ordinary fluids. 

The metallurgy field, chemical industries, textile industry, paper industry, etc…, require the 
knowledge of flow and energy transference characteristics adjacent to moving surface. These engineering 
processes undergo cooling of strings by drawing them through a quiescent fluid. Sakiadis [4] instigated a 
theoreticalstudy on Blasius flow, later experimentally proven by Tsou et al. [5]. An extension work of [4] 
was carried out by Cran [6] and confirmed that the velocity of the moving surface was straightaway related 
to the distance from the slit. Chen [7] explored a similarity solution for two different cases like flow over the 
linear moving surface with linear surface temperature distribution and flow over the isothermal sheet. 
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Furthermore, many mathematicians have studied this theory of flow over a moving surface in the different 
physical situations [8-21]. 

Many industrial revolutions have been stimulated by the process of free convection in a porous 
medium. For instance, production of heat in the storage of farming crops, extraction of crude oil, design of 
pebble-bed nuclear reactors etc. Elbashbeshy and Aldawody [22] analyzed the importance of porosity in the 
fluid field over a moving surface. Gireesha et al. [23] explored the effect of suspended particles in porous 
media. Furthermore, many researchers analyzed different factors that influence fluid flow through porous 
media by considering normal fluids and nanoparticles [24-32]. Eid [33] conducted a study of a chemical 
reaction and heat generation or absorption effects due to an exponentially stretching sheet on an MHD mixed 
convective boundary layer flow of a nanofluid through a porous medium. Characteristics of heat transfer of 
gold nanoparticles (Au-NPs) in flow past a power-law stretching surface were discussed by Mohamed et al. 
[34], by considering a Sisko bio-nanofluid flow (with blood as a base fluid) in the presence of non-linear 
thermal radiation. Eid [35] analyzed the effects of slip velocity and heat generation/absorption on the time-
dependent stagnation-point flow and heat transfer of a nanofluid over a stretching sheet in a porous medium. 
Mohamed [36] reported that the mathematical model of the heat and mass transfer in a non-Newtonian fluid 
flow through a permeable nonlinear stretching vertical wall in the presence of effects such as, heat 
generation/absorption, thermal radiation, and heat and mass fluxesThe impact of the magnetic field and 
nanoparticles on the two-phase flow of a generalized non-Newtonian Carreau fluid over a permeable non-
linearly stretching surface was analyzed in the existence of suction/injection and thermal radiation by 
Mohamed et al. [37]. Al-Hossainy et al. [38] studied the impact of yield stress and convective conditions on 
a 3D mixed convection magneto-hydrodynamic boundary layer flow of a two-phase Casson nanofluid past a 
stretching plate in a porous medium. 

The above reviews havenot addressedwhich nanoparticlesare suitable for excellent transfer of heat. 
The proper choice of nanoparticles will help to improve the effectiveness of fluid flow and thermal 
conductivity. Hence, a sincerer attempt is made to find the appropriate nanoparticle that increases the thermal 
conductivity of the base fluid. At this point, an examination of thermal characteristics of four different 
nanoparticles such as Ag, Cu, 2 3Al O  and 2TiO  suspended in the base fluid water has been done. The fluid 
movement is considered in the porous media under the influence of buoyant force. 

 

2. Mathematical model 
 

A two- dimensional flow of a nanofluid adjacent to a moving surface through a permeable medium 
driven by buoyant force isconsidered. The viscosity of the base fluid is assumed to be varying with 
temperature.The 1a -axis is taken along the direction of the sheet and the 1b  axis is normal to it. The wall is 
assumed to be impermeable as shown in Fig.1. Under the aforesaid hypothesis, the mathematical model takes 
the following form 

 

  

 ,1 1

1 2

a b
0

x x

 
 

 
 

                            (2.1) 

 

    ( ),
2

nf1 1 1
1 1 nf nf 1 nf nf 22

1 2 2

a b a
a b a g T T

x x Kx


   
            

   (2.2) 

 

 

 .
( )

2
nf2 2 2

1 1 2
1 2 nf 2

KT T T
a b

x x Cp x

  
 

   
  (2.3) 

 

Subjected to the boundary conditions 
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The fundamental thermo-physical properties of nanofluids at 025 C  (remove this) were taken from 
various standard studiesand aregiven in Tabs 1 and 2.  

The derived Eqs (2.1)-(2.3) are reduced into a pair of highly non-linear ordinary differential 
equations by employing the following similarity transformations 
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The resultant equations take the following form 
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The boundary condition takes the following form by applying (2.5) 
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The local skin friction coefficient fC and local Nusselt number Nux  are given by 
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Further, Eqs (2.9) and (2.10) get reduced to 
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3. Numerical solution 

 
The Runge-Kutta-Fehlsberg 45th-order scheme is employed to solve the highly nonlinear differential 

Eqs (2.6) and (2.7) with the prescribed boundary condition (2.8). The acquired numerical results are 
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compared with the previous results of Wang [41], Khan and Pop [42], and Gorla and Sidwai [43]. The results 
are in excellent agreement as shown in Tab.3. 

 
Table 3. Comparison results for the temperature gradient ( )0  for the parameter Pr when Da2 0     . 
 

Pr Present Study Wang[41] Khan and Pop[42] Gorla and Sidwai [43] 
2.0 0.91135 0.9114 0.9113 0.9114 

6.13 1.75968 - - - 
7.0 1.89540 1.8954 1.8954 1.8954 

20.0 1.35390 1.3539 1.3539 1.3539 
 

4. Results and discussion 
 

This section provides an insight intothe effect of the volume fraction of all the four nanoparticles on 
the free convection flow of nanofluids over a stretching sheet through a porous medium. Figures 2-12 are 
employed to interpret the results of the current research work regarding velocity ( )f   , temperature ( ) 
and the rate of temperature ( )0 . The following values are assumed for various parameters such as: 

volume fraction .20 0 3   , buoyancy 0 3   , porosity Da0 3   for the computation of numerical 
values. 

Figures 2-5 are drawn to explore the effect of 2  on ( )f    in the case of Cu-water, Ag water, 

2 3Al O  water and 2TiO  water. It is noted that ( )f    along the stretching sheet  acclerated  with a rise in 2
in both the cases 2 2(i.e.,Cu+H O and Ag+H O) . Furthermore, it is observed that ( )f    for 2Cu+H O  is 

pridominantly higher than that of 2Ag+H O . The velocity of the fluid with the suspension of 2 3Al O  and 

2TiO  particles increased with the increase in 2  which is less compared to the Cu-water and Ag -water. 

The impact of the 2  on the thermal distributionis shown in Figs 6 and 7. One can infer from these figures 

that escalation of 2  from 0.1 and 0.3 lead to scattering of nanoparticles in the base fluid. As a result, the 
heat capacitance of the fluid increased; hence, the corresponding layer increased. Virtually, it is established 
that Ag  nanofluid has more heat conducting capacitance than the other nanofluids which is due to the bulk 

thermal conductivity of Ag  nanoparticles. 
 

        

 
Fig.2. Effect of 2  on '( )f  .                                        Fig.3. Effect of 2  on '( )f  . 
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Fig.4. Effect of 2  on '( )f  .                                          Fig.5. Effect of 2  on '( )f  . 
 

      

 
Fig.6. Effect of 2  on ( )   for various nanoparticles.           Fig.7. Effect of 2  on ( )   for various nanoparticles. 

 
Figure 8 illustrates the nature of ( )f    for various nanofluids when Da 2 . 2TiO -water nanofluid 

showsa lower velocity profile than other nanofluids.Figure 9 discloses the impact of Da on ( )   for different 

nanofluids. Ag -water showsa greater thermal conductivity compared to other nanofluids when Da 2 . The 
buoyancy effect    on velocity ( )f    and temperature ( )   is depicted in Figs 10 and 11. From Fig.10, it 

is inferred that Ag nanoparticles has more fluid flow than other nanoparticles. Physically, this indicates the 
expansion of convection currents in Ag nanoparticles is higher than for other nanoparticles. Figure 11 shows 
that ( )   is more for Ag nanofluids. 

Figure 12 portrays the nature of the rate of heat transfer ( )0  over different values of volume 

fraction 2  for the four different nanofluids. Silver (Ag) nanoparticles have abetter rate of heat transfer and 
titanium oxide hasthe least when compared to other nanoparticles. 
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Fig.8. Effect of Da on '( )f   for various nanoparticles.        Fig.9. Effect of Da on ( )   for various nanoparticles. 
 

      
 

Fig.10. Effect of  on '( )f   for various nanoparticles.        Fig.11. Effect of  on ( )   for various 
nanoparticles. 

 

 
 

Fig.12. Effect of 2  on '( )0 . 
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5. Conclusion 
 

The impact of various nanoparticles on the boundary layer flow through a porous medium over a 
stretching sheet in the presence of buoyant force is theoretically studied by using graphs. An increase in the 
volume fraction increased the thermal conductivity as well as the rate of heat transfer of 2Ag-H O  nanofluids 

and a reverse effect is observed for 2 2TiO -H O.  Hence, it is concluded that 2Ag-H O  is the appropriate 
nanofluid for enhancing the thermal conductivity of the base fluid (water). It is also observed that 

2 2TiO -H O. has a lower fluid movement due to porosity of the medium. 
 

Nomenclature 
 

  . 1
1a m s  − velocity component along 1x the axis 

  . 1
1b m s  − velocity component along 2x the axis 

  . 1
sc J K   − heat capacity of solid surface 

 fDa
Kc


  − porous medium parameter 

  . 2g m s  − acceleration due to gravity 

  . .1 1
nfK w K m   − effective thermal conductivity of nanofluid 

  . .1 1
fk w K m   − thermal conductivity of the fluid 

  . .1 1
sk w K m   − thermal conductivity of the solid 

 ( )2T K  − temperature of the nanofluid 

 ( )T K  − temperature of the ambient fluid 

  . 1
wU m s  − stretching velocity of sheet 

  .2 1
nf m s  − thermal diffusivity of nanofluid 

  1
nf K   − coefficient of thermal expansion of nanofluid 

 
( )f w

2

g T T

c x

 
   − convection parameter 

  . 2
f Ns m  − viscosity of the fluid 

  . 2
nf Ns m  − effective viscosity of nanofluid 

 2  − solid volume fraction of nanoparticle  

  . 3
f kg m  − reference density of fluid fraction 

  . 3
nf kg m  − effective density of the nanofluid 

  . 3
s kg m  − reference density of water 
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